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SAMPLING FROM POTTS ON RANDOM GRAPHS OF UNBOUNDED DEGREE
VIA RANDOM-CLUSTER DYNAMICS

ANTONIO BLANCA AND REZA GHEISSARI

ABSTRACT. We consider the problem of sampling from the ferromagnetic Potts and random-cluster models on
a general family of random graphs via the Glauber dynamics for the random-cluster model. The random-cluster
model is parametrized by an edge probability p € (0, 1) and a cluster weight ¢ > 0. We establish that for every
g > 1, the random-cluster Glauber dynamics mixes in optimal ©(nlogn) steps on n-vertex random graphs
having a prescribed degree sequence with bounded average branching ~ throughout the full high-temperature
uniqueness regime p < pu(q,7y)-

The family of random graph models we consider includes the Erd6s—Rényi random graph G(n,y/n), and
so we provide the first polynomial-time sampling algorithm for the ferromagnetic Potts model on Erd6s—Rényi
random graphs for the full tree uniqueness regime. We accompany our results with mixing time lower bounds
(exponential in the largest degree) for the Potts Glauber dynamics, in the same settings where our ©(n logn)
bounds for the random-cluster Glauber dynamics apply. This reveals a novel and significant computational
advantage of random-cluster based algorithms for sampling from the Potts model at high temperatures.

1. INTRODUCTION

The ferromagnetic Potts model is a classical spin system model in statistical physics and computer sci-
ence. It is defined on a finite graph G = (V, E), by a set of spins (or colors) [¢] = {1,...,q} and an
edge weight or inverse temperature parameter 3 > 0. A configuration o € {1,...,q}" of the model is an
assignment of spins to the vertices of V. The probability of ¢ is given by the Gibbs distribution:

KGpal0) = - ! exp(—fD(0)), (1.1)

G.B.q
where D(o) = |{{v,w} € E : 0(v) # o(w)}| is the number of edges whose endpoints have different spins
ino, and Zg g 4 is a normalizing factor known as the partition function. The Ising model of ferromagnetism
corresponds to the case where ¢ = 2.

Sampling from the Potts Gibbs distribution (1.1) is one of the most frequently encountered problems
when running simulations in statistical physics or when solving a variety of inference tasks in computer
science; see e.g. [25,26,33,34,51,54,56] and the references therein for a sample of these applications.
There is a family of powerful sampling algorithms for the Potts model that are based on its random-cluster
representation, defined subsequently. Such algorithms, which include the Glauber dynamics of the random-
cluster model and the widely-used Swendsen—Wang dynamics, are an attractive option computationally
since they are often efficient at “low-temperatures” (large (3), a parameter regime where standard Markov
chains for the Potts model (including the canonical Glauber dynamics) often converge exponentially slowly;
see, e.g., [11,13,14,19].

To be more precise, the random-cluster model on a finite graph G = (V, E), is defined by an edge
probability parameter p € (0, 1) and a cluster weight ¢ > 0. The set of configurations of the model is the set
of all subsets of edges w = E. The probability of each configuration w is given by the Gibbs distribution:

M@ pg(w) = plel(1 — p)lBl=lwlgel@) (1.2)

G.py
where c¢(w) is the number of connected components (also called clusters) in the subgraph (V,w), and Zg 4
is the corresponding partition function. The random-cluster model was introduced by Fortuin and Kasteleyn
[27] as a unifying framework for studying random graphs, spin systems, and electrical networks, and it is
also known as the FK-representation of the Ising and Potts model.
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For integer ¢ > 2, a sample w < E from the random-cluster Gibbs distribution 7 ;, 4 can be easily trans-
formed into one for the ferromagnetic g-state Potts model with inverse temperature 3(p) = —In(1 — p),
by independently assigning a random spin from {1, ..., ¢} to (all vertices in) each connected component
of (V,w); see, e.g, [24,27,38]. As such, any sampling algorithm for the random-cluster model yields one
for the ferromagnetic Potts model with essentially no computational overhead. This has led to significantly
improved sampling algorithms for the Potts model in various low-temperature settings [12,30,43,49,58,60]
and more generally, to a broad interest in dynamics for the random-cluster model [4-8, 15,39].

In this paper, we focus on the Glauber dynamics of the random-cluster model, which for easy distinction
we will henceforth call the FK-dynamics. From a configuration w; < FE, one step of this Markov chain
transitions to a new configuration w;4; S F as follows:

(1) Choose an edge e; € E uniformly at random;
A P

= P ife,isa“cutedge” in (V,w);
(2) Setwisr = wr U {e;) with probability{ D= gy 1 erisaeut-edge”in (V,w)
b

otherwise;

(3) Otherwise set w1 = we\{et}.
Here, we say e is a cut-edge in (V, w;) if changing the state of e; changes the number of connected compo-
nents ¢(wy) in (V,w;). The probabilities in step (2) are exactly the conditional probabilities of e; being in the
configuration w; given the remainder of w;. As such, this Markov chain is reversible with respect to 7g 5 4
and converges to it. We are interested in its mixing time ty;x; i.e., the number of steps until the dynamics is
within variation distance 1/4 of 7 ; 4, starting from the worst possible initial configuration.

As mentioned, the FK-dynamics is by now well-studied in its own right, though sharp analyses of its
mixing time are only available on certain structured graphs like the complete graph [6, 8, 37], boxes in the
infinite integer lattice graph Z%[5,7,14,32,35,36,41], and trees [2]. Recently, in [4], the authors studied
the FK-dynamics on random regular graphs and established optimal ©(n log n) mixing time for the FK-
dynamics throughout the entire high-temperature tree uniqueness regime.

Our aim in this paper is to study the FK-dynamics in settings in which the maximum degree of the under-
lying graph is much larger than its average degree. In such settings, high-degree vertices are an obstruction
to the fast convergence of the Ising/Potts Glauber dynamics. For instance, we later prove (see Section 1.2)
that on a general class of random graphs on n vertices with maximum degree dyax, the Ising/Potts Glauber
dynamics requires n - exp(€2(dyax)) steps to converge at high temperatures.

We reveal here that, for the same general family of random graphs, random-cluster based algorithms are
not affected by the presence of high-degree vertices; both their mixing times and fast mixing parameter
regimes are determined instead by the average degree of the graph. This reveals a novel and significant
computational advantage of random-cluster based algorithms for sampling from the ferromagnetic Potts
model at high temperatures. Indeed, prior to this work, random-cluster based sampling algorithms were
only found to be more efficient than Ising/Potts Glauber dynamics at low temperatures.

More precisely, we study the mixing time of the FK-dynamics on random graphs of average branching
~ > 0 in the full uniqueness (high-temperature) regime p < p,(q,~). At integer -, the threshold p,(q, ),
formally defined in (2.1), was identified in [40] as a uniqueness/non-uniqueness phase transition point of the
random-cluster model on the wired y-ary tree, i.e., where the leaves are externally wired to be in the same
connected component. For us, p,(q,7y) is the natural extension of that function to non-integer -y, which
we show corresponds to the high-temperature uniqueness threshold of the random-cluster model on general
trees of average branching y for all ¢ > 1 (see Corollary 3.4 in Section 3).

Before we describe our general results for random graph models with fixed degree sequence (which we
define in the next subsection) we present a special case of our main result of particular interest concerning
the FK-dynamics on sparse Erd6s—Rényi random graphs.

Theorem 1.1. Fixq > 1, v > 0 and p < py(q,7). If G is an Erd6s—Rényi random graph G ~ G(n,~y/n),
then with probability 1 — o(1), G is such that the FK-dynamics on G satisfies tyux = O(nlogn).

This yields a sampler for the Potts distribution on Erd6s—Rényi random graphs with near-optimal running
time. Let 5,(¢,7) = —In(1 — pu(g,y)) be the corresponding uniqueness point for the Potts model.
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Corollary 1.2. Fixq = 2,y > 0and 8 < Bu(q,7). There is an MCMC sampling algorithm that, with prob-
ability 1 — o(1) over the choice of an Erdés—Rényi random graph G ~ G(n,~/n), outputs a configuration
whose distribution is within total-variation distance § > 0 of jg.g 4 in time O(n(logn)3log(1/9)).

Corollary 1.2 is a direct consequence of Theorem 1.1 and the aforementioned connection between the
random-cluster model and the Potts model. The extra O((logn)?) factor in the running time of the algorithm
comes from the (amortized) cost of checking whether the chosen edge is a cut-edge in each step of the FK-
dynamics (see, e.g., [44,59]).

To the best of our knowledge, this is the first polynomial-time sampling algorithm for the Potts model
on Erd6s—-Rényi random graphs for ¢ > 3 and § = Q(1). Even for the better understood ¢ = 2 case
(i.e., the Ising model), Corollary 1.2 provides the fastest known sampling algorithm, improving upon the
running time of samplers based on the Glauber dynamics which, for the Ising model, is known to converge

inn' O togw) steps for all 5 < 5,(2,7) [53].

We mention that the thresholds p,,(q, ) and (5, (g, ) should be sharp, in the sense that the FK-dynamics
is conjectured to undergo polynomial or exponential slowdowns (depending on q) at the point p,(q, ) (and
when ¢ > 2 in a whole critical window (p,, p/,)). This is by analogy with the FK-dynamics on the complete
graph [37] and on random regular graphs [18]; see also [20,31,43].

1.1. Results on random graphs with general degree sequences. We next provide our main results on
random graph models with a fixed degree sequence. Let d,, = (d1, ..., dy) be the degree sequence giving
the degree of each vertex v € {1,...,n}. Our results will hold for uniform random graphs with degree
sequence d,, under certain mild conditions on this degree sequence. The first condition we make on d,, is
that the sequence is graphical: i.e., that there exists at least one simple graph having degree sequence d,,.

Given a graphical sequence dy,, we define Pyg(q,,) as the uniform distribution over all simple graphs on
n vertices having degree sequence d,,. The governing quantity in this degree sequence, in terms of the
uniqueness thresholds for the Potts and random-cluster models on G ~ Prg(q,,), Will be what we call the
effective offspring distribution Pq,, which is defined as the distribution over the set M(d,,) = {d, —1:v €
{1,...,n}} where z € M(d,,) is assigned probability:

Zl}(‘r + ]‘)1 v==T

In words, the distribution Pg, corresponds to choosing d, — 1 with probability proportional to the total
degree of vertices having degree d,. This distribution governs the offspring distribution corresponding to
the random trees one obtains when looking at balls of small radius around a vertex of a random graph
G ~ Prg(a,)- Specifically, a vertex of degree d is selected to be the next vertex added to the random tree
with probability proportional to the total degree of all such vertices, and once it is selected and connected to
its parent, it has d — 1 available edges to connect to other randomly chosen vertices.

Our results will apply to graphical degree sequences whose effective offspring distribution has a certain
mean, and has bounded finite moments, as we detail next.

(1.3)

Definition 1.3. Let D, , be the set of graphical degree sequences (d,,), such that D ~ P4, has mean that
is uniformly bounded away from - and uniformly bounded x-th moment. Formally,

limsup Eq, [D] < v and limsup Eq,, [D"] < 0.
n n

Let us finally assume that };, _, . d,, = 2(n); this is not strictly necessary, but will simplify presentation.

This framework is fairly standard in the random graphs literature [10] and is similar to e.g., the setting
of [29] for studying sampling from Potts on random graphs with fixed degree sequences at sufficiently low
temperatures. While Definition 1.3 yields a fairly general family of random graphs, we draw attention to
some well-studied examples which fall under its umbrella.

Example 1.4. A-regular random graph. In this case, d,, = (A, ..., A) and the effective offspring distribu-
tion simply assigns probability 1 to A — 1; thus (d,,), € D, for every v > A — 1 and every k.
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Example 1.5. Erdds—Rényi random graph G(n, A/n). It was shown in [47] that if d,, is drawn as an i.i.d.
sequence of Poisson random variables of mean A, then Pyg(q,) is contiguous with respect to G(n, A/n).
(Two random graph models are contiguous when any sequence of events that has a probability of 1 —o(1) in
one has a probability of 1 — o(1) in the other model as well.) Hence, it suffices to prove the desired results
with high probability over such d,, (see Lemma 4.8). Standard concentration estimates for Poisson random
variables (see Lemma 4.9) then give that for every v > X and every &, with high probability, (d,, ), € D .

Our main result is an optimal mixing time bound for the FK-dynamics on G ~ Pgg(q,,)» Which applies to
all the examples above and more generally to random graphs with degree sequences in D .

Theorem 1.6. Fix ¢ > 1, v > 0, and p < py(q,7). There exists k such that if (dy,),, € D, then with
probability 1 — o(1), the FK-dynamics on G ~ Pr(q,,) satisfies tyix = ©(nlogn).

This parameter regime in Theorem 1.6 is tight as FK-dynamics have been very recently shown [18] to
exponentially slow down as soon as p > p,(q, ) for random regular graphs (Example 1.4) at integer ¢ > 2.

The proof of the upper bound in Theorem 1.6 is the main content of this paper. As mentioned, the special
case of the A-regular random graph (i.e., d,, = (A, ..., A)) was the content of an earlier paper [4]. However,
as soon as the degree sequence is not homogeneous, substantial further obstacles arise.

First, even the uniqueness threshold for the random-cluster model on wired heterogeneous trees (specif-
ically, with offspring distribution Pq,,) had not been established. In our proof of Theorem 1.6 we re-
quire something much stronger; namely, an exponential decay of connectivities with the correct rate (see
Lemma 2.7). In the regular case, the fact that p, (g, ) is the uniqueness threshold goes back to the work of
Hiéggstrom [40] (see also [3,46]), and the exponential decay rate was established in [4]. To establish anal-
ogous results for the heterogeneous case, we combine the approach of [50] (which considered the special
case of the Ising model ¢ = 2) with ideas from [3], so as to recurse, not on the marginal of an edge of the
tree, but rather on a nice functional of its probability of downwards connection to infinity.

The second technical obstacle concerns establishing that the FK-dynamics on G ~ Prgq,) shatters,
i.e., that its components have size at most O(n¢) after O(n) steps of the dynamics. This is proved using
a delicate revealing procedure for the random graph with the FK-dynamics configuration on top of it, a
technique introduced in [4] for the case of random regular graphs. The heterogeneity of the degrees in the
current setting, however, introduces extra correlations between the underlying graph and the FK-dynamics
configuration, necessitating substantial modifications to the revealing procedure from [4].

The changes we make to deal with the above-described dependencies include: (i) modifications to the
revealing process so that it is based on half-edges rather than vertices and the dynamics is run in continuous
time, and (ii) a new criteria to truncate potentially unbounded increments in the revealing procedure. The
more robust procedure yields a notable further improvement: we show that the shattering time is O(n) (as
opposed to O(n logn) in [4]). Though this improvement has no impact on the eventual mixing time bound,
the more precise understanding of the shattering phase may be useful in other settings.

A more detailed proof sketch of this theorem and the new complications that arise is provided in Section 2
and Remark 5.11.

1.2. Slowdown for the corresponding Potts Glauber dynamics. Returning to the advantage of FK-
dynamics in the presence of high-degree vertices, the following theorem establishes that in the same setting
as Theorem 1.6 the Ising/Potts Glauber dynamics slows down exponentially in the maximum degree.

Theorem 1.7. Fix ¢ > 1, v > 0 and < Bu(q,7). Then there exists & such that if (dy,)n € D~ then
with probability 1 — o(1), G ~ Pro(a,) is such that the Glauber dynamics for the Potts model on G has

tmix =1 - eXP(Q(HdnHoo))~

Intuitively, the slowdown comes from the fact that the neighborhood of a vertex of degree |d,||, is a
star graph, in which the Ising/Potts Glauber dynamics mixes slowly when 3 » m. In a random graph

at high temperatures (i.e., when 8 < (3,(q, 7)) there is essentially no interference with this effect from the
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remainder of the graph. Note that the FK-dynamics in the star graph is fast mixing at all temperatures, so
this obstruction is not present.

Remark 1.8. We remark that under various decay of correlation conditions (see, e.g., [16,22,23,42]) the
mixing time of this chain is known to be poly(n) when (roughly) 5 < 1/|d, .. This does not contradict
Theorem 1.7, which holds when 8 = €(1). In fact, if one tracks the dependence on /3 in our proof, it gives
tax =N - eXp(Q(BQHdnHw»‘

1
1+ 2(5g1557) slowdown of the Ising/Potts Glauber dynamics on the Erdés—Rényi random

The known n
graph [52,53]is a special case of Theorem 1.7 where |d, ||, = O( lolgoi gn ). Below are a few examples where

this slowdown can be even more dramatic, indeed stretched exponential in the total number of vertices.

Example 1.9. Power-law degree distributions. Consider graphical sequences (d,,),, satisfying item (1) in
Definition 1.3, and for which the fraction of degrees of size £ is ©(¢~¢). For every x, if ( > k + 2, one
would have (d,, ), € D, .. In such situations, |d = O(n/C) and ty;x = exp(Q(n'/9)).

Example 1.10. Planted high-degree vertices. Consider a random A-regular random graph and change the
degree of one vertex to ©(n®). If e < 1/(k 4+ 1) and v > A — 1, then (d,,) € D, and tyux = exp(2(n®).

nHoo

In the above instances where the maximum degree is polynomial in n, there is an exponential vs. poly-
nomial difference in the high-temperature mixing times of the Ising/Potts Glauber dynamics and of the
FK-dynamics. At this level, the computational benefits of random-cluster based sampling methods also
extend to the often implemented Swendsen—Wang dynamics [58]. In particular, using the comparison in-
equalities from [60] the upper bounds of Theorems 1.1 and 1.6 translate into O(n?log n) upper bounds on
the mixing time of the Swendsen—Wang dynamics in those settings.

Acknowledgements. The authors thank the anonymous referee for their helpful comments. The research of
A.B. was supported in part by NSF grants CCF-1850443 and CCF-2143762. R.G. thanks the Miller Institute
for Basic Research in Science for its support.

2. PROOF OUTLINE

In this section, we present the main technical contributions in our paper, and describe how they combine
to yield the mixing time upper bound of Theorem 1.6.

Notational disclaimers. Throughout the paper, a subset w — FE is naturally identified with an assignment
of {0, 1}, or closed and open, to E, via w(e) = 1 if and only if e € w. The parameters p, ¢,y will always
be fixed quantities, and all constants in little-o, big-O, etc. notations may depend on these. As such, we
also drop p, g from subscripts when understood from context, e.g., 7¢ = TG p,q. All our results should be
understood to hold uniformly over all sufficiently large n. We use C to generally denote the existence of a
constant (possibly depending on fixed parameters such as p, q, ) such that the relevant statement holds for
all large n; for ease of notation, this constant C' may change from line to line.

2.1. Random graphs. We start by describing the locally treelike structure and exponential rate of volume
growth of random graphs with fixed degree sequence (d,), € D, . It will be convenient to work with
the configuration model, a useful and standard tool for studying random graphs with fixed degree sequence.
The configuration model Pcy(q,,) is a distribution over multigraphs on n vertices with degree sequence d,,.
It is defined by giving d, half-edges to every vertex v and drawing a uniform at random perfect matching
on the )’ d, many half-edges to form the % >, dy edges of the graph [9]. It is a standard fact that for any
(dn)n € D,,x, and any sequence of sets A,, of simple graphs on n vertices, we have

IP’RG(dn)(Q € An) = O(l) if and only if IP’CM(dn)(Q € An) = 0(1) :

see [9,28]. It thus suffices to prove Theorems 1.6-1.7 for G ~ Pey(q,,)-
For a graph G = (V, E) and a vertex v € V, we define the ball of radius R around v as:

Br(v) :={weV :d(w,v) < R},
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where d(-, ) is the graph distance. For a set B c V define E(B) = {{v,w} € E : v,w € B}.

Definition 2.1. We say that a graph G = (V, E) is L-Treelike if there is a set H < FE with |[H| < L
such that the graph (V, E\H) is a tree. We say that G is (L, R)-Treelike if for every v € V the subgraph
(Br(v), E(Bgr(v)) is L-Treelike.

The following lemma says that small balls of the random graph G ~ Pcy(q,,) are close to trees. Indeed, for
R/log., n uniformly less than 1/2, the ball Bg(v) in G ~ Pcy(a,,) is typically a random tree with offspring
distribution approximately Pg, , defined in (1.3).

Lemma 2.2. There exists r such that if (dy,), € D, . the following holds. For every § > 0, there exists
L = L(6) such that if 1 < R < (3 — ) log., n, we have

Pem(dn) (Q is (L, R)-Treelike) —1—-o(n19).

Using standard concentration estimates for the volume of Galton—Watson trees (see Lemma 3.6), we
establish that if (d,,), € Dy x, then G ~ Pcy(q,,) has average exponential rate -y of volume growth.

Definition 2.3. A graph G = (V, E) on n vertices is said to have (v, £)-volume growth if for every v € V'

r

and every integer r € [ log. 1, § log, n] the graph has |B,(v)| <"
Lemma 2.4. Fixe € (0,1). There exists r(c) such that if (dn)n € Dy, then
Pew(a,) (G has (v, )-growth) =1 — o(n19y.

2.2. Exponential decay and uniqueness on general trees and treelike graphs. Given the local tree struc-
ture of the random graphs from Pcy(q,,). to control the decay rate of connectivities of the random-cluster
model on G ~ Pcyy(q,,), We need to first understand how these connectivities decay on heterogeneous (i.e.,
non-regular) trees. The relevant random-cluster measure on the tree requires the addition of boundary con-
ditions mimicking the possible presence of open edges in the random graph outside of the treelike ball.
Towards this, let us formally define boundary conditions.

Definition 2.5. A random-cluster boundary condition £ on G = (V, E) is a partition of V, such that the
vertices in each element of the partition are identified with one another. The random-cluster measure with
boundary conditions &, denoted 7rg7p’ o 18 the same as in (1.2) except the number of connected components
c(w) = c(w; &) would be counted with this vertex identification, i.e., if v, w are in the same element of &,
they are always counted as being in the same connected component of w in (1.2). The boundary condition
can alternatively be seen as external “wirings” of the vertices in the same element of £.

Remark 2.6. The free boundary condition, £ = 0, corresponds to the case of no external wirings; i.e., its
partition is the one consisting of only of singletons. For a subset 0V < V, the wired boundary condition on
0V, denoted £ = 1, is the one whose partition has all vertices of 0V in the same element (and all vertices of
V\@V as singletons); i.e., £ = {0V} u [ J{v : v € V\OV'}. For boundary conditions &, £’ we say £ < £ if £
is a finer partition than £. When ¢ > 1, the random-cluster model has the following monotonicity property:

!
for any two boundary conditions £ > ¢/, ﬂ'g - > 77% - where > denotes stochastic domination [38].

Now define the threshold

— ; ) where h(y) = - +9-1) . 2.1
1+ inf,~1 h(y) Y-y
The work [40] studied the random-cluster measure on homogeneous, d-ary trees, with wired boundary con-
ditions and identified p,(q, d) as the uniqueness threshold such that whenever p < p,(q, d), the probability
that the root is connected to a distance h in the wired d-ary tree goes to zero as h — o0; a different proof
was given in [3]. In [4], it was shown that this decay is in fact exponential with rate p = p/(p + q(1 — p)).
However, the methods of those papers do not easily extend to the non-regular setting, where there may be
vertices of unbounded degree, but one would expect the threshold for connectivity decay to only depend

pul(q,y) =1
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on the average branching rate. In [50], it was shown that the analogue £3,,(2, ) of (2.1) gives the correct
uniqueness threshold in the case of the Ising model ¢ = 2, for general (non-homogenous) trees of average
branching . However, the argument there recursed over the single-site spin marginals, and relied on the
fact that it was an Ising model whose interactions are nearest-neighbor. In the case of the random-cluster
model, interactions between edge-marginals are non-local, and we therefore have to work with a more com-
plicated functional encoding the probability of an edge being downward connected to the wired boundary.
Combining ideas from [50] and [3], we are then able to establish uniqueness, and that connectivities decay
exponentially with rate p on general heterogenous trees of average branching factor ~y for all ¢ > 1 and all
p < pul(q,y). When p < p,(q,7), we have p < 1/ (see e.g., [40, Theorem 1.5]); this indicates by a union
bound why there will typically be no connections to the boundary in a tree of average branching ~.

More formally, let 7, = (V(73), E(Ty)) be an arbitrary finite tree, rooted at p, and of height h. Let
0T, < V(Ty) be the set of vertices of 7, at distance exactly h from p. For v € V(Ty), let T, be the
subtree of Ty, rooted at v, let h(v) denote the height of T, and let 07, = 07, n T,. For a random-cluster
configuration w on 7, let C,(w) denote the connected component of w that contains the root p of 7j,. Finally,
let (1, ) denote the boundary condition that wires all vertices of 07}, together, and also wires them up to
the root, and let ﬂ'% O be the random-cluster measure with this boundary condition.

Lemma 2.7. Fixq > 1, v > 1, p < pu(q,7), and € € [0,1). Suppose that |0T,| < +"¥) for every
v € V(Ty) with h(v) > ch. Then, there exists a constant C = C(p, q,~y) such that for any u € 0Ty,

ﬁ%’o) (wruely(w)) < cpi—an,

We note that the condition that |07,| < ") for every v € V(7},) with h(v) > &h in the lemma holds
with high probability for random trees with averaging branching ~: see Corollary 3.8. In addition, the
exponential decay rate in Lemma 2.7 is essentially optimal, and together with Lemmas 2.2-2.4, allows us to
derive precise estimates on the exponential decay of connectivities on the treelike balls around each vertex of
the random graph G ~ Py (q,,). We will actually need a sharp bound on the rate of influence decay between
the boundary and the center of the ball Br(v); we find that this is the square of the rate of connectivity decay
on a corresponding tree of depth R. (Intuitively, this is because fwo disjoint paths are required to reach the
center of the ball in order for the boundary to have any effect on it.) To be more precise, let G = (V, E') be
a graph and for v € V, let E,, < E denote the set of edges incident to v.

Definition 2.8. A random-cluster boundary condition £ on a graph H is said to be K-Sparse if the number
of vertices in non-trivial (non-singleton) boundary components of ¢ is at most K.

Theorem 2.9. Fixy > 0, ¢ > 1, and p < py(q,). Suppose G is (L, R)-Treelike for some L and some
R < %logv n. Also suppose G has (7, €)-volume growth for some € > 0 sufficiently small. There exists a
constant C' > 0 such that for every v € G, and any two K -Sparse boundary conditions £ and T on Br(v):

HW%R(v) (W(EY) € 1) = () (W(Ew) € )|rv < Cp2—CLVOR
A similar influence decay bound was proven for the regular case in [4, Section 5.2].

2.3. Shattering of the FK-dynamics. With Theorem 2.9 in hand, the core of our argument becomes estab-
lishing that the boundary conditions induced by the FK-dynamics chains from all possible initializations, on
balls of radius R < % log., n are K-Sparse. This will follow from shattering of the FK-dynamics, by which
we mean Elll)e time at which the connected components of the FK-dynamics configuration are all small, say
of size n°\M.

Remark 2.10. It will be technically convenient to prove our results in continuous time instead of discrete
time. In the continuous-time FK-dynamics, each edge of the graph has a rate-1 Poisson clock and every time
a clock rings, the corresponding edge is updated as in the discrete-time version of the FK-dynamics; that is,
according to the conditional distribution given the configuration off of this edge. It is a standard fact (see
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FIGURE 2.1. Three “generations” of the revealing procedure. In each figure, the purple
vertices are the current generation of exposed vertices; the revealing procedure reveals the
ball of radius 7 around such a vertex v, and a dominating localized FK-dynamics config-
uration (B, (v)) on that ball. The next generation of exposed vertices (blue) consists of
those on the boundary B, (v) that are in the connected component of v in the configuration
@(B,(v)). Exposed vertices from previous generations are then colored black.

e.g., [48, Theorem 20.3]) that the discrete-time mixing time is comparable to |E(G)| times the continuous-
time mixing time. It therefore suffices for us to establish the mixing time bounds of Theorems 1.1 and 1.6
as O(logn) bounds for the continuous-time version of the FK-dynamics. From this point on, we let X;"
denote the continuous-time FK-dynamics on G initialized from the configuration x, and use the superscripts
1 and 0 to denote the full (all-open) and empty (all-closed) configurations, respectively.

We now formalize what we mean by a shattered random-cluster configuration, and establish that the
FK-dynamics shatters after an O(1) continuous-time burn in period.

Definition 2.11. A random-cluster configuration w on G = (V(G), E(G)) is (K, R)-Sparse if, for every
v € V(G), the boundary conditions induced on Bg(v) by w(E(G)\E(B,(v))) are K-Sparse.

Theorem 2.12. Fixq > 1, v > 0 and p < pyu(q,). For every 6 > 0, there exists r such that if (d,,), €
D, ., there exists T = T(p,q,v) and K = K(p,q,7,0) such that for any t = T, and every 1 < R <
(3 —9) log,, n, with probability 1 — o(1), G ~ Pcyya,,) is such that

P(X} is (K, R)-Sparse) > 1 —o(n"?). (2.2)

Our starting point for the proof of Theorem 2.12 is a proof of shattering for the FK-dynamics on A-regular
random graphs from [4]. Hence, as in [4], our proof relies on a delicate simultaneous revealing procedure
for the random graph, along with the connected component of a vertex v in X}, showing that after a burn-in
period, the configuration X/ is shattered. The revealing scheme for the component of a vertex v in the
FK-dynamics chain X/ roughly proceeds as follows (see the accompanying Figure 2.1). First “expose” the
starting vertex v, and iteratively, for each exposed vertex u do the following:

(1) Reveal the ball B,(u) in the random graph for a large » = O(1);
(2) Reveal a configuration w(B, (u)) that dominates the configuration of the FK-dynamics at time ¢ on
B, (u). This configuration will come from simulating FK-dynamics that ignores all updates outside
of B, (u) (effectively inducing the wired boundary condition on B, (u)) and thus can be obtained
independently of the dynamics on the rest of the graph;
(3) Add to the set of exposed vertices all vertices of 0B, (u) that get connected to u in & (B (u)).
The key point of the argument is then to stochastically dominate the exposed vertices by a branching process,

which can be shown to be sub-critical (see Lemma 2.7). In our setting, the heterogeneity of the degrees
causes substantial complications to the argument from [4], because in balls where the branching rate is
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locally larger than ~, the overlayed FK-dynamics configuration will actually be highly connected. The
presence of high degrees also destroys the O(1) bounds on the maximum number of new vertices that could
possibly get exposed in step (3) above; this complicates relevant concentration arguments, as our branching
process martingale will no longer have bounded increments.

2.4. Organization of the remainder of the paper. In Section 3, we prove that whenever p < p,(q, ), the
random-cluster model on trees of average branching +y is in its uniqueness regime, and deduce Lemma 2.7.
In Section 4, we prove key properties of the random-graph model Pcy(q,,), including Lemmas 2.2-2.4.
Section 5 contains the proof of shattering of the FK-dynamics, and in particular Theorem 2.12. In Section 6,
we bound the rate of influence decay (Theorem 2.9) and mixing time (Lemma 6.7) in treelike graphs with
sparse boundary conditions. Section 7 combines these ingredients to conclude the ©(n logn) bound on the
FK-dynamics for Theorem 1.6. Finally, Section 8 proves the exponential (in |d,|,,) lower bound on the
Potts Glauber dynamics of Theorem 1.7.

3. UNIQUENESS AND EXPONENTIAL DECAY ON GENERAL TREES

Our main result in this section is to prove Lemma 2.7. We also use this section to deduce some corol-
laries about uniqueness of infinite-volume random-cluster and Potts measures on general trees of average
branching 7y, and apply these results to super-critical Galton—Watson trees.

3.1. Exponential decay of connectivities on general trees. We begin by considering the probability ¢(p)
that the root p is connected to 073, in w ~ 77%—h , and show that ¢(p) = ¢, 4.7;, (p) decays exponentially with
h for all trees of average branching -y, whenever p < p,(q,7).

Lemma 3.1. Fix v > 1 and ¢ > 1 and let p < py(q,7). There exists 0 = 0(p,q,v) € (0,1) and
C = C(p, q,7) such that if |0Tp| < Y", then ¢(p) < CH".

Proof. Fix h and fix Tj, having |07}, < 7". Recall that for v € V(7},), T, denotes the subtree of T}, rooted
atv. Let Z(v) = Z7, p 4 denote the partition function corresponding to WITU (the random-cluster measure on
T, with all its vertices in 07}, wired together). Let Z; (v) be the contribution to Z(v) from the configurations
on 7, that contain an open path between v and 07;,. Similarly, let Zy(v) denote the contribution from the

configurations that do not have such a path. Note that Z(v) = Zy(v) + Z1(v) and ¢(p) = #@Z)l(p)'

For v € V(T},), let N, denote the set of children of v. Using tree recurrences, and the definition of (1.2),
the following identities can be checked; the proof is similar to that in [3, Lemma 33] and is provided later.

Fact3.2. Lett = p/q+ 1 — p. Forany v € V(Ty),

20 -q ] <zl(w) +tZo(w)) T ((1—p)Z1(w) +tZ0(w)>’

wWE Ny q q WE Ny q q
1—p)Z tZ,
Z()('U) _ q2 1_[ <( p) l(w) + O(w>> )
WEN, q q

Now consider the function f : V(7}) — R defined as
Z1(v)
v) 1=gq
Using the identities in Fact 3.2, one easily sees that

f) =[] o(f@w))  for  g(z):= (

WE Ny

+1.

r+(¢—1)(1—p)
l—plx+p+(g—1)(1—-p)

The following calculus bound, which is proved later, holds for the function g.

Fact 3.3. Fix ¢, = 1 and p < py(q,). There exists & € (0,1/7) such that g(z) < /7€ for all > 1.
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Now, let Dy, = V/(T},) denote the set of vertices at distance & from the root p and let L, & Dy, be the set
of leaves at distance k from p. Setting ( = 1/ — £, and using the facts that g(1) = 1, and that if w is a leaf
that does not belong to 07}, then Z; (w) = 0 and g(f(w)) = 1, we obtain

fo)=11 oty =" T] 9(fwn< [] flw)

w€D1 w€D1\L1 ’LUEDl\Ll
Iterating, and using the fact that g(z) < (1 — p)~! forall z > 1, we have
fo< ] fw)
wEDp_1\Lp_1
Then, recalling ©(p) = Z1(p)/(Zo(p) + Z1(p)), we get

S S e S

o) < L) _ o) =1 1< 1 ><“"fm 1 _ Tl
= Zo(p) ¢ q\l-p T q(1—p)l/e’
where the last inequality follows from the fact that a® < 14-az whena > 1and z € [0, 1] since ¢"-|0T3| <
when |07;,| < 4". The proof is complete by setting § = 1 — &, D

With Lemma 3.1 on hand, we can now provide the proof of Lemma 2.7, which gives a precise bound on
the rate of decay under stronger assumptions for the growth of 7.

Proof of Lemma 2.7. Let u be a vertex in 073, and for v € V(7}) let 9(v, u) be the probability that v is

connected to u in 7, under 7T7- Let 99 (v, u) be the probability of the same event under 7r( 9,

By monotonicity we have 9(p,u) < 9°(p,u) and by a standard comparison between boundary condi-
tions (see e.g., Lemma 6.4), we have 9°(p,u) < ¢q¥(p,u). Hence, it suffices to bound J(p, u). Consider
the unique path P = (p = v, v1,...,u = vp) between p and u. Let N, denote the set of children of v. For
w € N,,, let I, be the indicator function of the event that there is a path from vy to 07}, going through w;
set I = >} en, weo, Jw- Then, we can write

I(p,u) < p-my, (1= 1) - 9oy, u) + po(vr,u) < I(vr,u) [pg? - 77, (1 = 1) + 9] -
In the first inequality, we used the fact that in order for the root to be connected to the vertex w, it is required
that the root is connected to vy, and that v; is connected to w in its sub-tree. The former event occurs with
probability p or p, depending on whether or not the root is connected to 07, through any child besides v;.

Let ¢(w) denote the probability that w is connected to 07, under mJ- . Then, 7rlTh (I =21) < p(vy) and
since |07, | < 7"(*°) by assumption, Lemma 3.1 implies that for suitable constants § = 8(p, q,v) € (0,1)
and C = C(p,q,7) > 0, we have 7T1Th (I > 1) < C#"v) Thus, setting a = C’;q and continuing the
recursion we obtain
(1—e)h
9(p,u) < p-9(v1,u) [1 Ya- 9’1(”@] < T [1 Ya- 9’1(%‘)]
i=0

<p(1 g)hexp [azjl e)h Qh(v)] <Aﬁ(1—a)h’

1—e)h

for a suitable constant A = A(p, ¢,y) > 0. Hence, 9°(p, u) < Ag*p( and the result follows. O

3.2. Proofs of auxiliary facts. We now provide the deferred proofs of Facts 3.2 and 3.3.

Proof of Fact 3.2. For v € V(7}), let N, denote the set of children of v and let 07, < 07}, be the set of
vertices of T, N 0T,. We compute Z1(v) and Zy(v) by partitioning the space of configurations according
to which subtrees of v among {7, : u € N,} are connected to the 07,. For each configuration w, the
connectivity of the children of v to their respective boundaries is encoded by a vector a,, € {0, 1}V, where
for u € N, we have a,,(u) = 1 when u is connected to 07, by a path in 7.
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We start by proving the identity for Z; (v). In this case, we only consider configurations such that [a,||; =

1. For a fixed vector a,, such that |a,|, = k, let ui,...,u; € N, be the neighbors of v for which
aw(u;) =1, and let 4y, ..., 0 € N, be the neighbors of v for which a,,(4;) = 0; hence [ = \N | — k. Any
random-cluster configuration w of 7, can be partitioned into the configuration on E({v} u | J,, Tu,) and the

configuration on E({v} u ;. Ta,)-

Given a vector a, let Wj(v,a, 1) denote the total weight under the wired boundary condition of the
random-cluster configurations on E({v} U, Tu,) that contain a v to 7, connection and a u; to 07y, path
in 7;1 for every i € {1,...,k}. Similarly, let W7 (v, a,0) denote the total weight of the configurations on

E(vu g, Ta,) in Whlch there is no path between @; and 07, in Ty, fori € {1,...,1}. Since conditioning
on a disconnected configuration on F({v} U U Ta,) has no effect on the welght of the configuration on

E({v} v, Tu,;), we have the identity

Zw == Y Wi(v,a,)Wi(v,a,0). G.1)

ae{0,1}Nv:|laf, =1

Here, the 1/¢ factor comes from merging the two wired boundary components when [|a|; < |N,[;if [a], =
|Ny|, we set Wi (v,a,0) = gq.

We compute Wy (v, a, 1) first. We use 4 (7,) (resp., 2o(7)) for the set of all random-cluster configu-
rations on the subtree 7, in which there is (resp., there is not) an open path between = and 07}, in 7. For
a configuration 7; € Q9(7y,) U Q1 (Tx,), we use wgt(n;) = pll(1 — p)ETuwl=Imilger () for the weight
of the random-cluster configuration on 7, under the wired boundary condition; i.e., ¢;(7;) corresponds to
the number of connected components on 7; taking into consideration the wired boundary condition. Then,
accounting also for the configuration in the edges between v and the u;’s, we have

1 SNW ki
Wwan- Y oY) nwm (2 (G)ra-n 62
)

M€ (Tuy) nkeﬂl(nk i=1

HZI(Ui) . (3.3)
=1

The re-scaling in (3.2) by qk%l comes from the fact that the k£ boundary components in each subtree are all
merged into a single component. By similar reasoning, when |la|; < | N, |

! 1 L l P L iy
Wi(v,a,0) = ( wet( z-)) - ( (=) a=p) ) (3.4)
1 7716&%(:77;1) 7716902(7) H S ¢! z’zg) <Z> <q> P

(1—p+p/q HZ (1) (3.5)

Note that in (3.4), in addition to the re-scaling by ql%l from merging the boundary components, any edge
between v and one of its children decreases the number of components by 1; hence the ¢~ in the term (%)i.
Recall that t = 1 — p + p/q. Plugging (3.3) and (3.5) into (3.1) we obtain

Zw=q S a-(-plhy ] 2w tZo(w)

ae{0,1}Nv:|a ;=1 wENy:a(w)=1
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Observe next that

ae{0,1}Nv:||af; =1 weNy:a(w)=1 weN,:a(w)=0
_ Z1(w) N t Zo(w)> B 1—[ t Zo(w)’
WE N, q q WE Ny q
and
VA (w) t- Z()('LU)
1— ||aH1 L P S
NZ (1-p) H Ny 1_[ o
ae{0,1}Mv:|al,; =1 wENy:a(w)=1 WENy:a(w)=0
- 11 (I-p)Zi1(w) +t'Z0(w)> ~ 1] t- Zo(w)
WEN, q q wWE Ny q
Hence,
Z t-Z 1—p)Z t-Z
Zw) =q [] < 1(w) | o(w)> 0[] <( pZiw) o(w)>7
weN, q q wWE N,y q q

as claimed. The expression for Zy(v) can be derived from an analogous and slightly simpler argument and
is thus omitted. U

Proof of Fact 3.3. We first consider the interval = € [1, 1 4+ 7] for some 1 > 0 small. It can be checked that

§(z) = p(p+4q—pq)
(—l4+g+x—p(—2+q+2x))?’
") = —2p(1 —p)(g+ (1 —p)p)

(A=plz+p+(1-p)g—1))*
Hence, ¢'(1) = p and |¢”| is decreasing for 2z > 1. Then, from the Taylor expansion of g at 1, we get
g(z) <1+ p(x —1) + en?, (3.6)
where ¢ = ¢(p, q) > 0 is suitable constant. Similarly, using the Taylor expansion of z'/7=€ at 1, we obtain
P14 1y =@ —1) =

for a suitable constant ¢ = ¢/(v,&) > 0. Since p < 1/y when p < pu(q, ), then for sufficiently small £
and 7 (depending on p, g, ) we have g(x) < /7€ as desired.

We next observe that since g(x) < ﬁ, we have g(z) < z'/7=¢ for all z > K for K sufficiently large
(depending on p, g, ), importantly independent of £ as long as £ < 1/(27), say.

It remains to consider the case when z € (1 + ), K). For this, let us give an auxiliary form of p,(g,7):

Pu(q,y) = sup {p : sulf{gp(x) — a7y < 0} . (3.7)

(where we have added the p subscript to g to emphasize the p dependence there). Let us first conclude the
proof assuming the equality of (3.7). By direct computation, it can be checked that %(;) > 0 whenever

xz > 1. Hence, fixing p’ € (p,pu(g,7)) for every x > 1 we have g,(z) < gy (z), and by continuity
gp(z) < gy (x) — 0 for a sufficiently small § > 0. By continuity, in fact there exists a uniform choice of
0 > 0 such that

gp(z) < gy (x) —0 forall z € [1 + n, K].
At the same time, for £ sufficiently small, depending on 9, v, K, we have

/7 — 27 <6 forallz e[l + 1, K].
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Combining these two, and using (3.7), we see that for all z € [1 + n, K],
gp(z) < gy (x) — Y 4 gt e forallz € [1 + 7, K].

It remains to establish the equality (3.7). We first rewrite the definition of p,(q, ) from (2.1) as

1
wlq, = su T su — 14+ —1<07.
Pu(q,7) p{p y>1t1>{p . +h(y)} }

It therefore suffices to establish that

S -1+ <0 < s ) — /"M <o.
y‘ilf{p T h(y)} Igl;{g( ) }

By substituting y = /7, and calculating, this reduces to showing that for every y > 1,

1=y +y = [p+ (-1 -p)ly+(¢—1)(1—p)

<0
yV—y+y-1H +q-1)

if and only if
—1=py™ +y —[p+(q-1)1-p)ly+ (¢—1)(1 —p)
(1-=py?"+p+(¢g—1)(1—-p)

This equivalence follows because the numerators are the same, and the denominators are both positive
whenever v > 1,¢ > landy > 1. O

<0.

3.2.1. Uniqueness in general trees. As a consequence of the decay of the root-to-leaf connectivity we have
established, it follows that there is a unique infinite wired random-cluster measure whenever p < p,(q, ")
on infinite trees with average branching . The random-cluster measure on the infinite wired tree is defined
using the Dobrushin-Lanford-Ruelle (DLR) formalism (see, e.g., [38,40]); in particular, the wired boundary
condition corresponds to counting all infinite connected components as one.

Let 7 be an infinite tree, let D;, = V(T ) denote the set of vertices at distance h from the root of 7 and
define the branching rate Br(7) per [50] as:

Br(T)=inf{A>0: inf |Dy|A" = 0}.

Observe that if Br(T) < v, then | Dj| < ~" for all sufficiently large h. We prove the following.

Corollary 34. Fixq > 1, v > 1 and p < py(q,7). Suppose T is an infinite tree with Br(T) < ~. Then,
there is a unique infinite-volume random-cluster measure on T under the wired boundary condition.

Proof. Let T, denote the subtree of 7 that includes all vertices at distance at most A from the root p of 7.
Let 7r17 = limp_, e WlTh . It was established in [40, Lemma 3.1] that the limiting measure 7717 is a random-
cluster measure with parameters p and ¢ and, moreover, that any other random-cluster measure on 7 with
the same parameters is stochastically dominated by mlr. (We note that Lemma 3.1 from [40] is stated for the
case when T is a homogeneous tree, but the proof there does not use this assumption, and the result clearly
extends to general trees.) Now, since Br(7) < -y we have that |Dy,| < v" for sufficiently large &, and so
Lemma 3.1 implies that 73-(p < ©) = limp_,q WlTh (p < 0Tp) = 0. This implies that the conditional
probability that any edge e is present, given the configuration outside of e, is p with probability 1 (see, e.g.,
the proof of Theorem 1.8 in [40]). Hence, 7r%- corresponds to the i.i.d. distribution on {0, 1} (T) with edge
probability p. By the same argument, the same is true for any other random-cluster y since p < mlr, and the
result follows. (]

Corollary 3.5. Fix q > 2 integer, v > 1 and p < py(q,7). Suppose T is an infinite tree with Br(~y) < +.
Then there is a unique infinite-volume Potts measure on T.
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3.3. Galton—Watson trees: volume and uniqueness. As corollaries of our results on general trees, we can
obtain exponential decay and uniqueness results for the random-cluster model on a Galton—Watson random
tree. Let v denote the progeny distribution for a Galton—Watson tree. For £ > 0 let Z; be the number of
vertices in £-th generation so that Zy = 1 and Z; ~ v. Our first result provides a tail bound for Z, (under
mild moment assumptions on ). This bound will allow us to argue that the Galton—Watson tree satisfies the
volume assumptions of Lemma 2.7, and deduce uniqueness of the random-cluster measure on super-critical
Galton—-Watson trees when p < py,(q,7).

Lemma 3.6. Let N ~ v, k > 1 and suppose E[N| = 1 and E[N*] < m,, for some constant m,,. If k is a
power of 2, there exists C' = C(k, E[N], my) such that for every v > 0 and every 1 < ¢ < h,

rh
P(Ze > A") < Ch2* (E[N]) |
v

Proof. Let E[N] = m and W, = Z;/m’. From the definition of the Galton-Watson tree we have that
Loyl = Zfﬁl Ny forall £ > 1, where the Ny ; are independent copies of N ~ v. Then,

Zy
1
Wern = We = —; Zl(Wu ~1), (3.8)

1=
where the W ;’s are i.i.d.’s instances of W; = N/m. From (3.8) we deduce that
H]
Since the Wy ;s are ii.d.’s with E[W;,; — 1] = 0, and E[|W7; — 1|*] < 2%(E[N*] + 1) is finite, it
follows from the Marcinkiewicz—Zygmund inequality that

L K/2
E [ < B E <Z(le - 1)2) )

i=1
where B, = (2[r/2])/?)" (see Section 10.3 in [17]). For x > 2, Jensen’s inequality then provides the
bound

L

D (W —1)

1
E[[Wer = Wel® | Zp = L] = WE [
izl

L K

(W —1)

=1

L #/2 L
E (Z(WM - 1)2> <LV TE[[Wa - 107, (3.9)

i=1 i=1
Combining these inequalities and taking expectations we obtain

K B/q n 2 B K/2 %
B[ Wi — Wil*] < B2 JE(W: — 117 = o EIW;IE(W, - 1]7],
and since E[|WW; — 1]F] < 2"“(#1{2[1\“] + 1), for a suitable constant C' = C'(m, k, m,,) we have
C K
E[|Wer1 — Wel*] < —5EIW; ). (3.10)
m

Now, let Y7 = Wi and fori > 21letY; = W, — W;_1, so that W, = Zle Y;. Using the triangle and
Jensen’s inequalities (as in (3.9)) we deduce that

E[[Wel"] KZ |Y|>

and from the bound in (3.10) we get

V4
R[],
=1

4 K/2
o E[W,
E[W}] < Ct IZLW]



SAMPLING FROM POTTS ON RANDOM GRAPHS OF UNBOUNDED DEGREE 15

From this, letting p(h, k) = max;<p, E[W/*], we obtain the recurrence
h
p(h, k) < Ch* Lp(h, k/2) Z - p(h, K/2),

since m > 1 by assumption. Since « is a power of two, iteratively, for a suitable constant C; = C(k, m, my),

log, K _
p(h,k) < Cy-p(h, 1) [ W% < Cy-h?. (3.11)
1=0

Finally, we note that by Markov’s inequality, for any ¢ < h
h h
s ) - e{r > (1)) <cuie(2)".
m v
as claimed. O

We show next that Galton-Watson trees satisfy (with high probability) a certain growth condition that
would allow us to apply the sharp decay of connectivities in random-cluster configurations from Lemma 2.7.
We define the following volume growth condition for the random tree, which is stronger than the assumption
of Lemma 2.7, and will also reappear later in the paper.

Definition 3.7. We say a tree 7, = (V(7r), E(Tr)) satisfies the (v, £)-tree-growth condition if for every
for every v € V(Ty) with h(v) > eh, and every k such that eh < k < h(v), we have |V (T, (k))| < 7,
where T, (k) denotes the subtree of 7, of height k rooted at v.

Corollary 3.8. Let N ~ vand k > 1. Suppose 1 < E[N]| < v and that there exists a constant m,; such that
E[N*] < my. Then, if k is a sufficiently large power of 2, there exists a constant 0 = 0(v, k,E[N], m,) €
(0, 1) such that the Galton-Watson tree truncated at height h with progeny distribution v has (7, €)-tree-
growth with probability at least 1 — 655" for h sufficiently large.

Proof. Let {X } j=1 be i.i.d. random variables corresponding to the total number of vertices in a Galton—
Watson tree of height k. By a union bound, the probability that the Galton—Watson tree does not satisfy the
(7, )-tree-growth condition is at most:

(1—e)h Z )
EI(VINUCTIEE)

1=0 j=1ch<k<h—l
(1—e)h (1—e)h
oS P (X;D > 'yk) + Y P (Zl > (27)h) . (3.12)
=0 eh<k<h-lI =0

From Lemma 3.6, we know that there exists a constant C' = C'(k, E[N], m,) such that

(1—e)h 2k+1

Ch
3 P(le(%y)h)g S (3.13)
=0

Now, observe that X ,El) has the same distribution as Z?:o Zj. Hence, Lemma 3.6 and a union bound imply
that there exists 4 € (E[IN],~y) such that

i3 (Xlgl) = ’Yk) =P (i Zij =7 ) Z P(Z ) < Cr k2! (E[;V])"‘k
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for a suitable constant C; = C(k, E[N], m,) > 0 and k large enough. Then,
(1—e)h (1—e)h

2 P <X’gl) > 'yk) < 2 2 g2+l (@)rk
I=0 ch<k<h—I =0 ch<k<h—I v
N e
gl
for a suitable constant C'y > 0. Plugging this bound and (3.13) into (3.12), we obtain that the probability that
the Galton—Watson tree does not satisfy the (v, £)-tree-growth condition is at most 1 — §=*" for a suitable
0 =0(v,k,E[N],m,) € (0,1) as claimed. O

3.3.1. Uniqueness in Galton-Watson trees. Let T be a Galton-Watson tree with progeny distribution v and
let N ~ v. By Lemma 3.6 and the Borel-Cantelli lemma, with probability one over 7, for any v > E[N],
we have Z;, < ~" for all sufficiently large h. In particular, with probability one, Br(7) < ~ for any
v > E[N]. As such, Corollary 3.4 implies that there is a unique random-cluster measure on 7 under the
wired boundary condition when p < py,(q,7).

Corollary 3.9. Fixq>1,~v> landp < p,(q,7) Let N ~ v, k = 1 and suppose 1 < E[N] < v and that
there exist a constant my, such that E[N*| < m,. With probability one over T, there is a unique random-
cluster distribution on T under the wired boundary condition. Similarly, at integer q, with probability one
over T, there is a unique Potts distribution on T.

4. RANDOM-GRAPH ESTIMATES

In this section, we describe the standard revealing scheme for the configuration model with degree se-
quence d,,. We also formalize the mechanism to translate probability 1 —o(1) events for Pcy(q,) to 1 —o(1)
events for Prq(q,,) and for the Erd6s—Rényi random graph model; we use this to provide a proof of The-
orem 1.1 given Theorem 1.6. We then use the revealing scheme for the configuration model to prove the
random graph estimates of Lemmas 2.2 and 2.4.

4.1. Configuration model with general degree sequence. We begin by describing a revealing procedure
for the configuration model with degree sequence d,,. To do so, we begin with an important definition
providing the state space for our revealing procedures of the configuration model. Recall that a matching
on a graph is an edge-subset such that no vertex belongs to more than one edge. A perfect matching is an
edge-subset in which every vertex belongs to exactly one edge.

Definition 4.1. Given a degree sequence d,, = (dy)1<v<n, to each vertex v € {1,...,n}, assign d,, half-
edges. Consider an auxiliary complete graph K|q,,|, whose |d,|; vertices are identified with these half-

edges. Let Mg, be the set of all matchings (not necessarily perfect) on K Idn > and let ﬁn(dn) be the set
of all perfect matchings on Kgq,,, -

We are now in position to formally define the configuration model of random graphs.

Definition 4.2. Given a degree sequence d,,, the configuration model Pcy(q,,) is the uniform distribution

over M, (d,,), i.., itis a uniform perfect matching of the ||d,, |, half-edges assigned to the vertices {1, ..., n}.
This is naturally identified with a multigraph on {1, ..., n} by identifying all half-edges with the vertex they
come from, so that the edges in the matching become edges of the graph between the corresponding vertices.
In this manner, with a slight abuse of notation, elements E € 9, (d,,) are simply the edge-sets of the
multigraph G = (V, E).

Remark 4.3. The definitions of the random-cluster model (1.2), and the FK-dynamics extend naturally to
multigraphs, where G = (V, E) is such that V' is identified with {1, ...,n} and E € 90, is a multiset. The
random-cluster model and FK-dynamics then live over subsets of £, identified with w : E — {0, 1}, and
connected components of a configuration w are understood naturally.
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4.2. Revealing procedure for the configuration model. We now describe a simple revealing procedure
for generating a sample from the configuration model distribution given fixed degree sequence d,,.

Process 4.4. Fix a degree sequence d,, with ) d, even. Suppose f is a (possibly random) function from
matchings A € 91, to a half-edge not matched in A.

(1) Initialize the set Ay =

(2) Forevery t > 0, if A; ¢ 9, (i.e., there exist un-matched half-edges), construct A, as follows:
(a) Let é;11 be the half-edge f(A;)
(b) Pick another un-matched half-edge in A; uniformly at random, and match it with é;,1 in A;y1.

For natural choices of the function f, we can reveal, for example, a ball in the random graph without
revealing any information about the remainder of the random graph. The next definitions give an example
of such an f that we will use repeatedly.

Definition 4.5. Given a matching A € 91, the set of exposed half-edges of A is the set of un-matched
half-edges that belong to the same vertex (among V' = {1, ...,n}) as some half-edge that is matched in A.
Denote this set by E(A).

Process 4.6. The breadth-first exploration of a ball B,.(v) < E(G) is constructed using Process 4.4 with

the following choice of f. For each A, f(A) is an arbitrarily chosen exposed half-edge among E/(A) whose
distance in (V, A) to v is at most r.

4.3. Contiguity with simple random graphs. The configuration model described above gives a uniform
at random multigraph with prescribed degree sequence d,,. In the sparse regime of bounded average degree,
this happens to be a very useful model for studying random simple graphs (i.e., has no self-loops or multi-
edges), most notably A-regular random graphs, but also a uniformly chosen random simple graph with
degree sequence d,, (as long as the sequence is graphical).

4.3.1. General degree sequence. It is well established that in the sparse regime of bounded average degree,
the configuration model will have probability uniformly bounded away from zero of being simple, and on
that event it is exactly a uniform simple graph with degree sequence d,,. This contiguity can be summarized
as follows (see e.g., [45]).

Lemma 4.7. Fix any vy and k. Suppose (dy,)n, € D and ||d,, |, = Q(n). Then for any sequence of sets Ay,
of simple graphs on n vertices, we have

Pena,)(G € A) = o(1) ifand only if  Pyga,)(G € A) =o(1).

4.3.2. Erdds—Rényi random graph. In the case of the Erd6s—Rényi random graph G (n, d/n), the degree of a
vertex v is not fixed, but rather is distributed as Bin(n—1, d/n). Nonetheless, there is a way to first randomly
sample d,, then draw a configuration model on d,,, such that the resulting random graph is contiguous to
the ErdSs—Rényi distribution. Let Pp,;(q) be the distribution over d,, = (di, ..., d,) where d; are i.i.d.
Poisson(d) random variables. The following was established in [47].

Lemma 4.8. For any d = O(1), for every sequence of sets A,, of simple graphs on n vertices, we have
Epoi(a)[Peman)(G € A)] =0o(1)  ifandonlyif  Pgemam)(G € A) =o(1).

In the above lemma, on the event that d,, does not have ||d,, |, even, as a matter of convention, we take the
probability in the expectation to be zero. Overloading notation slightly, let Pp,; () be the product distribution
over d,, ~ Pp;(q) for each n.

Lemma 4.9. For every 0 < d < vy and every k = 1,

PPoi(d) ((dn>n € D’y,n) =1.
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Proof. Recall by definition of Pg,, , Eq,, , that

1 3 d?
Eq,[D] = dy(dy — 1) = =%
alPl =g 2l =1 =5 1

Let 0 < € < v — d. Then for every n large, we have

1
Ppoi(ay(Ea, [D] <7 =€) < Ppoi(a) (m dMdzy—e+ 1) (4.1)
nl1 5

L e ~lis 1 ~lis
<P(E;dv >d(d+1)+n"2 )+P(ﬁ;dv <d-n"3%9),
To bound either of these terms, notice by Markov’s inequality, that

P(13d — BY df)| > 3) < S el ZEIADIT,

)\l

The numerator on the right-hand side is a sum of i.i.d. mean-zero random variables, each of which have all
finite moments. As such, for any fixed [, the right-hand side above is at most

CnlPAt < o7

Taking [ > 50!, the right-hand side above is O(n~5). Therefore, the sum over n of the probabilities of
the left-hand side of (4.1) is finite, and by Borel-Cantelli, with probability one, eventually almost surely,
Ea,[D] < v — ¢, so that limsup Eq,, [ D] < ~. A similar argument yields the uniform boundedness of the
x’th moments Eq,, [ D] for any , yielding the desired and concluding the proof. U

Given Lemmas 4.8—4.9, our Theorem 1.1 becomes a corollary of Theorem 1.6.

Proof of Theorem 1.1 given Theorem 1.6. Fix ¢ > 1,y > 0 and p < p,(q,~). Suppose G ~ G(n,~y/n).
Fix a large constant /& and let A be the set of simple graphs G such that the mixing time of FK-dynamics on
G at parameters p, ¢ satisfies K ~'logn < tyix < K logn. By Lemma 4.8, it suffices to show that

IEPoi(’y) [PCM(dn)(g ¢ A)] =o(1).
Considering this quantity, for any 7/,

lim sup Epoi('y) [PCM(dn) (G ¢ A4)]

< Ppoi() ((dn)n ¢ Dy ) +  sup  limsupPeya,)(G ¢ A4).

(dn)E’D,Y/ » n

The first term on the right-hand side is zero for all 4/ > ~ and all x by Lemma 4.9. By Theorem 1.6 and
Lemma 4.7, the second term is zero if 4/ > ~ is such that p < p,(q,7’), and if x and K are sufficiently
large (depending on p, q,~"). By continuity of p,(q, ), if p < pu(g,7), there also exists 4" > ~ such that
p < pu(q,7"), concluding the proof. O

4.4. Local domination of the configuration model by random trees. We now dominate balls of volume
o(nl/ 2) of the random graph G ~ Peu(a,) by branching processes whose progeny are approximately given
by Pg4,,. To be more precise, we define the following.

Definition 4.10. Define the rruncated empirical distribution by letting d,, = d,\Ag,,, where Aq,, are the
smallest 2,/7 elements of d,,, and the set subtraction is done in the multi-set sense. Then let Pg, be the
corresponding effective offspring distribution of d,, i.e., for x € {d, — 1 : d, € d,},
Zv:dvedn (m + 1)1{dv::c+1}
Pa,(z) = =
|dull;

Let D ~ PPg,,, and let Eq,, be the corresponding expectation.
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Lemma 4.11. If (d,,)y, € D, ., then (dy)rn € Do .

Proof. Let Aq, be the set of 2n'/? smallest degrees of d,,. We first of all claim that |d,[, < (1 +
0(1))|dx],- Indeed this follows from the calculation

[l = dnl, _ Zvedieda, @ 2y/nmax{d, : d, € Aq,}
[dunl, Dvdogaq, G (n—2y/n)min{dy : dy ¢ Aa,}

‘We then can observe that

<0o(n~ 2.

Idnf, 1
d,[D] =
= Idan, Idnll,

dy(dy — 1) < (1 + o(1))Eq, [D].
vidy¢ Aa,,

We now wish to prove the desired moment conditions. Those follow by analogous reasoning:

B dy(dy = 1)* < (1 + 0(1))Eq, [D*].
@ Ty, 3, = 0 (o) D

Altogether, these give the desired implications of the lemma. ([l

We now wish to show that the balls of the random graph G ~ Py g, are stochastically dominated by
random trees with offspring distribution Pg, , even conditionally on an already revealed portion H € 9, of
the random graph. However, this will only hold if |H| < n'/2 and the ball does not intersect H. We now
formalize this notion.

Process 4.12. For a subgraph H = (V(H), E(H)), let E(H) be the set of half-edges incident to H but
not matched in H. (Notice that this definition aligns with the use of E (A) for the exposed half-edges of
A € M, when taking H = (V(A), A).) For a half-edge ¢é in E(H), define B,.(é; H¢) as the ball of radius r
“out of H”. More formally, B, (¢; H¢) is obtained by
(1) Matching é to a vertex w.
(2) Running the breadth-first revealing of B,_1 (w) from Process 4.6 but where f(A) cannot be in £(H)
(i.e., it will be an arbitrarily chosen half-edge of £ (A)\E' (H) at distance at most 7 from w in A).

Due to the extra edge from matching é, let us say a single-source Galton—Watson tree is a Galton—Watson
tree whose first generation deterministically has exactly one child.

Proposition 4.13. Consider any degree sequence d,,. Let d,, be as per Definition 4.10. Let ﬁ(%) be a
single-source Galton—Watson tree of at depth h (meaning it is truncated at depth h) with offspring distribu-
tion Pq,. Fix an arbitrary H = (V(H),E(H)) € M, and consider é € E(H). Then, conditionally on

{E(H) < E(G)}, we have the stochastic domination

|Br(€; H) |1 gy B (B, (6;10)) | <n/2) < [ 7r(dn)l

On the event that B,.(é; HC) is a tree, there is an isometry between the graphs such that B, (é; H®) is a
subset of T, (dy).

Proof. We appeal to the revealing procedure of Process 4.4 with the choice of breadth-first revealing de-
scribed in Processes 4.6 and 4.12. Begin the single-source Galton—Watson tree with a root vertex and a
single child, corresponding to €. Iteratively, when a half-edge f. corresponding to a vertex x in the single-
source Galton—Watson tree, gets matched in the revealing procedure to a vertex w,

(1) If w had not been exposed yet, identify the other d,, — 1 half-edges of w with the children of = in
the single-source Galton—Watson tree.
(2) If w is an exposed vertex, do nothing.
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(We say a vertex is exposed if one of its half-edges has already been matched, whether in H or in the reveal-
ing.) Uniformly over any subset of at most 2r'/? matched half-edges (forming n'/? edges), the distribution
dyw — 1 is easily seen to be stochastically below Pq, (in which the smallest o2nl/2 half-edges have been
removed). Notice then that on the indicator o

Y By B(B, (1)) <n/2} -

throughout the breadth-first revealing process, the number of matched half-edges will always be at most
2n'/2. Thus, we see that this process maintains the desired stochastic domination relation as compared to
the single-source Galton—Watson tree until the number of matched half-edges exceeds n'/2.

When B,.(é; H¢) is a tree, item (2) above never happens, and the isometry goes by identifying the edge
containing f in E(G) with the edge connecting the corresponding vertex in ’ﬁ(dn) to its parent. O

With Proposition 4.13, we can translate the volume growth bounds of Lemma 3.6 into the desired volume
growth estimate for the random graph G ~ Pcy(q,,)- In this proof, and other proofs relying on the random
graph revealing procedure, it will be useful to have an /% bound on the degrees. For this, note that (d,,),, €
D, . implicitly places a constraint on |d since P4, chooses |d — 1 with probability Q(||d,||,,/n).
More precisely, we have the following.

Fact 4.14. If (d,,), € D, , then |dy, |, < n°* for (k) = 2/(k + 1).

Proof of Lemma 2.4. We will take a union bound over the probabilities that for a fixed vertex v € {1, ..., n},
and a fixed 7 > ¢log,, n, the graph G has | B,(v)| < Cv". Fix any such v, 7 and take H = ({v}, &), so that

E(H) are exactly the half-edges of v. Evidently, for é € E(H)
P(1B;(v)| = 7") < duP(|Br-1(8)] = dy'y") -
Consider the probability on the right. For each é € E(H ), by Proposition 4.13,
[Br—1(&)|1 B, (&)|<nt/2y < Zr

where Z, ~ |7A;_1 (dn)|, where we recall this is the single-source Galton—Watson tree of depth ~ — 1 whose
offspring distribution is Pg,,. Now using a union bound,

llog n

2 Y

Pewi(a,) (G does not have (, €)-volume growth) < Zd” Z P(|Z.| = d,'y").
v

r=elog, n

Since (dy,)n € Dk, there exists 7 > 0 such that it also is in D, _,, ... Fix such an 7).
Let x(7y, 7, €) be large, to be chosen later, and let ¢, () be such that |d,|,, < n®* per Fact 4.14. Then
the right-hand side is at most

liog n Liog . n

2 Y5y 2 95y

n1+s* Z P(|ZT’ > nfa*,yr) _ n1+s* 2 P(’Zr| > (7175* logfy/s)r) _
r=clogn r=clogn

Let 4 = 41 ~%%1927/2 and take  to be sufficiently large (so that e, is sufficiently small) that 5 > ~v — 1/2.
By Lemma 3.6, then, the right-hand side above is at most

%log,Y n N\
Cn1+8* 2 TH( 2) .
r=elogn T 77/

One then sees that if & is large enough, the right-hand side will be o(n~19) as desired. U
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4.5. Treelike nature of the configuration model. We can also use the breadth-first revealing procedures
together with the volume growth estimates, to establish that the random graph given by the configuration
model is typically (L, R)-Treelike for L = O(1) and R < §log, n

Proof of Lemma 2.2. By Lemma 2.4, with probability 1 — o(n ') the random graph G has (v, £) volume
growth, say for ¢ = 1/4, as long as « is sufficiently large. Let us work on that event, so that |Br(v)| <
n'/?=9 forallv € {1,...,n}.

Now fix any v and perform the breadth-first revealing of Br(v) per Process 4.6. In order for Br(v) to
not be L-Treelike, it must be the case that for more than L different steps m in the first nl/2-9 steps, the
half-edge f(A,_1) is being matched to a half-edge of E(A,,_1). Call such a step bad. (If there were at
most L bad steps, then the removal of the at-most L edges formed by those at-most L matchings in the
revealing scheme, evidently leaves a tree.)

Uniformly over A,,_1, the probability of the m’th step being bad is at most

(mlldn[)/(Idnlly —m).
We thus find that for every £ > 1

- . : 1/2-5 n'70|dy ],
Pe(a,)(Br(v) is not £-Treelike) < ]P’( Bin (n : —1/2_5> > z) . 4.2)
[dnlly = n
Recall that the standard Chernoff bound applied to a binomial distribution with mean ;x = Np says that for
every s = [,

—S
P(Bin(N,p) > 5) < es—”@) . (4.3)
I

Using the assumption that |[d,,[, = Q(n) and recalling from Fact 4.14 that |d,,[., < n®*(*), (4.3) implies
that the right-hand side of (4.2) is at most (Cn_25+5*)£. As a consequence, taking x large enough that
£+ < 6, and choosing L > 116~!, we would find that the probability of Br(v) not being L-Treelike is
o(n~11) for all v, and a union bound over v € {1, ...,n} implies the desired result. O

5. THE FK-DYNAMICS SHATTERS QUICKLY ON RANDOM GRAPHS

Our first goal in this section is to prove the following theorem establishing the existence of 7' = O(1) (in
continuous-time) such that for ¢t > 7', the FK-dynamics chain on the random graph G initialized from the all-
wired configuration (i.e., all edges are open), denoted X g.t» 1s shattered, i.e., all the connected components
of the FK-dynamics configuration are small; recall Definition 2.11 for a precise formulation.

Theorem 5.1. Fixq > 1,y > 1, and p < p,(q,7). For every e > 0, there exists r such that if (d,,)n, € D,
the following holds. There exists T = O(1) such that for every t > T and every v, with probability
1—o(n™19,G ~ Pem(a,) is such that

IP’(|CU(Xé7t)| >n®) < o(n=19y.

We will then use this to conclude Theorem 2.12, demonstrating that if ¢ > 7', the boundary condition
X}, induces on any ball of volume o(+/n) is O(1)-sparse.

By monotonicity of the FK-dynamics, for every G, we have that X é,t > g, from which it follows that
Theorem 5.1 holds under 7g.

Corollary 5.2. Fixq > 1,y > 1, andp < py(q, ). Foreverye > 0, there exists  such that if (d,,)r, € D+,
then for every v, with probability 1 — o(n=1°), G ~ Pen(a,) is such that

76 (ICu(Xg )| = n°) < o(n™1°).

While we do not use this corollary here, it may find applications elsewhere.
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5.1. Couplings and revealing schemes for the FK-dynamics on random graphs. In this section, we
define our central revealing procedure for exposing the random graph together with a family of coupled FK-
dynamics on subsets of the random graph G, which together stochastically dominate X ét. This revealing
procedure is essential to the proof of shattering for X é}t in the uniqueness region after O(1) continuous-time.

A similar revealing scheme of random graphs with an FK-dynamics chain on top of it was introduced
in [4]. The revealing scheme we use here builds on that, but makes some key modifications to deal with the
non-uniformity of the degrees and the lack of deterministic control on the volume of small balls of G. These
changes are explicitly laid out in Remark 5.11.

5.1.1. Grand coupling of localized FK-dynamics. In this section, we define a grand coupling of FK-dynamics
on all possible edge subsets of the random graph G in such a way that all monotonicities of the model are
maintained.

Recall from Definition 4.1 that we use 90, as the set of all (not necessarily perfect) matchings of the
complete graph on the |d,,[|; many half-edges. The matching A is naturally identified with a set of edges on
the original vertex set {1, ..., n}, each pairing of two half-edges becoming an edge between the vertices they
belong to. Abusing notation, we will understand A both as a matching element of 91, and as a multiset of
edgeson {1,...,n}.

Definition 5.3. For an element A € 9t,,, let 0 A be the set of vertices in {1, ..., n} having half-edges that are
not matched in A. Let 7@‘ be the random-cluster measure on the edge set A with wired boundary conditions
wiring all vertices of 0A. Let (X }1 +)t=0 be the continuous-time FK-dynamics initialized from the all wired

configuration on A (as well as outside A), and making updates in A according to 7['114.

We next place all the chains (X}!)i=0 = {(X}X,t)tZO} ey, ©n all possible matchings A € 9M,,, in the
same probability space, and construct an explicit coupling of them.

Definition 5.4. The probability space we consider will consist of the following sources of randomness:

(1) Independently assign each possible edge e (i.e., each possible pairing of two half-edges), a sequence
of times T, = (17, Ty, ...) given by the rings of a rate-1 Poisson clock; and
(2) Independently assign each possible e a sequence of Unif[0, 1] random-variables . = (Uf, Us, ...).

We denote by F; the o-algebra generated by the processes (T ). up to time ¢, as well as the corresponding
set of random variables in (Ll¢)..
Definition 5.5. From (¥, {l) construct the processes (X}X,t)t21 for all A € 9M,, as follows:

(1) Let 0 < t; < ta < ... be the (almost surely distinct) times in | J; | J {7} in increasing order.
(2) Initialize X} o(e) = 1 forall e; i.e., the all wired configuration.
(3) Foreach? > 1, let

Xhy=Xh,, , forall te[tii,t;).
Then, let (e;, k;) be the unique pair for which ¢; = 7;* and define X}m by setting
X}Lti(e) = Xfiytifl(e) for all e A\{e;}

and
1 ife;e Aand U, 1, < 0;
0 ife;e Aand U, 1, > 0;

X}Lti(ei) = {

for
0=my(wle) =1|w(A\{ei}) = X}y, (A\ei}));

i.e., if e; € A, we resample e; given the remainder of the configuration on A, together with the wired
boundary condition on JA, using the same U, , for every X}‘ ;, such thate; € A.

The following two observations are elementary to observe, but of central importance to our analysis.
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Observation 5.6. The coupling defined in Definition 5.5 is a monotone coupling. In particular, we have
X}l, S X}Ltfor any two matchings A, A’ € M, with A = A’. As such, we have for every G that

X§(e) < Xiyle),  forallee E(G)andallt=>0.

min
AeM,:ACE(G)

Observation 5.7. For every A, the configuration X}x,t depends only on (%, U.)cca, and in fact only on
their restriction to F; (the o-algebra generated by elements of T, M before time t).

We now use the coupling of Definition 5.5 to design a coupling of FK-dynamics chains on random graphs.

Definition 5.8. Let P} be the distribution over pairs (G, w;) where w; is a random-cluster configuration on
G that results by first drawing G ~ Pcy(q,,), then drawing w; ~ P(X(}’t € -). Likewise, for every set
Ae My, let ]P’}Al’t be the distribution over pairs (G, w4~ g(g),:) Where wa ¢ ~ IP’(X}M € -). Couple, under the
distribution P, the family of distributions (Pi‘,t) Ae, =0 by selecting the same random graph G ~ Pryq,,)

for all of them, then using the coupling of Definition 5.5 for the family of FK-dynamics (X}"t) ACE(G),t=0
ong.

In this manner, we have constructed a monotone coupling of (G, (X}Lt)tgl) AcE(g)- Note that we use
this coupling for A which we know have A — FE(G), so that the randomness of the graph is only over the
edges of F(G)\A, which we note X}, , is independent of; thus the role of this coupling is only to put the
random graphs with their random-cluster configurations on the same probability space. We emphasize that
by Observation 5.7, if A n B = ¢, then X , and X, are independent.

5.1.2. The joint revealing procedure. We now construct a revealing procedure for G and a configuration
@y on G that stochastically dominates Xé,t' This will be inspired by the simultaneous revealing proce-
dure first introduced in [4], with significant modifications that streamline that argument, and deal with the
heterogeneity of degrees and volumes of balls in G ~ Py (q,,)-

Definition 5.9. Given a degree sequence d,,, a vertex set V < {1,...,n}, and a matching A € IM,,, let
E(V,.A) be the set of half-edges incident to V, and not matched in A.

We note that E(V (A), A) = E(A) from Definition 4.5.

For a matching on half-edges, Ay € 9M,,, so that 4y c E(G), and a subset of vertices Vy < V(G), we
construct a procedure to expose (a set containing) the connected components Cy, (X ét(E (G)\Ap)), i.e., the
union of all the connected components of the vertices in V in the configuration X ét(E (G)\Ap). The two
examples to have in mind are

(1) Ap = & and Vy = {v}, used to prove Theorem 5.1;
(2) Ay = E(BRr(v)),and Vy = 0BRr(v), used to prove Theorem 2.12.

In this revealing procedure, the index m will count the number of “steps”, and k will track the number of
“generations”. We will keep track of the following variables through our revealing process:

e A,,: the element of 9, that has been shown to be a subset of E(G) through step m;
e (,: the random-cluster configuration revealed through step m;
o & the set of half-edges we want to explore out of in the k-th generation.

For A € 9, recall from Process 4.12 that B,.(¢é;.A°) is revealed in a breadth-first manner, with the breadth-
first exploration rejecting branches through vertices in V' (A).

The revealing process, with parameters (p, q,,r,t), and input (Vp,.Ap) is defined as follows: see Fig-
ure 5.1-5.2 for a depiction to accompany the below.
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Process 5.10.
Inputs: (p,q,v); t=0, r=1; Voc{l,...n}; AgeM,;
Initialize: £k = 0; m =1; éA’o = E(VO,AU); Wy = &;
for each k£ > 0 while c‘fk #
for each ¢é € éA‘k
1. Reveal the ball of radius r out from é in the random graph G:
(a) Set é,, = é. Conditionally on A,,_1, reveal B,(é,; A%, ;) per Process 4.12.
(b) Set Ay, = A1 U Br(ém; AS, ).

m—1

(c) Let Ay, := A\ Ap—1 be the set of new edges revealed to belong to E(G).

2. Simulate the FK-dynamics up to time ¢ on the newly revealed edge set A,,:
(a) Reveal §4,,+ := {(T%)eca,,, (1)cea,, } N Ft (as defined in Definition 5.4).
(b) Generate X}4m7t from § 4,, ¢+ per Definition 5.5.

3. Update the configuration w,,, the boundary half-edges éA'k, and the step count m:
(a) Concatenate X }lm,t with @, _1 to obtain a new configuration &,, on A,,.
(b) Add to (Z,:\k-+1 all un-matched half-edges of vertices in d.A,, that are in the component of V)

in @, (A;,) and are not in 5] forany j < k.
(c) Increase m by 1.

Remark 5.11. Before proceeding, let us describe the specific differences between the current revealing
scheme and that of [4], as well as why these changes are needed to overcome difficulties arising from
heterogeneity of the underlying degree sequence. The main changes are as follows:

(1) The revealing process is based on half-edges rather than vertices: this ensures that the revealing of
the ball B, (é,,;.A%,_;) does not reveal the degrees of the vertices from which the exploration pro-
ceeds (which could potentially have high-degree and introduce correlations between generations).

(2) The revealing of the ball B,(é,,;.AS,_,) does not continue exploring if it encounters any vertex of
V(A¢,_). This is important because if B, (é,,) intersects a dense region of A, _, that has already
been revealed, then the volume of B,(é,,) would not be independent of A, _,.

(3) The FK-dynamics is simulated in continuous time, rather than discrete time. This introduces ad-
ditional independence so that the number of updates taken by each of the localized FK-dynamics

chains X }xm , are truly independent of one another.

For ease of notation, let kg be the first £ such that é’\k = (J, i.e., the total number of generations of the
revealing procedure. Let
mp= > &1,

o<j<k

be the total number of half-edges for which B, (é,,; AS,_;) was revealed in step 1.a) of Process 5.10, so that
my,_ counts the total number of half-edges out of which a ball is ever revealed. Let

& = G, (Am,,, \ o)

be the random-cluster configuration revealed when the process terminates. The following key observation
is a direct consequence of Observation 5.6 and the construction of Process 5.10.

o]

Observation 5.12. Under the procedure of Process 5.10, we have
O(Ame, \Mo) = Xg 4 (Am, \Ao).
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FIGURE 5.1. Left: We initialize the revealing process with r = 6 from Vy = {v}, Ag = &
and the half-edge é = é; = & (purple). The process begins by revealing A; = B, (& A),
depicted in gray. Right: The process then reveals the configuration X}h’t (open edges
shown in red/pink). Half-edges belonging to vertices in 0 A; that are in the X }11 -connected

component of v (red) are added to form éA’l (purple).

/!

FIGURE 5.2. Left: Proceeding from above, in the next generation, starting from é; € 51,
the process reveals the edges of A1 = B,(é2,.Af) in G; in this case, this is not a tree as it
contains a single cycle. The FK-dynamics configuration X }‘N is then generated and con-
catenated with @; to form wy. Right: The process continues with és, revealing B, (é3; .A$S)
with the FK-dynamics configuration X }13775 on top of it.

In particular, the connected component of each vertex in Vy in Xé’t(E (G)\Ao) is a subset of a connected
component of a vertex in Vg in Q.

Thus, if N, (A) denotes the number of vertices in non-trivial (i.e., non-singleton) components of the
boundary condition induced by w(E(G)\A) on A, then

Nyy , (Ao) < No(Ao) -

With Observation 5.12 in hand, we focus on obtaining the stretched exponential tail bound of Theorem 5.1
for the size of C, () (the component of v in @) and likewise, the sparsity bound of Theorem 2.12.

5.1.3. Constructing a dominating branching process. Towards proving Theorem 5.1 and 2.12, we construct
a branching process (ours will be a size-dependent one but we use the terminology nonetheless) which
we will show stochastically dominates the sequence (fk) k>0 of our joint revealing process. This process
(Zk) k=0 Will then be shown to be sub-critical, with good tail bounds.
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Definition 5.13. Initialize Zy = |€o|. Let (Z)i=0 be the branching process, which for each k > 0, has
progeny (Xik)i<z» i-€.,

Zry1 = 2 Xi,k -

iSZk

The progeny x; i are distributed as follows. First, let (’f?k)lk be i.i.d. single-source Galton—Watson trees
of depth 7, with offspring distribution Py, (from Definition 4.10); recall the single-source here refers to the
fact that this is a tree of depth r whose first generation deterministically has one offspring; beyond that first
edge, it is simply a Galton—Watson tree of depth » — 1 with offspring distribution Py, . Then the offspring
distribution (parametrized by p, q,, € and 7, t), is as follows: o

(1) With probability n /2, let x;. o ( Xk Zi + Xjei Xik)s

(2) Otherwise,

(a) If 7,°F does not satisfy the (v, €)-tree-growth condition (Definition 3.7), let N; = |E(7,"%)|
and let x; . be a sum of /V; independent random variables drawn from Pg,, .

(b) If 7%'6 does satisfy the (v, )-tree-growth condition, first generate a configuration on 7,0k by
running FK-dynamics with (1, ) boundary conditions, initialized from wg = 1 for time ¢. Let
N, be the number of vertices of 67’1 that are connected to the root, and let x; . be a sum of
N independent random variables drawn from Pg,, .

Let us motivate the above construction. Item (1) in the definition of x; ;. corresponds to cases when either

e The ball B,.(é,,; A, ;) is not a tree, or
e The ball B, (é,;.AS,_1)\{én} intersects some already exposed vertex in A,,_.

The n~1/2 probability of item (1) is because we will need to take Ay possibly as large as n~37°M) On
the latter of these two events, the connected component of Vy may, in one step, incorporate many edges of
A1, by virtue of an already revealed large connected component of A,,_1. In this case, the best a priori
bound we can place on the progeny is the total number of edges revealed up to that point.

In case (2), the newly revealed ball is indeed a tree and does not intersect any already exposed vertex
of A,,_1. On the indicator of this event, by Proposition 4.13, the ball is stochastically below 7'Z cases
(2a)—(2b) then distinguish whether or not the dominating tree satisfies the (-, £)-tree-growth condltlon. This
is important because if the tree does not satisfy the condition, p < p,,(q,~y) will not be sub-critical for the
(1,O) random-cluster model on 7,°% and we can only take the full boundary of the tree as our bound on the
size of the component of the tree’s root.

5.1.4. Dominating the revealing process by the branching process. We are now in position to state the main
two lemmas of this section, comparing the revealing procedure to the branching process of Definition 5.13,
and then establishing its sub-criticality.

Recall that mg = || and for each k > 1, mj1 = my + |Egs1], i.e., in each generation k, my, is the
number of half-edges we explore out from. This will be the quantity which we compare to the population of
the branching process (Zy )y of Definition 5.13. For notational simplicity, write Ay, = Amkg .

1

Lemma 5.14. For every Ay, Vy such that | Ap|, |Vo| < 03 for & > 0. and every £ > 1
(|5j|1{ijn1/2—5/2})j<é < (Zj)jgf .

Furthermore, we have

e}
|~Aoo\-/40|1{m00<n1/2—6/2} < ’}/T Z Z]' .

J=0

The proof of Lemma 5.14 is briefly deferred to the next subsection; before that proof, we observe that
the lemma reduces the analysis of the set of exposed vertices through the revealing process of (G, ), and
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thus, the clusters of Xé’t, to the analysis of the process (Z), which for most steps is a simple branching
process with progeny distribution typically dictated by connectivity probabilities in the wired measure on
trees satisfying a (v, €)-tree-growth condition, but occasionally makes large state-dependent jumps.

Our claim is that if 7 and ¢ are chosen to be sufficiently large, but O(1), the dominating branching process
will be sub-critical. To formalize this claim, let

?MIX = max tMIX<TT’7 (1,0)) . (51)
T, Of (y,6)—tree—growth
i.e., the maximum over all possible trees of depth r satisfying the (v, e)-tree-growth condition, of the
(continuous-time) mixing time with (1, () boundary conditions. Now define the burn-in time

Thurn = TBURN(0077') = CO’)/T%MIX . (5.2)

Lemma 5.15. Fixq > 1,y > 1l and p < py(q,7). For ¢ sufficiently small and Cy, r and k sufficiently large,
ift = Tyurn(Co,7) and (dy,)n € D, the branching process of Definition 5.13 satisfies the following tail

bound: if Zo < n?~°, then for every M > 1, and every X : \Zo <n?”3,

Al/MZO —5M /2
7=0 nlloo

Roughly, the constant M can be thought of as the number of times the “bad” offspring distribution of
item (1) in Definition 5.13 is selected, allowing the total population to double, and away from such “bad”
updates, we will show that the branching process indeed satisfies exponential tails.

5.2. Coupling the revealing process to the branching process. We next prove the desired stochastic
domination relation between the revealing process (€ ) and Z; by constructing a coupling between the
two such that the former is below the latter while the total population is at most n!/2=9/2,

Proof of Lemma 5.14. We proceed by induction over ¢ > 0. The base case, Zy = |§0\, is by construction.
Now fix ¢ > 1 and suppose by way of induction that the following stochastic domination holds:

(1€51 1 m, <nirz-or2y ) j<e—1 < (Z5) -1 -
Thus, there exists a monotone coupling of the sequence on the left-hand side, such that it is below the
sequence (Z;);<¢—1 in the natural element-wise ordering on the sequence. Working on that coupling, it
suffices for us to then show that on the event {m,_; < n1/2*5/2}, for every m € {my_1 + 1,...,my}, the
distribution of the children of €, is stochastically below the progeny distribution of Definition 5.13. Here,
by children of é,,, we mean the set of half-edges added in step 3.(b) of Process 5.10. In what follows, denote
that set by Z(é,,).
Define the event I'go04 0n the revealed ball B,.(€,,; A%, _;) as the event that

V(By(ém; AS_ )\ {Em}) N V(Ap—1) = & and  By(ém; A5, ;) isatree.

On the bad event I'g 4, we take the a priori bound of E(A,,) on the set Z(,,), namely assuming that in
the worst-case all exposed half-edges of A,,, both those in B, (¢,,;.AS,_;), and those of A,,_; become
connected up to Vy in @p,. By the inductive hypothesis, the number of such half-edges is at most |d,, |/,
times the population of the branching process up to that step, given by > i<k Zj + Zj ~i Xj,k» Where the
|d,,||., comes from assuming that in each of these steps the corresponding ball we revealed in the graph has
maximal size. We claim that the probability of F;ood is at most n~1/2. To see this, notice that in the breadth-
first revealing of B, (é,,;.AS,_ ), the probability that the next half-edge that gets matched is matched either
with a vertex having an edge in A,,,_1, or an already exposed vertex of By (é,,;.AS,_;) is at most

B muldaly
ldnl, = [E(An)|  Idaly —me
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Assuming that (d,,),, € D, (for  to be chosen sufficiently large later), by Fact 4.14, ||d,, |, < n®*().
Using this upper bound, the bound m; < n!/2-9/2 (as otherwise the indicator on the left-hand side of the
desired stochastic domination would be zero), and the lower bound of |d,|; = (n), we see that this
probability is at most n'/2+9/2=¢x"  Through the revealing of B,.(é,,, A%, ;) we make at most |d, |
attempts at such a bad matching, and thus a union bound implies that

5 1/2—68/2 —1/2—-5/2+2
P(Br@m;A?Cnfl)ngood ’3m—17m£<n/ /)<n / /Jrg*r?

where §,,,—1 is the filtration generated by the randomness of the revealing procedure through the (m — 1)’th
step. The right-hand side above is at most n~'/2 as long as & is large enough that e, () < %(5 (2r)~ L

Now work on the event that B,.(é,,; A, ;) € I'go0d, and recall from Proposition 4.13 that in this case the
ball is stochastically dominated by (and in particular there exists a coupling such that it can be be embedded
as a subset of) a Galton—Watson tree of depth r with offspring distribution Pg,, . This is the law of 741

Evidently, on the event that ’7\}1’3_1 does not satisfy the (v, ¢)-tree-growth condition, the number of
children |Z(é,,)| is at most the number of half-edges emanating from 0B, (é,,;.A%,_;), which is at most

o757 a,

Finally, suppose we are on the event that 7\7"6_1 does satisfy the (v, )-tree-growth condition, so that
B (ém; A%, ;) does as well. In that case, by Proposition 4.13, there is a coupling such that the graph
By (ém; AS,_,) is a subgraph of ﬁ’z_l. One can then couple the FK-dynamics chain X}‘m’t to Y;!, the FK-

dynamics chain on 7,571 with its (1,0) boundary conditions run for time ¢ initialized from Y, = 1 such
that X}lmt is below Y;! with probability one. In particular, the vertices of 0 A,,, which are in the open cluster

,or a sum of |07, 7| < N, independent draws from Pg_ .

of é,, in X}lm ;» are a subset of the vertices of 87}“71 which are in the open cluster of the root in Ytl, SO

that the number of them, call it V (X}lm ;) is less than N; = N(Y;). Since the law of X}lm , is independent
of the choice of boundary vertices, and thus degree sequence at 0A,,, the number of half—edges added in
step 3.(b) of Process 5.10 is a sum of NV (X}lm’t) independent draws from the empirical degree distribution
at that point, which is stochastically below Py, . Therefore, this establishes the domination on this event of
the number of children of é,, by item (2b) of the dominating branching process.

In order to then deduce the domination of | A, \A| by 7" times the total population of the dominating
branching process, we make the following observation. On the event Fgood, we were already bounding
=(em) by | A\ Aol, and that in turn by x; ;. even without the factor of 4”. Similarly in the case of (2a). In
the event of (2b), we notice that by the (y, €)-tree-growth condition, the number of edges in B, (é,,; A5, 1)
is at most . ]

5.3. Sub-criticality of an auxiliary branching process. The branching process of Definition 5.13 is not a
branching process in a traditional sense, as when it follows item (1) in the definition, its offspring count is
state-dependent. Such offspring can create large jumps in the total population, and lead to difficulties in the
analysis. We analyze the process by means of an auxiliary branching process that captures the behavior of
(Z;); in between its rare state-dependent steps. More formally, we say an offspring of the branching process
of Definition 5.13 is bad if item (1) of Definition 5.13 is taken.

Definition 5.16. Consider the auxiliary branching process (Z]) ; which is defined exactly as in Defini-
tion 5.13, except its offspring are conditioned to never be bad. Namely, let (x; ); , be a sequence of i.i.d.
draws from item (2) of Definition 5.13, and for a fixed Zo, construct (Z;); iteratively by Z; = >, Z Xij-

The following lemma establishes sub-criticality and tail bounds for the auxiliary branching process—in
other words, the branching process during the epochs between the bad updates of (Z;);.

Lemma 5.17. Fixq > 1,y > land p < py(q,7). For ¢ sufficiently small and Cy, r and k sufficiently large,
ift = Tyurn(Co, 1) and (dy,), € Dok, the auxiliary branching process (Z;); is uniformly sub-critical, i.e.,
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limsup,, E[X] < 1. Furthermore, it satisfies the following tail bound: for all X sufficiently large,
)\Z() )

P( 222 0%) < Com (- 5

j=0

Proof of Lemma 5.17: sub-criticality. Let us begin by calculating the mean of the offspring distribution
of the auxiliary branching process, which corresponds to the offspring distribution of Definition 5.13 condi-
tional on being from item (2). By construction,

E[Xix] = E[L{T," ¢ (7,¢)-tree-growth}|7,"* || Eq, D]
+ E[1{7,"* € (~, g)-tree-growth}|C,(Y;') N 67A7’k|]Ed7n[D] .
We can bound the first term by Cauchy—Schwarz as
E[l{f?k ¢ (’y,s)—tree—growth}\’?\?’k ]EdJ[D]
<7 - B(T* ¢ (7,e)-tree-growth) B[ |7+ )2

The probability on the right-hand side is at most 7~"*" for some 7 small, by Corollary 3.8 if (d,,) € D .
The expectation above is at most C'y" using the moment bound of (3.11). Thus taking « large depending on
€, we see that this product is exponentially small in , and can be taken as close to 0 as desired by taking r
sufficiently large.

Turning to the second term in the expansion of E[X; 1|, we can first bound it by

Ea, [DIE[L{T € (7, 2)-tree-growth}[C, (V') n 074]]
<7 sup E[IC, (Y. ) 0 T[]
T,€(v,e)-tree-growth T
where (YTl(l,o) t)t>0 is a continuous-time FK-dynamics on the tree T, with (1,(J) boundary conditions,

initialized from the all-wired configuration. Now recall that the stationary measure of Yl}(lo) . is ﬂq(rlr’(j). By

the (7, €)-tree-growth condition, |T,| < 4". As such, there exists some C,., > 0 such that the mixing time
of YTl(l,@ v i.e., Tuix as defined in (5.1), is at most C.,. By sub-multiplicativity of total-variation distance

(see e.g., [48]), then, if t = Tpyrn(Co, 1) = Coy" Taix as defined in (5.2), we have

sup PV, &) =m0y < Cexp(—Con'/C).
T,e(v,e)-tree-growth o

Using this, for every T, € (v, €)-tree-growth, we can bound the expectation
E[ICo(Yi,) 0 OTrl] < E 0o [ICo(w) 0 O[] + 10T 1PV, € ) = 78
<[0T, | max 19w e C,(w)) + C|oT,|e"C07/C
vedT, T

Using the fact that T, has (v, €)-tree-growth and using the bound of Corollary 2.7 to bound the probability
of a leaf being in the component of the root, we bound the above by

C,)/Tﬁ(lfs)r + C,YTG*COVT/C )

Recall that when p < p,(q,7), we have p < 1/, from which it follows that for sufficiently small 9, e
and sufficiently large Cj, uniformly over large r the above quantity is strictly less than 1/, so that when
multiplied by Eq, [D] < 7, it is strictly less than 1. Combining this with the bound on the first term in
the expectation, we find that there exist (p, ¢,v) and Cy(~y) such that for all r sufficiently large, we have
limsup,, E[X; ] < 1 as desired. O
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Proof of Lemma 5.17: tail bounds. Having established sub-criticality of the dominating branching pro-
cess, we now wish to boost this to tail bounds on the number of generations, and total population of the
branching process. For this, we use the traditional random-walk exploration of a branching process. Namely,
the population beyond Z, can be expressed as a sum of i.i.d.’s and we can write the active population in the
branching process beyond the first generation as the killed random walk

Zo + Z<9~<i_1)7 where Nozinf{j:Zo—l-Z()Zi—l):O},
i1<No i<j

where (;); are i.i.d. copies from the offspring distribution of Definition 5.13. Observe that with this repre-
sentation, the total population of the branching process is exactly Ny. Then, we can express tail bounds for
this branching process’s total population as

P( Z ZJZ)\Z(]> gP(N0>>\Zo) S]P(ZOJF Z ()Zz*l)>0>
0<j <0 i<A\Zo
Consider the random variable y; —1; its mean satisfies E[)Ngl —1] < —n for some 1 > 0, by the sub-criticality

established in the previous proof. Thus this is a sum of AZo-many i.i.d. random variables, the sum has mean
smaller than —n\Zp, and the increments are bounded in £, by ||d,,|,. Thus,

P( D -1 > —Zo> < P(‘ > (—1)—E[x1 — 1]’ >n(A— 77_1)20)
i<\Zo i<\Zo
As long as A\ > 2n~!, by Hoeffding’s inequality, this gives

P( Z (Xi —1) > —Zo) < Cexp (AZ[))

2r
i<A\Zo CHdnHoo
as desired. [l

5.4. Controlling the original branching process by a sum of auxiliary branching processes. Given the
sub-criticality and tail bounds for the auxiliary branching process, we can now obtain tail bounds on the
original dominating branching process (Z;); as required by Lemma 5.15. Let us now construct a process
out of i.i.d. copies of the auxiliary branching process, that stochastically dominates the original branching
process. Let (Z J(Z)) j bei.i.d. copies of the branching process of Definition 5.16, with initializations Z(()l) =
Zy and Z(()i) = [dn% 2550 Z ](Aifl) given by the total population of the previous auxiliary branching process.
In what follows, for fixed A, consider the stopping generation
K zmin{kj: Z Zj > )\Zo}.
0<j<k

Let I'pag, s be the event that there are at most M many bad offspring in the first ) many generations of the
branching process (Z;);. The following stochastic domination is self-evident by construction.

Z\,

Claim 5.18. Given the above construction, (3;-0 Z;j) 1y v < 21<icm 2050 Z;

Given this stochastic domination, we can now establish Lemma 5.15.

Proof of Lemma 5.15. By a union bound, we have

P( 322 0%) < Flg) +2( 5 3127 20%).

1<i<M j=0
The first probability is bounded as follows: for every A : AZy < n%_g, we have

P(Ifad, i) < P(Bin(AZO,nflﬂ) > M> < Cn—M/2.



SAMPLING FROM POTTS ON RANDOM GRAPHS OF UNBOUNDED DEGREE 31

The second probability above can be bounded as

1<i<M j=0 1<isM

Indeed, if for every 7, 3~ Z~](.Z) < M*l/M/\l/MHdnH;O”Z " then Dl<i<M 2450 ZJ(’) AZj. In order to

now bound the right-hand side, we use the tail bounds of Lemma 5.17 to deduce that

]P)( Z ZZ('i)>>\ZU><CMeXp(f Al/MZQ )
1<i<M 520 ’ CMl/MHdn”gg+M)r
Combined with the bound on P(Fgad’ a)» We obtain the desired result. 0

5.5. Tail bounds on cluster sizes, and shattering of the dynamics. We are now in a position to conclude
the proof of the tail bounds on clusters of Xé ;» and use that to deduce that X, é , is (K, R)-Sparse, except

with probability o(n~5). We begin by using Lemmas 5.14—5.15 to prove the following tail bound on |A|,
which we recall counts the number of edges exposed through the revealing process of Process 5.10.
Lemma 5.19. Fix 6 > 0 and consider the revealing procedure for any initial pair (Vy, Ao) having | Aol, | Vol
and |Ey| all at most n2=5. There exist Co(p,q,7),r(p,q,) in the definition of Tyygy in (5.2) and k(p, q,7)
such that for all t = Tyury the following holds. For all (dy,)y € Dy, M = 1and X : A& < n%_‘s,

s A/M 7 _
P(14] > [ Aol +7" (M) < OM exp (W)  On-tM2
nllco

Proof. Define the following stopping generation
¢ = inf {f My > )\|§0|} .

Similarly define <z as the first £ : >’ j<t—12j > AZy. Under the monotone coupling of Lemma 5.14, if
¢z = o0, then ¢ = 0, the indicators in the lemma are both 1, and both

0

(&) < (Z);,  and  JAN\A| <97 Y Z

j=0
hold. Therefore, we obtain

P4\l = 7" (M) <P( Y] 2k > A%).-

Lemma 5.15 then implies the desired result. U

We next use Lemma 5.19 and Observation 5.12 to deduce tail estimates on the volume and radius of the
cluster in X é ; containing v, when ¢ > Tyygn.

Proof of Theorem 5.1. Fix some v € {1,...,n}, let Ag = ¢J and let Vy = {v} in Process 5.10. In this case

& is the set of half-edges out from v, and thus || = d,. By Observation 5.12, for each G ~ Peu(d,). the

cluster of v in the configuration Xé’t, denoted Cv(Xéyt) is a subset of C, (@), which in turn is a subset of

V(Amy\Ao). Let Co, r be sufficiently large constants and take ¢ > 7" = Tyyrn(Co, 7). Then, we have
1Co(Xg.0)] < [Co(@)] < [V (Amg\Ao)| < 2 A, \ Aol -

By Lemma 5.19 and the above, if (d,,), € D, there exists C(p, ¢, y) such that

) . . /Mg, M2
P((G, Xg,) : [Cu(Xg,)| =" (Ady)) < CM exp (C¢’d|(1\/l+2)r) +Cn '
1 oo
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Let 6 = 1/4 and let M = 200, for instance. For any fixed small £ > 0, by taking « sufficiently large, by

Fact 4.14, HdanWH)T < n¥/4™M; then taking A = n(M—De/4M "we satisfy that \d, < nz . Then we see
that

Al/Mdv
Cld, |2

In turn, the probability above is at most o(n ~2%). Observing that P((G, Xé’t) : Xé,t € ) = Ecm(a,) [P(Xé,t €
-)], we can use Markov’s inequality to write

v (A\dy) < nf, and > n8/4M/C.

Peuian) (0 P (X (K] = ) = n712) <02,
implying the desired result. _

We next establish that the (K, R)-Sparse property for the random-cluster configuration on G ~ Py (q,,)
holds with high probability for all ¢ > Tyygrx. Towards this, we introduce the following notation.

Definition 5.20. Given a graph G, a vertex subset V), an edge subset .4, and a configuration w on E(G),
define Uy, 4,)(w) as the subset of vertices in Vy in non-singleton components in the boundary condition
induced by w(F(G)\Ao).

Lemma 5.21. Fixqg>1,v> 1, p < py(q,7), and 6 > 0. Let R < (% —0)log, n. There exist k, K as well
as Co and r, such that for every v € {1,...,n} for all t = Tyyrn(Co,7) and all (dy,),, € D, the following
holds for Ay = Bgr(v) and Vo = 0Br(v):

P((G,Xg4) : [Dwy,a0)(Xga)l > K) < o(n™).

We use Theorem 5.1 to bound the number of chances the revealing process of Process 5.10 has to re-
connect to the vertices of Vy = dBRr(v). Intuitively, since the components of & have (stretched) exponen-
tial tail bounds, the number of chances at reconnecting is of the same order as |Vp|; since R is such that
Vol < n1/2-9 the number of such connections (each possibly inducing a non-trivial boundary compo-
nent) will be dominated by an Bin(nl/ 248 =1/ 2*5) random variable, yielding the desired tail bound on the
probability of this exceeding some large K.

Proof of Lemma 5.21. Fix v € {1,...,n} and § > 0, and any R < (% — §)log., n. First of all, we recall
from Lemma 2.4, that if we let I be the event that G has the (-, £)-volume-growth property, then

PCM(dn)(FC) < 0(71_10) .

We will henceforth work on the event I'. Reveal the sub-graph Br(v) on the event I (such that its volume
is at most %) and initialize Vo = 0Bgr(v) and Ay = E(Bgr(v)). We apply the revealing procedure of
Process 5.10 with this initialization. Recall from Observation 5.12 that the FK-clusters of V) induced by
&(E(G)\Ap) are a subset of Ay, \Ag, and the configuration w satisfies (Z)(Amkg \Ao) = X, é,t(-Aka \Ap).
Thus, the sets Uy, 4,)(@) and By, 4 (Xé’t), are subsets of By, 4,) (.Amkg \Ao).

Through the revealing process of Process 5.10, for each m, the edges of B, (é,,;. A%, _,) are revealed
one at a time via the breadth-first revealing per Processes 4.4 and 4.12. Therefore, |U(y,;, 4,) (-Amk@ \Ao)|
is at most the number of times during the revealing of -Amk@’ that a half-edge is matched up to a half-

edge belonging to a vertex that had already been discovered. For a fixed m, consider the revealing of
B, (ém; AS,_1). Conditionally on a discovered edge set A the law of the next half-edge to be matched is
uniform amongst all un-matched half-edges. Thus, uniformly over the history of the revealing process up to
that point, the probability that the next half-edge to be matched is matched up to a vertex of V' (A) is at most

Aw_[ldal.,
4], ~ Ve [Tl
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We thus obtain for a sufficiently large constant A (depending on p, ¢,~y,r), forall L > 1,

P((6,2) :G € T\ [y, 40)(XE )| > L)

)

15 : 1.3 a1
<P(T, | An, | > n273) + P(Bin (n# 5 |duf,., 205 2 du],.) > L)
By the bound |<SA’0| < dn | T < ni % as long as |d,|,, < n®* for a sufficiently small e, (which holds
as long as « is sufficiently large in d, M by Fact 4.14), we can apply Lemma 5.19 with a sufficiently large
choice of M to deduce that the first term is at most

P(T, [ A | > 08 3) < P(| 4] > [Ao] + 7" [dn] o0 ) < o(n™10).

For the second term, notice that the mean of the binomial is 2n%||d,, |%. As long as & is sufficiently large
so that || d,, |, < n®* for sufficiently small e, < &/4, this is o(n~%?2). Thus, by the Chernoff bound for the
binomial (4.3), for every fixed L > 1,

_oL
P((G.X3,) : 1By a0)(XG )| > L) < o(n™ 3 "10). (5.3)
Choosing L sufficiently large (depending on §), we can make the right-hand side here o(n ') as well. [

Proof of Theorem 2.12. Given Lemma 5.21, it is straightforward to deduce Theorem 2.12. Specifically,
take K sufficiently large so that the right-hand side of Lemma 5.21 is o(n~'?). By a union bound,

P((G,X¢,) : X is not (K, R)-Sparse) < > P((G, X5 ) 1 [Vvy.a0)(X§ )| > K) <o(n™). (5.4)

By Markov’s inequality,

Peyi(dn) (g : }P’(X_ét is not (K, R)-Sparse) > n_G)
< nG]ECM(dn)[IP’(Xé’t is not (K, R)-Sparse)],

and the conclusion follows from the fact that the expectation on the right-hand side is exactly the probability
on the left-hand side of (5.4). ]

Let us conclude with a better bound in the special case of R = 0 from Theorem 2.12; this will be applied
to establish our mixing time lower bounds for the Ising/Potts Glauber dynamics.

Lemma 5.22. Fix ¢,y and suppose p < py(q,7). There exists k such that for all (d,), € D, ., with
probability 1 — o(1) over G ~ Peyq,,), for every v € {1,...,n} and every n > 0,

g (w(EY) is not nd,-Sparse) < C exp(—nd,/C) .
(Here w(EY) is viewed as a boundary condition induced by w on E,, = {e : e 3 v}.)

Proof. Fix a small € > 0 and consider the following modification of the revealing process of Process 5.10.

(1) Label the half-edges of the vertex v ég,l), ey é,(Jd“)
(2) Perform the process of Process 5.10 with Vy = v Ag = A(l) =, and & = ég,l), stopped if either
P 0 Yy
|.A,%)| > n® or in step 1.(a) a bad step is taken, i.e., some previously exposed vertex gets matched
with.
(3) Fori = 1,....d,, if ég) is hitherto un-matched, set Ag) to be the set of all matched edges to that

point, and run the process of Process 5.10 with Vy = v, Ay = A((]i), and (cfo = eq()i), stopped if

|A%)| > nf or a bad step is taken.
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Observe that in order for w(EY) to not be nd,-Sparse, there must have been more than 7d,,/2 many i’s for
which the revealing process gets stopped (each such i adds at most two vertices to the set U, o) (w) for
w ~ mg). Throughout the entire procedure described above, at most d,,n° many edges are revealed, which
for ¢ small and « large is at most n'/4. By Lemma 5.19 with M taken sufficiently large, for any fixed i, the

probability of reaching ].Am | > nf is at most o(n 1Y) uniformly over the history of the process up to that
point. At the same time, for any fixed ¢, the probability of a bad step being taken for that revealing is at most

n1/4Hdn o
|dnlly = nV/4dnl,
Putting the above together, the probability of more than 7d,, /2 many of the i’s being stopped is at most

P(Bin(dy, n~ ) = nd,/2) < Cexp(—nd,/C).
This in turn bounds the probability that w(ES) is nd,-Sparse as desired. O

€ .

<o(n~Y?).

6. CORRELATION DECAY AND MIXING TIME ON TREELIKE GRAPHS

Theorem 2.12 together with Lemma 2.2 reduce our analysis to treelike balls of radius (1 — o(1)) log., n
with K-Sparse boundary conditions. In this section, we establish sharp bounds on the rate of correlation
decay on such treelike graphs (Theorem 2.9) and bound the mixing time at these local scales (Lemma 6.7).

6.1. Rate of correlation decay in treelike graphs. To prove Theorem 2.9 we will closely follow the ap-
proach from [4], where an analogous result was proved for regular graphs (specifically see Proposition 3.3
in [4]). The key part of the extension is the use of the (-, €)-volume growth condition to enable the applica-
tion of Lemma 2.7 to all sufficiently large subsets of the graph that are trees.

Let us fix an arbitrary vertex v € V' and for ease of notation set B := Bpr(v) and for each 1 < ¢ < R,
let Q¢ = {u € B : d(u,v) > ¢}. For a boundary condition £ on 0B, similarly to Definition 5.20 denote by
U ¢ the set of vertices in non-trivial components of £ (a component is non-trivial when it has at least two

vertices). For any u € B such that d(u,v) = ¢, letu L U p ¢ denote the event that v is connected to Up ¢
by a path of open edges fully contained in ). Define the event

TB£::{we{O,l}E(B):‘{ueB:d(u,v) €u<—>‘1735}‘ 2foralll </ < R}.

It was proved in [4] that on general graphs, the event T g ¢ controls the propagation of influence from 05 to
the vertex v.
Recall that E,, denotes the set of edges incident to the vertex v.

Lemma 6.1 (Lemma 5.3 in [4]). Fix a graph G = (V, E), a vertex v € V and consider the ball Br(v); let
& = 7 denote two boundary conditions on 0Bg(v) = {w € Br(v) : d(v,w) = R}. Then,

HF%R(U) (w(Ey) € ) — 71"IrBR(v) (W(Ey) € )|y < ﬂ—BR( )(TBR( )5)
With this lemma in hand, we are able to provide the proof of Theorem 2.9.
Proof of Theorem 2.9. By the triangle inequality and Lemma 6.1, we have
7 0y @(E) € ) = T @(E) € My < 170 @(E) € ) = 7% (@) € Yl
+ H?TER o W(E) € ) = T ) (W(EY) € )y
< WBR( (T Brw).e) T ) (TBa),r) -

Hence, it suffices to bound FgB(T B,¢) for an arbitrary vertex v of G and any K -Sparse boundary condition
¢. Fix any such v and let B = Br(v). Let H ¢ E(B) be a set of at most L edges such that the subgraph
(B, E(B)\H) is a tree; the existence of such a set is guaranteed by the fact that Br(v) is L-Treelike. Let
Z = {dj,...,d;} be the subset of distances (from v) at which H contains at least one vertex. Observe that
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each edge of H intersects either one or two consecutive depths (distances from v) in Z and thus |Z| < 2L
since B is L-Treelike. Letting dy = 0 and d,1 = R, fori = 0,..., k we define:

Fi:={ue B:d; <d(u,v) <diy1}.
For each 0 < i < k, the graph F; = (F;, E(F;)) is a forest; observe that some F;’s might be empty. For
each 4, let 7; (7{J, E(Ti;)) for j = 0,1,... denote the distinct connected components (subtrees) of F;
so that F; = U]}O Tij-
For T ¢ to hold, there must exist two sequences of simple paths I' = ~o,...,v; and IV = ~(,..., 7}
such that ; < E(T;;) and v; < E(T;j) with j # j" such that ~; (resp., ;) connects the root of 7;; (resp.,
7:j7) to one of its leaves.

Observe that any simple path PP between v and U g ¢ is completely determined by an ordered sequence of
vertices from V' (H) it uses and its endpoint in U ¢. Moreover, it is associated to a unique sequence I, and

each sequence I' can in turn correspond to at most 2!V () < 4L simple paths because there are at most
2L vertices in V' (H). Since £ is K-Sparse, there are at most K choices for the endpoint of the path between
v and Upg . In total, we get that there are at most 4K (2L + 1)! possible simple paths I" (this is a crude
upper bound, but it suffices for our purposes). A union bound then implies

5 (Tpe) <[4 K(2L + 1)1)?- sup W@ uT) =1). 6.1)
v nv(I)=g

Fix any two such paths I", I, and consider the probability that w(I' U I”) = 1. The paths I" and I" are
vertex-disjoint by construction, but the events that I" and I'” are open (i.e., that all of their paths are open) in
w need not be independent. To make them so, we wire all vertices at depths in the set

k+1
| J{di =1, di,di + 1}~ [0, R].

Let 75 be the resulting random-cluster distribution. The monotonicity of the random-cluster measure im-
plies that

W@ ul) =1) < 7pw ul’) =1). (6.2)

The distribution 7 is a product measure over the 7;;’s with boundary condition (1, ) in each 7;;. Hence,
since I' and I" are such that for each ¢ > 0, 7; and ~/ belong to distinct subtrees 7,, T, of the forest F;,
and we have

k
fpwTul’)=1) =] (T (v Hw
=0 K
Let h; = d;+1 — d; be the height of the trees in ;. Then,
1
p@Tur) =1< [] =200 60
’i:hi>ﬁR
Since G satisfies the (v, €)-volume-growth condition of Definition 2.3, for each subtree 7, of height at least

VER, for every vertex of 7, at distance at least e R from 07, we have |07,,| < 7. Hence, Lemma 2.7
implies that there exists a constant A > 0 such that, uniformly over ", T”,

Fplul)=1)<a? [ pP0-vom
_ AZL]A)2(1_\E) Zi:hi>ﬁR hi

< AL p20-VE)(R-AL=2LER) _ g152(1-(L+1VER
for a suitable constant A" = A’(A, L, K). Plugging this bound into (6.1)—(6.2), we obtain
WﬁB(TB,E> < A/[K(2L+ 1)!]2}52(1—(2L+1)\/§)R
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and the result follows taking C' = 24'[4X° K (2L + 1)!]2. O

6.2. Local mixing of the FK-dynamics. In this section, we prove the mixing time bound of Lemma 6.7 for
treelike graphs with sparse boundary conditions. We start by recalling some standard background concerning
mixing times, log-Sobolev inequalities, and the effects of random-cluster boundary conditions on these
quantities.

Log-Sobolev inequalities. For a Markov chain on a finite state space () with transition matrix P, reversible
with respect to a distribution p, the Dirichlet form is defined for any function f : 2 — R by

1
e, f) =5 Y, ww)Pw,)(f(w) = f())?, (6.3)
w,w'eN
and its log-Sobolev constant is given by
N : S(f’ f) 271 _ 2 f2
a(P) = f:EnItil[%];éo W , where Ent,[f*] = E, [f log E,u[fQ]] . (6.4)

A log-Sobolev inequality takes the form E(f, f) > aEnt,[f?] for all functions f. It is a standard fact
that this inequality implies exponential convergence with rate « in total-variation distance to the stationary
distribution (see, [21, Eq. (3.3)]).

Fact 6.2. Consider an ergodic Markov chain on a finite state space ) with transition matrix P reversible
with respect to the distribution p. If the chain has a log-Sobolev constant a« = «(P),

1 1 1/2
s [POKE €9~y < oot (log ——L )1
are) H ( t ) IU‘HTV \/Q gmlnxeﬂ ,LL(.Z')

where X[° is the chain after time t, started from initial state x.

Boundary conditions and the FK-dynamics. Two “similar” random-cluster boundary conditions (in
terms of the wiring they induce) have similar effects on the underlying random-cluster distribution and on
the behavior of the corresponding FK-dynamics. In turn, the Dirichlet form, and log-Sobolev constants of
their corresponding dynamics should be “close” to one another. We compile here a number of definitions
and results that formalize this idea.

Definition 6.3 (Definition 2.1 from [5]). For two boundary conditions (partitions) ¢ < ¢', define D(¢, ¢') :=
c(¢) — c(¢') where ¢(¢) is the number of components in ¢. For two partitions ¢, ¢’ that are not comparable,
let ¢” be the smallest partition such that ¢” > ¢ and ¢" > ¢ and set D(¢, ¢') = c(¢)—c(¢")+c(¢")—c(d").

The following lemma is then straightforward from the definition of the random-cluster measure (1.2).

Lemma 6.4 (Lemma 2.2 from [5]). Let G = (V, E) be an arbitrary graph, p € (0,1) and q > 0. Let ¢ and
¢’ be any two partitions of V, i.e., boundary conditions on G. Then, for all random-cluster configurations
w e {0,1}F, we have

q72D(¢7¢/)ﬂ'g (w) < 7'{'2,(&}) < q2D(¢:¢)/)ﬂ'g (W) .

The following corollary follows immediately from Lemma 6.4, the definition of the transition matrix of
the FK-dynamics, and Theorem 4.1.1 in [57].

Corollary 6.5. Let G = (V, E) be an arbitrary graph, p € (0,1) and q > 0. Consider the FK-dynamics on
G with boundary conditions ¢ and ¢', and let o, o/ denote their log-Sobolev constants, respectively. Then,

We now use the above to bound the rate of convergence to equilibrium on L-treelike balls of radius
(3 —9) log,, n.
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Lemma 6.6. Suppose G = (V,E) is L-Treelike. Let £ be a K-Sparse boundary condition on G. For
every p € (0,1) and q > 0, there exists ag(p,q, L, K) > 0 (importantly, independent of G) such that the
log-Sobolev constant of the FK-dynamics on G with boundary condition & is at least ay.

Proof. Observe first that the FK-dynamics on any tree with free boundary condition has log-Sobolev con-
stant ¢, = €(1). This follows from the observation that the random-cluster model on a tree with free
boundary condition is simply the product measure, where every edge is open independently with probability
P, and the standard fact that the entropy tensorizes over product spaces; see, e.g., [1].

Now, let H — E be a set of at most L edges such that (V, E\ H) is a tree. Consider the tree 7 = (V, E\H)
and let ¢ be the boundary condition that includes all the connections from & and adds wirings between w
and w’ for every edge {w,w’} € H. By Corollary 6.5, the log-Sobolev constant for the FK-dynamics on T
with boundary condition ¢ is at least ¢, - g PK+LD),

The FK-dynamics on G' with boundary condition ¢ is a product Markov chain on {0, 1}2\ x {0, 1}

with stationary distribution ﬂ?} ® H'zﬂ v;, where the v;’s are independent Ber(p) distributions. Hence,
it follows that the log-Sobolev constant of the FK-dynamics on G with boundary condition ¢ is at least
Cpyq * ¢ "F+L) for a suitable constant Cp,g > 0. Finally, we note that by Corollary 6.5, the log-Sobolev
constant on (G with boundary conditions ¢ (instead of ¢) is at least ép7qq_5(K +L)=5L O

Combining the above, we arrive at the following bound on the rate of convergence of the FK-dynamics
on treelike graphs with sparse boundary conditions.

Lemma 6.7. Consider an L-Treelike graph G = (V, E)) with a K-Sparse boundary condition £. For every
p€ (0,1) and q > 0, there exists ag = ap(p, q, L, K) > 0 such that

max [P(X™ € ) — 78| py < ie_o“’t<log - >1/2
zoef K ¢ V2 mingeo ﬂé(x)
Proof of Lemma 6.7. This follows by combining Lemma 6.6 and Fact 6.2. U

7. PROOF OF MAIN THEOREM

Given the estimates proven in the preceding sections, we can now prove our main result, Theorem 1.6.
7.1. Proof of main theorem: upper bound. We begin with the proof of the upper bound.

Proof of Theorem 1.6: upper bound. Fix ¢ > 1,y > 1 and p < p,(q,7). (It suffices to consider v > 1
since lim, |1 pu(q,7) = 1, and if v > v/, then Dy, = Dy ,.) Let R = (5 — §) log, n, where § > 0
is a small constant we choose later. For K and L fixed positive constants, ¢ € (0,1/2) and ¢ > 0, let
Iy =T4(L, K, d,¢e,) be the subset of (multi)graphs on n vertices with degree sequence d,, given by:

I'y ={G : Gis (L, R)-Treelike, has (v, €)-volume growth
and P(Xéyt is (K, R)-Sparse) =1 —n"°}.

By Lemmas 2.2 and 2.4, as well as Theorem 2.12, for every § € (0,1/2) and € € (0,1/2), there exist
constants #(p, q,7,9), L(6), K(p,q,7,0), and T(p, q,~) such that if (d,),, € D, then Peyq,)(T'7) =
o(1) . Hence, it suffices for us to prove that the mixing time of the FK-dynamics on any G € 'y is O(logn).
Fix any G € I'p. Let ((X;°)¢>0), be the family of FK-dynamics initialized from all possible configu-
rations xg, coupled via the standard grand coupling for the FK-dynamics; i.e., using the same clock rings
and the same uniform random variables to make the edge updates while running the chain from different
initializations. Recall that this coupling is monotone when ¢ > 1 so that for every ¢ > 0, if X;° < X}, then
X0 < Xg’,o for all ¢ > t. Using the standard fact that the coupling time provides a bound on the mixing
time (see e.g., [48]), by a union bound over the edges, it suffices to show that under this grand coupling,

P(X%(e) £ X%(e)) < o(1/|E(G)]) for every e € E(G). (7.1)



38 ANTONIO BLANCA AND REZA GHEISSARI

Now fix any such e = {u, v} and for ease of notation, set B, = F(Br(v)) and B = E(G)\B,. Consider
two auxiliary copies of the FK-dynamics Y;' and Y;" that censor (ignore) all updates on edges of B after
time 7. The censoring inequality from [55] applied to the FK-dynamics [36, Theorem 2.5] implies that
Y} > X} and Y? < X} forall t > 0 and thus

P(X}(e) # XP(e)) <P(X/}(e) =1) —P(X/(e) = 1) <P(Y'(e) = 1) —P(Y(e) = 1).

Let H,, be the set of configurations on B such that the boundary conditions they induce on B, are K-
Sparse. (Here and throughout the paper, the boundary condition induced by a configuration w(B€) on a set
B wires two vertices w, w’ € V(B) if they are in the same connected component of w(B€).) By definition
of I'r and monotonicity of the FK-dynamics, we have for every G € I'r,

P(Y7(B) ¢ Ho) < P(Y7(B;) ¢ Ho) <™.
Therefore, P(Y,!(e) = 1) — P(Y,%(e) = 1) is bounded by

pLbeH, [P (e) = 1| YA(BY) = 6') — P((e) = 1| YR(BY) = ¢°)| + 207"

Now fix any ¢!, ¢° € H,. From the triangle inequality, we have

P(Y7 s(e) = 1| Y7(B5) = ¢') = P(Yp,,(e) = 1| Y7(B}) = ¢°)
< [P(Y7 4(e) = 1| Y(B)) = ¢') — mg(w(e) = 1| w(B;) = ¢)] (7.2)
+[mg(w(e) = 1| w(B}) = ¢') — mg(w(e) =1 | w(B) = ¢°)] (7.3)
+ [P(Yp,s(e) = 1| YP(By) = ¢°) — mg(w(e) = 1| w(Bf) = ¢°)|. (74

Observe that the chain (YT1 +s)s=0 may be viewed as an FK-dynamics on B, with the boundary condi-
tion induced by ¢', initialized from the (random) configuration YTl(Bv) and with stationary distribution
ng(w(By) € - | w(BS) = ¢') = 7'['%1 ; the analogous statement is true for (Y, ,)s>0 and ﬂ%i.

Setting T =T+ S, where S, = C‘logn for a constant C(p, q,7, L, K) sufficiently large, since B, is
L-Treelike and ¢! is K -Sparse, we obtain from Lemma 6.7 that

IP(Yi(e) = 1| Y7(B5) = ¢') —mg(w(e) = 1| w(By) = ¢")| <n™;
the same bound holds for (7.4).

Finally, since both ¢! and ¢ induce K-Sparse boundary conditions on B, and G is (L, R)-Treelike with
(v, €)-volume growth, by Theorem 2.9 there exists C' = C(p, ¢, L, K,~) > 0 such that (7.3) is at most

7%, (@(By) € ) — 7 (w(By) € v < CPHITCVIR < p=20(1=Ca) logy
where E, is the set of edges incident to v, and we used R = (% —d)log, n. Setting 0 = (1—26)(1—-C4/¢),

)

—00-Togs
Dy, (7.5)

1 0
”ng (W(E”) € ) - W%v(w(Ev) € ')HTV < CﬁelOg'y" =Cn

Since p < 1/7, log, v < 0, there is some ¢, , > 0 such that the right-hand side is Cn~90+e.4) By taking
g, 0 sufficiently small,  can be made arbitrarily close to 1, so that (7.5) is o(1/n).

Now notice that |E(G)| = O(n). To see this, observe that by Jensen’s inequality (2 3 d,)> < 1} d2,
and since (d,,) € D, ., we also have Y, d2 < (1+7) Y., d,. Combining these two inequalities we ﬁnd that
|E(G)| < 1+7) . Therefore, each of (7. 2) (7.4) are o(1/|E(G)|), implying (7.1) as desired. O

7.2. Lower bound on the mixing time of FK-dynamics. We now turn to proving the mixing time lower
bound of Theorem 1.6. Though the argument is a straightforward adaptation of the proof of the lower bound
in [4], given our results on (7, £)-growth of the random graph, and the exponential decay rate on random
trees from Lemma 2.7, we include the proof for completeness, demonstrating that our new results give the
requisite inputs to adapt the proof of [4].
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Claim 7.1. Fix ¢ small. Suppose r is sufficiently large and (dy,)n, € Dy x. With Pcy(a,,)-probability 1 —o(1),

1/5

G satisfies (y,€)-volume growth, and there exist n'/° vertices whose balls of radius %log7 n are disjoint,

and are trees.

Proof. On the one hand, by Lemma 2.4, with probability 1 — o(1), G satisfies (-, €)-volume growth, as long
as k is sufficienlty large (depending on ). We prove the rest of the events have probability 1 — o(1) by
repeated application of the breadth-first revealing of Process 4.6. Namely, consider the procedure where
we repeatedly take an arbitrary vertex v that has not been discovered yet, and reveal its ball of radius
R = %logV n via Process 4.6. Let v; be the i’th vertex to be selected in this procedure, and let A; be
U,<i E(Br(v;)). Then, for integer m < n the probability that one of (Bg(v1), ..., Br(vm)) is not disjoint
trees, is at most

m

Pew(a,) ( U{BR(UZ') N Ai_1 = & or Bp(v;) isnot a tree} , G € (v,&)-volume growth | A;_1) .

i=1
Using the fact that G is of -, e-volume growth that we are intersecting with, the event can be rewritten as in
its first v/* many matching attempts, none match with anything in A4; or any half-edge belonging to a newly
discovered half-edge of Br(v;). In any one edge matching, uniformly over what has already been revealed,
this probability is bounded by

[ oomn'>

|dnll, = [d

nHOOmnl/5 7

1/5 —-1/2

which, for m = n'/°, is at most n as long as « is sufficiently large, so that €,(x) < 1/10. As there are
at most n%/° edges to match, the probability that no edge gets matched to an already discovered vertex, and
thus all the revealed balls form disjoint trees, is at most P(Bin(n?/®, n=/2) > 0) which is o(1) simply by a
Markov inequality. O

Fix n € (0,1/5) to be taken sufficiently small later. For every G having nl/® many vertices whose balls
of radius % log., n are disjoint trees, choose arbitrarily some n' vertices amongst the nl/% of Claim 7.1, and
for each vertex collect a representative edge incident to it to form the set C = C,,(G). Our proof will rely on
a coupling of the restrictions of X; g and 7g to C to Ber(p) product chains. For this, let:

e X; = X; ¢ be arealization of the FK-dynamics;
¢ Y, =Y} g be arealization of the FK-dynamics that censors all updates in E(G)\C;
e v as the product measure over |C| many Ber(p) random variables.

As before, let Y,? be the chain Y; initialized from the all-0 configuration.

Lemma 7.2. Let G be any graph satisfying (7, €)-volume growth for € < 1/6, and having at least n'/®
vertices whose balls of radius %logv n are disjoint trees. For every q > 1, and p < p,(q,7), there exists
n > 0 sufficiently small such that we have the following for C = C,(G):

(1) ForallT = O(logn), forallt < T,
|PX(C) ) = P(Y2(C) € )y < 0(1).
(2) |mg(w(C) € -) = vl < o(1).
Proof. We start with part (1). Our aim is to show that under the grand coupling of X} and Y,?, for every
t <T = O(logn), we have P(X? # Y;) < o(1). Under the grand coupling, let 77 = (t1,2, ..., ts(r))

denote the sequence of times on which the updated edge is in C, so that s(7") counts the number of updates
in C by time T". We can then bound

P(XP # YY) < P(s(T) > n*) + P(X] # Y, s(T) < n?).

The first term on the right-hand side is at most the probability that Pois(7'|C|) = n?" which is o(1) by
standard tail estimates for Poisson variables. It thus suffices to work on the event s(7") < n?".
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Let R := % log, n and let Z; be the FK—dynamics chain (coupled to X;, Y; through the grand coupling)
that freezes the configuration on C U (E(G)\ ... E(Br(e))) to be all-1. Let Z? be the chain Z; initialized
from the configuration that is all-0 on U cec E(Br(e))\{e} (butall-1 on the frozen edges). Observe, trivially,
that X < Z9 for all t > 0. Also, observe that the updates of Z) are stochastically dominated by Glauber
updates on the union of 2|C| many d-ary trees (7¢,1, 7e.2)eec Of depth R, rooted at the endpoints of the edges
of C, and each having (1, () boundary conditions. By monotonicity of the FK-dynamics, for every ¢ > 0,

P(Z?(U{E(BR(e))\{e}}> e ) <®Q ® 9. (7.6)

eeC eeC ie{1,2}

For each time ¢; € 7, when an edge e, € C is updated, Y0 (e, ) is drawn from an independent Ber(p).
At the same time, X} (e;,) is drawn from Ber(p) if the endpoints of e;, are not connected in X7, which
in turn must occur if none of (7¢1, 7c2)ccc have an open root-to-leaf path in Z0 We thus consider the
probability of this event.

Since G has (7, €)-volume growth for ¢ < 1/6, every tree among (7¢ 1, 7 2)ecc has at most v*¥ many
leaves. Thus, by the stochastic domination of (7.6), and Lemma 2.7, the probability that the endpoints
of e;, are connected in Z; is at most 2C(py)", which for 7 sufficiently small is O(n~*"). On the event
that {s(T") < n?"}, we can union bound the above probability over the s(7') times in F7r, to find that
P(XP # Y, s(T) < n?") is at most O(n~") = o(1) as desired.

For part (2), consider the 2|C| many d-ary trees (Te,15 Te2)eec emanating from the endpoints of the edges
of C. Notice that if none of (7¢ 1, 7c,2)ecc have an open root-to-leaf path, then the values w(C) are condi-
tionally distributed as a product of Ber(p) random variables, i.e., w(C) would conditionally be distributed
as v(A).

As such, the total-variation distance ||7g(w(C) € ) — v|lrv is bounded by the 7g-probability that one of
(7e,15 Te.2)eec has an open root-to-leaf path. By the stochastic domination

Wg(u(UﬁJuTe,g)e-) X X %ZO
eeC

eeC ie{1,2}

By a union bound, the left-hand side above is then at most

3D e oTy),

eeC ie{1,2}

which the (v, )-volume growth condition and Lemma 2.7 together show is at most 2n" - C(p)*. For ¢
sufficiently small (depending on p, g, y) this is o(1). O

Proof of Theorem 1.6: lower bound. Take any n-vertex graph G having (v, £)-volume growth fore < 1/6
and with n'/> many vertices whose balls of radius % log, n are disjoint trees. Note that by Claim 7.1, such
graphs have Pcyy(q,,)-probability 1 — o(1). Take n sufficiently small per Lemma 7.2. Consider the event
A% < {0,1}€ that at least pn"? — n?"/3 of the edges in C are open. Let (Y ) be the (discrete-time) product
Markov chain over |C| = n many i.i.d. Ber(p) random variables, coupled to Y;(C) via Y4 = Y;(C)

for all ¢, where s(¢) counts the number of updates in C by time ¢. By item (1) of Lemma 7.2, for every
T = O(logn),

P(XP(C) € AT) < P(s(T) > en'logn) + P(YP € A*,s(T) < enlogn) + o(1)
< P(s(T) > en'logn) + max IP(?S e AT)+o0(1).

s<cnlogn
(In the latter equation, we used the fact that the law of 75 only depends on the sequence of times (¢1, ..., ts(T))

through the number of total updates s(7°).) Taking T' := c¢?logn for ¢ > 0 sufficiently small, the prob-
ability that s(7") is more than cn’logn is o(1) by tail bounds of a Poisson random variable with rate
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T|C| = ¢®n"logn. Turning to the middle term above, by the standard coupon collector bound, for every
¢ > 0 sufficiently small, sup,<,,» lognP(?g e AT) < o(1).
Combining the above, we obtain
P(X%(C)e AT) = o(1).
At the same time, by a Chernoff bound, v(A*) = 1 — o(1) and by item (2) of Lemma 7.2, then, mg(A™) =

1 — o(1). These two together imply that the (continuous-time) mixing time is at least 7' = Q(logn) as
claimed. _

8. HIGH-DEGREE VERTICES SLOW DOWN MIXING FOR POTTS GLAUBER DYNAMICS

Our lower bound on the mixing time of the Glauber dynamics for the Potts model in a random graph is
derived from a bottleneck argument. For the special case of the Erd6s—Rényi random graph, the slow down
can be attributed to isolated stars whose central vertex has degree 9(102)1% gn) Such a star appears in the
random graph with high probability, and since it disconnected from the rest of G, the mixing time on the star
serves as a llower bound for the mixing time on the full graph. This straightforwardly gives a lower bound
140 (151087

of n on the discrete-time mixing time of the Glauber dynamics; see [53, Proposition 1.8].

For more general degree sequences, especially when there exist vertices of degree w(logn), the neigh-
borhoods of the high-degree vertices will not be isolated from the remainder of the graph, and in fact will
correspond to the denser parts of the random graph. We use the exponential decay of random-cluster con-
nectivities when p < p,,(q, ) to still leverage this star structure to give a lower bound on the mixing time of
the Potts Glauber dynamics on a random graph that are exponential in its largest degree.

We will work with the discrete-time Potts Glauber dynamics, which at each step selects a vertex v € V
uniformly at random, and resamples its spin o, according to the following conditional distribution:

66 Z(v,w)EE 1{0'w=i}

4 BYwuwer How=i}"’
Zz’:le 2(, )eE u

1 ,q(on =1 | o(V\{v})) = fori=1,...,q.
Proof of Theorem 1.7. Let v, be a vertex in G of maximum degree, and let m;(o) denote the number of
vertices adjacent to v, that are assigned spin ¢ in configuration o. Define the following bottleneck set:

A, = {a Doy, = 1,mi(0) — r]njf( mj(o) = lEdU*J}.

Our aim is to show that A. is a set of small conductance. Namely, we wish to show that there exists ¢ > 0
such that

C
B(A) = Q(A:, A?) < o)
(A p(AS)

where Q(Ac, AS) = X cu. oreac H(0)P(0,0") with P denoting the transition matrix of the discrete-time
Glauber dynamics. -

For this, notice that we can expand Q(A.,.AS) into its contribution from transitions that exit A, by
flipping the spin of o,,,, and those that exit .A. by flipping the spin of a neighbor of v, in the configuration.
Hence, let

A = {a € A: : my(0) —max m;(o) = [edU*J} .

Jj#1

Namely, we can bound

_ Soen Yo 1(0)P(0,0% )

A o c o)P O',O'/
B(A:) < o Zoeheeas MO)P(0, )

(A p(AL) f(A:) p(AS)
maXgeA,,j#1 P(J7 O—U*Hj) + M(AE) maxX;c i, P(J’ Ag)
(A 1(Ae) p(AS) ’

8.1



42 ANTONIO BLANCA AND REZA GHEISSARI

where o¥* ™7 is the configuration which agrees with o everywhere except on v, where it takes spin j.
Observe first of all, that by the spin symmetry of the model Potts model, 1(.A;) < 1/q and thus p(AS) =

% > % Moreover, by the definition of the Glauber dynamics, the transition matrix P satisfies
) 1 eBm; (o) eB(m;(o)—ma(0)) e~ Bedv,
max P(0,0" ) = oy < <
oeA. n Zj ePm; n n
Also, for every o € /TE, it satisfies
c dU*
max P(o, AS) < ;
oeA. n

as one needs to select a neighbor of v, to update in order to move from o € .%L to A¢. As such,

2 _ 2d,, ,u(je)
— Beduy, *
O(A:) < —e +— A

It remains to bound the ratio of the probabilities of the events ./TE to A.. It will be convenient to work with
the random-cluster representation of the Potts model. Let

ARC = {w e {0,1}F9) : |{e € By, 1 w(e) = 1}| = edy, and |V, ()| < edy, /2},

8.2)

where we recall that ££,, is the set of edges incident to v, and U, (w) is the set of neighbors of v, in non-
trivial connected components in the configuration induced by w(FE(G)\E,, ). In words this is the event that
an ¢ fraction of the edges incident to v, are open, and at most €d,, /2 of the neighbors of v, are connected
to one another in the configuration outside the immediate neighborhood of v,..

We first note that for some £(p,q,y) > 0, with high probability under the random graph, the event
ARC has high probability under the random-cluster measure 7. For this, observe that since 7 stochastically
dominates the independent edge percolation measure with edge probability p, and by a Chernoff bound, for
any G ~ ]P)CM(dn)

mg(|{e € Ey, s w(e) = 1}] < edy,) < P(Bin(dy,, p) < edy,) < e P,

for e sufficiently small (say, less than $/2). By Lemma 5.22, if & is sufficiently large and (d,,),, € D, for
every € > 0, we have with probability 1 — o(1) over the graph G ~ Pcyy(q,,)»

mg(|Vp,, (W) > edy, /2) < e HE)

Hence, it follows from a union bound that there exists &(p, g, ~y) small, such that with probability 1 — o(1),
G ~ Pcy(d,) 1s such that

T(ARC) > 1 — ¢~ M)
As such, as long as € > 0 is sufficiently small, we can bound
(Aa) P(uw (A\e | ig) + E_Q(Ed”*)
a(A) S Py (Ae | ARE) (1 — e~ edu))

where P(,, -y denotes the joint Edwards—Sokal distribution over spin-edge configurations; see [24, 38].
Now, consider a random-cluster configuration in Aj<. Fixing a random-cluster configuration w in AJS,
we claim that the probability of A, given w is at least the probability of the following event I, that

(1) the component C,, (w) is given state 1; and
(2) amongst the vertices of

mi = V(Ev*)\(cv* (w) v Q]E'v* (w)) )

the number of vertices in each state in [g] is within ed,,, /2 of |T$|/q.
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To see this, note that on I, since C,, (w) has size at least 4ed,, and |Ug,, (w)| < 2ed,,, no matter which
state the vertices of U, (w) take, o will be such that

mi(o) — max m; (0) > (4e — 22 — €)dy, = ed,, .
J

(Here, the 4¢ comes from the sites in C,, (w), the —2¢ comes from a worst-possible assignment of states to
sites of U, (w), and the —e comes from the maximal bias on the sites in U¢.)

The probability of the event I'c, when coloring the components of w independently, uniformly at random,
is at least 1/¢ (for the probability of coloring C,, (w) in state 1) times

1-— qP(‘ Bin(|U5[,1/q) — |mf|/q‘ > de*/Q) > 1 — e edu) |

(Here, we used a union bound over the ¢ different states, and a Chernoff bound.) In particular, we find that
for £(p, q,y) > 0 sufficiently small,

1
Pl (Ac | ARS) > min (T, |w) > 7(1 - e*%dw)) .
’ we AfS q

On the other hand, the probability of ﬁs, conditionally on Aj< is bounded by the probability of the colorings
of ¢ assigning at least 2ed,, + |U¢|/q many of its vertices to some state j # 1. By a union bound over the
q states, and a Chernoff bound, this has probability at most

aP (| Bin(105], 1/g) — |05 /g| > 2ed,, ) < et
At this point, we can plug the above bounds into (8.2) to deduce that for all £(p, ¢, ) > 0 sufficiently small,

B(A) < le—Q(Bsdv*) )
n

(Notice that e sufficiently small, needed to scale as ©(1/p), so that this is n~Le~(*d) for small 3.)
Relying on the classical Cheeger bound (see e.g., [48, Theorem 7.4]), the inverse of ®(.A.) serves as a lower
bound on the mixing time of the Glauber dynamics for the Potts model. g

REFERENCES

[1] C. Ané, S. Blachere, D. Chafai, P. Fougeres, 1. Gentil, F. Malrieu, C. Roberto, and G. Scheffer. Sur les inégalités de Sobolev
logarithmiques, volume 10. Société mathématique de France Paris, 2000.

[2] A. Blanca, Z. Chen, D. Stefankovig, and E. Vigoda. The Swendsen-Wang dynamics on trees. In Proceedings of the 25th
International Workshop on Randomization and Computation (RANDOM), 2021.

[3] A. Blanca, A. Galanis, L. Goldberg, D. Stefankovi¢, E. Vigoda, and K. Yang. Sampling in uniqueness from the Potts and
random-cluster models on random regular graphs. In Proceedings of the 22nd International Workshop on Randomization and
Computation (RANDOM), 2018.

[4] A. Blanca and R. Gheissari. Random-cluster dynamics on random regular graphs in tree uniqueness. Communications in
Mathematical Physics, 2021.

[5] A. Blanca, R. Gheissari, and E. Vigoda. Random-cluster dynamics in Z?: Rapid mixing with general boundary conditions.
Ann. Appl. Probab., 30(1):418-459, 02 2020.

[6] A. Blanca and A. Sinclair. Dynamics for the mean-field random-cluster model. In Proceedings of the 19th International
Workshop on Randomization and Computation (RANDOM), pages 528-543, 2015.

[7] A.Blanca and A. Sinclair. Random-cluster dynamics in Z2. Probab. Theory Related Fields, 2016. Extended abstract appeared
in Proc. of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pp. 498-513.

[8] A. Blanca, A. Sinclair, and X. Zhang. The critical mean-field Chayes-Machta dynamics. In Proceedings of the 25th Interna-
tional Workshop on Randomization and Computation (RANDOM), 2021.

[9] B. Bollobds. A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European Journal of
Combinatorics, 1(4):311-316, 1980.

[10] B. Bollobds. Random Graphs. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2 edition, 2001.
[11] M. Bordewich, C. Greenhill, and V. Patel. Mixing of the glauber dynamics for the ferromagnetic potts model. Random Struc-
tures & Algorithms, 48(1):21-52, 2016.



44 ANTONIO BLANCA AND REZA GHEISSARI

[12] C. Borgs, J. Chayes, T. Helmuth, W. Perkins, and P. Tetali. Efficient sampling and counting algorithms for the Potts model on
Z% at all temperatures. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020,
pages 738-751, New York, NY, USA, 2020. Association for Computing Machinery.

[13] C. Borgs, J. T. Chayes, A. Frieze, J. H. Kim, P. Tetali, E. Vigoda, and V. H. Vu. Torpid mixing of some Monte Carlo Markov
chain algorithms in statistical physics. In Proc. of the 40th Annual Symposium on Foundations of Computer Science (FOCS
1999), pages 218-229, 1999.

[14] C. Borgs, J. T. Chayes, and P. Tetali. Tight bounds for mixing of the Swendsen-Wang algorithm at the Potts transition point.
Probab. Theory Related Fields, 152(3-4):509-557, 2012.

[15] L. Chayes and J. Machta. Graphical representations and cluster algorithms I. Discrete spin systems. Physica A: Statistical
Mechanics and its Applications, 239(4):542-601, 1997.

[16] X. Chen, W. Feng, Y. Yin, and X. Zhang. Rapid mixing of Glauber dynamics via spectral independence for all degrees. In
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 137-148. IEEE, 2022.

[17] Y. S. Chow and H. Teicher. Probability theory: independence, interchangeability, martingales. Springer Science & Business
Media, 2003.

[18] A. Coja-Oghlan, A. Galanis, L. A. Goldberg, J. B. Ravelomanana, D. Stefankovig, and E. Vigoda. Metastability of the Potts
Ferromagnet on Random Regular Graphs. In M. Bojaiczyk, E. Merelli, and D. P. Woodruff, editors, 49th International
Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 45:1-45:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

[19] P. Cuff, J. Ding, O. Louidor, E. Lubetzky, Y. Peres, and A. Sly. Glauber dynamics for the mean-field Potts model. Journal of
Statistical Physics, 149(3):432-477, 2012.

[20] A. Dembo, A. Montanari, A. Sly, and N. Sun. The replica symmetric solution for Potts models on d-regular graphs. Commu-
nications in Mathematical Physics, 327(2):551-575, 2014.

[21] P. Diaconis and L. Saloff-Coste. Logarithmic sobolev inequalities for finite markov chains. Ann. Appl. Probab., 6(3):695-750,
08 1996.

[22] M. Dyer, L. A. Goldberg, and M. Jerrum. Dobrushin conditions and systematic scan. Combinatorics, Probability and Com-
puting, 17(6):761-779, 2008.

[23] M. Dyer, L. A. Goldberg, and M. Jerrum. Matrix norms and rapid mixing for spin systems. The Annals of Applied Probability,
19(1):71-107, 20009.

[24] R. G. Edwards and A. D. Sokal. Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo
algorithm. Phys. Rev. D (3), 38(6):2009-2012, 1988.

[25] G. Ellison. Learning, local interaction, and coordination. Econometrica: Journal of the Econometric Society, pages 1047—
1071, 1993.

[26] 1. Felsenstein. Inferring phylogenies, volume 2. Sinauer Associates, Inc., Sunderland, MA, 2004.

[27] C. M. Fortuin and P. W. Kasteleyn. On the random-cluster model. I. Introduction and relation to other models. Physica,
57:536-564, 1972.

[28] A. Frieze and M. Karonski. Introduction to random graphs. Cambridge University Press, 2016.

[29] A. Galanis, L. A. Goldberg, and J. Stewart. Fast mixing via polymers for random graphs with unbounded degree. Information
and Computation, page 104894, 2022.

[30] A. Galanis, D. Stefankovic, and E. Vigoda. Swendsen-Wang Algorithm on the Mean-Field Potts Model. In Proc. of the 19th
International Workshop on Randomization and Computation (RANDOM 2015), pages 815-828, 2015.

[31] A. Galanis, D. Stefankovi¢, E. Vigoda, and L. Yang. Ferromagnetic Potts model: Refined #BIS-hardness and related results.
SIAM Journal on Computing, 45(6):2004-2065, 2016.

[32] S. Ganguly and 1. Seo. Information percolation and cutoff for the random-cluster model. Random Structures & Algorithms,
57(3):770-822, 2020.

[33] S. Geman and C. Graffigne. Markov random field image models and their applications to computer vision. In Proceedings of
the International Congress of Mathematicians, volume 1, pages 1496—-1517. Berkeley, CA, 1986.

[34] H.-O. Georgii. Gibbs measures and phase transitions, volume 9. Walter de Gruyter, 2011.

[35] R. Gheissari and E. Lubetzky. Mixing times of critical two-dimensional Potts models. Comm. Pure Appl. Math, 71(5):994—
1046, 2018.

[36] R. Gheissari and E. Lubetzky. Quasi-polynomial mixing of critical two-dimensional random cluster models. Random Struc-
tures and Algorithms, 2019.

[37] R. Gheissari, E. Lubetzky, and Y. Peres. Exponentially slow mixing in the mean-field Swendsen—Wang dynamics. Annales de
I’Institut Henri Poincaré, Probabilités et Statistiques, 56(1):68 — 86, 2020.

[38] G. Grimmett. The random-cluster model. In Probability on discrete structures, volume 110 of Encyclopaedia Math. Sci.,
pages 73—-123. Springer, Berlin, 2004.

[39] H. Guo and M. Jerrum. Random cluster dynamics for the Ising model is rapidly mixing. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1818-1827, 2017.

[40] O. Haggstrom. The random-cluster model on a homogeneous tree. Probability Theory and Related Fields, 104(2):231-253,
1996.



SAMPLING FROM POTTS ON RANDOM GRAPHS OF UNBOUNDED DEGREE 45

[41] M. Harel and Y. Spinka. Finitary codings for the random-cluster model and other infinite-range monotone models. Electronic
Journal of Probability, 27:1-32, 2022.

[42] T. P. Hayes. A simple condition implying rapid mixing of single-site dynamics on spin systems. In Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 39—46. IEEE, 2006.

[43] T. Helmuth, M. Jenssen, and W. Perkins. Finite-size scaling, phase coexistence, and algorithms for the random cluster model
on random graphs, 2020.

[44] J. Holm, K. De Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, mini-
mum spanning tree, 2-edge, and biconnectivity. Journal of the ACM (JACM), 48(4):723-760, 2001.

[45] S. Janson. The probability that a random multigraph is simple. Combinatorics, Probability and Computing, 18(1-2):205-225,
20009.

[46] J. Jonasson. The random cluster model on a general graph and a phase transition characterization of nonamenability. Stochastic
Processes and their Applications, 79(2):335-354, 1999.

[47] J. H. Kim. Poisson cloning model for random graphs. In International Congress of Mathematicians (ICM), 2006.

[48] D. A. Levin and Y. Peres. Markov chains and mixing times (second edition). The Mathematical Intelligencer, 41(1):90-91,
2019.

[49] Y. Long, A. Nachmias, W. Ning, and Y. Peres. A power law of order 1/4 for critical mean field Swendsen-Wang dynamics.
Mem. Amer. Math. Soc., 232(1092), 2014.

[50] R. Lyons. The Ising model and percolation on trees and tree-like graphs. Communications in Mathematical Physics,
125(2):337 — 353, 1989.

[51] A. Montanari and A. Saberi. The spread of innovations in social networks. Proceedings of the National Academy of Sciences,
107(47):20196-20201, 2010.

[52] E.Mossel and A. Sly. Rapid mixing of Gibbs sampling on graphs that are sparse on average. Random Structures & Algorithms,
35(2):250-270, 2009.

[53] E. Mossel and A. Sly. Exact thresholds for Ising—Gibbs samplers on general graphs. Ann. Probab., 41(1):294-328, 01 2013.

[54] S. Osindero and G. Hinton. Modeling image patches with a directed hierarchy of Markov random fields. In Advances in neural
information processing systems, pages 1121-1128, 2008.

[55] Y. Peres and P. Winkler. Can extra updates delay mixing? Communications in Mathematical Physics, 323(3):1007-1016,
2013.

[56] S. Roth and M. Black. Fields of experts: A framework for learning image priors. In Proceedings of the 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, pages 860-867, 2005.

[57] L. Saloff-Coste. Lectures on finite Markov chains, pages 301-413. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[58] R. H. Swendsen and J.-S. Wang. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett., 58:86-88, Jan
1987.

[59] M. Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the 32nd Annual ACM symposium on Theory
of computing (STOC), pages 343-350, 2000.

[60] M. Ullrich. Swendsen—Wang is faster than single-bond dynamics. SIAM Journal on Discrete Mathematics, 28(1):37-48, 2014.

A. BLANCA
DEPARTMENT OF CSE, PENNSYLVANIA STATE UNIVERSITY
Email address: ablanca@cse.psu.edu

R. GHEISSARI
DEPARTMENT OF STATISTICS AND EECS, UC BERKELEY
Email address: gheissari@berkeley.edu



	1. Introduction
	1.1. Results on random graphs with general degree sequences
	1.2. Slowdown for the corresponding Potts Glauber dynamics
	Acknowledgements

	2. Proof outline
	2.1. Random graphs
	2.2. Exponential decay and uniqueness on general trees and treelike graphs
	2.3. Shattering of the FK-dynamics
	2.4. Organization of the remainder of the paper

	3. Uniqueness and exponential decay on general trees
	3.1. Exponential decay of connectivities on general trees
	3.2. Proofs of auxiliary facts
	3.3. Galton–Watson trees: volume and uniqueness

	4. Random-graph estimates
	4.1. Configuration model with general degree sequence
	4.2. Revealing procedure for the configuration model
	4.3. Contiguity with simple random graphs
	4.4. Local domination of the configuration model by random trees
	4.5. Treelike nature of the configuration model

	5. The FK-dynamics shatters quickly on random graphs
	5.1. Couplings and revealing schemes for the FK-dynamics on random graphs
	5.2. Coupling the revealing process to the branching process
	5.3. Sub-criticality of an auxiliary branching process
	5.4. Controlling the original branching process by a sum of auxiliary branching processes
	5.5. Tail bounds on cluster sizes, and shattering of the dynamics

	6. Correlation decay and mixing time on treelike graphs
	6.1. Rate of correlation decay in treelike graphs
	6.2. Local mixing of the FK-dynamics

	7. Proof of main theorem
	7.1. Proof of main theorem: upper bound
	7.2. Lower bound on the mixing time of FK-dynamics

	8. High-degree vertices slow down mixing for Potts Glauber dynamics
	References

