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Abstract

We consider spin systems on general n-vertex graphs of unbounded degree and explore the effects
of spectral independence on the rate of convergence to equilibrium of global Markov chains. Spectral
independence is a novel way of quantifying the decay of correlations in spin system models, which has
significantly advanced the study of Markov chains for spin systems. We prove that whenever spectral
independence holds, the popular Swendsen-Wang dynamics for the g-state ferromagnetic Potts model
on graphs of maximum degree A, where A is allowed to grow with n, converges in O((A log n)°) steps
where ¢ > 0 is a constant independent of A and n. We also show a similar mixing time bound for the
block dynamics of general spin systems, again assuming that spectral independence holds. Finally, for
monotone spin systems such as the Ising model and the hardcore model on bipartite graphs, we show
that spectral independence implies that the mixing time of the systematic scan dynamics is O(A° log n)
for a constant ¢ > 0 independent of A and n. Systematic scan dynamics are widely popular but are noto-
riously difficult to analyze. Our result implies optimal O(log n) mixing time bounds for any systematic
scan dynamics of the ferromagnetic Ising model on general graphs up to the tree uniqueness thresh-
old. Our main technical contribution is an improved factorization of the entropy functional: this is the
common starting point for all our proofs. Specifically, we establish the so-called k-partite factorization
of entropy with a constant that depends polynomially on the maximum degree of the graph.
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1 Introduction

Spectral independence is a powerful new approach for quantifying the decay of correlations in spin system
models. Initially introduced in [ALOG20], this condition has revolutionized the study of Markov chains
for spin systems. In a series of important and recent contributions, spectral independence has been shown
to be instrumental in determining the convergence rate of the Glauber dynamics, the simple single-site
update Markov chain that updates the spin at a randomly chosen vertex in each step.

The first efforts in this series (see [ALOG20,CLV20,CLV21]) showed that spectral independence implies
optimal O(nlog n) mixing of the Glauber dynamics on n-vertex graphs of bounded degree for general spin
systems. The unbounded degree case was studied in [CFYZ22b, CFYZ22a, AJK*22,JPV22], while [BCC*22]
explored the effects of this condition on the speed of convergence of global Markov chains (i.e., Markov
chains that update the spins of a large number of vertices in each step) in the bounded degree setting.
Research exploring the applications of spectral independence is ongoing. We contribute to this line of
work by investigating how spectral independence affects the speed of convergence of global Markov chains
for general spin systems on graphs of unbounded degree.

A spin system is defined on a graph G = (V,E). There isa set S = {1,...,q} of spins or colors, and
configurations are assignments of spin values from S to each vertex of G. The probability of a configura-
tion o € S8V is given by the Gibbs distribution:

~H(o)

Z >

p(o) = (1)
where the normalizing factor Z is known as the partition function, and the Hamiltonian H : SV — R
contains terms that depend on the spin values at each vertex (a “vertex potential” or “external field”) and
at each pair of adjacent vertices (an “edge potential”); see Definition 2.1. A widely studied spin system,
and one that we will pay close attention to in this paper, is the ferromagnetic Potts model, where for a
real parameter > 0, associated with inverse temperature in physical applications, the Hamiltonian is
given by:
H(o)==f ), 1(ou=0).

{u,v}€E

The classical ferromagnetic Ising model corresponds to the g = 2 case. (In this variant of the Potts model,
the Hamiltonian only includes edge potentials, and there is no external field.) We shall use pigsing and pipotts
for the Gibbs distributions corresponding to the Ising and Potts models. Other well-known, well-studied
spin systems include uniform proper colorings and the hardcore model.

Spin systems provide a robust framework for studying interacting systems of simple elements and have
a wide range of applications in computer science, statistical physics, and other fields. In such applications,
generating samples from the Gibbs distribution (1) is a fundamental computational task and one in which
Markov chain-based algorithms have been quite successful. A long line of work dating back to the 1980s
relates the speed of convergence of Markov chains to various forms of decay of correlations in the model.
Spectral independence, defined next, captures the decay of correlations in a novel way.

Roughly speaking, spectral independence holds when the spectral norm of a “pairwise” influence ma-
trix is bounded. To formally define it, let us begin by introducing some notations. Let Q C SV be the
support of p: the set of configurations ¢ such that u(o) > 0. A pinning 7 on a subset of vertices A C V is
a fixed partial configuration on A; i.e., a spin assignment from S* to the vertices of A. For a pinning 7 on
ACVandU CV\A, welet Qf, = {oy € SY : u(oy | op = 1) > 0} be the set of partial configurations on
U that are consistent with the pinning 7. We write Q7 = Q‘Eu} if u is a single vertex. Let

Pri={(u,s):ugA\seQ}



T

V\A
define the signed pairwise influence matrix ¥, € R?”"*%" to be the matrix with entries:

denote the set of consistent vertex-spin pairs in Q7 , under p. For each A € V and pinning 7 on A, we

¥, ((wa), (0,0)) =p(oy=bloy=ao0p=1)—p(o,=b|or=1)
for u # v, and ¥ ((, a), (u, b)) = 0 otherwise.

Definition 1.1 (Spectral Independence). A distribution p satisfies n-spectral independence if for every
subset of vertices A C V and every pinning r € Q,, the largest eigenvalue of the signed pairwise influence
matrix ¥, denoted A (¥)), satisfies 4, (¥;) < n.

There are several definitions of spectral independence in the literature; we use here the one from [CGSV21].

We show that spectral independence implies new upper bounds on the mixing time of several well-
studied global Markov chains in the case where the maximum degree A of the underlying graph G = (V, E)
isunbounded; i.e., A — co with n. The mixing time is defined as the number of steps required for a Markov
chain to reach a distribution close in total variation distance to its stationary distribution, assuming a worst
possible starting state; a formal definition is given in Section 2.1. The global Markov chains we consider
include the Swendsen-Wang dynamics for the ferromagnetic g-state Potts, the systematic scan dynamics
for monotone spin systems, and the block dynamics for general spin systems. These three dynamics are
among the most popular and well-studied global Markov chains and present certain advantages (e.g., faster
convergence and amenability to parallelization) to the Glauber dynamics.

1.1 The Swendsen-Wang dynamics

A canonical example of a global Markov chain is the Swendsen-Wang (SW) dynamics for the ferromagnetic
g-state Potts model. The SW dynamics transitions from a configuration o; to o;41 by:

1. For each edge e = {u,v} € E, if 0,(u) = 0;(v), independently include e in the set A; with probabil-
ityp=1- e b,

2. Then, independently for each connected component C in (V, A;), draw a spin s € {1,...,q} uni-
formly at random and set 0,41 (v) = s forallv € C.

The SW dynamics is ergodic and reversible with respect to ppos and thus converges to it. This Markov
chain originated in the late 1980s [SW87] as an alternative to the Glauber dynamics, which mixes expo-
nentially slowly at low temperatures (large ). The SW dynamics bypasses the key barriers that cause the
slowdown of the Glauber dynamics at low temperatures. For the Ising model (g = 2), for instance, it was
recently shown to converge in poly(n) steps on any n-vertex graph for any value of § > 0 [GJ17]. (The
conjectured mixing time is ©(n'/*), but we seem to be far from proving such a conjecture.) For ¢ > 3, on the
other hand, the SW dynamics can converge exponentially slowly at certain “intermediate” temperatures
regimes corresponding to first-order phase transitions; see [GJ97, BCT12, GL18, GLP19, COGG*23].

Recently, n-spectral independence (with 7 = O(1)) was shown to imply that the mixing time of the SW
dynamics is O(log n) on graphs of maximum degree A = O(1), i.e., bounded degree graphs [BCC*22]. This
mixing time bound is optimal since the SW dynamics requires Q(logn) steps to mix in some cases where
n and A are both O(1) [BCP*22,BCSV23]. However, it does not extend to the unbounded degree setting
since the constant factor hidden by the big-O notation depends exponentially on the maximum degree A;
this is the case even when n = O(1) and fA = O(1). Our first result provides a mixing time bound that
depends only polynomially on A.

Theorem 1.2. Letq > 2, > 0,n > 0and A > 3. Suppose G = (V,E) is an n-vertex graph of maximum
degree A. Let pipows be the Gibbs distribution of the q-state ferromagnetic Potts model on G with parameter .



If ppouts is n-spectrally independent with n = O(1) and fA = O(1), then there exists a constant ¢ > 0 such
that the mixing time of the SW dynamics satisfies T,yix (Psw) = O((Alogn)©).

The constant c has a near linear dependency on n and A; a more precise statement of Theorem 1.2 with
a precise expression for c is given in Theorem 3.1.

Despite the expectation that the SW dynamics mixes in O(logn) steps in weakly correlated systems
(i.e., when BA is small), proving sub-linear upper bounds on its mixing time has been difficult. Recently,
various forms of decay of correlation (e.g., strong spatial mixing, entropy mixing, and spectral indepen-
dence) have been used to obtain O(logn) bounds for the mixing time of the SW dynamics on cubes of
the integer lattice graph Z¢, regular trees, and general graphs of bounded degree (see [BCP*22, BCSV23,
BCC*22]). However, for graphs of large degree, ie., with A — oo with n, the only sub-linear mix-
ing time bounds known either hold for the very distinctive mean-field model, where G is the complete
graph [GSV15,BS15], or hold for very small values of f; i.e., § < 1/(3A) [Hub03]. Our results provide new
sub-linear mixing time bounds for graph families of sub-linear maximum degree, provided n = O(1) and
BA = O(1). These last two conditions go hand-in-hand: in all known cases where n = O(1), we also have
BA =0(1).

On graphs of degree at most A, n-spectral independence is supposed to hold with = O(1) whenever
B < Pu(q,N), where B,(q, A) is the threshold for the uniqueness/non-uniqueness phase transition on A-
regular trees. This has been confirmed for the Ising model (g = 2) but not for the Potts model. Specifically,
for the ferromagnetic Ising model, we have f,(2,A) = In ﬁ, and when f < (1 - §)p,(2,A) for some
5 € (0,1), prsing is n-spectrally independent with n = O(1/6); see [CLV20, CLV21]. In contrast, for the
ferromagnetic Potts model with ¢ > 3, there is no closed-form expression for S, (g, A) (it is defined as
the threshold value where an equation starts to have a double root), and for graphs of unbounded degree

n-spectral independence is only known to hold when f < @. As a result, we obtain the following
corollary of Theorem 1.2.

Corollary 1.3. Let § € (0,1), A > 3. Suppose that either g = 2 and f < (1 - 0)Bu(2,N),orq >3 and f <
@. Then, there exists a constant ¢ = ¢(8) > 0 such that the mixing time of the SW dynamics for the q-state
ferromagnetic Potts model on any n-vertex graph of maximum degree A satisfies Trpix (Psw) = O((Alogn)©).

We mention that other conditions known to imply spectral independence (e.g., those in [BGP16]) are not
well-suited for the unbounded degree setting since under those conditions, the best known bound for 5
depends polynomially on A. For another application of Theorem 1.2, see Section 3.5.1 where we provide a
bound on the mixing of the SW dynamics on random graphs.

We comment briefly on our proof approach for Theorem 1.2. A mixing time bound for the SW dy-
namics can be deduced from the so-called edge-spin factorization of the entropy functional introduced in
[BCP*22]. It was noted there that this factorization, in turn, follows from a different factorization of en-
tropy known as k-partite factorization, or KPF. Spectral independence is known to imply KPF but with
a loss of a multiplicative constant that depends exponentially on the maximum degree of the graph. Our
proof of Theorem 1.2 follows this existing framework, but pays closer attention to establishing KPF with an
optimized constant with a better dependence on the model parameters. This is done through a multi-scale
analysis of the entropy functional; in each scale, we apply spectral independence to achieve a tighter KPF
condition. Our new results for KPF not only hold for the Potts model, but also for a general class of spin
systems, and we use it to establish new mixing time bounds for the systematic scan and block dynamics.

1.2 The systematic scan dynamics

Our next contribution pertains the systematic scan dynamics, which is a family of Markov chains closely
related to the Glauber dynamics in the sense that updates occur at single vertices sequentially. The key



difference is that the vertex updates happen according to a predetermined ordering ¢ of the vertices instead
of at random vertices. These dynamics offer practical advantages since there is no need to randomly select
vertices at each step, thereby reducing computation time. Throughout the paper, we will consider the
heat-bath vertex updates in which a new spin is assigned to a vertex by sampling from the conditional
distribution at the vertex given the spins of its neighbors; this will be the case for both the Glauber and
systematic scan dynamics.

There is a folklore belief that the mixing time of the systematic scan dynamics (properly scaled) is
closely related to that of the Glauber dynamics. However, analyzing this type of dynamics has proven
very challenging (see, e.g., [DGJ06a, Hay06, DGJ09, DGJ06b, PW13, GKZ18,BCSV19]), and the best general
condition under which the systematic scan dynamics is known to be optimally mixing is a Dobrushin-
type condition due to Dyer, Goldberg, and Jerrum [DGJ09]. The new developments on Markov chain
mixing stemming from spectral independence have not yet provided new results for this dynamics, even
for the bounded degree case where much progress has already been made. We show that spectral indepen-
dence implies optimal mixing of the systematic scan dynamics for monotone spin systems with bounded
marginals; we define both of these notions next.

Definition 1.4 (Monotone spin system). In a monotone system, there is a linear ordering of the spins at
each vertex which induces a partial order <, over the state space. A spin system is monotone with respect
to the partial order <, if for every A C V and every pair of pinnings 7; >4 7, on V' \ A, the conditional
distribution p(- | oy = 1y) stochastically dominates y(- | op = 72).

Canonical examples of monotone spin systems include the ferromagnetic Ising model and the hardcore
model on bipartite graphs. As in earlier work (see [CLV20, CLV21, BCC*22]), our bounds on the mixing
time will depend on a lower bound on the marginal probability of any vertex-spin pair. This is formalized
as follows.

Definition 1.5 (Bounded marginals). The distribution y is said to be b-marginally bounded if for every
A C V and pinning 7 € Q,, and each (v,s) € P7, we have p(o, =s | op =17) > b.

Before stating our result for the systematic scan dynamics of b-marginally bounded monotone spin
systems, we note that this Markov chain updates in a single step each vertex once in the order prescribed
by ¢. Under a minimal assumption on the spin system (the same one required to ensure the ergodicity
of the Glauber dynamics), the systematic scan dynamics is ergodic. Specifically, when the spin system is
totally-connected (see Definition 2.2), the systematic scan dynamics is ergodic. Moreover, the systematic
scan dynamics is not necessarily reversible with respect to y, so, as in earlier works, we work with the
symmetrized version of the dynamics in which, in each step, the vertices are updated according to ¢ first,
and subsequently in the reverse order of ¢. The resulting dynamics, which we denote by Py, is reversible
with respect to p. Our main result for the systematic scan dynamics is the following.

Theorem 1.6. Letb > 0,1 > 0, and A > 3. Suppose G = (V, E) is an n-vertex graph of maximum degree A.
Let p be the distribution of a totally-connected monotone spin system on G. If ji is n-spectrally independent
and b-marginally bounded, then there exists a universal constant C > 0 such that for any ordering ¢

2
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M) -O(log n).
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The bound in this theorem is tight: for a particular ordering ¢, we prove an Q(logn) mixing time lower
bound that applies to settings where A, b and 5 are all ©(1); see Lemma 4.1.

We present next several interesting consequences of Theorem 1.6. First, we obtain the following corol-
lary using the known results about spectral independence for the ferromagnetic Ising model.



Corollary 1.7. Let§ € (0,1),A >3 and 0 < < (1= 98)B.(2,A). Suppose G = (V, E) is an n-vertex graph
of maximum degree A. For any ordering ¢ of the vertices of G, the mixing time of Py for the Ising model on G
with parameter 8 satisfies Trix(Py) = O(logn).

The constant hidden by the big-O notation is an absolute constant that depends only on the constant
8, even when A depends on n. This result, compared to the earlier conditions in [DGJ06a, Hay06, DGJ09],
extends the parameter regime where the O(log n) mixing time bound applies; in fact, the parameter regime
in Corollary 1.7 is tight, as the systematic scan dynamics undergoes an exponential slowdown when g >
Bu(2,A\) [PW13]. We also derive results for the hardcore model on bipartite graphs; see Section 4.3.

Our next application concerns the specific but relevant case where the underlying graph is an n-
vertex cube of the integer lattice graph Z¢. In this context, it was proved in [BCSV19] that all systematic
scan dynamics converge in O(log n(log log n)?) steps whenever a well-known condition known as strong
spatial mixing (SSM) holds. A pertinent open question is whether SSM implies spectral independence.
In fact, spectral independence is often proved by adapting earlier arguments for establishing SSM (see,
e.g., [ALOG20, CLV20]). Recently, it was proved in [CLMM23] that SSM on trees implies spectral inde-
pendence on large-girth graphs. We show that for general spin systems on Z¢, SSM implies 7-spectral
independence with n = O(1).

Lemma 1.8. For a spin system on a d-dimensional cube V C Z¢, SSM implies n-spectral independence, where
n=0(1).

The formal definition of SSM is given later in Section 4. Lemma 1.8 does not assume monotonicity for
the spin system and could be of independent interest. An interesting consequence of this lemma, when
combined with Theorem 1.6 is the following.

Corollary 1.9. Letd > 2 and b > 0. For a b-marginally bounded monotone totally-connected spin system
on a d-dimensional cube V C Z¢, SSM implies that the mixing time of any systematic scan Py is O(logn).

For the ferromagnetic Ising model on Z?, SSM is known to hold for all # < f.(2) = In(1 + V2) (see [CP21,
MOS94, Ale98,BDC12]), so by Corollary 1.9 we deduce that when < f.(2), the mixing time of any sys-
tematic scan Py on an n-vertex square box of Z?%is O(log n); note that B.(2) > B, (2, 2d), the corresponding
tree uniqueness threshold.

We comment briefly on the techniques used to establish our results for the systematic scan dynamics.
Our starting point is again the k-partite factorization of entropy (KPF). Our improved bounds for KPF imply
that a global Markov chain that updates a random independent set of vertices in each step is rapidly mixing.
We then use the censoring technique from [FK13,BCV20] to relate the mixing time of this Markov chain
to that of the systematic scan dynamics. To establish Lemma 1.8, we use SSM to construct a contractive
coupling for a particular Markov chain. Our Markov chain is similar to the one from [DSVW04], but
modified to update rectangles instead of balls, and thus match the variant of SSM that holds up to the
critical threshold for the Ising model on Z?. This contractive coupling is then used to establish spectral
independence using the machinery from [BCC*22].

1.3 The block dynamics

Our final result concerns a family of Markov chains known as the block dynamics. They are a natural
generalization of the Glauber dynamics where a random subset of vertices (instead of a random vertex)
is updated in each step. More precisely, let B := {By, ..., Bk} be a collection of subsets of vertices (called
blocks) such that V = U{i \Bi. Let a be a distribution over 8. The (heat-bath) block dynamics with respect
to (B, @) is the Markov chain that, in each step, given a spin configuration o, selects B; € 8 according
to the distribution o and updates the configuration on B; with a sample from the u(- | o;(V \ B;)); that is,



from the conditional distribution on B; given the spins of ¢; in V' \ B;. We denote this Markov chain (and
its transition matrix) by Pg,. When the B;’s are each single vertices, and « is a uniform distribution over
the blocks in 8B, we obtain the Glauber dynamics. Our result for the mixing time of the block dynamics is
the following.

Theorem 1.10. Letb > 0,1 > 0 and A > 3. Suppose G = (V, E) is an n-vertex graph of maximum degree A.
Let yi be a Gibbs distribution of a totally-connected spin system on G. Let B := {By, ..., Bx} be any collection
of blocks such that V.= UK B;, and let a be a distribution over B. If i is n-spectrally independent and b-
marginally bounded, then there exists a universal constant C > 0 such that the mixing time of block dynamics
Pg o satisfies:
o (C(n+1)°Alogn) 371
Tnix (Pga) = O(Ofmlln : (qb—ég) )
where in = Minyey Y ge g AB.

See Theorem 5.2 for a more precise statement. Previous results for the block dynamics only apply to the
bounded degree case [BCSV23, CP21,BCC*22], so Theorem 1.10 provides the first bounds for its mixing
time in the unbounded degree setting.

2 Preliminaries

This section provides several definitions and background results we will refer to in our proofs.

2.1 Mixing times and modified log-Sobolev inequalities

Let P be an irreducible and aperiodic (i.e., ergodic) Markov chain with state space Q and stationary distri-
bution p. Let us assume that P is reversible with respect to y, and let

o ¢ N — ¢ _
d(t) = max [P (x,") — pliv - r;leaggigglP (x,A) — p(A),

where P!(x, -) denotes the distribution of the chain at time t assuming x € Q as the starting state; || - ||7v
denotes the total variation distance. Note that with a slight abuse of notation we use P for both the Markov
chain and its transition matrix. For ¢ > 0, let

Tomix(P,e) :=min{t > 0:d(t) < ¢},

and the mixing time of P is defined as Tpnix (P) = Thnix (P, 1/4).
For functions f,g : Q@ — R, the Dirichlet form of a reversible Markov chain P with stationary distribu-
tion y is defined as

Ep(f.9) =(f,(I-P)g), = % Z p(x)P(x, y) (f(x) = f()(9(x) = 9(y)),

xX,yeQ

where (f,g), = Yxeq f(x)g(x)u(x).
The spectrum of the ergodic and reversible Markov chain P is real, and we let 1 = A; > A,
- 2 Ajg| = -1 denote its eigenvalues. The (absolute) spectral gap of P is defined by GAP(P)
1 —max{|A;|, |Ajq||}. When P is positive semidefinite, we have

GA1>(1>)=1—/12=inf{M |f:Q—>R,<f,f>,,¢o}.

> fou

v



For P reversible and ergodic, we have the following standard comparison between the spectral gap and
the mixing time

Tmix(Pa E) =

1 1
carer) "8 G @

where fppn = mingeq p(x).
The expected value of a function f : Q — R, with respect to y is defined as E,, [ f] = X cq f(x)u(x).
Similarly, the entropy of the function with respect to p is given by

Bt (f) = Ey[ o8 - | = Bl 1og 1 - Byl fog(®, 11D

We say that the Markov chain P satisfies a modified log-Sobolev inequality (MLSI) with constant p if for
every function f : Q — Ry,

p-Ent,(f) < Ep(f. log ).

The smallest p satisfying the inequality above is called the modified log-Sobolev constant of P and is denoted
by p(P). A well-known general relationship (see [DSC96,BT03]) shows that
1 = 2pmin
log(1/pmin — 1)
For distributions y and v over Q, the relative entropy of v with respect to y, denoted as H (v | p), is defined
as H(v | p) == Yyeqv(x)log vX) © A Markov chain P with stationary distribution y is said to satisfy

GAP(P) < p(P) < 2GAP(P). 3)

p(x) "
discrete relative entropy decay with rate r > 0 if for all distributions v:
HOP [ p) <A-r)H | p). 4)
It is a standard fact (see, e.g., Lemma 2.4 in [BCP*22]) that when (4) holds, then p(P) > r, and
1 1
Toix(P.6) < + - loglog (-—) +log (5)) (5)

2.2 General spin system

We provide next a general definition for spin systems and introduce the notion of totally-connected sys-
tems.

Definition 2.1 (Spin system). Let G = (V,E) be a graph and S = {1,...,q} a set of spins. Let Q ¢ SV
be the set of possible spin configurations on G. We write o, for the spin assigned to v by 0. Given a
configuration o € Q and a subset A of V, we write g5 € S” for the configuration of o restricted to A. For a
subset of vertices A C V, a boundary condition T is an assignment of spins to (some) vertices in outer vertex
boundary dA C V \ A of A; namely, 7 : (dA), — S, with (dA); C JA. Note that a boundary condition
is simply a pinning of a subset of vertices identified as being in the boundary of G. Given a boundary
condition 7 : (dV),; — S, the Hamiltonian H : Q — R of a spin system is defined as

H(o) = - Z K(0y, o) — Z K(0y, 70) = Z U(ov), (6)

{o,u}eE {o,u}€E:ueV,0e(dV), veV

where K : S XS — Rand U : § — R are respectively the symmetric edge interaction potential function
and the spin potential function of the system. The Gibbs distribution of a spin system with Hamiltonian H

is defined as

_ L -H(o
u(o) = ZHe ;

where Z == Y cq e (9. We use Q for the set of configurations o satisfying y(o) > 0.



The Potts model, as defined in the introduction, corresponds to the spin system with g > 2, K(x,y) =
p-1(x =y),and U(o,) = 0 for allv € V. We focus on the ferromagnetic Ising model where f > 0
and § = {-1,+1}. Another important spin system is the hardcore model that can be defined by setting
S ={1,0},K(x,y) = o ifx =y =1and K(x,y) = 0 otherwise,and U(x) = 1(x = 1) - In A, where A > 0 is
referred to as the fugacity parameter of the model.

We restrict attention to totally-connected spin systems, as this ensures that the Glauber dynamics, the
systematic scan dynamics, and the block dynamics are all irreducible Markov chains (and thus ergodic).

Definition 2.2. For a subset Cy of partial configurations on U C V, let H[Cy] = (Cy, E[Cy]) be the
induced subgraph where E[Cy] consists of all pairs of configurations on Cy that differ at exactly one
vertex. We say that Cy is connected when H|[Cy] is connected. For a pinning 7 on A C V, we say Q;\ A S
connected if H[Q7, ] is connected. A distribution y over SV is totally-connected if for every A C V and

V\A
every pinning 7 on A, Q;\ , is connected.

3 Swendsen-Wang dynamics on general graphs

In this section, we consider the SW dynamics for the g-state ferromagnetic Potts models on general graphs.
In particular, we establish Theorem 1.2 from the introduction, which is a direct corollary of the following
more general result.

Theorem 3.1. Letq >2,8>0,1>0,b>0,A > 3, and y > 2. Suppose G = (V, E) is an n-vertex graph of
maximum degree A and chromatic number y. Let ppoys be the Gibbs distribution of the q-state ferromagnetic
Potts model on G with parameter B. If lipows is n-spectrally independent and b-marginally bounded, then there
exists a universal constant C > 1 such that the modified log-Sobolev constant of the SW dynamics satisfies:

p(Psw) = Q

b2+61<
x - (CAlogn)* - (n+ 1)5") ’

wherex = 2 + [%’7], and

Trnix(Psw) = O(x - (CAlogn)* - (7 +1)°b™%7% . logn).
Theorem 1.2 follows from this theorem by noting that y < A and that under the assumptions n = O(1)
and fA = O(1), we have b = O(1) and k = O(1).

Remark 1. When A is small, i.e, A = o(logn), we can obtain slightly better bounds on p(Psy) and
Tmix (Psw) and replace the (CAlogn)* factor by a factor of (CA)SH[Z?U 1.
Before proving Theorem 3.1, we provide a number of definitions and required background results

in Section 3.1. We then give the proof of Theorem 3.1 in Sections 3.2, 3.3, and 3.4, and include some
applications of this result in Section 3.5.

3.1 Factorization of entropy

We present next several factorizations of the entropy functional Ent, (f), which are instrumental in estab-
lishing the decay of the relative entropy for the SW dynamics. We introduce some useful notations first.
For a pinning 7 in V' \ A (i.e, 7 € Qy\a), we let p (+) := p(- | oy\a = 7). Given a function f : Q — R,
subsets of vertices B C A C V, and 7 € Qy\,, the function fg : Qp — Ry is defined by:

fi(0) =By [f(rUEVO)].



If B = A, we often write f* for f7, and if 7 = 0, then we use fz for f;. We use Enty(f7) to denote
Ent,r (f7), and if the pinning 7 on V' \ B is from a distribution 7 over Qy\p, we use E..,[Ent;(f7)] to
denote the expected value of the function f on S over the random pinning z.

Various forms of entropy factorization arise from bounding Ent,(f) by different (weighted) sums of
restricted entropies of the function f. The first one we introduced, is the so-called ¢-uniform block factor-
ization of entropy of ¢-UBF. For an integer ¢ < n, £-UBF holds for y with constant Cygg if for all functions

fZQ—)Rz(),

5 -Ent,(f) < Cupr - % Z Ereins [Entg(ff)] ’ @
7 se(Y)

where (‘;) denotes the collection of all subsets of V of size £. An important special case is when ¢ =
1, in which case (7) is called approximate tensorization of entropy (AT); this special case has been quite
useful for establishing optimal mixing time bounds for the Glauber dynamics in various settings (see, e.g.,
[Mar19, CMT14, Ces01, Mar99]). In recent works, a key step for obtaining AT has been to first establish
¢-UBF for some large ¢. The following result will be useful for us.

Theorem 3.2 ([CLV21], [BCC*22]). Let b and n be fixed. For 0 € (0,1) andn > %(z—z + 1), the following
holds. If the Gibbs distribution p of a totally-connected spin system on an n-vertex graph is n-spectrally

independent and b-marginally bounded, then [On]-UBF holds with Cygr = (6/9)[27”].

Another useful notion is the k-partite factorization of entropy or KPF. Let Uy, ..., Ui be k disjoint in-
dependent sets of V such that Ule U; = V. We say p satisfies KPF with constant Ckpr if for all functions
f Q- RZO’

k
Ent,(f) < Cker Z Eeepupg, BNt (F1)] -
i=1
KPF was introduced in [BCC*22], where it was used to analyze global Markov chains. The interplay
between KPF and UBF is intriguing and is further explored in this paper.

3.2 Proof of main result for the SW dynamics: Theorem 3.1

The main technical contribution in the proof of Theorem 3.1 is establishing KPF with a better (i.e., smaller)
constant Cgpr. As in [BCC*22], KPF is then used to derive an improved “edge-spin” factorization of entropy
which is known to imply the desired bounds on the modified log-Sobolev constant and on the mixing time
of the SW dynamics.

Theorem 3.3. For a totally-connected and b-marginally bounded Gibbs distribution u that satisfies n-spectral
independence on an n-vertex graph G = (V, E) of maximum degree A > 3, if b andn are constants independent
of A and n, then there exists a constant ¢ = c(n,b) > 0 such that k-partite factorization of entropy holds for
1 with constant Cxpr = (Alogn)®. Specifically, for a set of k disjoint independent sets V1, ..., Vi such that

?:1 V; =V, we have
5 1 K k
Ent,(f) < (W) > Eeopry, [Ently ()], and (®)
j=1
Clp+1)°AH\k & oo
Ent, (f) < (—1o5—) - > Erepuny, [Ent], (£ 9)
j=1

where k := 2 + [27'7] and C > 0 is a universal constant.



Remark 2. Let 8 = {B,..., Bi} be a collection of disjoint independent sets such that V = Ule B;. The
independent set dynamics Pg is a heat-bath block dynamics w.r.t. 8 and a uniform distribution over 8. If
u satisfies k-partite factorization of entropy with Cxpr, then Pg satisfies a relative entropy decay with rate
r > 1/(k - Cxpr). See Lemma 5.1 for the more general statement.

As mentioned, KPF was first studied in [BCC*22]; the constant proved there was
Cxpr = b0 . (A/p)CO/D)

so our new bound improves the dependence on A from exponential to polynomial. The proof of Theo-
rem 3.3 is given in two parts. In Section 3.3, we prove (8), whereas (9) is proved in Appendix A.

With KPF on hand, the next step in the proof of Theorem 3.1 relies on the so-called edge-spin factor-
ization of entropy. Let Q) := Q x {0, 1}£ be the set of joint configurations (o, A) corresponding to pairs of
a spin configuration ¢ € Q and an edge configuration (a subset of edges in a graph) A C E. For a g-state
Potts model ppoys with parameter p = 1 - e P, we use v to denote the Edwards-Sokal measure on Q 7 given
by

W(o,4) = (1= p) E Al o ~ ),
J

where ¢ ~ A is the event that every edge in A has its two endpoints with the same spin in o, and
Zy = Yaoeq, (1 - p)IEI=1AlIplAl1 (6 ~ A) is a normalizing constant. Let v(- | o) and v(- | A) denote
the conditional measures obtained from v by fixing the spin configuration to be o or fixing the edge con-
figuration to be A respectively. For a function f : Q; — Ry, let £ : {0, 1}/El — R be the function
given by f°(A) = f(c UA), and let f4 : Q — Ry, be the function given by f4(0) = f(o U A). We say
that edge-spin factorization of entropy holds with constant Cgg if for all functions f : Q; — Ry,

Entv(f) < Cgs (E(U,A)~v [EntANV(-Ia) (fff)] + E(U,A)~v [Ent0~v(-|A) (fA)]) . (10)
The following result from [BCC*22] will be useful for us.

Lemma 3.4 (Theorem 6.1 [BCC*22]). Suppose the q-state ferromagnetic Potts model with parameter f§ on a
graph G of maximum degree is A > 3 satisfies KPF with constant Cxpp. Then, the edge-spin factorization of
entropy holds with constant Cgg = O(,BAkeﬁA) - CkpF.

Remark 3. The original bound for Cgs stated in [BCC*22] is actually O(A%ef2) - Ckpr, but in the proof
there, one factor k is replaced with A as its upper bound. Since we do not assume A to be a constant, we
avoid such an upper bound. We also remark that the exponential dependence of Cgs on A can probably
be improved, but in our applications A = O(1), so this would not represent a tangible improvement.

The final ingredient in the proof of Theorem 3.1 is the following.
Lemma 3.5 (Lemma 1.8 [BCP*22]). Suppose edge-spin factorization of entropy holds with constant Cgs.
Then, the SW dynamics Psy satisfies the relative entropy decay with rate Q (CLES)

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Theorem 3.3, yipoys satisfies y-partite factorization of entropy with constant

C(n+1)°Alogn\x
Cior = (U RL0EM)

where C > 0 is a universal constant. It follows from Lemma 3.4 and Lemma 3.5 that the SW dynamics
satisfies (4) with

b6K
r=Q .
()(ﬁAef”A C¥(n+1)°¢ - (Alog n)”)
Note that b < q_le_/m, and so ﬂAeﬂA < €*P2 < b2, Therefore, we obtain the desired bound for MLSI
constant, and the mixing time bound follows from (5). O
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3.3 Proof of the main technical theorem: Theorem 3.3

Recall that given a function f : Q — R, subsets of vertices B C A C V, and 7 € Qy\,, the function
f5 + Qf = Ry is defined by
f5(0) = Bewyr [FxUEU O],

In the proof of Theorem 3.3 we use several facts, which we compile next.

Let S C V be a subset of vertices. Let Sy,...,S, € V denote the connected components of S. For
a vertex v € V, let Cs(v) the unique connected component S; that contains v, if such component exists,
otherwise set Cs(v) to be the empty set. When S is chosen uniformly at random among all subsets of size
[6n], the following exponential tail bound for |Cs(v)| was established in [CLV21].

Lemma 3.6 (Lemma 4.3, [CLV21]). Let G = (V,E) be an n-vertex graph of maximum degree at most A.
Then for any v € V and every integer k > 0 we have

Prs[|Cs(v)| = k] < = - (2eA0)* 7,

S|~

where the probability Prg|-] is taken over a uniformly random subset S C V of size £ = [6n].

Lemma 3.7. Let u be a totally-connected and b-marginally bounded distribution over [q]". If 1 is n-spectrally
independent, then the Glauber dynamics for i has spectral gap at least

2b4 1 1+|—2’7-|
( ) (11)

(T2n1+2)* n

Remark 4. Lemma 3.7 is similar to Theorem 1.3 in [ALOG20] (for 2-spin systems), Theorem 6 in [CGSV21]
(for colorings), and Theorem 3.2 in [FGYZ22] (for a different notion of spectral independence). For com-
pleteness, we provide a proof in Appendix B.

Lemma 3.8. Let y be a b-marginally bounded distribution over [q]". If the Glauber dynamics for u has
spectral gap y, then p satisfies KPF with constant

-1
< 3nlog(b )

Ckpr (12)

The proof of Lemma 3.8 is standard and is provided in Appendix B. We proceed to prove (8) from
Theorem 3.3. With a slightly different argument, we will establish (9) in Appendix A, which is a better
upper bound only when A = o(logn).

Proof of (8) in Theorem 3.3. It follows from Lemma 3.7 and Lemma 3.8 that

3([2n] +2)*+T2nD) . p2tlen]

Ckpr < (2b4)2+r2n]

IfA > me(b:%’ letting k := 2 + [%’7], then we establish the theorem since

4 2 4K 2\ \ Kk 4K 5K | AK
3([2n] + 2)*(+201) 2o 3([2n] +2)* (10e(417 +b )) A < (240e)* - ([n] +1)°* - A ‘
(2b4)2+f2'ﬂ (2b%)¥ b2 box

Thus, we assume A < m(b:%. Let Vi,..., Vi C V be disjoint independent sets such that Uj vV, =V.

We take 0 = ﬁ so that % . (% + 1) < 6. Let S be a subset of vertices of size [0n] chosen uniformly at

11



random from all the subsets of size [On]. Let Sy, ...,S, C V be the connected components of S. Theorem
3.2 implies that [0n]-UBF holds with constant

NEA EA
Cusr = (5) = (5€2A) , (13)

and so for any function f : Q — R, we have

2y

1+ 51

Ent,(f) < (5e2A) Es [Bropys [Ent5(fO)]], (14)
where Eg denotes the expectation over the random subset S. To bound the right-hand side of (14), we use
the following fact, which we prove later in Section 3.4.

Lemma 3.9. Let Vy,..., Vi be disjoint independent sets such that Ule Vi = V. Let S C V be a subset of
vertices. Let Sy,...,Sm € S be the connected components of the subgraph induced by S. Suppose that for
S; € S, T'(S;) takes the minimum value such that the following inequality holds for an arbitrary pinning
T € Qy\s, and any function g : Qg — Rxp:

k
Entf,(9) < T(S) )\ Err,, [Entéjgsi (95, )] . (15)
j=1
Then for any function f : Q — Ry,

e [ERG(U] < 3 B, B0ty (79| - maxr(s). (16)
Jj=1 .

From (14) and Lemma 3.9, we have
k
2 K T T
Ent,(f) < (Se A) Z;EWVWJ_ [Entvj(f )] -Es[g}ggr(si)]. (17)
J:

To show (8), it remains to provide an upper bound for Eg [maxsig S F(Si)].

By assumption, p is n-spectrally independent and b-marginally bounded. These properties, by defini-
tion, are preserved under any pinning. In particular, for any S; C S and an arbitrary pinning 7 € Qy\s,,
p, 1s still n-spectrally independent and b-marginally bounded. Hence, by Lemma 3.7 and Lemma 3.8, we

have
3([2n] +2)*

(s) = 2o ISl
and
Es [max F(Si)] < biEg [max |Sl~|’<] = b Eg [max |C5(0)|K] , (18)
SiCS SicS veES
where b; := %. To estimate the expectation on the right-hand side of (18), we first expand the

expectation and apply a union bound as follows:
S|
K| _ K . —
Es [nz}gg |Cs(v)] ] = ;:O x* - Prs [nz}gg |Cs(v)] X]

S|

< (2log, [S))* + Z x* - Prg [max|C5(v)| = x]
x=2log, |S| ves
S|
< (2log, IS+ >. x> Prs[|Cs(o)| = x]. (19)
x=2log, |S| veS

12



Then, applying Lemma 3.6 and noting that 6 < 1/(4eA), we obtain

S| S|

xK-ZPr5[|C5(0)|=x]S|'9n'| Z X*(2eA0)*!

x=2log, |S| veS x=2log, |S]|

f9”-| 2log, |S| 2 K x—2log, |S|
= o (2e00) D1 xF(2eng)* e
e/

x=2log, |S|

|S]—2log, |S]

1
(x +2log, |S])* 2™

2|S|eA

IA

x=0
log, |S|-1 |S|-2log, |S|

1 K
ZO (x +2log, |S)* +

2|S|eA

(x + 2log, |S])*
|S| - 2x~log; IS]

IA

x=log, |S|
|S|-3log, |S|

1 K
(3log, |S])" +

(x +3log, |S])"
2|S|eA '

|S|.2x

IN

(20)

x=0

When [S| = w(1), (3log, [S|)'**/|S| < 1. Also, for any integer x > 0, Wﬁ%

(20) is less than |S|. Therefore, by (18), (19) and (20) we have

< 1, so the last sum in

Es [rsnggusi)] < by - [(2log, IS)* + 1] < by (3log, S)" (21)

These bounds together with (17) imply that

K 1 2 « 2 2 4K
Ckpr < by(3log, n)* - (5€2A) =3 526 )" a ’7274: ", (Alog, n)",
establishing the desired bound. When |S| = O(1), the left-hand side of (21) can be bounded by an absolute
constant, and the result follows from (17). O

3.4 Entropy factorization: Proof of Lemma 3.9

We proceed with the proof of Lemma 3.9 by first presenting several facts that will be useful.

Lemma 3.10 (Lemma 2.7, [BCC*22]). Let A= AUB C V, 7 € Qy\a, and assume py is a product measure
py = py ® pg. ForallU C B and any f : Q — Ry,

1 Ent; () = Eyope [Entg“f( f;)] .

U U U
2. Bympr [Entg “ f;)] < By, [Entz T ] :

Lemma 3.11 (Lemma 3.1, [CP21]). Let Ag = 0. Forany Ay C ...A,;, C A C V, anyt € Qy\p and any
f:Qf — Ry,

m

TU}’ _ Uy
ZE)/N”/T\\A [ nty Vo (B, )] =Bz, [EntAm (f Y)] :
i=1

The following corollary directly follows from this fact, by taking Ay = A,A, = Band m = 2.
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Corollary 3.12. Let A, B and A be subsets of vertices such that A C B C A C V. Forany t € Qy\, and any
f : Q}; — Rzo,

yur yur
By, [B0 ()] < By, [Bh (1)
We are now ready to prove Lemma 3.9.

Proof of Lemma 3.9. Note that yg = ®, ¢ is a product measure. For i > 1, let S¢; == §; U --- U S;. For
i>1,weletSq; :=51U---US;_1, and we set S.; := () for convenience. As a direct consequence of applying
Lemma 3.11 and applying Lemma 3.10(1), we have the following identity for any f : Q — Ry:

m m
T T T T TU T
Beepyis B0 = D Brossyy [t (D] = D Beopunoy [Bya B0t (D] (22)
i=1 i=1
On the other hand, setting g = fST, in (15), then for any y € Qg we obtain that
Uy /o1 EUtVy , ~TUE
Entl () < T80 DBy e BT A)] (23)
J:
Combining (22) and (23) yields

TN#V\S [Ents(f )] < E

T~HV\S<;

k
nyU‘r §Ur
By, [F(Si) Z E§~u§9\yvj [Ent"fﬂsz z”VJ)] H
Jj=1 '

m
EUyUT , fEUT
Zr(si)Er~uv\s<lEf oy, E_ it [Entv ns; Ssav, ]

i=1

M» D 1

= maxF(S ) Z Ervpivisapus Si\V)) Y~#s [E ﬂSi (fSTiﬁVj)] : (24)

i=1

I
—_

J
We show next that for any j = 1,..., k, the following inequality holds:

yur
ZET~#<V\S<,M5 vy Ey~g_ [Ent ns: (5, mv)] < Ervpyyy, [EntT (fr)] (25)
i=1

Given a pinning 7 ~ piy\((s;nv;)uS<;)s Hs;nv; and ps_; are independent. By applying Lemma 3.10(2) to

yur
EY~#§< [En nty s, (fsrl.m/j)], we have

m m

yur T ‘L'LJ.ﬁt TUE
ZET~#<V\sgi)u<si\vj)EY~#§<Z. [Entvjmsi (fs,»mvj)] < ZEf~#(v\sgnu<si\vj)Efﬂl(sd)\vj [ S,nVJ (fs nv;/ | (26)
i=1 i=1

Letting ¢ = 7 U ¢, and by applying Lemma 3.10(1) to Ent?im,j (ﬁjmvj) we also have

m m
¢ ¢ - PUY - o

Z Ep(scpnvy) [Entsmvj (fsimvj)] = Z E¢~#V\<sgimvjE¢~yz"s v, [Entsimvj (fs,»mvj)] : (27)

i=1 i=1 <i)NVj
Also, the following identity follows from Lemma 3.10(1) and Lemma 3.11 as in the way of obtaining (22):

m
- PUY - cp
ET~#V\(snvj) [Entgmvj (fT)] = ; E¢~uV\<s§imvj)E¢~y(¢S<imvj [Entsimvj (fsimvj)] : (28)
Finally, it follows from Corollary 3.12 that

ETNI,V\(WJ_ y [Entg v ( fr)] < Er~uij [Ent‘T/j ( ff)] , (29)
o (25) follows from (26), (27), (28) and (29). Therefore, we obtain (16) by (24) and (25). O
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3.5 Applications of Theorem 3.1

In this section, we prove Corollary 1.3 from the introduction and present another application of Theo-
rem 3.1 concerning the SW dynamics on a random graph generated from the classical Erdés-Rényi G(n, p)
model. For this, we first define Dobrushin’s influence matrix.

Definition 3.13. The Dobrushin influence matrix A € R™" is defined by A(u, u) = 0 and for u # v,

A(u,0) = max dry(po(- | 0), po(- | 7)),
(o.7)€ w0

where S, , contains the set of all pairs of partial configurations (o, 7) in Qy\ () that can only disagree at

u, namely, o, = 7,, if w # u.

It is known that an upper bound on the spectral norm of A implies spectral independence. In particular,
we have the following result from [BCC*22].

Proposition 3.14 (Theorem 1.13, [BCC*22]). Ifthe Dobrushin influence matrix A of a distribution u satisfies
|A]| < 1 — ¢ for some e > 0, then p is spectral independent with constantn = 2/e.

For the ferromagnetic Ising model, 5,(A) := In ﬁ corresponds to the threshold value of the parameter
B for the uniqueness/non-uniqueness phase transition on the A-regular tree. For the anti-ferromagnetic
Ising model, the phase transition occurs at 3,(A) := —In ﬁ. If B.(A)(1-6) < B < Bu(A)(1-6), we say
the Ising model satisfies the §-uniqueness condition. On a bounded degree graph, ||A|| < 1 -6 for the Ising
model is a strictly stronger condition than §-uniqueness condition. However, due to the observation made
in [AJK*22], if A — oo, the two conditions are roughly equivalent.

Proposition 3.15. The Ising model with parameter f,(A)(1—8) < B < Bu(A)(1 - 8) and A — oo satisfies
JAl <1-6/2.

Proof. We verify that the Ising model has bounded spectral norm of A: note that each entry of A can be
upper bounded by |$|/2 [Hay06], so a row sum of A is at most

|/3|A<(1—5)A 2 )S(l—é)A( 2
2 2 A-2 2 A-2

ln(1+ ):(1_5)(1+A2

1-46/2,
;) <16/

where the last inequality holds for A large enough. ]

We show next that Corollary 1.3 indeed follows from Theorem 3.1. For this, we first restate the corollary
in a more precise manner.

Corollary 3.16. Let § € (0,1) and A > 3. For the ferromagnetic Ising model with f < (1 —6)f,(A) on any
graph G of maximum degree A and chromatic number y, or for the ferromagnetic q-state Potts model with
2(1-5)

q > 3 and f < =—— on the same graph, the mixing time of the SW dynamics satisfies

Tmix(PSW) = O(X AR (log n)1+K),
wherex = 2 + [%].

Proof. If A = O(1), then the corollary was proved in a stronger form in [BCC*22]. Thus, we assume
A — oo,

We first show spectral independence. Let ¢ = 2. Under the §-uniqueness condition 0 < f < (1 —
3)Bu(A), by Proposition 3.15 and Proposition 3.14, the Ising model ping satisfies (4/6)-spectral indepen-
dence. For the g-state Potts model with g > 3, the Dobrushin influence matrix corresponding to ipoits
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2(1-5)

satisfies [|A]| < %/)’A; see proof of Theorem 2.13 in [Ull14]. Thus, if § < ==

Proposition 3.14, pipoys satisfies (2/8)-spectral independence.
Letting N (v) denote the neighborhood of v, and noting that for any configuration  on N(v) we have
p(oy =c | onw) =n) > 1/(qe?), we deduce that ppoys and Hising are both (1/(qe?))-marginally bounded.

, then ||A]] < 1 -6, and by

Therefore, by noting that x = 2+ [%] is a constant that only depends on §, the mixing time bound follows
from Theorem 3.1

Toie (Pow) = () - (CAlogn)* - (ge") %) (1 +4/8) - logn),
as desired. O

3.5.1 The SW dynamics on random graphs

As another application of Theorem 3.1, we consider the SW dynamics on a random graph generated from
the classical G(n, %) model in which each edge is included independently with probability p = d/n; we
consider the case where d is a constant independent of n. In this setting, while a typical graph has O(n)
edges, its maximum degree is of order @(10550 gn) with high probability. Our results imply that the SW

dynamics has polylogarithmic mixing on this type of graph provided f is small enough.

Corollary 3.17. Let § € (0,1) and d € Ry be constants independent of n. Suppose that G ~ G(n,d/n)
and G has maximum degree A. For the ferromagnetic Ising model with parameter f < (1 — 8)f,(A) on G
or the ferromagnetic q-Potts model with q > 2 and < @ on the same graph, the SW dynamics has

2
O((log n)5+2[4q71) mixing time, with high probability over the choice of the random graph G.
Corollary 3.17 is established using Corollary 3.16 and the following fact about random graphs.

Proposition 3.18 ([ANO05]). Let G ~ G(n, %) for a fixedd € Rsq, and let y be the chromatic number of G.
With high probability over the choice of G, y = kq or y = kg + 1, where k; is the smallest integer k such that
d < 2klogk.

Proof of Corollary 3.17. By Proposition 3.18, with high probability G ~ G(n, %) has chromatic number

x = O(d). Also, it is known that with high probability A = @(%). Suppose both properties hold. The

result follows from Corollary 3.16. O

4 Systematic scan dynamics

In this section, we study the systematic scan dynamics for general spin systems (see Definition 2.1), which
we define next. Given an ordering ¢ = [vy,...,v,] of the vertices, a systematic scan dynamics performs
heat-bath updates on vy, . . ., v, sequentially in this order. Recall that a heat-bath update on v; simply means
the replacement of the spin on v; by a new spin assignment generated according to the conditional distri-
bution in v; given the configuration in V' \ {v;}. Let P; € RI%/XI®l be the transition matrix corresponding to
a heat-bath update on the vertex v;. The transition matrix of the systematic scan dynamics for the ordering
¢ can be written as S¢ = P, ... P;. In general, S¢ is not reversible, so as in earlier works we work with the
symmetrized version of the scan dynamics that updates the spins in the order ¢ and in addition updates
the spins in the reverse order of ¢ [Fil91,MT06]. The transition matrix of the symmetrized systematic scan

dynamics can then be written as
n n—1
py=[ | 2] | Pai
i=1 =0
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Henceforth, we only consider the symmetrized version of the dynamics. Since Py is a symmetrized product
of reversible transition matrices, one can straightforwardly verify its reversibility with respect to y; its
ergodicity follows from the assumption that the spin system is totally-connected (see Definition 2.2).

We show tight mixing time bounds for Py for monotone spin systems (see Definition 1.4). Our main
result for the systematic scan dynamics is Theorem 1.6 from the introduction, which we restate here for
convenience. The proof of this theorem is provided in Section 4.1.

Theorem 1.6. Letb > 0,1 > 0, and A > 3. Suppose G = (V, E) is an n-vertex graph of maximum degree A.
Let p be the distribution of a totally-connected monotone spin system on G. If ji is n-spectrally independent
and b-marginally bounded, then there exists a universal constant C > 0 such that for any ordering ¢

2n
Cly+1)5\*T7!
M) -O(log n).

2n

We complement Theorem 1.6 with a lower bound for the mixing time of systematic scan dynamics for a
particular ordering ¢. Specifically, on a bipartite graph G = (Vg U Vg, E), an even-odd scan dynamics Pgog
is a systematic scan dynamics with respect to an ordering ¢ such that v, appears before v, in ¢ for all
v, € Vg and v, € V. In other words,

o= m [ "] P"]]er

i:0;€VE i:0;€Vo i:0;€Vo i:0;€Vg

The above expression is well-defined without specifying the ordering in which the vertices in Vg and Vo
are updated since the updates commute.

Lemma 4.1. Let A be a constant and let G be an n-vertex connected bipartite graph with maximum degree
A. The even-odd scan dynamics Pgog for the ferromagnetic Ising model on G has mixing time Ty, (Prog) =
Q(logn).

The lower bound in Lemma 4.1 is proved in Section 4.2 using the machinery from [HS07] and the fact
that even-odd scan dynamics does not propagate disagreements quickly (under a standard coupling). Our
proof can thus be extended to other scan orderings that propagate disagreements slowly; however, there
are orderings that do propagate disagreements quickly (think of a box in Z? with the vertices sorted in
a “spiral” from the boundary of the box to its center). For this type of ordering, the technique does not
provide the Q(log n) lower bound. In addition, while we focus on the ferromagnetic Ising model to ensure
clarity in the proof, the established lower bound is expected to apply to a broader class of spin systems.

4.1 Proof of main result for systematic scan dynamics: Theorem 1.6

The main technique in the proof of Theorem 1.6 is to compare the systematic scan dynamics with a fast
mixing block dynamics via a censoring inequality developed in [FK13]. For this, we first introduce some
notations and definitions.

We start by reviewing standard facts about the coupling method that will be used in our proofs; see
[LPWO06] for a more detailed background. A coupling of a Markov chain M specifies, for every pair of states
(X;,Y;) € Q x Q at every step £, a probability distribution P over (X;11, Y;4+1) such that when viewed in
isolation, {X;} and {Y;} are valid instances of the chain M. The optimal coupling lemma says that for any
two distributions p and v, we have

| = vy = M inlﬁ P[X #Y:(X,Y) is a coupling of y and v], (30)
Y~y
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where the infimum is taken over all couplings of y and v. We focus on couplings of Markov chains such
that if X = Y, then X; = Y, for all t > s. Given a coupling P of M, the coupling time, is defined as

1
Tooun (M) = { P[X; # Y. s—}.
coup (M) min|  max [Xr # Y1] 2

It is a standard fact that for any coupling (X}, ;), the coupling time bounds the mixing time as follows:

d(t) < % er?)fll?o(eQP[XT # Yr], and thus Tpix (M) < Teoup (M). (31)
A coupling of two instances {X; }, {Y; } of a Markov chain M is a monotone coupling if X, >4 Y41 whenever
X;: 24 Y;, where > is the partial ordering of Q. Let {X; , } denote the instance of M starting at configuration
o € Q. If there exists a simultaneous monotone coupling of {X; .} for all ¢ € Q (i.e., a grand coupling),
then we say M is a monotone Markov chain. It can be checked that Py is a monotone Markov chain for any
¢ (see e.g. [BCV20]).
We may also define a partial ordering <,, on the space of transition matrices. A function f € Rl is said
to be non-decreasing if f(o) > f(r) whenever o >, 7, or non-increasing if f (o) < f(r) whenever o >, 7.
We endow R!®! with the inner product (f,¢); = Y.cq f(x)g(x)z(x), which induces a Hilbert space
(RI®1 (., -),) denoted as Ly (). For transition matrices K and L whose stationary distributions are both 7,
we say K <, Lif (Kf,g)r < (Lf,g)r for every non-negative and non-decreasing functions f,g € L,(x).
To show K <, L in our applications, we use the following facts.

Proposition 4.2 ([FK13]). Suppose 7 is the Gibbs distribution of a monotone spin system.

1. I_fAl <r: By andA2 <r By, thenforO <A< 1, (1 - A)Al +/1A2 <r (1 —A)Al +/1A2.

2. IfAs < Bs fors=1,...,1,thenA;...A; < By...B,.
3. For any fixed v, let K, be the heat-bath update at site v. Then, K, <, L.

Establishing such partial order between two transition matrices is significant as it would imply stochas-
tic domination of the corresponding two chains (recall that for two distributions 7 and v on Q, we say x
stochastically dominates v, and denote as 7 > v, if for any non-decreasing function f € R!®l, we have

E.[f] = E,[f]). The following lemma captures such implication.

Lemma 4.3 ([FK13,BCV20]). Suppose {X;} and {Y;} are monotone ergodic Markov chains reversible with
respect to 7, the Gibbs distribution of a monotone spin system. Let Kx and Ky be the corresponding transition
matrices of {X;} and {Y;}. Suppose Kx <, Ky. Then X; <Y, forallt > 0 if the initial states Xy and Y, are
sampled from a common distribution v such that v/ is non-decreasing; if v/ is instead non-increasing, then
Y; < X; forallt > 0, where < as a relation for X; and Y; denotes stochastic domination of their corresponding

distributions at time t.

We now provide our proof of Theorem 1.6.

Proof of Theorem 1.6. We partition V into k disjoint independent sets I1, I, . .., I, where k = O(A). Set
B ={L,..., It} and define Pg to be the heat-bath block dynamics w.r.t. these independent sets. Fix an
ordering ¢ = [vy,...,0,], and fix j € {1,...,k}. Let K be the transition matrix corresponding to heat-
bath update in the independent set I;, which can also be seen as a systematic scan on I; according to the
ordering defined by ¢. We define P; to be P; ifi € I ; and the identity matrix I otherwise so that

2 2

Ki=ki=|[]P|=[]]"]]1]=]]0]]Pns

iZUiEIj i:viGIj l'ZUiQIj i=1 i=0
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Note that in the computation above, P; and Py commute for v;, 0 € I;, and I commutes with arbitrary
matrices. By Proposition 4.2(3), we obtain P; <, P; for all i, and hence by Proposition 4.2(2), we obtain
Py =<, Kj for any j, and consequently, by Proposition 4.2(1),

k
1
Py <, EZKJ- = Pg. (32)
=

Let + and — denote the top and the bottom elements in [g] respectively. Let {X;} (resp., {X; }) be an
instance of a Markov chain with transition matrix Py starting from the all + (resp., all —) configuration.
Similarly, let {Y,"} (resp., {Y,”}) be an instance of Pg starting from the all + (resp., all —) configuration. Py
is monotone, so we can define a grand monotone coupling of {X;} and {X; } such that X; <, X/ for all
t > 0, which with (31) further implies that the mixing time of a systematic scan can be upper bounded by
the coupling time of the all + and all — configurations.

Letting v* and (resp., v~) denote the trivial distribution concentrated on the all + (resp., all —) config-
uration, we note that v*/u is non-decreasing and v~/ is non-increasing. Then Lemma 4.3 and (32) imply
that for all ¢t > 0,

Y7 X7 X[ <Y/

Forany v € Vandall t > 0, X; <, X; implies that

Pr[X; (0) # X; (0)] < ). PrlX;(0) > ¢ X; (0) < c]
celq]

- Z Pr[X; (v) > c] - Pr[X; (v) > c].
celq]

Then, since ¥;” < X; and X;’ < Y;, we obtain that

D7 Pr[Xf (0) 2 ] = Pr[X; (0) = c] < ) Pr[Y(v) > ¢] - Pr[Y; (o) > c]

celq] celq]
< Pl (@) > ] = Pr[Y, (o) > ¢
celq]
= q”PEB('h ) - P;;(_s ')HTV
<q(IPE(+) = pOllrv + 1P (=) = pOll7v) - (33)

Since p is y-spectrally independent and b-marginally bounded, it follows from Theorem 3.3 and Remark 2
that Pg satisfies the relative entropy decay with rate

bék

> 34
TS kA (Cp+ 1)P)F (34
where k = 2 + [27'7] Let b’ := (C(n+1)°/b%)¥, and let
log (ft7,; ))
T := kA*™b 1o (¢ = O(A™p log(qn)).
1) e
By (5) and (34), Tpnix (Pg,1/(8qn)) < T. Then for any o € Q,
1
PL(o,-) — p(- < —,
1P (o) =)y < oo
so we have Pr[X7(v) # X+ (v)] < 1/(4n). By a union bound, Pr[X} # X1 | < 1/4, and therefore
Tix (Pg) < T = O(A™"'b log(qn)),
establishing the desired bound for the mixing time. O
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4.2 Proof of the lower bound: Lemma 4.1

We provide next the proof of Lemma 4.1. Our proof extends the argument from [HS07] for the Glauber
dynamics and also uses ideas from [BCSV23,BCP*22]. The following fact will be used in our proof.

Lemma 4.4 (Lemma 35, [BCP*22]). Let {X;} denote a discrete-time Markov chain with finite state space Q,
reversible with respect to w and with a positive semidefinite transition matrix. Let B C Q denote an event. If
Xy is sampled proportional to  on B, then Pr[X,; € B] > n(B) forallt > 0, and forallt > 1,

Pr[X; € B] > n(B) + (1 — n(B)) "' [Pr(X; € B) — n(B)]".

We can now prove Lemma 4.1.

Inn

Proof of Lemma 4.1. Suppose n is sufficiently large. Let R = 575 ] andlet T = aInn < R/3 for some a > 0
we will specify later. We will show that for some (random) starting configuration X, € Q,

”;UIsing(') - PEOE(XOa ')”TV > 1/43 (35)

and hence by definition T,,,;, (Pgog) = T. As G has maximum degree A, we can always find a subset Vo C V
of size at least n'/* whose pairwise graph distances are at most 2R. Let G¢ := Uuev-B(u, R). We consider a
restriction of the even-odd scan dynamics on G¢. Let {X;} be an instance of the even-odd scan dynamics,
and let {Y;} be an even-odd scan dynamics that only updates spins for vertices in G, starting from the
same configuration as {X;} which will be specified next.

Let N := n'/* and let f : Q — R be the function given by f(o) = ﬁ 2oeve L(o(v) = +1). To show
(35), it suffices to find a distribution for X € Q and a threshold A € R such that

Pr [f(Xr) > A] = Prop,, [ f(0) = A]| > 1/4. (36)

We define X by setting the configuration on VoU(V\G¢) to be the all +1 configuration and for each vc € Vo
sampling the configuration in B(ovc, R) \ {oc} conditional on the all +1 configuration on Vo U (V \ G¢).
Let 7 denote the conditional distribution on G¢ with a fixed all +1 configuration on V' \ G¢. Define A =
Eo-r [f(0)] + N~'/3. We will show next that

L Proy, [f(0) 2 A] <1/2;

2. Under the identity coupling, f(X;) = f(Y;) for t < T. The identity coupling is the standard coupling
that updates the same vertex in both chains at the same time and maximizes the probability that the
spin value at the vertex agrees after the update;

3. Pr[f(Yr) > A] > 2,

and thus (36) follows.
We first give the upper bound for Pro . [ flo) > A]. Since the ferromagnetic Ising model is mono-
tone, and f is a non-decreasing function, for any boundary condition 7 on Qy\g,.,

Eoor [f(0)] 2 Eouyr, [f(0)].

For any 7 € Qy\g,., if o is generated from pf, ing’ then f(o) is the average of N independent indicator
random variables. By Hoeffding’s inequality,

2. N4/3 1
< _!
N 2

Proif e [f(o) > A] < Proif e [f(o) > Egpit,, [f(0)] + N7'?] < exp (—
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and thus )
Pt [f(o') = A] = Z Pra~l‘ﬂing [f(o') > A] ~u(r) < >

TEQV\GC

To see that f(X;) = f(Y;), we consider the speed of “disagreement propagation”. Note that f(X,) =
f(Yy) since Xy = Yy. The key observation is that under the identity coupling, in one step of the coupled
even-odd scan dynamics, the disagreement at any vertex v can be propagated only to vertices at distance
at most 3 from v. Since R > 3T, we can guarantee that X;(v) = Y;(v) forallv € Vo and all t < T.

Finally, we provide a bound for Pr [ f(Yr) > A]. Fix v € V. Let 7, denote the Ising model distribution
restricted to B(v, R) under the all +1 boundary condition outside of B(v, R). Note that (X) veve To = 7. Let
{Y?} denote the Markov chain obtained by projecting {Y;} to B(v,R). Since the boundary of B(v,R) is
fixed, {Y/} is simply an even-odd scan dynamics on B(v, R) under the all +1 boundary condition. It can be
checked that {Y} is reversible with respect to 7, and that it has a positive semidefinite transition matrix.
We define B, to be the event (or subset of configurations) that v is assigned spin +1. It can also be verified
that igsing is b-marginally bounded for some constant b = b(f, A), so b < 7,(8B,) < 1 — b. Moreover, we
have the following fact, which we prove later.

Claim 4.5. There exists a constant ¢ := c(f, A) > 0 such that Pr(Y/ € B,) > m,(B,) +c.
By Lemma 4.4 and Claim 4.5, for all ¢t > 1,

t

Pr[Y? € By = mo(By) + b~ [Pr(Y? € B,) = my(Bo)|' = 10(By) + ——

pt-1
Using this and the definition of f, we have
1 u 1 ! _ !
EF(YD] =5 D) Pl e B = = (7 (B) + —,,T_l) =Eoor [f(0)] + 5.
ueVe ueVe

L nn—in 2
SetT := min(%, ulln%), so that bCTT_l > 2N~1/3 Thus, E[f(Yr)] > A+N~'/3. By Hoeffding’s inequality,
we obtain ‘

2N*3) 1

Pr[f(Yr) < A] < Pr [f(YT) <E[f(Yp)] —N‘1/3] < exp [— ~ ] <3

Therefore, the mixing time of Pgog is at least T = Q(logn). m|

It remains to prove Claim 4.5.

Proof of Claim 4.5. Let P be the even-odd dynamics defined on V' = B(v, R), and suppose V' = Vg U Vj is
a connected bipartite graph. Suppose v € Vp without loss of generality. Recall that the transition matrix

of Pis
I
i:0;€Vg i:0;€Vo i:0;€VE

We use Yg, Yop and Ygog = Y/ to denote the configuration of Y; after the updates [];.,, ¢y, P; on even ver-
tices for the first time, after the updates [ [;.,,. ¢y, Pi on odd vertices and after update [[;.,,. ¢y, P; respectively.
Since the last set of updates on the even vertices do not affect the spin at v, we have

Pr(Yy € B,) =E|L(Ypor € B,)| =E[1(Yor € B,)| =E [E[L(Yor € B,) | Ye|] .
Let N(w) denote the set of vertices in V' adjacent to w. For a configuration o € Q and w € V, we define

S(o;w) = 2ixen(w) L(ox = +1) and gy, : Z — [0, 1] given by g4,(y) = prsing(00y = +1 | S(o3w) = y). Let
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7y (resp. m,) be distribution on V' given by 7} (o) = n,(0 | 0 € B,) (resp. 7, (0) = my(0o | 0 & By)).
Recall that Y is a configuration drawn from 7} and by noting that

71:,'( 1—[ Pi)=n';',

i:v;€VE

so Y can also be viewed as a configuration drawn from 7. Hence, by the definition of the Gibbs update,
we have

E [E[1(Yor € B,) | Y]] = Ecens [90(S(,0))].
Similarly,
”U(Bv) = E0'~7rz, [gU(S(O', U))] .

By Strassen’s theorem, there exists a coupling of (o, 7) such that ¢ ~ m,,7 ~ 7y and 0 <; 7. Then
ON(v) # TN(0) implies S(7,0) > S(o,v) + 1. Therefore,

Pr(Ylv € Bv) - ”U(Bu) = Er~7r;j [gv(S(T, U))] - Ecr~7r,, [90(5(0,0))]

= E(.0)~(mort) [90(5(7,0)) = gu(S(0,0))]

2 . min (90(17 U) - gv(l -1, U)) ' E(U,r)~(7ru,7r;j) [S(T’ U)) - S(O-a U)]
i<deg(v)

> min (gu(i, ) —gv(i -1,0)) - E(a,r)~(nv,7r;§) []I(O'N(U) * TN(v))] .
i<deg(v)

It can be checked that min;<geg(0) (90 (i,9) = go(i — 1,0)) > ¢z, Where ¢; = ¢3(f, A), Moreover, for any
u € N(v) we have

E(.0)~(rort) [L(ON (o) # ™N(@)]| 2 B~ (roump) [1(0u # 7]
Fix u and let A := V' \ {4, 0}. Since o, < 7,, 0y, # 7, implies that g, = —1 and 7, = +1. Thus we obtain
E(a,r)~(7rv,7r;) [1(oy # T)] = E(a,r)~(7rv,n;§) [,UIsing(Tu =+1| 1)) — HIsing(Uu =+1 | O'A)]

= E(o,0)~(mo,13) [9u(S(7,u)) — gu(S(o,u))]
>b- E(U,‘r)~(7r;,7r;§) [gu (S(T, u)) —Yu (S(U: u))] >

where the inequality is due to the b-bounded marginal condition of pysine Which requires o, = —1 with
probability at least b. Note thatif o ~ 7,7 ~ 7} and o <q 7, then S(7,u) > S(o, u) + 1. Hence,

E(o.0)~(ny,7t) [9u(S(7, 1)) = gu(S(o,u))] = min (g,(i,u) — gu(i—1,u)) > cs,
i<deg(u)

for some c3 = ¢3(f, A) > 0. Therefore, we established that
Pr(Y, € B,) — my(By) > cacsb,

and c;c3b depends only on S, A. O

4.3 Applications of Theorem 1.6

We discuss next some applications of Theorem 1.6. As a first application, we can establish optimal mixing
for the systematic scan dynamics on the ferromagnetic Ising model under the §-uniqueness condition,
improving the best known results that hold under the Dobrushin-type conditions [SIM93,DGJ06a, Hay06].
This result was stated in Corollary 1.7 in the introduction and is proved next. For this, we recall that
under §-uniqueness condition, the Ising distribution piin, satisfies spectral independence and the bounded
marginals condition.
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Proposition 4.6 ((CLV20,CLV21]). The ferromagnetic Ising model with parameter 8 such that B, (A)(1 —
0) < B < Pu(A)(1—06) is O(1/5)-spectrally independent and b-marginally bounded with b = O(1).

Proof of Corollary 1.7. We fix § € (0,1) and first assume that A is a constant. By Proposition 4.6, the
ferromagnetic Ising model with parameter f < (1 — §)p,(A) satisfies n-spectral independence and b-
bounded marginals, where n = O(1/§) and b is a constant. Since the ferromagnetic Ising model is a
monotone system, it follows from Theorem 1.6 that T,,;x = O(logn) for any ordering ¢.

Now, when A — o0 as n — oo, by Proposition 3.15, the Dobrushin’s influence matrix A of ferromag-
netic Ising model satisfies that ||A|| < 1 —3/2. Under this assumption, it is known that T;,;, = O(logn) for
any ordering ¢; see [Hay06]. ]

We can similarly show mixing time bound for the systematic scan dynamics of the hardcore model on
bipartite graphs under §-uniqueness condition.

Corollary 4.7. Let § € (0,1) be a constant. Suppose G is an n-vertex bipartite graph of maximum degree

A > 3. For the hardcore model on G with fugacity A such that0 < A < (1-8)A,(A), where 4, (A) = ((AA__%?: is

the tree uniqueness threshold on the A-regular tree, the systematic scan with respect to any ordering ¢ satisfies

Tonix (Pg) = A%/ . O(log n).

Proof of Corollary 4.7. The hardcore model on a bipartite graph (V] U V,, E) with fugacity 0 < 4 < (1 -
&) A, (A) is monotone, and [CLV21,AJK*22,CLY23] show that it satisfies O(1/§)-spectral independence and
the Q(1)-bounded marginals condition. Theorem 1.6 then implies A°(1/9) . O(log n) mixing of systematic
scan for any ordering,. O

We consider next the application of Theorem 1.6 to the special case where the underlying graph is a
cube of the d-dimensional lattice graph Z¢. We show that strong spatial mixing implies optimal O(log n)
mixing of any systematic scan dynamics. Previously, under the same type of condition, [BCSV19] gave an
O(log n(loglog n)?) mixing time bound for arbitrary orderings, and an O(log n) mixing time bound for a
special class of scans that (deterministically) propagate disagreements slowly under the standard identity
coupling. We first provide the definition of our SSM condition.

Definition 4.8. We say a spin system p on Z¢ satisfies the strong spatial mixing (SSM) condition if there
exist constants a,y, L > 0 such that for every d-dimensional rectangle A ¢ Z¢ of side length between L
and 2L and every subset B C A, with any pair (7, 7") of boundary configurations on dA that only differ at
a vertex u, we have

5 () = 5 v <y - exp(~a - dist(u, B)),

where dist(-, -) denotes graph distance.

The definition above differs from other variants of SSM in the literature (e.g., [DSVW04,BCSV19,M0S94])
in that A has been restricted to “regular enough” rectangles. In particular, our variant of SSM is easier to
satisfy than those in [DSVW04,MOS94] but more restricting than the one in [BCSV19] (that only considers
squares). Nevertheless, it follows from [CP21,M0OS94,Ale98,BDC12] that for the ferromagnetic Ising model,
this form of SSM holds up to a critical threshold temperature < f.(2) = In(1 + V2) on Z2.

Corollary 1.9 from the introduction states that for b-marginally bounded monotone spin system on
d-dimensional cubes V C Z4, SSM implies that the mixing time of any systematic scan P4 is O(logn). As
mentioned there, this result in turn implies that any systematic scan dynamics for the ferromagnetic Ising
model is mixing in O(logn) steps on boxes of Z? when < B.(2). Another interesting consequence of
Corollary 1.9 is that we obtain O(log n) mixing time for any systematic scan dynamics Py for the hardcore
model on Z? when A < 2.538, which is the best known condition for ensuring SSM [SSSY17,RST*13].
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Our proof of Corollary 1.9 relies on Lemma 1.8 that is restated below. Remarkably, Lemma 1.8 gener-
alizes beyond monotone systems and may be of independent interests.

Lemma 1.8. For a spin system on a d-dimensional cube V C Z¢, SSM implies n-spectral independence, where
n=0(1).

Proof of Corollary 1.9. Assume a monotone spin system satisfies SSM condition. Then the spin system
satisfies -spectral independence, where 7 = O(1) by Lemma 1.8. By noting that A = 2¢ the corollary
follows from Theorem 1.6. m]

Lastly, we give a proof of Lemma 1.8. For this, we recall the notion of a x-contractive coupling which
is known to imply spectral independence. We say a distribution y is k-contractive with respect to a Markov
chain P if for all Xj, Yy € Q, there exists a coupling of step of P so that

E[d(X1, Y1) | Xo, Yo < xd(Xo, Yp),

where d(-, -) denotes the Hamming distance of two configurations. The following lemma from [BCC*22]
shows that spectral independence follows from the existence of a contractive coupling with respect to a
heat-bath block dynamics.

Lemma 4.9 ([BCC*22]). If u is k-contractive with respect to a block dynamics, then y is (%)-spectmlly
independent, where M is the maximum block size and D is the maximum probability of a vertex being selected
as part of a block in any step of the block dynamics.

With this lemma on hand, we can now prove Lemma 1.8.

Proof of Lemma 1.8. Let L be a sufficiently large constant so that the SSM condition is satisfied; we will
choose L later. Let V be a d-dimensional cube of Z¢. We define a heat-bath block dynamics Pg with
respect to a collection B of d-dimensional rectangles in V. Precisely, let S, := {w € Z% : d.,(w,0) < L},
and let B be the set of blocks {S, N V},cy. Given a configuration X;, the heat-bath block dynamics Pg
obtains a configuration X, in 3 steps as follows:

1. Choose v € V uniformly at random. Let S;, := S, N V.
2. Generate a configuration o € Qg from pg, (-), where 7 € Qy\; is given by 7(u) = X;(u);
3. Let Xp4q () = o(u) ifu € S, and X1 (u) = X;(u) otherwise.

We will show that y is k-contractive with respect to Pg whenever SSM holds. Our argument builds upon
[DSVW04] but works for Pg under our weaker form of SSM condition, in which the geometry is restricted
to d-dimensional rectangles of large side lengths. One can verify that if A = S, NV € B, then A is a d-
dimensional rectangle of side lengths between L and 2L. The argument in [DSVW04] requires a stronger
form of SSM to deal with the set of blocks 8 = {A =S, NV : A # 0,0 € Z%} which contains arbitrarily
thin rectangles, and this stronger form of SSM condition does not hold up to f. for the ferromagnetic Ising.

Fix (Xp, Yo) such that there exists exactly one vertex u € V such that Xy(u) # Yy(«) and Xy(v) = Y5(0)
for all v # u. We select the same v € V in the first step of Pg in both chains; let A = S. There are three
cases with regard to the position of the disagreeing vertex u: u is contained in A, u is on the boundary
of A, or u is far from A. Let dA denote the external boundary of A. If u € A or u ¢ (A U dA), since the
boundary conditions are identical, we generate the same configuration o ~ y} to update A in both chains
such that X;(A) = Y;(A), where 7 := X(0A) = Yy(0A). Hence, E[d(X1, Y1) | Xo, Yo,u € A] = 0 and
E[d(X1, Y1) | Xo, Yo,u ¢ (AUOIA)] = 1.
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It remains to define the coupling in the case when u € dA, and we would need an upper bound for

E[d(X1, Y1) | Xo, Yo, u € dA]. For this, we use the SSM condition. Let B := {w € A : d(w,u) > r}, where
ri= % (5)1 Zd, and let 7 and 7’ be the boundary conditions of A in X and Y; respectively. By assumption,

7 and 7’ are only different at u. We can view the coupling of the update on A as consisting of three steps:

1. Generate two configurations 01,0, € Qp from pj and ;11’3’ using the optimal coupling of the two
distributions;

' Uoy |

2. Independently generate two configurations o3, 04 € Q\p from yzk\ng and p A\B

3. Let Xq(u) = 01(u) and Y;(u) = 02(u) if u € B, and X (u) = 03(u) and Y;(u) = o4(u) ifu € A\ B.

Clearly, X;(A) ~ py and Y;(A) ~ ,uf\/, so the coupling is valid. By (30), there exists a coupling P used for
the first step such that
Ploy # o2] = |lug — pg llTv.

Moreover, SSM implies that there exist constants y, & > 0 such that

ar

g = p llrv <y - exp(—a - dist(u, B)) <y - e
Also, |A| < (2L)% and |A \ B| < (2r)¢. Put together, we have
E[d(X1, Y1) | Xo, Yo,u € dA] < 1+ |A\ Bl +|A|-Ploy # 03] < 1+ (2r)%+ (2L)% -y - ™",
Let N := |8B|. Therefore, by noting that Pr[u ¢ A] > L¢ we obtain

E[d(X1, Y1) | Xo, Yol = E[d(X1, Y1) | Xo, Yo, u € OA] - Pr[u € 0A] + E[d(X1, Y1) | Xo, Yo, u € A] - Pr[u € A
+E[d(X1, Y1) | Xo, Yo,u & (AUAA)] -Pru ¢ (AUA)]
<1+PrluedA]-[(2n?+2L)% -y e %] —Pr[u € A]

.\ 2d - (2L)41 L4

< ~ [@n+ @)y e - ~

=1+L;1-[2dd-(\/§+m)—n].

exp(a- % 5)

(37)

Recall that N = O(n). By choosing L = L(d, , y) sufficiently large, we obtain

Bl Y) | X%l <1- St =1-afL) =1t
1, 11 0, 101 = N - N - n-

In the case where blocks are of maximum size (2L)¢ and where each vertex is covered by at most (2L)¢
number of blocks at any step, D = @(n™!) and M = O(1). Thus, Lemma 4.9 implies that y is p-spectrally
independent, where

_ e(n™)
1T Ioa-Qm)

as desired. |

=0(1),

25



5 General block dynamics

In this section, we give an upper bound for the mixing time of the block dynamics of a totally-connected
spin system on general graphs. In particular, we prove Theorem 1.10 from the introduction.

We present next a more general form of entropy factorization. In particular, KPF and UBF are special
cases of it. A Gibbs distribution y is said to satisfy the general block factorization of entropy (GBF) with
constant Cgpp if for all functions f : Q — Ry, and for all probability distributions & over the set of all
subsets of V,

Cmin - Bty () < Capp )| @(U)Eropy,, [Entf(f9)],
ucv
where i, = mingey X y.pey @(U). The notion of GBF is closely related to the general block dynam-
ics [CP21,BCC*22,CMT14]. Indeed, the following proposition shows that a bound for Cgpr yields a bound
for the modified log-Sobolev constant of general block dynamics.

Proposition 5.1 (Lemma 2.8 in [BCC*22]). If the Gibbs distribution u of a spin system is totally-connected
and satisfies GBF with constant Cggr, then the general block dynamics Pg, wr.t. (B, a) satisfies relative

entropy decay with rate at least 'é'g};;‘ and satisfies a modified log-Sobolev inequality with constant p(Pg ) >
Cmin
Casr

The main theorem of this section is the following; Theorem 1.10 from the introduction follows as a
corollary of this result.

Theorem 5.2. Letn > 0,b > 0,A > 3 and y > 2. Suppose G = (V,E) is an n-vertex graph of maximum
degree A and chromatic number y. Let 1 be a Gibbs distribution of a totally-connected spin system on G. Let
B = {By,...,Bg} be any collection of blocks such that V = U;B;, and let o be a distribution over B. If u is
n-spectrally independent and b-marginally bounded, then there exists a universal constant C > 1 such that a
general heat-bath block dynamics Pg o w.r.t. (8, a) has modified log-Sobolev constant:

Qmin * o
x - (CA(n+1)>logn)<-)’

p(PB,a) =Q (

wherex = 2 + [%’7], and

X

Amin

Tnix(Pga) = O ( b7 . (C(n+1)°Alogn)" - log n) )

Theorem 5.2 follows from the bounds for Cxpr in Theorem 3.3 and the following lemma from [BCC*22]
that relates k-partite factorization with the general block factorization.

Lemma 5.3 (Lemma 3.4, [BCC*22]). Suppose the Gibbs distribution u of a spin system on a graph G satisfies
k-partite factorization of entropy with constant Cxpr. Then i satisfies GBF with constant k - Cxpr.

Proof of Theorem 5.2. The lower bounds for the entropy decay rate and MLSI constant follow from Theo-
rem 3.3, Lemma 5.3 and Proposition 5.1, and by (5) we obtain the desired upper bound for mixing time. O

We also obtain the following corollary for the ferromagnetic Ising and Potts model.

Corollary 5.4. Let § € (0,1) and A > 3. For the Ising model with 8 € [(1 = 8)Bu(A), (1 = 8)B.(A)] on any
graph G of maximum degree A and chromatic number y, or the ferromagnetic q-state Potts model with q > 2
and0 < B < @ on the same graph,

p A\2+01/8)
Tmix(PB,a) =0 ( ) -0 (3) . (Iog T’l)3+o(1/5) .

min
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Proof of Corollary 5.4. We have shown in the proof of Corollary 3.16 that, for the ferromagnetic g-state
Potts model when f is such that 0 < § < @, then b = O(1) and n = O(1/9). For the Ising model, we

achieve the same bound by Proposition 4.6. Now k = 2 + [27'7] = 2+ 0(1/6), and the mixing time bound

follows from Theorem 5.2. O
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A Proof of the second part of Theorem 3.3

In this appendix, we prove (9) in Theorem 3.3, which begins by extrapolating the proof of Lemma 3.3 in
[BCC*22] as Lemma A.1.

Lemma A.1 ([BCC*22]). Let 6 € (0,1] andn > %(2—'27 +1). Let G, p, Vi, ..., Vi be as in the assumption of

Theorem 3.3. Let S be a uniformly generated block of vertices of size [On], and let Sy, .. ., Sy, be the connected
components of S. Recall that Cs(v) denotes the unique connected component S; in S that contains v if such
a component exists, otherwise set it to be the empty set. Suppose further that for S; C S, I'(S;) takes the

30



minimum value such that the following inequality holds for an arbitrary pinning © € Qge and any function
g: Q¢ — Ry

M%@<HMEFWM[M$%@NN~

Then,
k
Baty (f) < "2 3B, [Bntf, ()] -G (38)
Jj=1

where

Gj = vr}lg‘)/i %%(ES [F(Cs(v)) |VinsS = W]

and the expectation Eg is taken over the uniform generation of S.

Proof of (9) in Theorem 3.3. In the same way that we prove (8), if A? > ﬁ;{bz) then it follows from
Lemma 3.7 and Lemma 3.8 that

3([2n] +2)*  10e(4n + b?)  « (240e)* - ([n] +1)°< - AZK

Cipr < : SN <
KPF (2b4)K ( b2 ) bGK
Now we assume A? < W Take 6 = 5eA2 > % = ( + 1). Theorem 3.2 implies that
[ E2
CUBF = (0) ’ ( ezAz) b . (39)

Given Lemma A.1, to show (9) it remains to provide an upper bound G; for each j. There are two main
steps for proving this bound. First, we upper bound G; in terms of the size of connected components in
S. Under the assumptions of Theorem 3.3, j1 is -spectrally independent and b-marginally bounded. These
properties by definition preserve under any pinning. In particular, for any S; C S and an arbitrary pinning
T € Qy\g,, g, is still n-spectrally independent and b-marginally bounded. Thus, Lemma 3.7 and Lemma 3.8
imply that

3([27] +2)*

I'(S) < e 1S: 1",
and letting b= % we have
Gj < bvrl}qca‘)/g maxES [|C5(v)|" |VinS= W] (40)

The second part of this proof analyzes the conditional expectation term above on the right-hand side
of (40). We fix v € V (and hence fix V}) and fix a feasible W such thato € W C V; and |W| < [0n]. We say a
set T C V' \V;is W-connected if T UW is connected in G, and we denote by $’(v) the unique W-connected
vertex-set in S that is adjacent to v, if such set exists, otherwise an empty set. Clearly if S"(v) = 0, then
Cs(v) = {v}. Suppose S’ (v) # 0. Observe that Cs(v) = S’ (v) U (Cs(v) N W). Since (Cs(v) N W) must be
adjacent to S’ (v) if S (v) # 0, |Cs(v) N W| < A - |S’(v)]. Hence, |Cs(0)| < (A+1)|S"(0v)].

Furthermore, let G, := (V, E U E,), where E; is the set of pairs of vertices that are of distance at most 2
in G. Note that the degree of any vertex in G, is at most A%. Let Cs, (v) be the unique connected component
in G, [S] that contains v. Notice that the set S’ (v) is always a subset of Cs, (v), regardless of the specific set
W we choose to fix. Hence, for any x,

, x x
Prs [|Cs(0)| = x | V; NS = W] < Prs [lS )2 5 | anszw] < Prg [|csz(o)| > —|.
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1

Now we apply Lemma 3.6 to estimate the last probability. For 0 < &,

x
Prs |[Cs, (0) 2 —

| < 17 " ey L oo
k=0

A+1 n
1 1 I.ﬁ =1
_ZeAz(E ZE
k=0
Lo
Sae

Hence, we obtain

n

< XKPI'S [lCSZ(U)l 2> L]

<:: K 1 X
X ._.ZA+1

Therefore, G; < 4bA?* . This bound on G ; together with (38) and (39) implies

©_12(f2n)+2)™

Cxpr < 4bAP< - (SezAz) b

(SezAz)K LA

concluding the proof. ]

B Additional proofs

Proof of Lemma 3.7. Let no, 1, - - ., In—2 be a sequence of reals. We say a distribution p is (79, 11, - - -, Jn-2)-
spectrally independent if for every 0 < k < n—2,any A C V of size k and any pinning 7 on A, 4, (¥)) <
1. Theorem 6 and 8 from [CGSV21]! state that if y is (10, 71, . - . , n—2)-spectrally independent, then the
spectral gap of the Glauber dynamics is at least

n—2
lﬂ (- =) (a)

We complete the proof by establishing suitable bounds for each 7. Per Definition 1.1, we have n; < n for
all k € [0, n — 2]. In addition, we will show that

4
rykS(n—k—l)-(l——(nz_I)k)4). (42)

1Originally these theorems are given for coloring, but their proofs naturally extend to general totally-connected distributions.
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As such, we will have that ;. < min{s, (n—k-1)-(1- %) }, and we would finish the proof of Lemma 3.7
by plugging these bounds for 7 into (41):
2

Mk 1 , n 2b* 1 Y b
(”m) . Zn(l_mm{n—k—l’l_ (n—k)‘*})_;k:l (1_m1n{E’1_ (k+1)4})

k
[2n1+1 4 n—1 4 r2nl+1 n—1
1 2b 1 2b 2
;( (k+1)4) |l (1_%) ;((D 1+2)4) o= ), ?’7
k=T 2n]+2 n k={2m]4+2

n—1

o
S
|
o

n—

S =
o~
i

0

v

v

=\ Tzl +20 (2nl+2° n

Now we provide a proof for (42). Let 7 be a pinning on A with |A| = k, and let U = V' \ A. Theorem 8 of
[CGSV21] shows that

n

1 2b4 |-2?]-|+1 2b4 1 1+|-2'ﬂ
( ) -exp (—2nlnn) > ( )

L(¥E) = (n=k=1) - Ao(Py),

where P, denotes the transition matrix of the local random walk on P7 := {(u,s) : u ¢ A,s € Qf} whose

entries are given by P, ((u,a), (v,b)) = % . ”ITKF{I;}?) (0p = b). Let n7 be a distribution on 7 given by

7" (u,s) = ¢ - p"(oy = s). It is straightforward to verify that P, is reversible with respect to z7. By the
standard relationship between conductance and the eigenvalue of a reversible transition matrix in [S]89],

we have
. P2
where .
P = min ®g, and  Dg := (%) P (x, ).
SCPT:S£0,77(S)<1/2 s> att S 17 (S) ;;ﬂ ()P (x. )

As p is totally-connected, for any S € #7 such that S # 0 and 7°(S) < 1/2, there exist x € S and
y ¢ S such that P, (x, y) > 0. Also, since y is b-marginally bounded, we have 77(x) > b/(n — k) and
P, (x, y) > b/(n—k —1). Hence,

d>2 min min T(x)P(x,y) > 2 b > 2b"
> 't (x x,y) > 2- . > )
SCPTT(S)<1/2 xeS,ygS:Py(x,y)>0 Ty n—-k n—-k-1" (n-k)?
It follows that 2 (FF) , )
1 U ~ CI) 21’)
U —1-GAP(P,) <1-— <1-——
n-k-1 (Pr) < 2 (n—-k)*
which establishes (42). O

Proof of Lemma 3.8. We say that u satisfies the log-Sobolev inequality with constant p; if for all functions
f Q- Rzo,

1
p1Ent, (f) < - Z B (o) [Varg(\/]TT)] )
n veV
Recall that Car is the least constant such that for all functions f: Q — Ry,

Enty (f) < Car ) Brupy [Ent5(F)]

veV

Proposition 1.1 from [CMT14] implies that

1
Car < E (43)
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Moreover, [DSC96] shows that

1 = 2lmin
.y < pi. 44
log(Wpmn—1) V=7 44

If pmin > 1/3, then p is a trivial distribution and C4r < 1. Thus, we may assume that i, < 1/3. Since p
is b-marginally bounded, we have

= 2pmin 1 1

> > : (45)
log(1/ptmin —1) — 3log(1/pimin) — 3nlog(b™1)
It follows from (43), (44) and (45) that
3log(b™?
Car < 2B (46)
Observe that by Corollary 3.12, if v € B, then
By [ENG(f1)] < Eropyy [Entp(f9)] .
Hence, given k disjoint independent sets Uy, . .., U of V such that Ule U; =V, we have
k k
2 Eemo [EnSCUO] = 370 3 Bep [En6S(O] <0 Y By, [Bnti ()]
veV Jj=1 veU; Jj=1
Equivalently, we obtain that
Ckpr < n-Car. (47)
By (46) and (47), we establish the lemma. O
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