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Abstract—The increased use of the Internet of Healthcare
Things (IoHT), i.e., Internet of Things devices used in health-
care, highlights the need to support continuous gathering and
maintenance, leading to challenges in preserving healthcare data
security and privacy. This paper briefly examines these challenges
and proposes an end-to-end proactive Digital Chain of Custody
(DCoC) when using IoHT. It outlines an IoHT-DCoC using
concepts, such as data accountability using datakeeper software
and dynamic data logging built on data encryption. Finally, an
attribute-based access control (ABAC) model is developed that
proactively ensures end-to-end data security and privacy.

Index Terms—Internet of Things, Internet of Healthcare
Things, Digital Forensics, Digital Chain of Custody, Data Security
and Privacy, Data Integrity, Health Data Regulations

I. INTRODUCTION

The Internet of Healthcare Things (IoHT), i.e., the Internet
of Things (IoT) used in healthcare, have become common-
place due to their decreased costs and user acceptance, as
well as their potential to improve patient care in terms of
accuracy, reliability, convenience, ease of use, and continuous
connectivity [1]. Wearable IoHT, such as smartwatches or
specialized devices, can measure many vitals, including body
temperature, heart rate, oxygen saturation, sleep quality, blood
pressure, and glucose levels [2]. The widespread use of IoHT
requires following the data to ensure its security and privacy
and compliance with established practices in healthcare [3].

Fig. 1. A High-Level View of Using IoHT in Healthcare [4]

Fig. 1 [4] emphasizes a data-centric view in incorporating
IoHT into a healthcare environment. Electronic Protected

Healthcare Information (ePHI), such as heart rate, oxygen
saturation or steps walked, generated by IoHT are typically
delivered to the patient’s smartphone first and then perhaps
sent to the patient’s hospital system for storage and analysis.
After analysis by a medical professional, a response notifica-
tion is sent to the patient through their IoHT smartphone app,
even perhaps to the IoHT device [5].

Cyberattacks on ePHI in 2023 affected over 540 organi-
zations and 112 million individuals, more than doubling the
impact on individuals from the previous year [6]. Such attacks
could have lethal consequences unless IoHT data security and
privacy needs are addressed. For instance, a cyberattack on an
IoHT monitoring heart rates could change the data to show
abnormally high heart rates over a long period, resulting in
an incorrect diagnosis and prescription that could worsen the
patient’s condition. The attack could also breach sensitive
ePHI in violation of the US HIPAA Privacy Rule [7] while
ePHI modification would violate the HIPAA Security Rule [8].
The resulting ePHI modifications would worsen future digital
forensic analyses [9].

The legal concept of Chain of Custody refers to the custody,
control, transfer, analysis, and disposition of evidence, both
physical and electronic. It is defined by the US Cybersecurity
and Infrastructure Agency (CISA) as [10]:

A process used to track the movement and control of
an asset through its lifecycle by documenting each
person and organization who handles an asset, the
date/time it was collected or transferred, and the
purpose of the transfer.

A Digital Chain of Custody (DCoC) thus represents the route
that digital data takes from the start to the end of its life cycle
and ensures the sanctity and safety of the data. Developing an
IoHT-DCoC addresses several technical challenges and helps
with system transparency and accountability [11].

It also preemptively ensures data integrity and sets up
an end-to-end non-repudiation and identity propagation using
established standards for digital evidence management. Stoy-
anova et al. [9] highlight the need for continuous maintenance
and gathering of data in an IoHT-DCoC. As the usage of
healthcare data increases many-fold when IoHT are used, the
need to protect data continuously becomes more crucial. Key
requirements for IoHT data include:



• Building Patient Trust: Patients are more likely to trust
healthcare providers when they have confidence that their
data is safeguarded.

• Meeting Regulatory Requirements: Healthcare data is
subject to local regulations, such as the US HIPAA law.

• Ensuring Data Integrity: Maintaining the integrity of
records and preventing access or tampering is crucial for
accurate diagnosis and treatment.

This paper investigates the creation of an IoHT-DCoC. It
has two contributions: (a) a high-level design of an end-to-
end proactive IoHT-DCoC, and (b) an attribute-based access
control (ABAC) model to support end-to-end proactive re-
quirements for data security and privacy.

Section II examines the relevant related work. Section III
outlines the end-to-end proactive DCoC for using IoHT, while
Section III discusses our proof-of-concept implementation.
Section V develops an attribute-based access control (ABAC)
model for maintaining our end-to-end proactive DCoC. We
conclude with a few final remarks about the status of this
work and future directions.

II. RELATED WORK

Almost a decade ago, Intel claimed that “half of all care
will be delivered virtually, with providers paid based on their
teamwork and quality.” [12]. Although this claim has not
materialized yet, the COVID-19 pandemic accelerated remote
care adoption: “telehealth use has increased 38X from the pre-
COVID-19 baseline” [13], with needed work being carried out
in practitioner circles in IoHT [14]. The quality and capability
of IoHT devices are critical as IoHT must remain reliable even
during data overloads [15]. With expanded features (e.g., fall
detection, EKG monitors, sleep apnea, glucose monitoring,
and UVA and UVB exposure detection), greater reliability,
and lower prices, the use of IoHT will increase, resulting in a
greater need for DCoCs.

Practitioners and academic researchers have attempted to
address security and privacy concerns in healthcare. Watson
and Dehghantanha [16] examine challenges to digital forensics
for IoHT. For DCoC designs and approaches, Neito et al. [3]
proposed the notion of a “digital witness”, which is tamper-
proof, allowing IoHT to be tied to a user’s identity and for
this identity to be delegated and propagated throughout the
system for non-repudiation. Rather than tying the IoHT to a
user’s identity, our solution instead ties a data keeper to each
sensor in the IoHT, as well as linking access control to each
point in the IoHT lifecycle (data in transit to and from the
IoHT, smartphone app, and hospital system). Other efforts to
create DCoCs include mechanisms such as blockchains [11],
[17]. As discussed later, to lower costs, our solution avoids
blockchains.

As an advanced ledger, Dynamic Source Trace (DST)
enables real-time tracking of patient health records [18] using
blockchains. Using immutable logs for all ePHI access and
modification, DST is claimed to provide greater transparency,
traceability, and efficiency compared to conventional database
logging. DST also supports machine learning algorithms to

enable real-time detection and alerting of unauthorized data
access or modification of ePHI [19], as well as scalability.

Traditional database auditing can track and proactively fix
broken chains in DCoCs [20]. Auditing techniques help track
data movement through identification, preservation, and col-
lection phases. Our solution uses logging techniques, making
it similar to database auditing.

Tomas and Jordi [21] focus on medical image authentica-
tion using an Image Signature Matrix (ISM) that combines
biometric-based encryption mechanisms with unique image
signatures to identify and flag corrupted or fake images
efficiently. Authentication is not our focus here but future work
can use such authentication methods in an IoHT-DCoC.

Yuan et al. [22] emphasize machine learning (ML) algo-
rithms to detect unauthorized access to the data, as manual
intervention at every point becomes tedious and technically
infeasible with the increasing amount of healthcare data. The
ML model learns from existing legitimate access patterns and
raises alerts upon detecting anomalies to deal with unautho-
rized access promptly. These patterns help support a proactive
IoHT-DCoC. Our proposed solution, however, focuses on
access control and logging to support a proactive IoHT-DCoC.

Any IoHT-DCoC must be aware of legal considerations,
for instance, different countries have laws governing the use
of IoHT. For example, the US Federal Drug Administration
(FDA) governs the approval of all medical devices sold in the
US [23]. California also has been at the forefront of regu-
lating the IoHT market, requiring devices connecting to the
internet must have “reasonable security features” that prevent
unauthorized access, modification, or data exposure [24].

Our overall focus in this paper is somewhat different from
most of the above-related work, as we focus on building a
proactive IoHT-DCoC that supports continuous gathering and
maintenance of IoHT data to ensure ePHI security and privacy.

III. THE PROPOSED DIGITAL CHAIN OF CUSTODY MODEL

This section discusses our proposed DCoC model for IoHT
data. As stated, we rely on a data-centric approach and access
control mechanisms for our proposed DCoC model.

A. Background

To build from CISA’s definition of a traditional CoC [10],
we first observe that DCoCs have several new challenges that
do not exist in conventional CoC settings. For example, it
is common for traditional DCoC investigations to begin only
after the entire system has already been compromised.

A break in the chain of custody is the period when control
of an asset is not known with certainty [10]. To prevent
such breaks, we categorize the entire lifecycle in terms of
any breach: before, during, and after. We achieve this by
combining preventive, monitoring, and logging techniques. All
of these are required in healthcare as cyberattacks may occur
frequently and unexpectedly. Not only is ePHI subject to legal
requirements and ethical considerations, but it is also life-
critical, as even a minor cyberattack on a healthcare system
could result in dire consequences for patients in terms of death,



and for healthcare providers in terms of financial or reputation
loss, not to mention legal penalties [25]. As a result, an IoHT-
DCoC needs to ensure continuous maintenance and gathering
of digital data [9]. Managing the breadth, depth, and quantity
of healthcare data in an IoHT-DCoC is akin to a large-scale
distributed data management problem, helping the prevention
of a break in the chain [9]. Creating an IoHT-DCoC requires
attention to both data at rest and in transit. Securing data within
the IoHT complies with the HIPAA Security Rule [8].

B. Model Features

Our proposed DCoC model for IoHT has the following
features:

• Data Logging: All interactions with the data are logged
in real-time: data creation, data modification, up to data
deletion. As a result, the process is transparent and easily
traceable if there are data breaches.

• Time-stamping: All IoHT data interaction gets time-
stamped to provide the correct order of the data events.
This assists not only in establishing a proper sequence of
data flow but also in identifying unauthorized access.

• Datakeeper software: Assigning datakeepers at every
point of the data life cycle ensures data accountability.
Each datakeeper is responsible for ensuring the safety
of the data and checking whether all the protocols are
strictly followed.

• Encryption & Digital Signatures: Proper approaches to
encryption are needed throughout the processes of DCoC
to ensure that the data being transferred digitally stays
confidential and tamper-proof.

The IoHT-DCoC framework is strengthened using ABAC as
discussed in Section V to support the working of datakeeping.
We thus rely on attributes associated with data: subjects (data-
keepers or associated individuals), objects (actual healthcare
records), and environment(s) (in which access is utilized).

IV. METHODOLOGY

As stated earlier, the integrity of IoHT data must be main-
tained throughout its lifecycle. We focus on ensuring system-
atic capture and identification of each datakeeper transition to
increase data security and transparency.

Fig. 2. IoHT Data Lifecycle

TABLE I
SAMPLE DATA

idx data source timestamp values
0 spo2 13:37:38.0 [99]
1 spo2 13:37:38.0 [89]
2 ambient light sensor 13:37:38.0 [1087]
3 accelerometer 13:37:38.0 [-5.220675, 8.682511, 13.000555]
4 heart rate 13:37:38.0 [61]
5 battery 13:37:38.0 [100]
6 magnetometer 13:37:38.0 [-12.319649, 87.12794, -71.551858]
7 gyroscope 13:37:38.0 [-3.009747, -3.159155, -3.096995]
8 ambient light sensor 13:37:38.0 [6373]
9 orientation 13:37:38.0 [-4.270139, -48.179149, 58.15792]
10 accelerometer 13:37:38.0 [-1.559278, 0.638313, 12.642135]
11 battery 13:37:38.0 [90]
12 barometer 13:37:38.0 [30.087588074195057]
13 magnetometer 13:37:38.0 [41.767118, -83.394388, 77.071183]
14 ambient light sensor 13:37:38.0 [1270]

TABLE II
DATA CUSTODY

Sensor Type Keeper
spo2 Keeper A
accelerometer Keeper B
heart rate Keeper C
magnetometer Keeper D
gyroscope Keeper E
orientation Keeper F
ambient light sensor Keeper G
barometer Keeper H
temperature Keeper I
battery Keeper J

Fig. 2 shows the IoHT data lifecycle. It describes a flow
sequence beginning with the IoHT devices that extract health-
related data. The process then dynamically logs this extracted
data, which is then assigned to the respective datakeeper soft-
ware to maintain data integrity and privacy. This is then stored
in designated digital storage, e.g., secure cloud databases,
which supports remote accessibility, further assisted by in-
memory data reserves to allow faster data retrieval. This ap-
proach helps with anomaly detection for quicker identification
of health concerns. The data cycle ends with the reporting
phase that assists healthcare providers in making clinical
decisions. This approach highlights the criticality of secure
and precise data handling in healthcare data management.

Table I demonstrates datakeeping using sample data from
a table comprising 200,472 records, which were simulated
from similar data shown in various sources, especially from
Healthcare.gov [26]. Sources were selected based on common
sensors used in smartwatches, such as accelerometers, barom-
eters, gyroscopes, heart rate sensors, and more [27].

We have attempted to ensure the overall data is comprehen-
sive to permit sufficient analysis of typical data interactions
to serve as a proof-of-concept of our proposed DCoC. The
sample dataset was obtained by running a Python script to
simulate the performance of IoHT devices. Random values
were generated to populate this dataset. A much larger study
based on real healthcare data would be needed to validate our
ideas.

The methodology guiding our proof-of-concept follows.
• Defining Datakeeping: Identifying and analyzing the

data journey is the pivotal part of our approach. The



initial goal is to understand and accumulate all the data
interaction points of contact, which includes IoHT. At
each contact point, based on the sensor type that the
data is generated from, a unique datakeeper is assigned.
Each datakeeper also tracks the next datakeeper to which
the data is sent, avoiding data leakage or corruption and
allowing anomalies to be traced back to their origin [4].
Per Table II, datakeeping is defined with the sample
data, which establishes the various data interaction points
extracted from the IoHT, such as SpO2, accelerometer,
and heart rate [27]. The data contains 10 unique points of
interaction that are categorized as follows: Device Sensor
Data (e.g., SpO2 or heart rate), Ambient Sensor Data
(e.g., ambient light sensor or temperature), and Device
System Info (e.g., battery).
A unique datakeeper is assigned to each data interaction
point. Thus, if any data leakage occurs, for instance on
the gyroscope, then Keeper E would have the required
information to gain more details on the data leak. For
patient data breaches, datakeeper software assigned at
each point of contact would be analyzed to trace the
breach’s origin. Proper tracking of datakeeper software
enables pointing to the exact source of the data breach.

• Dynamic Data Logging: During each data transition
from the points of contact, it is necessary to log the data
to ensure a continuous chain of custody as depicted in
the code snippet indicated in Table II. Each of the data
interactions would be time-stamped to enable easier data
access. The data columns must include the index, source,
timestamp, encrypted values, category, and the assigned
keepers. We have used the pandas DataFrame [28] to log
interactions at every point.

• Data Encryption: To supplement data integrity supports,
we use encryption by linking each data element with
a unique digital signature to help with data validation.
For each transition, it is essential to have an end-to-end
encryption system in place.

l o g d f = pd . DataFrame ( columns= log co lumns )

f o r idx , row i n df . i t e r r o w s ( ) :
l o g e n t r y = pd . DataFrame ({

’ index ’ : [ row [ ’ index ’ ] ] ,
’ sou rce ’ : [ row [ ’ sou rce ’ ] ] ,
’ t imes tamp ’ : [ row [ ’ t imes tamp ’ ] ] ,
’ v a l u e s ’ : [ e n c r y p t d a t a ( c i p h e r ,

s t r ( row [ ’ v a l u e s ’ ] ) ) ] ,
’ Ca tegory ’ : [ row [ ’ Category ’ ] ] ,
’ Ass igned Cus tod i an ’ :

[ row [ ’ Ass igned Cus tod ian ’ ] ]
})
l o g d f = pd . c o n c a t ( [ l og d f , l o g e n t r y ] ,

i g n o r e i n d e x =True )
l o g d f [ ’ v a l u e s ’ ] = l o g d f [ ’ v a l u e s ’ ] . a p p l y (

lambda x : d e c r y p t d a t a ( c i p h e r , x ) )
l o g d f . t o c s v (

’ d a t a i n t e r a c t i o n l o g . csv ’ , i n d e x = F a l s e )

p r i n t ( ” Data i n t e r a c t i o n s lo g ge d and e n c r y p t e d ! ” )

Fig. 3. Data Logging

A. Challenges and Future Directions

Although implementing DCoC in real-world scenarios
within complex healthcare systems presents challenges
it is still called for, as discussed earlier. The dynamic
nature of data storage, rapid technological advancements,
and evolving threats require adaptable DCoC frameworks.
Leveraging technologies, such as blockchain and machine
learning, may also offer security and transparent handling
of electronic health data.

V. ATTRIBUTE-BASED ACCESS CONTROL MODEL

Proper access control is needed to keep patient data secure
in the proposed IoHT-DCoC. Access control is defined in
the first Technical Safeguard Standard of HIPAA’s Security
Role as “the ability or the means necessary to read, write,
modify, or communicate data/information or otherwise use any
system resource” [8]. Even if a user is generally authorized, the
amount of information they can access must still be controlled
using appropriate policies. For instance, to prevent improper
use of data and protect patient privacy, only the primary care
physician needs access to a patient’s data. As such, we adopted
a performant variant of attribute-based access control called
BLAC for our IoHT-DCOC [29].

To help maintain the end-to-end digital chain of custody and
improve the security of IoHT, we designed a data flow model
using attribute-based access control (ABAC) [30]. ABAC
typically uses a complex set of rules, rather than roles, to
define who gets access privileges to a system. Attributes about
a person are used to authorize an individual. Consider a doctor.
On initial setup, their credentials, such as degree certificates,
board certifications, and licenses, are used to establish that
they have the attributes of a doctor. When they authenticate
into a system, their system-stored credentials would constitute
an attribute to establishe that they are a doctor. ABAC is
more secure than Role-Based Access Control (RBAC), which
relies only on the artificial role that a system administrator
has assigned them. This could be problematic from a data
security and privacy point of view because a Doctor role
could be assigned inadvertently or maliciously to a Pharmacist
and the system would not know any better! ABAC ensures
confidentiality in IoHT because only correctly credentialed
users can access the data.

Although IoHT health data may not form a traditional
medical report, it still must be protected. Our access model
focuses on how ABAC needs to be enforced when IoHT are
used to send health data to a provider.

The overall data flow model with ABAC is shown in Fig. 4.
This data flow model is adapted from Alshehri et al. [29]
for IoHT data. The integrated data flow model discussed here
incorporates an access control decision engine in the end-to-
end data flow process shown earlier in Fig. 1.

A. Components of the Access Model

Systems: The main elements that exchange health data in
our access model are the IoHT, the IoHT smartphone, and
the hospital system. The health data collected by the IoHT is



Fig. 4. Access Control Model for IoHT

transferred to the hospital system, via the IoHT smartphone
app, for further analysis by authorized medical professionals.

Users: The main users interacting with these systems are the
patients, the system administrators, and the authorized medical
professionals, such as physicians, nurses, administrative, and
billing staff. Each patient is a user who gets their health
data tracked by the IoHT and delivered to an authorized
hospital system while authorized medical professionals receive
health data from the patient. The patient could be the system
administrator for some system elements, e.g., the IoHT, while
the hospital personnel could manage other elements, e.g.,
hospital databases.

The approach relies on attributes associated with data:
subjects (the datakeepers or the associated individuals), objects
(the actual healthcare records), and the environment(s) in
which access is needed. That is, instead of assigning a data-
keeper role (as in RBAC) solely based on the user role [31], the

BLAC model uses relevant attributes of the user to determine
whether access is justified to each element of the data.

Access Decision Engine: The main stages in the end-to-end
data transfer from the IoHT to the hospital system that require
an access decision (made by the Access Decision Engine) for
maintaining the IoHT-DCoC are (1) IoHT to IoHT smartphone
app and (2) IoHT smartphone app to the hospital system

Services: Once an access decision is made, an IoHT service
entity will respond with the corresponding requested data
or deny access. This service is provided for data transfer
between IoHT and the smartphone app, and between the IoHT
smartphone app and the hospital system.

B. Using the Access Model

We now show how patient health data is protected from
unauthorized access at the two stages: IoHT to IoHT smart-



phone app, and IoHT smartphone app to the hospital system.
The Access Decision Engine works as follows:

1) Access Decision Engine receives a request for access
2) Access Decision Engine requests to see the policies for

the requested data, set by the system administrator
3) Policies are received by the Access Decision Engine
4) Access Decision Engine verifies the request against the

policies using the proposed model from Section III
5) Access Decision Engine requests to see the subject and

data attributes for the requested data, set by the system
administrator

6) Subject and data attributes are received by Access De-
cision Engine

7) Access Decision Engine verifies the request against
subject and data attributes using our proposed model

8) If the access request satisfies the received policies and
subject and data attributes, Access Decision Engine will
accept the request, otherwise deny it

In the hospital system, medical professionals will have at-
tributes associated with them, such as their name, identification
number (ID), field, and department. The ABAC model ensures
that only authorized medical professionals of the hospital can
view the patients’ information.

The ABAC model discussed above thus helps to cement
support for the security and privacy ePHI in our IoHT-DCoC.

VI. FINAL REMARKS

The central role of data in the proposed IoHT-DCoC lever-
ages traditional data security and privacy concepts, especially
by the use of ABAC in this domain. We can also use
established techniques for auditing, especially in distributed
database settings, to move toward a flexible IoHT-DCoC.

This paper introduced a novel IoHT-DCoC based on data-
keeper software, data logging, and attribute-based access con-
trol. We have tested parts of the framework to validate the
feasibility of our approach and will build a full-fledged IoHT-
DCoC and perform benchmarks.
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