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Like all domains of cognition, language processing is affected by top–down knowledge. Classic evidence for this is missing blatant

errors in the signal. In sentence comprehension, one instance is failing to notice word order errors, such as transposed words in the

middle of a sentence: “you that read wrong” (Mirault et al., 2018). Our brains seem to fix such errors, since they are incompatible

with our grammatical knowledge, but how do our brains do this? Following behavioral work on inner transpositions, we flashed four-

word sentences for 300 ms using rapid parallel visual presentation (Snell and Grainger, 2017). We compared magnetoencephalog-

raphy responses to fully grammatical and reversed sentences (24 human participants: 21 females, 4 males). The left lateral language

cortex robustly distinguished grammatical and reversed sentences starting at 213 ms. Thus, the influence of grammatical knowledge

begun rapidly after visual word form recognition (Tarkiainen et al., 1999). At the earliest stage of this neural “sentence superiority

effect,” inner transpositions patterned between grammatical and reversed sentences, showing evidence that the brain initially

“noticed” the error. However, 100 ms later, inner transpositions became indistinguishable from grammatical sentences, suggesting

at this point, the brain had “fixed” the error. These results show that after a single glance at a sentence, syntax impacts our neural

activity almost as quickly as higher-level object recognition is assumed to take place (Cichy et al., 2014). The earliest stage involves

detailed comparisons between the bottom–up input and grammatical knowledge, while shortly afterward, top–down knowledge can

override an error in the stimulus.
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Significance Statement

Language processing, like all cognitive domains, is profoundly influenced by top–down knowledge, evident in the oversight of

errors in the signal. For example, individuals often miss order errors, such as transposed words midsentence. Utilizing rapid

parallel visual presentation, we investigated this phenomenon by exposing participants to four-word sentences for 300 ms.

Magnetoencephalography revealed robust differentiation between grammatical and reversed sentences in the left lateral lan-

guage cortex starting at 213 ms postpresentation. Intriguingly, initial neural responses to inner transpositions treated them as

deviant, but 100 ms later, neural signals grouped them with grammatical sentences, indicating rapid error correction. These

findings reveal the brain’s remarkable capacity to reconcile bottom–up input with linguistic knowledge almost

instantaneously.

Introduction
Language comprehension involves both detailed, bottom–up
analysis of a stimulus and top–down grammatical constraints
(Gibson, 2006; Matar et al., 2021). The “sentence superiority
effect,” or SSE, is an instance of top–down syntactic knowledge

guiding the interpretation of a linguistic stimulus. In studies
involving the presentation of four-word stimuli at 200 ms using
the rapid parallel visual presentation paradigm (RPVP), partici-
pants show facilitated processing of grammatical sentences rela-
tive to scrambled sentences (Snell and Grainger, 2017; Massol
et al., 2021). When the stimuli obey the grammatical rules of
the participants’ native language, this syntactic knowledge can
be deployed to rapidly form a sentential representation of the sti-
mulus, requiring no longer than 200 ms of presentation.

Mirault et al. (2018) present a second kind of behavioral effect
seen during parallel presentation, known as the transposed-word
effect (TWE). When presented with sentences containing minor
word errors such as “you that read wrong”, readers easily
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interpret these as their grammatical counterparts. Pegado and
Grainger (2020) propose that this behavioral effect is evidence
for an error of sensory, bottom–up processing of the stimulus
that takes place in parallel, along the lines of reading models
such as Snell et al. (2018). Both of these claims are, however, con-
troversial, and other work has argued that instead, the TWE is
compatible with serial processing models of language (Reichle
et al., 2009) and is an instance of top–down grammatical knowl-
edge revising the initial analysis of the sentence with the inner
two words transposed (Huang and Staub, 2023). The claim
that the recognition and processing of multiple words can take
place in a parallel fashion (Snell et al., 2018) is also controversial
given that most prominent theories of sentence processing
assume incremental processing that takes place word-by-word
(Frazier and Fodor, 1978; Hale, 2001; Lewis and Vasishth, 2005).

The literature employing the RPVP paradigm largely consists
of behavioral and electroencephalography (EEG) studies (Wen
et al., 2019, 2021; Dunagan et al., 2024). In this study, we make
use of the superior spatial resolution of magnetoencephalogra-
phy (MEG) to localize the neural source of the SSE. A key objec-
tive of this study is to gain insight into how the brain “ûxes”
erroneous stimuli containing an inner transposition. Is the bot-
tom–up analysis of the input guided by top–down syntactic pre-
dictions in even the earliest stages as suggested by parallel models
of reading (Snell et al., 2018; Pegado and Grainger, 2020), or does
top–down grammatical knowledge operate slightly later in pro-
cessing (Huang and Staub, 2023) and revise an analysis that is
unlikely given our knowledge of the structure of our language?
Finally, we aim to offer insight into whether at-a-glance reading
of multiple words involves serial (Reichle et al., 1998, 2009) or
parallel (Snell et al., 2018) mechanisms.

To answer these questions, we conducted anMEG experiment
with 24 native speakers of English using parallel presentation of
linguistic stimuli. We presented subjects with grammatical sen-
tences, sentences with inner transpositions, and reversed sen-
tences (Fig. 1) to test which cortical regions show activity
consistent with a neural SSE and at what point do these regions
“correct” the inner transpositions and treat them as their gram-
matical counterparts. To query whether the brain uses serial or
parallel mechanisms in at-a-glance reading of parallel input, we
also used the regions discovered in the ûrst analysis as functional
regions of interest (fROIs) in a two-stage regression analysis to
test whether bigram frequencies and word-to-word transition
probabilities across the four-word stimulus impacted neural
activity at the same time or in a more sequential fashion. We cor-
related bigram frequency and transition probability with the
source estimates from the fROIs of each participant using simple
linear models. Multiple bigram frequency effects in overlapping
time windows were taken to suggest parallel processing and mul-
tiple transition probability effects in sequential time windows to
reüect serial processing of the multiword stimulus (Fig. 5).

Materials and Methods
Participants
Thirty right-handed native speakers of English participated in the study.
All participants had normal or corrected-to-normal vision and gave
informed consent. Two recordings were excluded from analysis due to
excessive noise, and three participants were excluded due to falling asleep.
As a result, a total of 25 participants (21 women; 18–40 years old; mean
age, 22.583; SD, 4.293) were included in the behavioral and MEG analyses.

Design
To investigate the neural bases of the SSE, we employed a contrast
between clearly grammatical and clearly ungrammatical sentences,

both of which were then also compared with sentences containing an
inner transposition. Speciûcally, to obtain a behavioral and a neural
SSE, our sentence-type manipulation contrasted grammatical sentences
such as “all cats are nice” to reversed versions of these stimuli such as
“nice are cats all.” Given that the aim of our study was to test how
top–down grammatical knowledge may serve to ûx certain types of
errors in the signal (such as inner transpositions), it was crucial that
our choice of an ungrammatical control truly behaved as ungrammatical
both behaviorally and in neural signals. To assure this, we piloted the
grammatical versus reversed contrast before embarking on the full study,
ûnding both a robust behavioral and a neural SSE, that is, faster andmore
accurate behavioral responses and increased neural signals for the gram-
matical sentences. Given the robust divergence, the reversed sentences
were chosen for the clearly ungrammatical condition. The reversed sen-
tences were in fact initially created as a double-transposition condition,
reversing both the inner two words as in the inner-transposition condi-
tion and then adding a transposition of the ûrst and last words, but since
this in fact yields a reversed sentence, the label “reversed” will be used
here for simplicity.

Each of our grammatical stimuli were formed by creating a set of 50
plural noun–adjective pairs (“cats–nice”), inserting a determiner to the
left of the plural noun (“all cats–nice”), and ûnally inserting the verb
“are” in between the noun and the adjective. To test whether inner trans-
positions are detected during the composition of a parallelly presented
stimulus, an inner-transposition condition was created by taking the
grammatical stimulus and simply swapping the second and third words
of the sentence (“all are cats nice”). Finally, for the purposes of another
project, we also varied the kind of determiner used for the sentences. A
total of four determiners were chosen, “all,” “some,” “no,” and “the,”
yielding a 3 × 4 experimental design (Fig. 1a). Because 50 noun–adjective
pairs were used per condition, the total number of trials amounted
to 600.

The nouns and adjectives in this study were selected based on char-
acter length to ensure that the sentences would be fully within the visual
range of the fovea and the parafovea. Naturalness and plausibility were
also considered when selecting the noun–adjective pairs for each stimu-
lus. Each of the nouns in the study was a total of three characters long, so
that they would only be four characters long in their plural form. The
adjectives were either three or four characters long. The average length
of the stimuli is 16.72 characters with a standard deviation of 0.84,
with a minimum of 15 and a maximum of 18. The stimuli on average
occupied 6.11° of the visual ûeld, meaning that most of the stimuli
were close within the central visual ûeld.

The trials began with a ûxation cross on for 200 ms and off screen for
200 ms. A sentence from the experimental design (Fig. 1) was then pre-
sented for 300 ms, followed by a blank screen for 500 ms. A second sen-
tence was then presented. This sentence was either identical to the ûrst or
involved replacing one word of the ûrst sentence with another word
taken from the lexicon used to generate the stimuli. The second sentence
remained on screen until the participant marked whether the target was a
match or a mismatch with respect to the ûrst stimulus. Both the ûrst and
second stimuli were enclosed in a dark, gray rectangular box with a width
of 300 pixels and a height of 50 pixels. The box was placed around the
stimuli to direct participants’ gaze to the center of the screen and to
help discourage eye movements outside of the boundary. The box was
not presented in the intervening 500 ms between Sentence 1 and 2.
The structure of a complete trial is presented below in Figure 1.

Procedure
Before the MEG recording, each participant had their head shape
scanned with a Polhemus FastSCAN three-dimensional laser digitizer
to locate the positions of marker coils placed on the head during record-
ing. The digitized head shape was used during the data preprocessing
stage to constrain source localization data. Participants had the option
of pausing the experiment and resting every 75 trials. The stimuli were
presented to participants using the PsychoPy package in Python
(Peirce et al., 2010) on a screen roughly 50 cm away from the partici-
pant’s face. The stimuli were presented in white Courier New font
with a visual angle of 0° 34′ against a gray background. Trials were
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completely randomized for each participant. Participants had the option
of taking a break every time they completed an eighth of the trials. Before
the participants underwent the experiment, they each completed 10
practice trials to familiarize themselves with the procedure. The duration
of the experiment for each the participant lasted roughly 25 min with
breaks.

MEG data acquisition and preprocessing
The raw MEG data were collected using a whole-head 157–channel axial
gradiometer system (Kanazawa Institute of Technology) with a sampling
rate of 1,000 Hz. During data collection, the MEG data were ûltered with
a high-pass ûlter of 1 Hz, due to the high amount of NYC environmental
noise, and a low-pass ûlter of 200 Hz. After collection, the rawMEG data

Figure 1. Experimental design and trial structure. a, Full 3 × 4 factorial design with three sentence types (grammatical, inner-transposed, and reversed) using four different types of quan-

tiûers/determiners. Apart from adding variability to the stimuli, the quantiûer manipulation was not relevant for the aims of the current study. b, In our trial structure, the ûrst, critical sentence

was followed by either a matching stimulus (top) or a mismatching stimulus (bottom), prompting a match/mismatch task. MEG analysis targeted an epoch of 800 ms after the onset of the ûrst

sentence.
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were then noise-reduced using the continuously adjusted least-square
method algorithm (Adachi et al., 2001) in the MEG 160 software (Meg
Laboratory 2.004A, Yokogawa Electric, Kanazawa Institute of
Technology). All further preprocessing stages used MNE-Python
(Gramfort et al., 2013, 2014). The noise-reduced data were further low-
pass ûltered at 40 Hz. Bad channels were removed by visual inspection,
and independent component analysis was performed on the data to iso-
late and remove artifacts such as heartbeat and eyeblinks. The cleaned
data were epoched from 100 ms before the onset of Sentence 1 to
800 ms after the presentation of the sentence, resulting in epochs of
900 ms. The ûrst 100 ms of the epoch was used as a baseline in the cal-
culation of the noise–covariance matrix. Individual epochs for which any
of the sensor values exceeded 3,000 fT at any time point were rejected.

Estimates of source-level activity were computed from the evoked
responses for each participant using dynamical statistical parameter
mapping (dSPM; Dale et al., 2000). Each participant’s head shape and
ûducial landmarks that were collected prior to the experiment were
used to morph and coregister the “fsaverage” brain using the
FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/). For each
condition, MEG activity was averaged, and the forward solution was
computed using the boundary element model (Bonnet, 1999, Mosher
et al., 1999) as the source model. Covariance matrices were estimated
using the 100 ms before the presentation of the stimulus. The inverse
solution and activity at the source level were estimated by calculating
minimum-norm estimates (Hämäläinen and Ilmoniemi, 1994).

Behavioral data analyses
The behavioral data served to assess whether the stimuli elicited a beha-
vioral SSE, so that any difference in neural activation between the gram-
matical and reversed sentence conditions would reüect the activation
difference between successfully and unsuccessfully building an abstract
sentential representation of the stimulus. We thus chose to include reac-
tion time and accuracy data from the participants whose MEG data
were unusable while still excluding data from the participants who were
excessively sleepy. Only one participant scored below 80%, as low as
69.1%. This participant was excluded from further statistical analyses.
We ûrst cleaned the data by eliminating trials with reaction times
<200 ms or longer than 4,000 ms. We further removed trials from each
participant that deviated 3 standard deviations from the participant’s
mean RT. To analyze the RTs, we ût a linearmixed-effect regressionmodel
to the log-transformed reaction times. We did this separately for both the
match and the mismatch trials, as each type of trial likely reüects different
cognitive demands of the participant. Each regression model had the cat-
egorical variable sentence type as the only ûxed effect, with subjects and
items being the random effects. To analyze the accuracy data, we used a
generalized linear mixed-effect logistic regression model with all of the
cleaned data using the same combination of ûxed and random effects as
the previous model. Pairwise comparisons between sentence-type condi-
tions were performed by likelihood ratio tests and were corrected using
Tukey’s adjustment. The behavioral data were analyzed using the lme4
(Bates et al., 2015) and afex (Singmann et al., 2023) packages in R (v4.3.1).

MEG data analyses
Spatiotemporal clustering tests. Spatiotemporal cluster-based permu-

tation tests (Maris and Oostenveld, 2007) were performed over the entire
left and right cortical surfaces to detect effects of our manipulation. The
p value threshold for a cluster was set to be <0.05, and only clusters that
spanned a minimum of 20 ms and spatial size of 10 sources were consid-
ered in the analysis. Corrected cluster p values were estimated using
10,000 permutations. The analysis was performed over the entire
800 ms period from the onset of Sentence 1 until the onset of Sentence
2, to capture both early and late emerging effects. Clustering analyses
were run separately on the left and right hemispheres as opposed to run-
ning a full brain analysis to prioritize viewing results from the left hemi-
sphere, as each individual analysis was computationally intensive and
required multiple days to run. The cluster-based permutation tests
were run using the Python package eelbrain (Brodbeck et al., 2023).

The sentence-type factor of our repeated-measure ANOVA for spa-
tiotemporal clustering was used to identify cortical areas whose

activation shows a neural SSE. We deûne a neural SSE as a pattern of
activity in which the source activation for grammatical sentences is sign-
iûcantly increased as compared with reversed sentences, consistent with
neurons ûring in response to detecting well-formed sentence structure,
as has also been observed in studies on composition of serially presented
words (Pylkkänen, 2019). Importantly, any interactions between sen-
tence type and determiner were not used to assess whether a source loca-
tion exhibits a neural SSE, as any pattern more complex than an increase
for grammatical as compared with reversed sentences was deemed too
complex for a straightforward reüex of a neural SSE. The second factor
of determiner type addressed questions other than those under discus-
sion in this paper and thus will not ûgure into any analyses reported here.

Clusters that were revealed by the spatiotemporal clustering test fur-
ther underwent a series of planned pairwise temporal clustering tests to
further determine their functional properties. We performed temporal
clustering tests for each pair of conditions within the sentence-type factor
(sentence and inner transposition, sentence and reversed sentence, inner
transposition, and reversed sentence). The tests were carried out by using
the spatial extent of the signiûcant clusters as fROIs, which were then
entered into temporal clustering tests within an interval comprising of
the signiûcant temporal cluster in the initial ANOVA plus an added
50 ms at the beginning and end of the interval. To reiterate, ûnding a
signiûcant difference between grammatical sentences and reversed sen-
tences was the criterion for assessing whether the cluster displayed a neu-
ral SSE. Furthermore, if a cluster displayed a three-way pattern, in which
the activation of the inner-transposed sentences is intermediary between
the other two conditions, this was taken to indicate that the cluster shows
a neural SSE that is sensitive to the minor error of the transposition. In
contrast, if the cluster made only a two-way distinction between the
grammatical sentences on the one hand and the inner-transposed and
reversed sentences on the other, this was taken to index a neural SSE
that does not detect such an error.

Generalized linear model (GLM) analysis. To probe the extent of
serial versus parallel processing in any observed effects of sentence
type, we carried out a two-stage multiple regression model analysis by
ûrst computing a linear model of single-trial source data for each subject
using the features of log bigram frequency and log transition probability.
If a neural SSE performs a purely serial, left-to-right kind of processing,
we expect to see the pattern of results depicted in Figure 5a, in which we
observe signiûcant effects of either bigram frequency or transitional
probability unfolding in a serial manner left to right: the ûrst bigram,
then the second bigram, and ûnally the third bigram. On the other
hand, if a neural SSE performs parallel processing, then we should
instead observe the behavior shown in Figure 5b, where the effects of
bigram frequency or transitional probability unfold all within the same
time window.

Bigram frequencies and transition probabilities were computed using
the Corpus of Contemporary American English (Davies, 2008).
Speciûcally, bigram frequencies were calculated by counting the number
of times that the ûrst and second word appeared adjacent in the corpus.
For each subject, two models were estimated, one using a linear combi-
nation of the logged bigram frequencies of each bigram in the trial
[dSPM∼ bigram(1, 2) + bigram(2, 3) + bigram(3, 4)] and one using a lin-
ear combination of the logged bigram transition probabilities of each
bigram in the trial [dSPM∼ trans(1, 2) + trans(2, 3) + trans(3, 4)]. Each
of these models estimated the single-trial source data in source regions
that were signiûcant in the 3 × 4 repeated-measure ANOVA of the spa-
tiotemporal clustering analysis described above. We computed these two
models for each condition separately (sentences, inner transpositions,
reversed sentences), given the high degree of variability in the values
for bigram frequency and transition probability across conditions. A
grand total of six models were computed for each participant. The spa-
tiotemporal clustering analysis had identiûed two clusters.

We thresholded the F values of the earlier cluster to only include
source points containing F values >7.5. We did the same for the later
cluster but with a threshold of 5.0. The value of 7.5 was used to threshold
the earlier cluster, because 7.5 was the F value that most successfully con-
strained the spatial boundaries of the cluster upon visual inspection and
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similarly for the later cluster with the F value threshold of 5.0. The result-
ing spatial extent of the two clusters had very similar distributions to the
original clusters but was much more focalized to certain regions. This
was done to constrain the spatial extent of the clusters, as they both cov-
ered a wide stretch of the left-lateralized language cortex. The dependent
measure for each of the models was the averaged dSPM values across all
of the source points in the thresholded clusters.

The ûrst stage of the regression analysis consisted of constructing a
linear model of single-trial source activity for a single subject, following
the methodology of Gwilliams et al. (2016). From the thresholded clus-
ters, we took the single-trial source activations for a single participant
and averaged them across the spatial extent of the cluster, yielding a sin-
gle time course for each trial. We then ût the linear models described
above to the dSPM values at each time point. This stage of regression
resulted in a β coeýcient for every time point of the epoch. After com-
puting a series of β coeýcients for each participant, the second stage
of the regression consisted of a one-sample temporal clustering t test
on the coeýcients across subjects at each time point to see whether the

coeýcients were signiûcantly different from zero. The p value threshold
for a cluster was set to be <0.05, and only temporal clusters that spanned
a minimum of 20 ms were considered in the analysis. Cluster p values
were estimated using 10,000 permutations. We used the signiûcant
time windows from the repeated-measure ANOVA analysis to constrain
the search for signiûcant effects in the temporal clustering analysis with
an additional 50 ms of padding in the beginning and end of the window.
For the early thresholded cluster, the time window was 163–519 ms, and
for the late thresholded cluster, the window was 398–775 ms. The GLM
analyses were carried out using eelbrain (Brodbeck et al., 2023).

Results
Behavioral results

The behavioral results in Figure 2 show a clear behavioral SSE in
RT data both for match and mismatch trials. Accuracy in our
simple task was across the board very high and showed no
reliable condition differences. Numerically, the grammatical

Figure 2. Behavioral results demonstrating SSEs. a, In both match and mismatch trials, we observe a behavioral SSE in reaction time for grammatical sentences compared with both inner-

transposed and reversed stimuli. b, Regarding accuracy, the same behavioral SSE pattern is observed in mismatch trials; however, in match trials, a signiûcant difference is only seen between

grammatical and inner-transposed stimuli.
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sentences had the highest accuracy (mean ± SD, 91.27 ± 28.23%)
and the lowest RT (951.1 ± 433.7 ms), followed by the inner-
transposed stimuli (RT, 1,015.4 ± 478.2 ms; accuracy, 89.42 ±
30.76%) and ûnally the reversed sentences (RT, 1,011.8 ±
479.1 ms; accuracy 89.35 ± 30.85%). Match trials elicited longer
RTs (1,016.3 ± 492.1 ms) but higher accuracies (90.08 ± 29.89%)
relative to mismatch trials (968.5 ± 434.8 ms; accuracy, 89.95 ±
30.07%).

Within the match trials (Fig. 2a, left), pairwise comparisons
reveal that the RTs of the grammatical sentence stimuli were
signiûcantly faster than those of the inner-transposed stimuli
(p < 0.0001) as well as the reversed stimuli (p < 0.0001). The
mismatch trials (Fig. 2a, right) show the same pattern, where
the sentences elicited shorter RTs compared with inner-
transposed (p= 0.0002) and reversed stimuli (p= 0.0044). The
signiûcant differences in RT between the sentences and the

reversed sentences for both match and mismatch trials is a clear
example of the SSE. The fact that inner transpositions patterned
with the reversed sentences as opposed to the grammatical
sentences reveals that in this matching task, the behavioral SSE
extends to inner transpositions.

MEG results

Spatiotemporal clustering results
Two spatiotemporal cluster-based 3 × 4 ANOVAs were per-
formed on source-estimated data. One was performed on the
entire left cortical surface, and the other was performed on the
entire right cortical surface. No signiûcant clusters were found
in the right hemisphere. In the left hemisphere, however, signiû-
cant effects of the sentence type were found in two separate
clusters. The ûrst cluster (Fig. 3) broadly spans over the
left-lateralized language cortex from 213 to 469 ms (p < 0.001)

Figure 3. The ûrst cluster displaying a signiûcant effect of sentence-type manipulation, occurring between 213 and 469 ms. a, Average waveform across all sources showing signiûcant effects.

The initial half of the cluster exhibits a distinct trough-shaped pattern. b, On the left are the subset of sources ûrst half of the cluster. On the right are the results of pairwise t tests, showing a

three-way pattern suggestive of early detection of an inner transposition. c, On the left are the subset of sources and average activations in the later cluster, lacking the error detection proûle

observed in the earlier half.
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after the onset of the stimulus. The second cluster (Fig. 4) spans
over much of the same regions as the ûrst cluster, but with a
much more focal distribution centered in the ventromedial pre-
frontal cortex starting from 448 ms to 725 ms (p < 0.001) after
the onset of the stimulus.

Follow-up pairwise temporal clustering tests revealed that the
initial stage of the early cluster showed a three-way distinction
between each of the conditions in the sentence-type factor,
with sentences eliciting the highest activity, followed by inner
transpositions and, ûnally, reversed sentences. Speciûcally, there
was a signiûcant difference between the sentence and the inner-
transpose conditions from 258 to 288 ms (p= 0.033; Fig. 3b),
between the sentence and the reversed conditions from 239 to
313 ms (p < 0.001), and, ûnally, between the inner-transposition
and reversed conditions from 241 to 271 ms (p= 0.0475) and
from 333 to 412 ms (p= 0.0013). The signiûcant increase for

grammatical sentences as compared with the reversed sentences
meets our deûnition of a neural SSE. The three-way distinction
revealed by the pairwise tests (Fig. 3b) shows early detection of
the inner transposition during this processing stage. In sum,
the early cluster (210–320 ms) shows evidence of a neural SSE
that is sensitive to inner transpositions in the stimulus, that is,
this activity detects the error as opposed to missing it.

However, as is apparent from the waveform of the cluster
revealed by the initial ANOVA test (Fig. 3a), the behavior of
the cluster was not unitary but rather included at least two differ-
ent response proûles. The three-way distinction reported above is
apparent only during the earlier half of the time window of the
cluster as reüected by the initial trough of the waveform
(Fig. 3b). However, starting from ∼320 ms after the onset of
the stimulus, the activity pattern of the waveform changes and
no longer reüects the directionality of the three-way pattern

Figure 4. The second cluster displaying a signiûcant effect of sentence-type manipulation, occurring between 445 and 725 ms. a, Waveform averaged across all sources reüecting the effect of

sentence type. b, More focal activation observed, primarily in the left inferior frontal gyrus, ventromedial prefrontal cortex, and left anterior temporal pole. Temporal clustering tests reveal a

two-way pattern: sentences and inner-transposed sentences show signiûcantly different activation compared with reversed sentences, indicating top–down grammatical correction by this stage

of processing.
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mentioned above. Instead, the pairwise tests within this later
period show only a signiûcant difference between the inner trans-
positions and the reversed sentences (Fig. 3c) following the
320 ms mark (p= 0.0013) speciûcally between 333 and 412 ms.
Given that there was no signiûcant difference between the gram-
matical sentences and the reversed sentences during this time
window, the activity observed in this part of the cluster does
not correspond to our deûnition of a neural SSE, and thus
we do not speculate on what kind of processing may be taking
place here.

In the later cluster (Fig. 4), the follow-up pairwise tests show a
different functional pattern involving a clear two-way distinction.
The temporal clustering tests ûnd a signiûcant difference
between the sentence and reversed conditions (Fig. 4b) from
508 to 533 ms (p= 0.0491) and 536 to 605 ms (p= 0.0016) as
well as in the inner-transpose and reversed conditions from
563 to 583 ms (p= 0.0386), but no signiûcant effect between
the sentence and inner-transpose conditions. The signiûcant
increase of activity for the grammatical sentences relative to
the reversed sentences again ûts our deûnition of a neural SSE.
However, the lack of signiûcant difference in activity between
the grammatical sentences and the inner transpositions indicates
that the neural activity at this stage of processing has “missed” the
presence of the inner transposition.

GLM results
In order to shed light on whether the ANOVA results reported
above reüect serial or parallel processing, we used the observed
spatiotemporal clusters as fROI/TOIs in subsequent regression
analyses testing whether bigram frequencies and word-to-word
transition probabilities across the sentence affect the neural sig-
nals simultaneously or in a left-to-right sequential matter, as
visualized in Figure 5. The results from the two-stage regression
analyses indicate separate functional proûles for the two clusters
arising from the main ANOVA analysis. All correlations that we
report are signal increases as a function of logged bigram fre-
quencies and transition probabilities. We do not make explicit
any hypotheses as to the directionality of the effects, and so we
do not speculate about their directionality.

The early cluster (Fig. 6) showed behavior consistent with a
parallel processor, showing sensitivity to the bigram frequency
of the ûrst bigram (238–274 ms; p= 0.0216) and the second
bigram (234–275 ms; p= 0.0181) in overlapping intervals, with
the third bigram showing a trending effect shortly afterward
(297–318 ms; p= 0.0659). These effects were only found in the
grammatical sentences; in the inner-transposed and reversed
sentences, there were no signiûcant effects. This cluster also
showed trending effects for transition probability in the gram-
matical sentences, but only for the second (242–267 ms;

Figure 5. Visualization of serial and parallel hypotheses for the regression analyses of bigram frequency and transition probability reported in Figures 6 and 7. The fully left-to-right parser

hypothesis predicts to see incremental effects of a predictor variable for each bigram in a strictly linear fashion, whereas the fully parallel processor hypothesis predicts to see overlapping effects

of bigram frequency within a common time window.
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p = 0.0892) and the third (297–319 ms; p= 0.0597) bigram. As
with the effects of bigram frequency, no effects were found for
transition probability in the inner-transposed and reversed
sentences.

The later cluster (Fig. 7), on the other hand, showed signs of
serial left-to-right processing but only for inner-transposed
stimuli. The cluster showed effects of bigram frequency for the
second bigram (568–623 ms; p= 0.0118) and the third bigram
(719–772 ms; p= 0.0041). Similarly for transition probability,
the cluster also showed effects for the second (567–622 ms;
p = 0.005) and third (724–768 ms; p= 0.0134) bigram in roughly
the same time windows. The cluster additionally exhibited an
effect of transition probability for the ûrst bigram (719–747 ms;
p= 0.0362).

Discussion
Our perception of the world draws from both sensory-driven
analysis of a stimulus and prior, domain-speciûc knowledge of
the stimulus and of the context more broadly. If a stimulus is
impoverished visually, as in the case of fully gray-scaled images
(Ramachandran, 1994), or auditorily, as in the case of sine-wave
speech (Remez et al., 1981), then top–down knowledge is known
to guide the perception of the degraded stimulus (Möttönen
et al., 2006). Conversely, top–down knowledge can also “correct”
our perception, causing us to misperceive or ignore what would
otherwise be highly salient properties of the stimulus if attention
had been cued to them beforehand (Simons and Chabris, 1999;
Mack and Rock, 2000). In the domain of language, a similar
mechanism of top–down knowledge overwriting the literal

Figure 6. Bigram frequencies and transition probabilities affected activation in the early cluster but only for the grammatical sentences. The temporal dynamics of the signiûcant effects ût the

predictions of a parallel processor: the frequencies of the ûrst and second bigrams were simultaneous with the third bigram immediately following. Transition probability effects were observed

for the second and third word-to-word transitions and were also temporally very close.
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interpretation of a stimulus is exempliûed by not recognizing a
transposition of an inner bigram in a sentence (Mirault et al.,
2018). The underlying causes of this effect are heavily debated
within the literature, with some authors arguing that the effect
comes from noise during bottom–up encoding of word position
(Mirault et al., 2018; Snell and Grainger, 2019) and others argu-
ing for a postperceptual inference mechanism ûxing the transpo-
sition (Huang and Staub, 2021, 2023; Hossain and White, 2023).

This study provides a neural time course of bottom–up and
top–down mechanisms involved in the composition of multi-
word expressions by comparing grammatical sentences to sen-
tences with the inner two words transposed and fully reversed
sentences. The spatiotemporal clustering analysis revealed two
separate clusters with distinct functional proûles. The earlier of
the two clusters was sensitive to both inner transpositions and
reversals in the stimuli, suggesting that during early bottom–up

Figure 7. In the later cluster, bigram frequencies and transition probabilities mainly just affected the inner transpositions, where the second and third bigrams showed reliable and sequential

effects of frequency of transition probability, with the third bigram following the second one by ∼100 ms. Reversed sentences also showed one effect with the frequency of the ûrst bigram

having a late effect at ∼750 ms.
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processing, the brain indeed detects phrase structure errors that
may be corrected at a later stage of processing. Conversely, the
later cluster showed only a two-way distinction, with the sen-
tences and inner-transposed stimuli eliciting more activity than
the reversed sentences. This suggests that during this stage of
processing, the transposition has been “ûxed,” because such sti-
muli elicited similar patterns of activation as the grammatical
stimuli.

The psycholinguistic literature on the TWE posits two possi-
ble causes for the effect. In essence, the two hypotheses differ with
respect to “when” the misperception of the word order arises: one
positing that the bottom–up encoding of the stimulus is noisy
(Mirault et al., 2018; Snell and Grainger 2019; Pegado and
Grainger 2020) and the other positing that the top–down inter-
pretation of the stimulus ûxes it such that it conforms to the read-
er’s knowledge of phrase structure (Huang and Staub, 2021, 2023;
Hossain andWhite, 2023). The ûrst of these hypotheses contends
that word recognition takes place in parallel and that when a
reader encounters a sentence such as “the white was cat big,”
the noisy encoding of word position makes it possible for the
reader to recognize the word “cat” before the word “was,” result-
ing in a TWE. Under this account (Mirault et al., 2018; Snell and
Grainger 2019; Pegado and Grainger 2020), the misordering
arises at the level of perception, and thus the sentence would
be processed bottom–up as the grammatically correct sentence
“the white cat was big.”

The other account of the TWE proposes that bottom–up pro-
cessing of the stimulus does encode the error but that postpercep-
tual inference of the meaning of the stimulus converts it into its
grammatical counterpart (Huang and Staub, 2021, 2023; Hossain
and White, 2023). Following Gibson et al. (2013), this approach
assumes that readers use syntactic and semantic knowledge to
retrieve the most likely intended message given the noisy per-
ceived message. The ûndings from this study are consistent
with this postperceptual account. The behavior of the early clus-
ter suggests that bottom–up analysis of the stimulus is sensitive to
the presence of word order errors, whether they are transposi-
tions or full reversals of the stimulus. Furthermore, the late clus-
ter treats the sentences and the inner-transposed stimuli
identically, which suggests that at this stage or earlier, the trans-
position in the stimulus has been ûxed such that the stimulus can
be interpreted as a grammatical sentence.

Our regression analysis showed that the two clusters had
complementary proûles as regards their sensitivity to bigram fre-
quencies and transition probabilities, which we regressed against
the neural data to learn about the degree of parallel versus serial
processing in the early bottom–up and later top–down clusters.
Although there is prior evidence that two words cannot be simul-
taneously recognized (White et al., 2018, 2019, ***2020), the sti-
mulus words of these studies did not linguistically compose with
each other, but the sentence superiority phenomenon shows the
critical impact of linguistic composition for our ability of rapid
processing. Here our stimuli were clearly combinatory (gram-
matical sentences) and clearly noncombinatory (reversed sen-
tences) and of ambiguous nature (inner transpositions). We
took overlapping effects of bigram frequencies and transition
probabilities across the stimulus to be suggestive of parallel pro-
cessing and sequential effects of serial processing. The early bot-
tom–up cluster had a more parallel proûle and the late top–down
cluster a more serial proûle.

In the early cluster, we observed sensitivity to the bigram fre-
quencies of the ûrst and second bigrams in overlapping time win-
dows (238–274 ms for the ûrst bigram and 234–275 ms for the

second bigram) with the third bigram showing a trending
effect shortly after (297–318 ms). These early effects were only
present for grammatical stimuli and were not found for either
the inner-transposed or reversed stimuli, which suggests that
this early, bottom–up processing stage prefers inputs that are
high in “form typicality” (Matar et al., 2021). The late cluster
showed a very different proûle, in which no bigram frequency
or transition probability effects were elicited at all for the gram-
matical stimuli. Instead, this later cluster only showed effects for
the inner-transposed stimuli as well as the reversed stimuli, and
the temporal windows of these effects unfolded in a clearly serial
fashion, unlike that of the early cluster. In sum, the regression
analysis revealed a largely parallel proûle limited to grammatical
sentences in the early cluster and a more serial proûle limited to
the ungrammatical stimuli in the later cluster. These results sug-
gest that when presented with multiple words at once, bottom–

up combinatorial processing unfolds in a parallel fashion, not
serially; the brain is able to make use of the parallel availability
of the visual, linguistic stimulus, which is not the case in the audi-
tory modality. This is consistent with recent EEG work showing
nonleft-to-right effects of contextual surprisal during parallel
presentation (Dunagan et al., 2024).

While our neural data revealed an effect of top–down linguis-
tic knowledge on the processing of inner transpositions starting
at ∼350 ms after the stimulus onset, at which point inner trans-
positions began to pattern with grammatical sentences, this was
not the case in our behavioral data, where inner transpositions
patterned together with the ungrammatical, reversed sentences.
This is evidence of yet another stage of processing, at which the
error introduced by the transposition is detected. The combina-
tion of these results and prior behavioral studies clearly suggests
that the effect of inner transposition is highly task dependent, as
the previous studies on TWEs with the matching task elicited the
effect by ûrst presenting a grammatical sentence followed by the
same sentence containing an inner transposition (Mirault et al.,
2018; Pegado and Grainger, 2020). However, our version of the
matching task did not involve introducing a transposition on
the second presentation. Our version included the possibility of
participants ûrst seeing an inner-transposed sentence to match
with a second inner-transposed sentence. We made this decision
to ensure a clean neural recording of a transposed sentence.

In summary, our results reveal two regions of the
left-lateralized language cortex exhibiting robust SSEs. Initially,
we observe increased activity for grammatical sentences in the
anterior and posterior temporal cortex and inferior frontal
regions, followed by more concentrated activity in the medial
and inferior frontal cortex. At the earliest stages of multiword
comprehension, combinatorial regions of the language cortex
appear to operate on the stimulus in parallel. Later on, we see evi-
dence of serial processing of ungrammatical stimuli. The fastest
sentence-sensitive signals starting at ∼200 ms show a bottom–

up processing proûle, immediately detecting any deviation
from grammaticality, but by 450 ms, top–down processing
guided by knowledge of linguistic structure rescues stimuli that
only deviate minimally from a grammatical form.
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