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ON THE TRACTABILITY OF SAMPLING FROM THE POTTS MODEL AT LOW
TEMPERATURES VIA RANDOM-CLUSTER DYNAMICS

ANTONIO BLANCA AND REZA GHEISSARI

ABSTRACT. Sampling from the g¢-state ferromagnetic Potts model is a fundamental question in statistical
physics, probability theory, and theoretical computer science. On general graphs, this problem may be compu-
tationally hard, and this hardness holds at arbitrarily low temperatures. At the same time, in recent years, there
has been significant progress showing the existence of low-temperature sampling algorithms in various specific
families of graphs. Our aim in this paper is to understand the minimal structural properties of general graphs
that enable polynomial-time sampling from the g-state ferromagnetic Potts model at low temperatures. We
study this problem from the perspective of random-cluster dynamics. These are non-local Markov chains that
have long been believed to converge rapidly to equilibrium at low temperatures in many graphs. However, the
hardness of the sampling problem likely indicates that this is not even the case for all bounded degree graphs.

Our results demonstrate that a key graph property behind fast or slow convergence time for these dynamics
is whether the independent edge-percolation on the graph admits a strongly supercritical phase. By this, we
mean that at large p < 1, it has a large linear-sized component, and the graph complement of that component
is comprised of only small components. Specifically, we prove that such a condition implies fast mixing of
the random-cluster Glauber and Swendsen—Wang dynamics on two general families of bounded-degree graphs:
(a) graphs of at most stretched-exponential volume growth and (b) locally treelike graphs. In the other direction,
we show that, even among graphs in those families, these Markov chains can converge exponentially slowly at
arbitrarily low temperatures if the edge-percolation condition does not hold. In the process, we develop new
tools for the analysis of non-local Markov chains, including a framework to bound the speed of disagreement
propagation in the presence of long-range correlations, an understanding of spatial mixing properties on trees
with random boundary conditions, and an analysis of burn-in phases at low temperatures.'

1. INTRODUCTION

The g-state ferromagnetic Potts model is a classical spin system model central to probability theory and
with applications in statistical physics, theoretical computer science, and other fields. It is defined on a
graph G = (V(G), E(Q@)) as a probability distribution over configurations in Q, = {1,...,¢}"V (), with a
parameter 3 > 0, corresponding to the inverse temperature in physical applications, controlling the strength
of the interaction between the edges of G. Formally, the probability of each configuration o € (2 is given by:
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The factor Z a 3,4 18 @ normalization constant and is known as the partition function; o (u) denotes the color
or spin value of the configuration ¢ at vertex u. The classical Ising model corresponds to the ¢ = 2 case.
The question of sampling from the ferromagnetic Potts model is an important one and has been exten-
sively studied on a variety of graphs and temperature regimes (i.e., different values of 3). In general, it is
known that the problem of approximate sampling from (1.1) for ¢ > 3 and 3 large is #BIS-hard, in the sense
that there exist graphs, including bounded degree ones, for which the approximate sampling problem is as
hard as approximately counting the number of independent sets on bipartite graphs [GJ12, GSVY16]. This
latter task is a well-studied computational problem that is believed not to have a polynomial time approxi-
mation algorithm. This sharply contrasts with the ferromagnetic Ising case (¢ = 2), where polynomial-time
samplers have been known since the 1990s [JS93,RW99]. At the same time, for some families of graphs, no-
tably including Z? and expander graphs, the existence of polynomial-time sampling algorithms has recently
been shown for the Potts model at low temperatures: see, e.g., [HPR20,BCH"20,CDK20,JKP20,CGG*21,
HJP23, CDF*22,GS23, HPR23]. This raises the question of what are the underlying graph structures and
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temperatures that cause tractability or hardness of approximately sampling from (1.1). We study this from
the perspective of widely-used Markov chain-based algorithms.

One fundamental approach to sampling from Gibbs distributions of the form of (1.1) is via Markov chains
whose stationary distribution is exactly ug g,4. The simplest such Markov chain is the Glauber dynamics
for the Potts model (also known as the Gibbs sampler), which updates the state of a randomly chosen vertex
at each step. Its simplicity makes it quite appealing to practitioners, but it is known to take exponentially
(in poly(|V])) many steps to equilibrate at low temperatures (3 large). In lieu of this, in order to sam-
ple from (1.1), an oft-used approach is a different family of Markov chains based on the Edwards—Sokal
coupling of the ferromagnetic Potts model to a graphical model called the random-cluster model [ES88]:
see (2.1) for its definition. This family of Markov chains includes the extensively studied Swendsen—Wang
(SW) dynamics, and its close relative, the Glauber dynamics for the random-cluster model.

These Markov chains make non-local updates, and are often used to bypass the bottlenecks that slow
down the convergence of the Potts Glauber dynamics at low temperatures when ¢ > 3. At the same time,
the aforementioned #BIS-hardness of the sampling problem at low temperatures suggests that these Markov
chains could not have a polynomial speed of convergence on all graphs. For the sake of completeness,
we mention that at high temperatures (small [3), these Markov chains converge quickly but have a larger
computational overhead per step than the Potts Glauber dynamics [BCC™22]; there are also “intermediate”
temperature regimes corresponding to first-order phase transitions where these Markov chains are known to
converge exponentially slowly to equilibrium [GJ97,BCT12,GL18,GLP19,COGG™23].

In this paper, we systematically analyze these Edwards—Sokal based Markov chains on general graphs
at low temperatures. In the process, we develop new tools for the analysis of non-local chains and arrive
at an explanation, in terms of geometric properties of the graph, that dictate whether these Markov chains
converge quickly or slowly at low temperatures (i.e., large, but independent of the system size, values of ().

Let us define the Markov chains of interest. For a unified discussion, it is convenient to reparametrize 3
by p = 1 — e . Notice that low-temperature settings corresponding to /3 large correspond to p close to 1.
The SW dynamics transitions from a configuration o; € {2p to o441 € §2p as follows:

(1) Independently, for every e = {u,v} € E(G) if 01(u) = o4(v) include e in E; with probability p;
(2) Independently, for every connected component C in (V(G), E), draw a color ¢ € {1,...,q} uni-
formly at random, and set 0,1 (v) = cforall v € C.

It can be checked that the SW dynamics is reversible with respect to 1z g4 and thus converges to it. In effect,
the SW dynamics moves on the larger probability space of Potts model configurations together with random-
cluster configurations. The configurations of this model consist of edge subsets, i.e., Qgc = {0, 1}F (@), and
the SW dynamics can be interpreted as alternating steps of sampling a random-cluster configuration E;
conditionally on the Potts configuration o, then sampling the Potts configuration o1 conditionally on Ej.

A closely related Markov chain is the Glauber dynamics that moves in the space of random-cluster con-
figurations; for brevity, we call this Markov chain the FK dynamics since the random-cluster model is also
known as the FK model. Here, given an edge subset F; € {2z, we generate F; 1 by:

(1) Pick an edge e € E(G) uniformly at random;
(2) Set Ey1 = E; U {e} with probability:

if e is not a cut-edge in F};
{p e ut-edg ) (12)

pi= —~2 if e is a cut-edge in Fy;

and Fy1 = E;\{e} otherwise.

A cut-edge is an edge whose state affects the number of connected components of the configuration. It can
be checked that the FK dynamics converges to the random-cluster distribution (2.1). After convergence,
one may produce a sample from the corresponding ¢-state Potts measure (the one with 5 so that p = 1 —
e~ with little overhead by independently assigning states uniformly amongst {1, ..., ¢} to each connected
component of the random-cluster configuration, as in step (2) of the SW dynamics above. As such, the FK
dynamics provides an alternative Markov chain that can be used to sample from (1.1).
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To formalize convergence rates of these Markov chains, recall that the mixing time of a Markov chain
is the number of steps required to reach a distribution close to the stationary distribution (in total variation
distance), assuming the worst possible starting state: see (2.2) for the formal definition. It is known that the
mixing times of the SW and FK dynamics can differ only up to a O(| E(G)|) factor (see [Ul114]).

Both the SW and FK dynamics are conjectured to overcome some of the key difficulties associated with
sampling from the Potts distribution quickly at low temperatures. They are, therefore, quite popular, but their
non-locality makes the rigorous analysis of their mixing times significantly more challenging than their Potts
Glauber dynamics counterparts. In recent years, significant progress has been made in establishing optimal
mixing time bounds for the SW and FK dynamics in high-temperature regimes where the corresponding
Potts Glauber dynamics is also known to be fast mixing; see, e.g., [BCP*21, BCSV22, BCC*22, GS23].
These works have resulted in optimal (or nearly optimal) mixing time bounds for SW and FK dynamics
that hold under various correlation decay conditions (e.g., strong spatial mixing, tree uniqueness, Dobrushin
uniqueness, spectral independence, etc.). In particular, p < 1/A implies fast mixing for all graphs of
maximum degree A. By contrast, in the low-temperature setting, where correlations do not decay, the Potts
Glauber dynamics converges slowly, and alternative efficient sampling algorithms are most needed, there is
no generic criterion guaranteeing that the SW and FK dynamics mix quickly.

In fact, rigorous bounds for the mixing time of the SW and FK dynamics at low temperatures are rare
and can be summarized as follows. In the Ising case of ¢ = 2, [GJ17] showed that these Markov chains
mix in O(n'?) time on all n-vertex graphs and all p. On the complete graph, [BS15, GSV15, BSZ22]
establish nearly-optimal mixing time bounds throughout the low-temperature regime. On more sophisticated
geometries, progress has been limited to the special case of the integer lattice Z¢. In particular, in [UI113,
BS17], fast mixing was shown in the low-temperature regime on subsets of Z? via planar duality to high-
temperatures (see also [Mar92] for sharper bounds for the SW dynamics at low temperatures in the Ising
case). Recently [GS23] showed fast mixing at low temperatures in cubes in Z%. For general graphs, the only
low-temperature criterion known to ensure fast mixing is p > 1 — O(1/|E(G)|) [Hub04].

This leaves a wealth of questions to explore on general families of graphs, notably including the mixing
times of the SW and FK dynamics at values of p close to 1, but importantly, independent of the graph size.
We consider this question for two broad families of bounded-degree graphs: graphs of at most stretched-
exponential volume growth, and locally treelike graphs (which allow for exponential volume growth). We
show that for all such graphs, fast mixing of the SW and FK dynamics at low enough temperatures is
ensured if the independent edge-percolation process on the graph, where an edge-set & — E(G) is obtained
by keeping each edge with probability p, independently, has a strongly supercritical phase (i.e., for p close
to 1, all large connected sets in G intersect the giant component of @; see Definition 1.2 and 1.4 for precise
definitions). To illustrate the necessity of this condition, for any arbitrarily large p < 1, we construct
explicit graphs—both ones of polynomial volume growth, and ones that are locally treelike—on which the
edge-percolation is not in a strongly supercritical phase, and, in turn, the SW and FK dynamics mix slowly.

The class of graphs that have strongly supercritical phases for their edge-percolation is an area of exten-
sive study, and it is closely connected to whether the graph has isoperimetric dimension strictly larger than 1.
The key takeaway from our results is thus a purely geometric mechanism underlying fast or slow mixing of
the SW and FK dynamics at large p < 1 on two large families of bounded degree graphs.

1.1. Graphs of at most stretched-exponential growth. The first general class of graphs for which we
establish fast mixing of the SW and FK dynamics at low temperatures under the percolation condition are
bounded-degree graphs that have at most stretched-exponential volume growth. Let us introduce some no-
tation: in what follows, we think of G = (V(G), E(G)) as a connected graph on n vertices, with maximum
degree A > 3, and we fix any ¢ > 2. For a vertex v € V(G), let Br(v) = {w : dg(v,w) < R} be the set
of vertices at graph distance at most R from v. For a subset A < V(G), let d.A c E(G) denote the edge
boundary of A, i.e., the set of edges in F'(G) with exactly one endpoint in A.
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Definition 1.1. The graph G has 7-stretched-exponential volume growth if | Br(v)| < " forallv € V(G)
and all R sufficiently large (i.e., R = Ry for some R independent of n; for convenience, take Ry = 1/ 772).

Natural graph families with at most stretched-exponential volume growth include bounded-degree lattices
in R%; e.g., finite subsets of Z¢, the triangular and hexagonal lattices, etc., and Cayley graphs of polynomial
growth groups. This notion is closely related to a quantitative version of amenability.

We show that the SW and FK dynamics on these graphs are rapidly mixing when the independent edge-
percolation process on the underlying graph G has a “strong supercritical phase” which we define next. For
pe(0,1),let7g = X, E(G) Bernoulli(p) denote the independent edge-percolation distribution for G. We

note that if & is drawn from 7 (i.e., @ ~ 7), then we can think of & as, both, a vector in {0, 1}E(G) orasa
subset of edges of E(G). For B ¢ E(G), let&(B) € {0,1}? denote the state of the edges from B in &(B).

Definition 1.2. Let @ ~ 7. We say that G has a strong supercritical phase (with parameters ¢, p) if there
exists p < 1 and § > 0 such that for every v € V(G), the probability that there exists a connected set
A 3 v having £ < |A| < n/2 with &3(0.A) = 0 is at most exp(—¢%/(1+9)) for all £ sufficiently large (again,
meaning ¢ > ¢, for some ¢ independent of n, for instance for convenience ¢y = 1/9).

Roughly the definition says that the probability that there exists a set A < V(@) that is connected
in GG, contains v, and has size at least ¢, but does not intersect the largest component in @, is stretched-
exponentially small in £ (with the exponent governed by the parameter 6 > 0, which as we will comment on
shortly is related to the isoperimetric dimension of the underlying graph). Notice that the existence of a p in
Definition 1.2 implies it for all 5’ > p by monotonicity of the strong supercritical property in &.

Theorem 1.3. There exists n9(d) > 0 and po(A, q,0,p) < 1, such that for every graph G with a strong
supercritical phase (with parameters 0, p) and n-stretched-exponential volume growth for some 1 < ng:

(1) The mixing time of SW dynamics on G is O(n?logn) for every p = po.

(2) The mixing time of the FK dynamics on G is O(nlogn) for every p = py.

It is natural to wonder what families of graphs have a strong supercritical phase. The nature of the
supercritical phase for edge-percolation on a graph is known to be closely related to the geometric, namely
isoperimetric, properties of the graph: see e.g., [ABS04]. One would expect that general graph families with
isoperimetric dimension at least 1 + & (meaning that |9, A| > |A|%/(**9) for all subsets A = V(G) with
|A| < n/2) have a strong supercritical phase in the sense of Definition 1.2. Often at sufficiently large p, a
strong supercritical phase can be proven using perturbative Peierls-type arguments; by such means, subsets
of Z% and other lattices (e.g., hexagonal and triangular) that are uniformly at least (1 + )-dimensional, and
planar graphs with a bounded-degree planar dual serve as concrete examples of graphs that have a strong
supercritical phase. More generally, the structure of the supercritical phase in vertex-transitive graphs of
polynomial growth is the subject of deep study (see e.g., [CMT21, HT21, EH21] which tackle the harder
problem of understanding the supercritical phase down to a sharp threshold). Natural graphs of super-
polynomial but at most stretched-exponential growth are rarer, but one such family are the well-known
construction of Grigorchuk groups; in these, the precise 7 in the stretched-exponential growth, and the
nature of the graphs’ supercritical phase are subjects of active research: see e.g., [GPOS].

Our proof of Theorem 1.3 relies on a novel framework for controlling the rate at which discrepancies
spread between two coupled low-temperature FK dynamics chains that agree inside, say, a ball of radius
R around a vertex, but that may disagree outside it. This is sometimes called disagreement percolation,
and we use it, after a burn-in period for the chain (a short period of time after which we can ensure that
the certain “typical” properties of random-cluster configurations are achieved, even though the chain has
not equilibrated), to perform space-time recursions to derive our mixing time bounds. To the best of our
knowledge, this is the first time disagreement percolation has been analyzed in a low-temperature setting
for non-local Markov chains like the SW or FK dynamics, where the giant component could hypothetically

%At the level of quantification of our bounds, this choice does not affect our main statements; allowing for general 2o would simply
add Ry to the set of constants on which the bounds depend.
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spread disagreements instantaneously (except in the special case of Z? where low and high temperatures are
dual to one another). We say more about the obstacles to proving Theorem 1.3 using existing tools and the
technical novelties in our low-temperature disagreement percolation framework in Section 1.4.

Since [vdB93], bounds on the rate of disagreement percolation have been a tool used to prove a variety
of other results for spin systems, including bounds on uniqueness thresholds, equivalences of spatial and
temporal mixing [DSVWO04], and tight lower bounds for the mixing time of the Glauber dynamics [HS05].
We do not explore these directions here, but our low-temperature disagreement percolation, which is self-
contained to Section 3, opens up those same arguments for the low-temperature random-cluster model and
its dynamics. For example, extending the lower bounds of [HS05] would show that the O(nlogn) in (2) in
Theorem 1.3 is tight; by contrast, the resulting lower bound for SW dynamics would be Q2(logn).

1.2. Locally treelike graphs. We consider next the SW and FK dynamics on locally treelike graphs. In
this setting, we establish fast mixing on graphs that have a strong supercritical phase with “4 = 00" in Defi-
nition 1.2. That is to say that we assume true exponential tails on the boundaries of non-giant components,
with a rate that goes to o0 as p 1 1, to compete with the exponential volume growth.

Definition 1.4. We say that G has an exponentially strong supercritical phase if there exists pg < 1 such
that for every p > pp and every v € V(G), the probability that there exists a connected set A 3 v having
¢ < |A] < n/2 with ©(0.A) = 0 is at most exp(—c; ¢) for some ¢; going to oo as p to 1.

While the notion of an exponentially strong supercritical phase is a property of independent edge-percolation
on the graph, a simple geometric criterion of expansion, for instance, ensures that this property holds. In
particular, if G is an a-edge-expander graph, in the sense that for all A < V(G) such that |A| < n/2, we
have |0, A| = a|A]|, then the assumption holds for a c;(cv, A) > 0.

In this regime where exponential volume growth is permitted, we restrict to locally treelike graphs.

Definition 1.5. We say a graph G is (K, L)-locally treelike if for every v € V (&), the removal of at most
K edges from E (B (V)) induces a tree on Br,(v).

Our main result for locally treelike graphs is the following near-optimal fast mixing bound.

Theorem 1.6. Fixanye,n > 0. There exists po(A, q, K, o, ¢5,1,€) < 1 such that if G has an exponentially
strong supercritical phase (with parameter py), minimum degree 3, and is (K, nlogn)-locally treelike:

(1) The mixing time of SW dynamics on G is O(n>*¢) for every p = po.
(2) The mixing time of FK dynamics on G is O(n'*¢) for every p = py.

The most canonical example of a graph that satisfies all the conditions in this theorem is a A-regular ran-
dom graph (i.e., a graph drawn uniformly at random from the set of all A-regular graphs on n-vertices). This
is a setting that has attracted plenty of attention (see, e.g., [BGG'18,BG21,COGG™23,HJP23,GGS]), and
Theorem 1.6 provides fast mixing bounds for the SW and FK dynamics on these graphs at low temperatures.
(Note that the bounds will hold with probability 1 — o(1) over the choice of the random graph.)

Unlike the sub-exponential growth setting, alternative sampling algorithms were known to exist for the
Potts model on expander graphs at low temperatures using the cluster expansion and polymer dynamics (see,
e.g., [JKP20,CGG*21,BCP22,CDF"22]). Still, to our knowledge, ours is the first proof of sub-exponential
mixing times for the SW and FK dynamics at low temperatures (even just for random graphs).

Regarding the proof techniques, on graphs of exponential growth, the low-temperature disagreement
percolation framework used to establish Theorem 1.3 breaks down. Even in ideal situations like the Ising
model, the optimal recursion obtained from the disagreement percolation framework would not yield rapid
mixing on graphs of exponential growth. We, therefore, resort to a vastly different approach, where we
utilize a burn-in phase, the censoring technique of [PW13], and new spatial mixing results for the random-
cluster model on trees amongst a (random) class of sufficiently wired boundary conditions. The latter bound
applies in settings where spatial mixing between the wired and free boundary conditions does not hold.
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Remark 1.7. The bounds of Theorems 1.3 and 1.6 are stated for any integer ¢ > 2 so that statements apply
both to the SW and FK dynamics. The random-cluster model also makes sense for non-integer ¢ > 1 and our
fast mixing results for the FK dynamics apply in this level of generality. In fact, the random-cluster model
is defined for ¢ > 0 but has very different features (negative vs. positive correlations) when ¢ € (0,1). It
was shown in [ALGV] that the FK dynamics mixes in polynomial time on all graphs when ¢ € (0, 1).

1.3. Slow mixing in worst-case graphs. We complement our fast mixing result by establishing the ex-
istence of graphs for which, even at arbitrarily low temperatures, the SW and FK dynamics slow down
exponentially. This is already suggested, though not guaranteed, by the #BIS-hardness of the sampling
problem at low temperatures, and our constructions will illuminate the relationship between the notion of a
strong supercritical phase for the underlying edge-percolation and the slow mixing of the dynamics.

Theorem 1.8. Fix any ¢ = 3 and any py < 1. There exists p € (po, 1) and a sequence of graphs G, on n
vertices and maximum degree A such that the mixing time of the SW and FK dynamics on Gy, is exp(2(n)).

The constructions for Theorem 1.8 are simple and explicit. In particular, any family of graphs H,, that
have slow mixing at some parameter value ps; € (0, 1)—typically the location of its order/disorder phase
transition—can be used as a gadget to construct augmented graphs G, (depending on ps and pg) with many
of the same properties as H,, (in terms of degree, rate of volume growth, etc.), and a comparable number of
edges, for which the SW and FK dynamics are slowly mixing at some p € (pg, 1). The graph augmentation
leverages the series law of the random-cluster model to repeatedly split the edges of H,,, effectively inducing
the behavior at p; in H,, to occur in G,, at p € (po, 1). Using the slow mixing of SW and FK dynamics
at the critical point on random regular graphs from [COGG™23] as the gadget, Theorem 1.8 holds even if
we impose that the graph is locally treelike and has exponential volume growth. Using the slow mixing at
the critical point on (Z/nZ)? from [GL18], a variant of this theorem also holds for graphs of polynomial
growth, but the lower bound there is of the form exp(£2(y/n)): see Theorem 7.1.

Remark 1.9. Let us comment on the relationship of Theorem 1.8 to Theorems 1.3 and 1.6, given the slow
mixing constructions can either have stretched-exponential growth or be locally treelike. Even if H,, has
a strongly supercritical phase for its edge-percolation, when we perform the graph augmentation with the
series law, the p for which the edge-percolation on G, has a strongly supercritical phase is pushed closer
to 1. In geometric language, this is because the isoperimetric dimension is decreasing to 1, or the edge
expansion is decreasing to 0, as the edges are split in series. In turn, this makes the pg in Theorems 1.3
and 1.6 (above which we can prove fast mixing) larger than the p for which Theorem 1.8 gives slow mixing.

1.4. Proof ideas. We now discuss our proof ideas for the fast mixing results, which are the more technically
involved. (Our bounds on the SW dynamics follow from the bounds on the FK dynamics by [Ull14], so we
focus on the FK dynamics.) We begin by describing some of the issues one runs into when applying standard
proof approaches to general families of graphs at large p.

1.4.1. Difficulty with classical arguments. The first tool one might try is path coupling, arguing that the
number of discrepancies between two configurations that differ on one edge contracts in expectation. The
non-locality of the FK dynamics, however, and the presence of Q2(logn) sized components at equilibrium
means that a single discrepancy at an edge e can cause discrepancies at some 2(log n) many nearby edges,
whereas the discrepancy only decreases if the edge e is selected to be updated. A smarter path coupling was
used in [CF99, Hub04] to deduce fast mixing for the SW dynamics at high enough (but constant) tempera-
tures, but in the low-temperature regime, their argument for fast mixing requires p > 1 — O(1/|E(G)|).
Many of the early fast mixing bounds on, say, the high-temperature Ising model, are based on space-time
recursions, i.e., arguments that compare the distance to stationarity across balls of time-dependent radii.
When translated to the FK dynamics, this type of argument runs into the problem that the updates in a
small portion of the graph (say, a small ball around a vertex) could depend on the configuration in the entire
remainder rather than a local neighborhood. The one exception to this is the approach of [MO94] for the
torus in Z%, which gave an implication from the weak-spatial mixing (WSM) condition to fast mixing of the
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Glauber dynamics. This implication was seen to generalize to the FK dynamics in [HS22] (see also [GS23]
where finite boxes with boundary conditions were allowed). WSM is known to hold for the random-cluster
model at large p on Z¢ (see e.g., [Gri04]); however, this is a delicate property whose proofs are very geometry
specific. It is the case, for example, that on locally treelike graphs like the random regular graph, WSM fails
at arbitrarily large p.

At high temperatures (small p), some of the difficulties with non-locality can be handled using the fact
that in the random-cluster model, all connected components are small, and information is only propagated
through these connected components. For instance, such an argument was used in [BS17] to implement the
disagreement percolation space-time recursion for the high-temperature regime on Z?. (In Z2, the high and
low-temperature regimes are dual to one another, so the same argument could be performed using the dual
model at low temperatures; that would be similar to the work of [Mar92] on the Ising SW dynamics.)

1.4.2. Low-temperature disagreement percolation bounds. On graphs where the low-temperature random-
cluster model does not have a natural high-temperature dual model, however, even at equilibrium, the non-
locality of the dynamics is hypothetically not confined since the giant component percolates through the
entire graph. The starting point for many of our observations is that a (well-connected) giant component does
not create non-local dependencies on its own. In particular, if two configurations that agree at distance I
away from an edge e induce different marginals on e, it must be the case that in one of the two configurations,
either e is incident to a non-giant component of size at least 12, or it disconnects a portion of the giant of size
at least R from the 2-connected core of the giant. Whereas the giant component percolates throughout the
whole graph, we show that under the assumption of a strong supercritical phase (Definition 1.2), these non-
giant, or non-2-connected core connections have (stretched) exponential tails in FK dynamics configurations
after an O(n) burn-in period. (In the first O(n) steps, disagreements can spread arbitrarily quickly.)

There are various other delicate points in implementing this argument, both combinatorial and probabilis-
tic in nature, that we describe in greater detail in Section 3 and 4. These include having to carefully approach
various counting arguments and union bounds due to the non-localities and possible stretched exponential
volume growth: see Remark 3.7 and the proof strategy described in Section 4.2. In all, we are able to obtain
a space-time recursion on the probability of a disagreement at an edge after time ¢; the large value of p is
used as a crude initial bound on this probability, which the recursion boosts into exponential decay, leading
to the optimal O(n logn) mixing time bound of Theorem 1.3.

1.4.3. Mixing after a burn-in phase on locally treelike graphs. When the volume growth is exponentially
fast, the bounds and resulting space-time recursions from disagreement percolation break. Our approach
here is therefore closer in inspiration to high-temperature arguments from [BG21, BG23b] (also [MS09] in
the Ising setting). Those papers localized the dynamics to the treelike balls Br(v) of the underlying graph
using the censoring technique of [PW13] and used the high-temperature uniqueness on trees to reason that
if two censored dynamics chains mix in Bgr(v) with their respective boundary conditions, then they are
coupled at the root of the ball with high probability. The mixing time on the local balls was relatively simple
to deduce since the trees would have nearly free boundary conditions, which induce product chains.

In our low-temperature setting, the key intuition is that after a burn-in period, the boundary conditions
induced on balls of radius nlogn are “sufficiently wired”, i.e., that they have one (random) linear-sized
wired component, and only O(1) many other O(1)-sized components. Given this, to get Theorem 1.6, we
show that FK dynamics on trees with such boundary conditions mix in polynomial time, and that although
there is no WSM between the free and wired boundary conditions on trees, two sufficiently wired boundary
conditions do induce similar marginals on the root. This latter step requires a careful revealing scheme to
prove spatial mixing on trees with randomly wired boundary conditions; that is the content of Section 5.1.

1.4.4. On the strong supercritical phase condition. We conclude by remarking on whether the notions of
strong supercritical phase in Definitions 1.2 and Definition 1.4 could be relaxed. One attempt at such a
relaxation would be to only ask that the independent p-edge percolation have a unique giant component (of
arbitrarily small linear size) and exponential, or stretched-exponential, tails on all its non-giant components.
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For technical reasons related to the fact that this is a non-monotone criterion, our proofs do not go through
with this weaker notion of supercriticality. Nonetheless, we expect that such a condition could be sufficient
for the fast mixing of the FK and SW dynamics.

2. NOTATION AND PRELIMINARIES

In this section, we outline our global notation and describe some preliminaries on the random-cluster
model and the FK dynamics. Throughout the paper, n will be assumed to be sufficiently large. We also
use C' to denote a generic constant C > 0, not depending on n, which may vary from line to line. Our
underlying graph will be G = (V(G), E(G)) and will have n vertices and maximum degree A.

For an edge-subset A ¢ E(G), we write V (A) for the set of vertices contained in edges in A, though
we sometimes abuse notation and write v € A for v € V(A). Its vertex boundary 0A is the set of vertices
in A with neighbors in A° = E(G)\A. Its (outer) edge-boundary 0. A is the set of edges in E(G)\A that
have one end-point in V(A) and one endpoint in V(G)\V(A). We use C,(A) to denote the connected
component of v in the subgraph (V(G), A). An edge e is a cut-edge in A if there is a vertex v for which
Co(A U {e}) # Cy(A\{e}). We use C1(A) to denote the largest component in w (chosen arbitrarily if two
have the same size).

2.1. The random-cluster model. The random-cluster model with parameters p € (0,1) and ¢ > O is a
probability distribution over edge-subsets w < E(G), equivalently identified with w € {0, 1}¥(%), given by

G piq(w)ocpll(1 — p) F@I=lwlgh@) 2.1)

where k(w) denotes the number of connected components in (V(G),w). When clear from context, we
drop p and ¢ and sometimes GG from the notation. The random-cluster model satisfies the following domain
Markov property: for A ¢ E(G), conditional on w(FE(G)\A), the distribution of w(A) is a random-cluster
model with the same parameters, with boundary conditions on 0 A induced by w(E(G)\A). Random-cluster
boundary conditions are defined in generality as follows.

Definition 2.1. Given a graph GG and a vertex subset 0B, a boundary condition £ on 0B is a partition of
0B. The random-cluster model on G with boundary conditions &, denoted 7T£G is defined as in (2.1), except
that all components intersecting the same element of £ are identified (“wired”’) when counting the number

of components k(w).

Certain important boundary conditions are the wired one, denoted 1, where all vertices of 0 A are in the
same component of &; the free, denoted 0, where all vertices of 0 A are in distinct components of £, and if A
is a subgraph of G, those induced by w(E(G)\E(A)), meaning vertices of 0A are in the same component
of ¢ if and only if they are connected through w(E(G)\E(A)). In this paper, we restrict our attention to
the case of ¢ > 1 where the model exhibits positive correlations. As a consequence, given two boundary
conditions £ and £’ on G, where £ > £ (meaning € is a coarser partition than £’), we have Wé > 7rg.

2.2. Mixing times. For a Markov chain (X} ) on a finite state space {2 with transition matrix P, reversible
with respect to a distribution p, its mixing time is defined as:

tMlX = tMIX(1/4) 5 Whel‘e tMIX(g) = mln{k . :[ﬁng?)( H]P)(X;:O € ) - ,U/HTV < E}, (22)
0

where X indicates that X, is initialized from x¢, and where | - ||;v denotes total-variation distance. The
total-variation distance to p satisfies a sub-multiplicativity property, whereby tyx () < tyix - 1logs(2/¢).

2.3. FK dynamics. Recall the definition of (discrete-time) FK dynamics from the introduction. It will be
preferable in our proofs to work with the continuous-time FK dynamics (X)¢~¢. In this variant, the edges
of E(G) are assigned rate-1 Poisson clocks, and if the clock at an edge e rings at time ¢, we make an update
according to (1.2). It is a standard fact that the mixing time of the discrete-time chain is comparable, up
to constants, with |FE/(G)| times the mixing time of the continuous-time process. In particular, it suffices
to show an O(log n) bound for Theorem 1.3 and an n° bound for Theorem 1.6 for the continuous-time FK
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dynamics. FK dynamics updates with boundary conditions & are like (1.2), except that the cut-edge status
of e is determined taking into account the wirings of the components of &.

The FK dynamics is monotone, meaning that if 2o > yo (under the natural partial order on subsets) then
X0 > X/° forall t > 0, where > denotes stochastic domination. Le., there exists a grand coupling of all
the Markov chains {(X;°):}z,e0.c (generated by independent Poisson clocks and independent sequences of
i.i.d. Unif[0, 1] random variables at every edge) such that X;° > X}° for all zyp > yo and ¢ > 0.

A further monotonicity property we use is with respect to the independent edge-percolation (the random-
cluster model with ¢ = 1). Recall p from (1.2); it is standard fact that 7g ;, > 7 51 (see (3.23) in [Gri04]).

3. LOW-TEMPERATURE DISAGREEMENT PERCOLATION

In this section, we develop the FK dynamics disagreement percolation framework that works at suffi-
ciently low temperatures, in particular in the presence of a giant component. In reality, this new disagree-
ment percolation bound works simultaneously at high and low temperatures and localizes the spread of
disagreements even in the presence of a large giant component, so long as all other components (and por-
tions of the giant dangling off of its 2-connected core) are small. Moreover, it can work on graphs that have
volume growth up to a stretched exponential, which requires new ideas: see Remark 3.7.

In this section, G can be an arbitrary graph of maximum degree A. We fix an arbitrary o € V(&) and
R > 0,and let Br = Br(0). The dependencies on o will be kept implicit. The fundamental building blocks
of our disagreement set will be finite-connectivity clusters; these will disentangle the non-locality of the
giant component, which percolates at low temperature, from the edges through which disagreements arise.

Definition 3.1. Define the finite (or non-giant) component of a vertex v in a random-cluster configuration
w as Cy(w\F(C1(w))), and denote it by C71(w).

Since the FK dynamics updates at edge e = {u, v} are oblivious to the state of e in the configuration, and
only care about the connectivity of v and v in w\e = w\{e}, we consider the finite component of a vertex
with respect to the configuration w\e rather than w itself. Specifically, we often consider C;*(w\e) for an
edge e that is incident to C, (w).

Definition 3.2. Let CE7'(w) be the set of cut-edges in w that are in B and incident to C7!(w\e); i.e.,
CEZY(w) := {e € B(Bg) : e € Cutedge(w), e ~ C*1(w\e)},

where Cutedge(w) denotes the set of cut-edges in w. Here we are using the notation e ~ H for a subset

HcFEifV(e)nV(H) # J.

We refer to Figure 3.1 for some illustrative depictions of such sets in Z? (this is easiest for visualization,
but it is key that our definitions do not rely on properties of Z? like its dual graph, and thus work on general
graphs). We also refer to the proof of Proposition 3.4 which yields additional insight into these constructions.

Suppose (X¢) and (Y;) are two instances of the FK dynamics on G coupled via the grand coupling
introduced in Section 2.3; suppose also that Xo(E(Br)) = Yo(E(BR)).

Definition 3.3. Iteratively construct what we call the disagreement set as follows. Let (¢;);>1 be the times
of the clock rings in E(Bg), let tg = 0, and let I; = [t;_1,;). Then
(1) Initialize D; = E(G)\E(Bg) fort € I.
(2) Suppose ¢; is the edge whose clock rings at time ¢;. If ¢; is in E(Bg)\D,- and ¢; is in CE] Y(Z) for
some v € 6Dt; and Z € {Xt;,Yt;}, let l

Dt = Dt._ U {61} forallt e Ii+1;
else, let Dy = D,- forall t € I; 1. (We use the standard notation A, to denote limgy; Ay.)

The role of D is that it confines the set of edges on which a disagreement can possibly exist at time .

Proposition 3.4. For all t > 0, we have X;(e) = Y;(e) for all e ¢ D;.
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FIGURE 3.1. For a vertex v (dark green) and edge e (purple), the sets C7!(w\e) (edges in
red) and CE? ! (w) (edges highlighted in green) are shown in three different cases. Left: v is
not part of the giant (blue edges) in w (blue and black edges). Middle: v is part of the giant
component but not of its 2-connected core. Right: v in the 2-connected core of the giant.

Proof. We prove the claim inductively. It holds for all ¢ € I; since we assumed X;(e) = Yi(e) fore €
E(BR), and no clock rings occur in the interval ;. Supposing it holds for I;, the only way it can not hold
fort € I, is if the disagreement arises at the edge e; = {u;, v;} when the clock rings at time ¢;. If ¢; € D,-,
then since D, < Dy, we have the claim. Per (1.2), if e; ¢ D,-, in order for a disagreement to arise at e, it
must be the case that e; is a cut-edge in one of X,—, Y, but not in the other; that is, that e; € Cutedge(Z) for
aZe{X, Y-} bute; ¢ Cutedge(Z) for Z = {X,-.Y-\{Z}. In Z\{e;}, the two endpoints of e; must
be connected. Since X - (D;,) =Y~ (D;,), this can only happen via a pair of paths from u; and v; that
reach 0D, in D;_. One of these paths must be in Z\E(C1(Z\{ei})), since if both are in E(C1(Z\{e;})),

then u; and v; are in the same connected component of Z\e;, contradicting the claim that e; was a cutedge
in Z. As such, it must be that e; € CE] " (Z) for some v € 0D,-. O

We now define an event on the realizations of the coupling (X, Y;);>0 that guarantees that disagreements are
unlikely to spread rapidly. This will be a bound on the size of finite connections in E(Bp), as well as a bound
on the number of cut-edges in a finite component, which we will later show holds with high probability for
the FK dynamics after a burn-in for G satisfying the conditions of Theorem 1.3: see Proposition 4.2

Definition 3.5. A random-cluster configuration w is in & ,  if:

: #1 < P #1 < Y
(1) gg};eerg(aé;) diam(C] "(w\e)) < ¢*, and (2) zf][el%ﬁ'CE” (w)] < A0

In the applications in Section 4, we will take o = v (depending on the § for which Definition 1.2 holds);
however, we write this section for general «, «y in case there are better choices in specific situations.

Proposition 3.6. Suppose (X;):, (Yi): are FK dynamics chains, coupled by the grand coupling, and such
that Xo(E(Bg)) = Yo(E(BR)). There exists eo(A) > 0 such that for all e < ey and all t < eR/(**7,

t
P(Xu(Bryo) # YilBrya) [y 1Xo Vs € Erar}) < O10Br] exp(~R/(26).

Proof. By Proposition 3.4, the probability of the event under consideration is at most that of the event
{Di " Brjy # &} n Er where for ease of notation, &4 := ﬂZ:O{XS, Ys € €104} - We construct a witness
to that pair of events as follows.

Let fo be the edge whose clock rang at time tj, := inf{s : Bg/y N Ds # I} (note that fo € E(Bg/)).
Let wq be the vertex in 6Dtj_ for which fo € CEZ. (Zo) for Zy € {X 6 Ytj_o} (if there are multiple choices

0
for wy or Z, we choose arbitrarily). Given (fj, wj, Z;),<i, we construct the witness iteratively as follows:
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fK fK K

FIGURE 3.2. Three steps of the construction of the witness are shown. The ball By is
the highlighted region. For each 7, the edges of the finite-connectivity cluster of w; (green)
to f; (purple) in Z; (blue and black edges) are depicted in red. Note that the configuration
changes from left to right, depicting the evolution of the dynamics (backwards in time).

e Let f; be the first edge incident to w;_1 to be included in (Ds)s=0; i.e., f;’s clock rang at time

t,

K3

= 1inf{s : w1 € Dy}
o Let w; be the vertex in dD,- and Z; € {X,—,Y,- } for which f; € CE]!(Z)).
Ji Jq Ji

(Again, ambiguities are resolved arbitrarily.) Under this construction, the event X;(Bg/) # Yi(Bg/2)
implies the existence of a witness (f;, w;, Zz)fi o for some K such that

(1) fo € E(BR/Q) and wg € aBR;

(2) f; € CELN(Z;) for all i;

(3) w;_1 € f; for all ¢;

(4) the clock ring at time ¢, is at edge f;.

Notice that this construction is done backwards in time, i.e., tj, > t; > --- > t;,. See Figure 3.2 for a
depiction.

We will show that the probability that there exists such a witness and the event &£ ; occurs satisfies the
claimed bound. On the event & ;, it must be the case that K > R/(2(“) since the distances between f; and
fi—1 are bounded by ¢“. Furthermore, for any witness ( f;, w;, Z;) fi o- there is a projection, which we also
call a witness, (f;, w;, Li)fio where the label L; € {X, Y} indicates whether Z; = Xt;i orZ; = Y;;.

The total number of clock rings in G in [0, ] has a Poisson(t|E(G)|) distribution; let M denote this
quantity. Note that by standard Poisson concentration, we have P(M > 4t|E(G)|) < exp(—t|E(G)|) . Let
us work on the event that M < 4t|E(G)|. Let T = {t1,...,tar} be the sequence of clock ring times in

|E(G)|. We start by bounding P(X;(Bg/2) # Yi(Br/2), ) by

—t|E(Q)] K CoNK e T ANK
e 4+ max max E 2 max  P(3(fi,w;)i g : (fi, ws, L;)i—o is witness, Eg ¢ | T) ,
M<4t|E(G)| T S Ry (26) Le{X,Y}K ( (fz 1)1_0 (fl v 7’)1_0 &t | )

where the conditioning on 7 indicates conditioning on the clock ring times in E(G) in [0, ¢] being T (but
importantly not revealing their location yet).

Fix any M < 4t|FE(G)| and any realization 7 and consider the probability on the right. For any subset
of times J = {jk,..., jo}, given T, we denote by W 1, the event that there exist (f;, wi)fio such that the
triple (f;, w;, Li)fio is a witness and the clock ring at f; is at time ¢;, fori = 0, ..., K. There being (%)



12 ANTONIO BLANCA AND REZA GHEISSARI

choices of J, for any L € {X, Y }X:

M
P(El(fi,wi){io : (fiywi, Ly )zKo is witness, &g | T) < < max <K>P(WJ’L,(€£¢ | T) )

For s = 0, let F; be the o-algebra generated by the grand coupling up to time s. We will now sequentially
condition on ]-" -, and enumerate over the possible choices for the edge f; (of which there will be at most

ALY per item (2) of Definition 3.5), and then ask that the clock ring at time ¢;, be at f;.
More precisely, if for an edge g, Ag is the event that in the witness f; = g, then we have for every ¢ < K,

max ]P)(WJL,ggt ‘ T 7(Af]l)l>i)

9i+1,-9K
<, Dnax > > PAY | T, Fp s (A1) PWop, Eoa | T, F - (A )124)
419K Y k
Wi€gi+1 g,eCEL (%)
2007

< - max P(Wyp, & | T,F —,Ag’ ). 3.1

|E(G)| GirerGK ( s €| (A )DZ) S
In the above, and in what follows in this proof, when conditioning on a o-algebra, we mean the inequalities
to hold almost surely, i.e., for almost surely every realization of the random variables generating the o-
algebra. Here, the first inequality is a union bound over the potential choices of w; and then the potential
choices of g; in the witness. (Notice that conditional on ]-' , the configuration Zx can be read-off from

its label L) For the second inequality, we used the deﬁmtlon of & ; to bound the number of summands in
the second line by 2A¢7, and we used the fact that conditionally on 7, the locations of the clock rings are
independent and uniform on £(G), so given 7 and F,—, the probability that the clock ring at time ¢, is at a
Ji
fixed edge g; is 1/|E(G)|.
We can condition the right-hand side of (3.1) further on ,—  (recalling that t;, < ¢;,_,) to arrive at the

Ji—1
following relation between the probabilities for index ¢ and index 7 — 1:

AL
P(W; 1, & 9)12:) < : P(Wyp, & Fr (A=),
g max PWrr, & | T, Fo s (Al )i>i) 1E(G)| gimogi Wor e | T- Ty, (A1)

The same inequality holds for i = K with an extra multiplicative factor of |0Bpg| for the initial choice of
wg . Iterating this over all i, we arrive at the following bound on P(X¢(Bg/2) # Yi(Bg/2), Eut):

0Br| >} 2¥ max <J\Ig> (%)KJretE(G)lék?BR D (SAI?“)K+€4\E(G)|_
Kooy MSHIEG) |E(G)] K> R

At this stage, we see that if t < eR/(16Ael**7) for e < 1/e, then this is at most

|aBR’€R/(2éa) 2 5‘j + e—t‘E(GH < C|6BR|6_R/(2€CM) " e—t|E(G)‘ .
j=0

The term e~*Z(@) is absorbed since we have R < diam(G) < E(G) trivially. O

Remark 3.7. Beyond the low-temperature construction of the disagreement region, we point out a subtlety
in the above that may have gone unnoticed. In disagreement percolation bounds for high-temperature FK
dynamics (e.g., in [BS17]), the typical analog of &, - is simply that the largest cluster in B has volume
at most £. When counting the number of possible witnesses, one takes |By(w;)| as a worst-case bound for
the number of locations of the next disagreement along the chain in the witness. If the volume growth is
stretched exponential, however, this does not work. The careful conditioning in (3.1) was essential to only
count those edges CEZ;1 that could be vulnerable to be the next edge in the witness, rather than the entire
volume of a ball, keeping the count to a polynomial even in the presence of exponential volume growth.
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4. FAST MIXING OF FK DYNAMICS ON GRAPHS OF SUB-EXPONENTIAL GROWTH

With the bound on the speed of information propagation at low temperatures from the previous section on
hand, we proceed to establish Theorem 1.3. The event &, , from Definition 3.5 was crucial to controlling
the speed of disagreement propagation, and our first aim (Section 4.2) is to establish that after an O(1)
time burn-in period, £, holds for a further O(1) amount of time. Then in Section 4.3, we will build a
space-time recursion to establish the desired mixing time bound.

4.1. Dominating edge-percolation after a burn-in period. We start with a simple estimate showing that
after an O(1) (continuous-time) burn-in period, the FK dynamics started from any initialization stochasti-
cally dominates the edge-percolation at a parameter arbitrarily close to p = m. This will be crucial
to many of our arguments throughout the paper.

Lemma 4.1. Fix p,q,0. There exists To(8) such that X? stochastically dominates mp—s,1 for all t = Tj.
This also holds conditioned on J1, ) (the o-algebra generated by the clock rings from time Tp on).

Proof. Consider any edge e. Uniformly over all the possible randomness (Poisson clocks and uniform ran-
dom variables) on edges of E(G)\{e}, as well as all clock rings at e after time 7 (a to be determined
constant depending only on §), on the event that the clock at e has rung by time ¢, its distribution stochas-
tically dominates Ber(p) per (1.2). The result follows if we let 7 be large enough that the probability that
the clock at e has not rung by time Ty is less than § (this is independent of the clock rings at e after 7). [

We consistently use the notation @ for independent edge-percolation processes on E(G) with parameter
p,i.e., W ~ mg ;1. For ease of notation, we simply write 7 for the law of & on G.

4.2. Burnt-in FK dynamics are in £. Our next aim is to show that burnt-in FK dynamics configurations
are in & , ,, with high probability. Recall the main assumption on our underlying graphs for Theorem 1.3,
that the independent percolation on them has a strongly supercritical phase: Definition 1.2.

Recall the event & , , from Definition 3.5 that governed the size of regions through which disagreements
could possibly spread. In what follows, we fix § > 0 given to us by Definition 1.2, and let

&= Ep oy steys,  esa=y=(1+8)/5. (4.1)

For ease of notation, we use & = (14)/ in the below. We continue to imagine a fixed vertex o € V(G), and
fixed R large, but independent of the graph, and let B = Bpg(0); events and sets from the previous section
are all defined with respect to this ball. Finally, ¢, R can be assumed to be sufficiently large (depending on
7,0). Our main result in this subsection is the following.

Proposition 4.2. Suppose G satisfies Definition 1.2 and has n-stretched exponential growth for 1 less than
some 1o(9). There exists Ty(d, 1, q) such that for every initial configuration wy and every t = Ty,

2t

IP( U{X;’O ¢ 5g}) < Cteft"e ",

s=t

Proof strategy. Establishing Proposition 4.2 is quite a bit more involved than it would be in a high-
temperature setting (i.e., for small p). This is due both to the delicate graph-theoretic aspects of the event &y,
its non-monotonicity, and its non-locality. In particular, the last one means that in the time interval [¢, 2]
the number of edge updates that could hypothetically cause the FK dynamics to leave & are t| E(G)|, rather
than ¢|Bgr|; a naive union bound over this number would fail. We outline our strategy as follows:

(1) In Definition 4.3 below, we define a proxy event G, which is monotone, ensures that £ occurs, and
is more “local” than &,. The relationship to £ under minimal assumptions on G is in Lemma 4.4,

(2) Using Definition 1.2, we will show in Lemma 4.6 that G, holds with high probability for independent
edge-percolation on G with a large enough parameter p. Since G, is monotone, we can translate this
bound to the FK dynamics after an O(1) burn-in time per Lemma 4.1.
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(3) We then perform a careful “union bound” over the update times between s € [¢, 2t]. This could be
a problem since there are order | E'(G)| many updates in this time interval, whereas the probability
of G7 is only exponentially small in the local quantity £. Importantly, though, we use that the event
Gy is “localized” to reason that far away edge updates are unlikely to induce a change in Gf, in a
summable manner. This argument is executed via Lemma 4.5 in the proof of Proposition 4.2.

Let us begin by defining the proxy event G, and its variant G,,, for m > /.

Definition 4.3. Define the event Gy as the event that there does not exist a connected set A intersecting Br
having ¢* < |A| < n/2, and an edge e € 0. A such that w(d.A\{e}) = 0.

Define the event g‘m as the event that there does not exist a connected set A intersecting Bpg, of size
m® < |A| < n/2, and a pair of edges e, e3 € J.A such that w(d.A\{e1,e2}) = 0.

Notice that, unlike £7, the event G/ is a monotone decreasing event, since it is the union (over A, e) of
decreasing events. Similarly, the event G¢, is a decreasing event.

The following graph theoretic lemma demonstrates that G, controls &£. It is important here to relate the
number of cut-edges in the carefully constructed set of vulnerable edges in the disagreement percolation
CE? ! to an easier quantity: the volume of a set of size smaller than n/2 with closed boundary.

Lemma 4.4. The event £ is a subset of the event Gj.

Proof. On the complement of item (1) in Definition 3.5, there exists v € Br and e € E(Bpg) such that
diam(C71(w\e)) = ¢*. Letting A = C7!(w\e), we notice that |A| > diam(A) > ¢*. At the same time,
|A] < n/2 since if |A| = n/2 then C,(w\e) = C1(w\e) and C; ' (w\e) would be the trivial {v}. Finally A
intersects B, since it contains v € Bp, and under w, all of d.A\{e} must be closed since A is a connected
component of w\e.

We now show that the complement of item (2) in Definition 3.5 also implies G§. The essence of the
argument is that CE7'! lower bounds the size of C7!(w\e) for some e, but a little care must be taken due
to the definition of CE? 1. We begin by constructing a tree from the set of all e € Cutedge(w) that are
incident to C,(w\e); note this is a larger set than those e € Cutedge(w) that have e ~ C71(w\e), but we
will subsequently restrict to this latter set. Suppose e is the set of all edges e in Cutedge(w) such that
e ~ Cy(w\e). We iteratively associate a tree T,, = T,(w) to {v} U e in the following natural way.

(1) Identify the root of the tree with the vertex v;

(2) All cut-edges in e are associated to descendants of the root.

(3) For a vertex w of the tree (asssociated to a cut-edge e,, in e), a cut-edge f € e is associated to a
descendant of w if and only if it is disconnected from v by e,, in w.

This process uniquely determines the tree since the children of wj; ; are those descendants of wy; ; that are
not descendants of any of w; ;’s other descendants. The fact that all of these are cut-edges also ensures that
no cycles arise in the construction. Notice that the leaves of T;, are exactly 0.C,(w).

We next claim that the edges in

e ={eece:|C(w\e)| <n/2},

are a sub-tree of T,,. By definition, an edge e can only be in e but not in €’ if the component |C,, (w\e)| > n/2.
If this occurs for an edge e associated to vertex w in the tree, any edge f associated to a descendant of w
will also have |C, (w\ f)| > n/2 and not be in €’ since the difference in the component structures of w'\e and
w\ f is that the latter has a larger C,, and one other component is correspondingly smaller. Therefore, the
event that an edge is in e but not in €’ is a decreasing event on the tree T;,. As such the restriction of T}, to
{v} U € is itself a tree, which we can call 7.

Select an arbitrary vertex in 077, i.e., its descendants are all in T}, but not in 77, and call its corresponding
cut-edge e,; also define w, = w\e.. Note that the tree T, (w,) is exactly T;,(w)\S. where S, are all
descendants of e,. If we let A = C,(w.), then evidently w(d.A\e,) = 0 since w.(d.A) = 0. Also,
|A| < n/2 since otherwise e, would not belong to 7). All edges of €’ belong to T, (w,) so they are all
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incident to A; therefore
AlA] = |€'] = |CEZY = A~
using the fact that €’ o CEZ)é L Lastly, A contains v € Bp since v € T,,(w,). Thus, A violates G,. O

The following lemma relates the vulnerability of a configuration to leaving G, by means of an edge-
update at distance m from B, to the event G¢,, allowing us to control the probability that far away updates
(of which there are many in order-one continuous time) induce the dynamics to leave Gy.

Lemma 4.5. For any m >/, in order for an edge e ¢ By to be pivotal to w € Gy, i.e., for w® {e} € Gf
while w € Gy, it must be that w € GE,.

Proof. Suppose w € Gy, € ¢ E(BRrime) such thate ¢ wand w U {e} € G or e € w and w\{e} € Gj.

Since Gy is an increasing event, the first case is not possible. In the second case, the removal of an edge
e € w outside Bryma causes a component A to become part of gg. Call A the set in w\e that violates Gy.
Then the edge e must be in J. A, meaning that the set A is a set of size at most n/2, intersecting Br and
with one other edge e; € J.A such that w(d.A\{e, e1}) = 0. Since the distance of e to By, is at least m?, it
must be that |A| > diam(A4) > m®. O

We now turn to the probabilistic estimates. The following lemma utilizes Definition 1.2 to bound the
probability of G (as well as of Gy, ) under the independent edge-percolation measure © = g 5,1.

Lemma 4.6. If G satisfies Definition 1.2 and has n-stretched exponential volume growth for n < no(9), for
all p sufficiently large,

(W ¢ Gy) < C|Bgr|exp(—1),
for some C(p,n,0). Similarly,
#(@ ¢ Gn) < C|Brl exp(—m).

Proof. The lemma is almost a union bound together with Definition 1.2, the only distinction being that we
allow one or two of the edges in d.A to be open. Fix a vertex v, and for every configuration @ in Gy by
means of a set A = A, (@) containing v, such that ©(d.A\e) = 0, let ¢.(@¥) = w\e. Evidently,

~ g~ ~

@ _ P
T(de(@) ~ 1-p
For every &, the configuration ¢ (&) has a set A intersecting v such that /* < |A| < n/2 and such that
(¢e(@))(0cA) = 0, the probability of which is governed by Definition 1.2. Furthermore, if this A has
size exactly r, the set of all pre-images of a single & under the map ¢, is bounded by the set of all e such
that d(v, e) < r, which is at most ¢”" per the n-stretched exponential growth assumption. Putting this all
together, we get

n/2 n/2

R@EG< ), >, D), F@) <

VEBR r=L~ 0eGg:|Ay(@)|=r veBRr o

o7 oA

4.2)

As long as 7 is smaller than o = (1 + 0)/6, the above quantity is at most some constant (depending on
n,d,p) times | Br|e™*

The argument for G,,, is essentially identical, with the only differences being that in (4.2), the pre-factor
p/(1 —p)is squared and the number of choices of two edges that could be closed contributes a factor of

e2" instead of ¢”". U]

The last lemma we need towards proving Proposition 4.2 is one for bounding the number of clock rings
in Brime. This follows from a standard Poisson tail bound together with a union bound.
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Lemma 4.7. For a set A, let N[t 2t]

P((JVE . > 4tBromel}) < exp(~|Bgl).

m=1

be the number of clock rings in A in the time interval [t,2t]. We have

Proof. The number of clock rings in a set A in an interval of length ¢ > 0 is distributed as a Poisson with
rate | A|t. Therefore,
PN > 41)A)) < exp(—2t|A)).

By a union bound, we then get
(U{ [t,2¢] 2 4t|BR+mOt|}> < Zef2t|BR+ma| .
m

Using that | Brme| is at least | Bgr| + m® by the fact that m only ranges until expanding the radius doesn’t
add any vertices, and using that ¢ > 0, this sums out to give Ce_mBR', whence we absorb the constant C
by changing the 2 in the exponent. O

Proof of Proposition 4.2. By Lemma 4.4 it suffices to bound the probability of Uiit{XS ¢ Gy}. Condition
on the clock rings between times ¢ and 2¢; this set of clock rings generates a o-algebra we denote by 7 o)
Let

t2t = ﬂ {N t}if o 4t|BR+mD‘|}7
m=/

measurable with respect to 7}, o). Lemma 4.7 showed that P(E], (.2 t]) < exp(—t|Bpr|). We can then write

P<SU=t{XS ¢ Qe}> < (o, 18% P(LZJ{X& ¢ Go} | (€i7si)i) + e BRI

e; 75i)i€E[t72t]

where (e;, s;); denotes the sequence of pairs of edges and corresponding clock rings between times ¢ and
2t. For ease of notation, let sg = ¢ and let G; _ be the event {Xs ¢ G¢}. We now write the union above as

U gg,si = gg,SO Y U(gf,si,1 N gzsi) .
=1 =1

Furthermore, given the clock ring times and locations (e;, s;);, we can let Iy = By and for m > ¢, let
1,,, be the set of 7’s for which e; is in BR+(m+1)a\BR+ma. Then,

U gZSZ. c gl?,SO o U(gf,si,1 N gg,si) o U U (geysifl a glisz') .
i>1 iely m>0i€lm
By Lemma 4.5, for i € I,,, for m > ¢, we have
(gf,si,l N gg,si) = {Xsi_1 ¢ g_m} .
Using this bound for ¢ € I,,,, and the obvious bound (ggvsz._1 N Gg Si) c Gy s for ¢ € I, we obtain
U gg,si - {gzt} v U{gzsl} Y U U {st‘—l ¢ gm} :
=1 i€ly m=L i€l

Taking the probability on either side, conditioning on 7, ;) and using a union bound, we get

2t
]P’( X ¢ gg}) < max P(Xi ¢ Gel(ernsi)i) +  max > P(Xy ¢ Gel (er50)0)
s=t

€i,51)i€ B[ 24) (€i,5:)i€ Bz, 24] iely

+ max Z Z IP>(XSF1 ¢ Gm | (ei»Si)i) 1 e tIBrl

(ei,si)i€B,2) =, iel,,

By Lemma 4.1, conditionally on any (e;, si); € T2y, the law of X, > & where & is drawn from a
Ber(p) distribution, so long as ¢ > T from that lemma. Since the events g,z and gc are decreasing events,



SAMPLING FROM THE POTTS MODEL AT LOW TEMPERATURES VIA RANDOM-CLUSTER DYNAMICS 17

each of the probabilities above is bounded above by their analogs for &. Finally, the number of summands
|| < 4t| Bryma| since (e;, si)i € Ejy 9. Together, this means

2t
(UK # Gib) < (14 481BryseP@ ¢ G0) + 3, 4By nsnye P@ ¢ Gn) + 7175,
=t

s m=L

By Lemma 4.6, this is at most
(1+ 4|Brysa|)e™ +4Ct Y |Bry(mryale™™ +e 155
m=/

Using the stretched-exponential volume growth bound |Bpryme| < e(Frm®)7 < oB7+m®" "the first two
terms above are summable and yield 4tef*" e~ as long as 7 is small enough depending on 6, and ¢, R are
large enough. The additional term e Bl is absorbed since t|Bg| = R for t > 1. O

4.3. Exponential relaxation to equilibrium after burn-in. Our aim is to now combine the above ingre-
dients to establish that after a burn-in period that keeps our configuration in the set £ per Proposition 4.2,
the disagreement propagation bounds of Section 3 can be implemented to guarantee exponential relaxation
to equilibrium as long as p is sufficiently close to 1 to kickstart the spacetime recursion.

Proposition 4.8. Fix q, A, 0. There exists n9(d) > 0 and po(q, A,d,m) < 1 and C(p,q, A, d,n) such that
for every n < ng and p = po we have the following. For any G satisfying Definition 1.2 and n-stretched-
exponential volume growth, the FK dynamics satisfies

max, (P(X(e)=1) —P(X2(e) =1)) <e ¥Y,  foralls < (logn)®.
ee

Proof. Abusing notation slightly, let (X)s=0 = (X9)s=0 and (Ys)s=0 = (X1)s=0. Define
p(t) := maxP(X;(e) # Yi(e)),
eeE

under the grand coupling (whence the probability is exactly the difference of the probabilities of e taking
value 1). Recall the definition of £ = &£y o for @ = (1 + §)/6 from Definition 3.5 and (4.1). Our first aim
is to establish the following recurrence relation,

p(2t) < eVip(t)? + et 4.3)
for all ¢ > Tj for a large enough T, Toward this aim, let
Ay re = {Xi(Br(e)) # Yi(Br(e))} -
Then, for any fixed e € E(G), we have

P(Xai(e) # Ya(e)) < P(Xai(e) # Yau(e) [ AL pe)P(AL ) (“44)
2t

+ P(Xaile) # Yarle), Avmes [ )X, Y € &) 45)
s=t

(U xead) +r(UL (v e &) 46)

First notice that
P(Xat(e) # Yai(e) | Afpe) < p(1),

since we can condition on Xy, Y;, wrt. which A; g . is measurable, and use the property of the grand
coupling that

max P(X%(e) # X0(e)) < P(X0(e) # X} (e)).

/
wo,w)
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At the same time, by a union bound over e € E(Bp), we can bound P(Af 1, .) < |E(Bg)|p(t). These give
the bound on (4.4) of

P(Xat(e) # Yar(e) | Af p)P(Af re) < [E(Br)lp(1)*.

The quantity in (4.5) is controlled by Proposition 3.6, whence as long as t < eR/(*%,

2t
P(Xai(e) # Yarle), Ames [ |1Xo Vi € E}) < CloBr|exp(~R/(26)).

s=t

Finally, we control each of the terms in (4.6) by Proposition 4.2 giving

IP’( EJ{XS ¢ 54}) + IP’( C]{YS ¢ &}) < Ctef"e™t

as long as t = Ty(0,7, q) and n < np(J). Putting the above together, and using the bounds on |E(Bpg)| and
|0 Bg| from the fact that G has 7-stretched-exponential volume growth, for all Ty(8, 7, q¢) < t < e R/(2?,
p(2t) < eft" p(t)? + Cef"e ) 4 e et
If we make the choices
(=2R*, and t=1{/2=R*.

we find that as long as n < 70(d) and ¢, ¢, R are sufficiently large (as a function of J, 7, £), we maintain
t<eR/ 022 and we can absorb the pre-factors above to obtain the claimed (4.3). That recurrence will hold
for all t > Ty(q, d,n) and as an upper bound, for all ¢ < (log n)? since our arguments are all valid as long as
R < diam(G) which for G of 7-subexponential volume growth is for all R < (logn)/", which translates
tot < (logn)?.

It remains to deduce the exponential decay on p(t) from (4.3); consider the function

o(t) = e\/z(p(t) + e*t/2)1/2 :
Then by (4.3), and the fact that v/a + b < v/a + v/,
$(2t) < V2V (Vip(t): + e + )7 < VIRIVIs(1) 4 26V

Since 2 > /2 + .5 and fef < 2V for all t > 1, this is at most ¢(¢ ) Therefore, for any ¢ty > 1, we
have

6(2") < o(t0)?,

whence if ¢(ty) < 1/e, then for » = 2¥, we have ¢(rty) < e~". From there, using the definition of ¢(t)
in terms of p(t), we see that p(rtg) < e~2", whence p(t) < e 2!/ for t = 2¥ty. The fact that p(t) is
monotone decreasing in time implies the bound p(t) < e~*/% for all t > t

The last step is to show that ¢(tg) < 1/e for some t( larger than max{6, Ty(q, A, d,n)}. Towards this
purpose, notice that by the update rule (1.2),

p(s) < (1 —p)+ P(Pois(s) =0) = (1L —p) +e °.
There exists sq independent of everything else such that ev* (2e75 + e/ 2)1/ 2 is less than 1/e for all s > s

because eV (2e~t + e~1/2)1/2 is at most 3e~/4TV? say. Let po(q) be large enough that (1 — p) < e~ for
all p > po. Then for all p > pg and ¢y > s, p(tg) < 2e'0 and we obtain the claimed ¢(ty) < 1/e. d

Proof of Theorem 1.3. Under the monotone grand coupling, we have for every initial state wy,

max IP(X° € ) =7l < Z P(X;0(e) # X[ (e)) < Z P(X/(e) # X[ (e)).
0 ecE(G) ecE(G)
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In turn, by monotonicity, the right-hand side is at most

max [P(X;0 € ) —mly < 3, (P(X(e) = 1) = P(XP(e) = 1)) .
eeE(G)

Let ¢ = Cqlogn for C a large enough constant (depending on ¢, A, §, 7). Then by Proposition 4.8, each
term in the right-hand side is bounded by n~* for large enough n. Since there are at most An < n? many
summands, the sum above is o(1), implying mixing in O(logn) time. This gives O(nlogn) mixing time
for the discrete-time FK dynamics as described in the preliminaries.

The result for the SW dynamics follows from the comparison result of [Ull14]. ([l

5. SPATIAL AND TEMPORAL MIXING ON TREES WITH r-WIRED BOUNDARY

Our next goal in the paper is to establish Theorem 1.6 concerning FK dynamics on treelike expanders.
Recursive mixing time arguments based on disagreement percolation, like those in the previous section, are
known to fail on graphs with exponential volume growth. At the same time, localizing the dynamics can be
difficult in treelike graphs because there is no weak spatial mixing when p is close to 1; see the discussion
at the beginning of Section 5.1 for more details. In this section, we define a class of boundary conditions
that are sufficiently “wired” to support a notion of weak spatial mixing with respect to the wired boundary
conditions. This class of boundary conditions captures the boundary conditions induced by the FK dynamics
configuration on a treelike ball centered at a vertex of an expander graph after a short burn-in.

This section focuses on general rooted trees 7, = (V(Ty), E(7r)) having depth A, minimum internal
degree 3 and maximum degree A. For any m < h, 7,, will denote the tree given by truncating 7}, at depth
m. The boundary 07, is the set of vertices of 7,, at depth m. For any vertex w € V(7,), we use Tj, ,, to
denote the sub-tree of 7}, rooted at w, with boundary 07}, ., = 075, N Th -

Definition 5.1. A boundary condition £ of 7}, is single-component if the boundary partition corresponding
to € has at most one non-singleton element; we call this its wired component.

Definition 5.2. A distribution P over boundary conditions £ on 7}, is r-wired if it is supported on single-
component boundary conditions, and the distribution of the wired component of £ stochastically dominates
the distribution over random subsets A < 07, in which each vertex of 07}, is included in A with probability
r independently (the partial order being the natural one on vertex subsets).

The following shows that except with double-exponentially small probability, the random-cluster model
on 7, with r-wired boundary conditions satisfies weak spatial mixing with respect to the all-wired boundary
condition (the TV distance between the two decays exponentially in the distance from the boundary).

Lemma 5.3. Let P be r-wired and let & ~ P. Then, with P-probability 1 — e~ (LD e have
75, ((Thj2) € ) = 78, ((Thj2) € Yy < e,

for some c,, = cp,(q,A), which is positive as long as p > po(q,A) and r > 19(q, A) for suitable

po(q, A),ro(q,A) € (0,1), and which goes to © as p,r — 1.

Remark 5.4. The double exponential concentration under P in Lemma 5.3 is not strictly needed for the
results in this paper. A single-exponential concentration under P would suffice and would be easier to
establish by averaging over £ ~ P and then applying Markov’s inequality. However, we include this stronger
form since it provides insight into the good qualities of r-wired boundary conditions and could be used to
get an improved mixing time bound for the FK dynamics on trees with r-wired boundary. Unfortunately,
with our current methods in Section 6, this improvement would not translate into better bounds for the FK
dynamics on treelike graphs, so we do not pursue them.
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5.1. Spatial mixing on trees with r-wired boundary conditions. Our first aim in this section is to estab-
lish Lemma 5.3. Spatial mixing in the traditional sense, where one takes a maximum over the boundary
conditions on the tree, does not hold for large p, even if it is very close to 1. This can be seen by considering
Ty, with wired vs. free boundary conditions, and noticing that the marginal of any edge in the tree with the
free boundary condition is Ber(p), whereas the marginal of an edge in the wired tree gives at least constant
probability to that edge being distributed as Ber(p), and otherwise, as Ber(p), so the total-variation distance
on that edge does not go to zero as h — o0. Our solution to this issue is to restrict attention to r-wired
boundary conditions and establish that, at least among these boundary conditions, the random-cluster model
exhibits spatial mixing on 7. Considering only such boundary conditions will suffice for us, since these
are the boundary conditions that appear after a burn-in period of the FK dynamics on treelike expander
graphs. We note that with fully wired boundary conditions on trees, [Jon99] showed decay of correlations to
establish uniqueness at p close to 1.

The mechanism for coupling random-cluster configurations with r-wired and wired boundary conditions
is based on what we call wired separating sets. These will be a set of vertices that are all connected down
to the wired component of £ in 07}, and therefore wired together; as such, they separate the influence of the
boundary condition of 07}, from, say, 07} .

Definition 5.5. A separating set in 7} is a set of vertices S < V(73)\V (7p/2) such that every path from
0Thy2 to 0Ty must intersect S. A configuration w < E(7y) has a wired separating set if there exists a
separating set S such that every vertex v € S is connected in w(7},,) to a vertex u € 07}, belonging to
the wired component of . Let S ¢ be the event that w has a wired separating set in 7;, with boundary
condition &.

The following lemma shows how the event of having a wired separating set governs the probability of
coupling random-cluster configurations to w ~ 7r%-h in Ty, /.

Lemma 5.6. For any single-component boundary condition & on Tp,

75, @(Tijo) € ) = 7% (@(Tijo) € v < 75, (She) -

Proof. We construct a monotone coupling for 77% and 77:7[—h such that if (we,wy) is sampled from this cou-

pling, then we ~ W%, w1 ~ 7T:7l-h and

{we € Spet = {we(Thy2) = w1 (Thy2)}-

Our construction relies on revealing the values of (wg,wq) on an edge set R under a monotone coupling,
where crucially, R will be designed to be the set of edges in the “lowest” wired separating set (if one exists).
We construct we and wy as follows (and refer to Figure 5.1 for a depiction):

(1) Initialize Py as the parents of 07, and Ry = .
(2) Starting with ¢ = 1, pick a vertex w; € P;_1, and sample the configurations (we(Th,w, ), w1 (Thw,))
from the monotone coupling between the marginals

75 (we(Thwy) € - |we(Ric1)),  and  7f (w1(Thw,) € - | w1(Ric1)) -

(3) Let R; = Ri—1 U E(Thw,) and form we(R;) and wq(R;) by adding the configurations we (T, w,;)
and w1 (Th,w, ), respectively.
(4) If w; is connected to the wired component of & in wg (7p.w,), then let P; = Pi_1\Tp(w;); else, let
Pi = (Pi—i\Th(w;)) u {w;} where w; is the parent of w;.
While 7 is such that P;_; is non-empty, R;\R;—1 # . This is because the edges from w; to its children
will be in R; but not in R;_; (if they were in R;_; then w; € 71% for some j < ¢ and w; would have been
removed from P;). Therefore, the revealing process will terminate after a finite number of steps, and we can
call R = Ry if f is the first index for which P; = (.
Now, consider the subset dropR of vertices of R whose parents are not in R. As long as the process
terminates with R n E(7T}, /2) = (, the vertices in dpopR Will be connected to the wired component of £ in
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FIGURE 5.1. Two steps of the revealing process used in Lemma 5.6. Left: the configura-
tions on the sub-tree of w; € P;_; are revealed, and in the configuration with £-boundary
conditions, w; is not wired down to &. Thus, its parent w/ is added to P;. In the next step,
this vertex is w;41, and when the remainder of its sub-tree is revealed to indeed include a
wiring to £, the vertex is removed from P; but its parent is no longer added.

wWe(Th,w), and so they will form a wired separating set. Conversely, if there exists a wired separating set .S
in wg(’ﬁhw), no parent of any vertex in S will ever be added to P, and therefore, the vertices from Orop Will
form exactly the lowest wired separating set.

Upon termination of the iterative procedure above, we can then sample w¢(7,\R) = w1(75\R), since
both w¢(R) and wq (R) induce wired boundary conditions on E(7;,)\R. Therefore, under this coupling, we
always have we (7,\R) = w1(7,\R). Since the process terminates at the lowest wired separating set of we,
on the event we € Sp ¢, necessarily 7;,\R contains all of 7, 5. As such, using IP to denote the probability
under the coupling we just designed,

175, , = T ity SP(R A Taps # @) < Plug € Sf) = 75, (Sie)
as claimed. OJ

5.1.1. Good boundary conditions. Our aim is now to control the probability of &; ¢ under a random r-
wired boundary condition { ~ P. Recalling the definition of Sj, ¢, notice that it is an increasing event in
the random-cluster configuration. Since the random-cluster measure with parameters p and ¢ stochastically

dominates independent percolation with parameter p = 4(1*’% configuration (i.e., the random-cluster

measure with parameters ¢ = 1 and p), it will suffice for us to consider the probability of S, ¢ under the
product measure 7; = W% 5.1 for some p < p still going to 1 with p (e.g., p = 2p — 1).
Definition 5.7. A boundary condition & on 7}, is called c-good if

77, (W0 € Sf ¢) < exp(—ch).

Notice that if £ is c-good, then any single-component boundary condition & > £ will also be c-good,
since any & € Sy, ¢ will also be in S}, ¢/. Therefore, the event {{ is c-good} is itself increasing in the partial
order on subsets of 07. In particular, if P is r-wired, then

P(£ is c-good) = Pper(r) (€ is c-good)

where Pp,(;) is the distribution over boundary conditions on 07, where the wired component contains each
vertex independently with probability . Given this, the following lemma implies Lemma 5.3.

Lemma 5.8. Suppose § ~ Ppey(,). There exists ¢ = c(p,q,r) going to o0 as p,r — 1, such that

P (& is not c-good) < exp(—c(1.1)").



22 ANTONIO BLANCA AND REZA GHEISSARI

Proof. For some v = 7(p, ¢,7) > 0 to be chosen later, going to 1 as p,» — 1, consider the event &, that £
belongs to the set of boundary conditions on 7}, that satisfy the following property:

(P1) for each downward path from 07y, /5 to 0T vo, V1, ..., Vp o, for each i = 1,...,h/4, if we draw a
configuration &(7y,\ 7o, ,, ) from 7, \7, ., » the probability that the component of v; in O(To;\Tvis1)
intersects the wired component of £ N 0(7,,\ 7y, ) is at least 7.

We first show that § € £, implies £ is c-good for a suitable ¢ > 0. Fix any § € £,. In order for Sfl’5 to

occur, there must exist a path from 07}/, to 07}, such that no v; is connected to £ through &(7,,). For any
fixed path, that probability is upper bounded by

h/4 h/4

TNrTh ( ﬂ{&j(,ﬁ)z\%z+l) n¢= ®}> = H%Th (5(7;11\7;&1) n¢§= Q) < (1 - '7>h/4 :
i=1 i=1

Here we have abused notation slightly to identify £ with the subset of 07}, that is its wired component.
(The change from the intersection to the product comes from the fact that 77, is a product measure and
that the sets Ty, \Ts,,, are disjoint for different i.) A union bound over the A" many paths implies that the

probability that w ¢ Sy, ¢ is at most A"2(1 — ~)"/4 which is at most exp(—ch) for some ¢ > 0 going to o0
as v — 1, which happens as p,r — 1.
It now suffices to find such ay > 0, and a ¢ = ¢(p, ¢, ) > 0 such that

PRer(r) (€ # &) < exp(—é(1.1)"). (5.1)

Fix a downward path vo, ..., vy, /2 from 07}, 5 to 0Ty and an i € {1, ..., h/4} (these will subsequently be union
bounded over), and consider the probability that ¢ is such that (P1) above holds for that path and that .

Define the event F* that the connected component of v; in &(7y,\ Ty, +1) intersects (7, \To,+1) in at
least (2p — £)"¥)~1 many sites, where h(v;) denotes the height of 7,. Note that h(v;) = i — h/2 = h/4,
and ¢ will be chosen later. For intuition, the component of v; in &(7y,\7y,+1) is a branching process which
(besides its first level) has 2p expected number of children since we assumed that in 7}, all internal vertices
have degree at least 3. By a standard branching process argument (see Fact 5.9 below from which this
follows after asking that the first level have an open edge with probability at least p), we know there exists
0 going to 0 as p — 1 (equivalently as p — 1) such that

By the independence of &(7,,\7y,+1) from &, we have
Phesir) @ 77 (B(To\Tor1) 0 € = @, H(To\Toin) € FF) < (1= )@

The left-hand side above is exactly the expected value over § ~ Ppe(,) of the 77, probability of an event
depending on £. Thus by Markov’s inequality and the fact that h(v;) = h/4,

Prertr) (€ ¢ 77 (B(To\Toui1) 0 € = @, BT\ Toyi1) € FY) > (1= 1) @79"2)
E¢Ber(r) [7?771 ((,71(77%\7;#1) NE=, O(To\Tos1) € ]:z)]
<
) (1= )=o) /2
Phertr) ® 77 (ST \Tous1) 0 € = B, BT \Toyi1) € )
(1- 7,)(2;3—e)h/4/2
< exp((2p — )" log(1 —1)/2).

At the same time, for any fixed &,
71 (@D(To\Tor1) 0 € = @) < 77, (O(To\Tori1) 0 € = B,8(To,\Toy11) € F)
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If the first of these terms is at most (1 — T)(2ﬁ_€1°)h/4/2 and the second is at most §, we sety =1 —9 — (1 —
r)<2ﬁ_5)h/4/2. Then, y goes to 1 as p — 1 and by the above, 77, (W (Ty,\Tv,;+1) N & # &) = . Thus,

PBer(r) (§ : %Th (w(,ﬁ}z\%,-‘rl) Nn§= @) >1- 7) < exp((zﬁ - €)h/4 log(l - T')/Q) :

We now upgrade this into the probability that & is in £, by a union bound over all A2 many paths in 7y,
and the h/4 many possible i’s; both these terms are absorbed by the double exponential above. As long as
¢ is sufficiently small, and p is sufficiently large, (2p — €)'/4 is greater than 1.1, and the prefactor evidently
blows up as r — 1 as claimed. O

For completeness, we have included the following simple branching process concentration estimate.

Fact 5.9. In a branching process with progeny distribution stochastically dominating Bin(2,p), let Zy, be
the population size at level k. Then for every € > 0, there exists § > 0 going to 0 as p — 1 such that

P(’Q{Zk> (25-@’“}) >1-4.

Proof. Since the event in question is an increasing event, it suffices to show the above for the branching
process with progeny distribution exactly Bin(2, ). If we let Aj, be the event {Z;, > (2p — £)*}, then we

can write
P(|J A7) <Pas) ZIP( BV A) <PAD + D P(AL () 4).
k>1 =2 j<k k=2 j<k
Since Z; = 1, the probability of A; is 1. For any k > 2, since Z;, is Markov, it suffices to condition on
Zk_1: Zyx_1 € Ap_1; given Zj_1, the distribution of A_ is

Zr—1
Z X; where X are i.i.d. Bin(2,p) .

Thus, P(A$ | Zj_1, Ak—_1) is at most the probability of a sum of Zy_1 > (2p — ¢)*~1 i.i.d. Bin(2, p)
random variables, being at least € Z;_1 below its mean. By Hoeffding’s inequality (the X;’s being bounded
by 2), this has probability at most exp(—3e?(2p —e)*~1) for every k. Let K equal logy; . (2/(ev/1—=p)).
For the first K generations, we can use the simpler union bound over the probability that one of the first
(2p — ) many X;’s is not equal to 2. Putting these together, we get

( U Ac) ]5)1/2 + Z e—ix/ffﬁ(k—K) .
k=1 k>K
For any fixed ¢, this is then seen to be at most some § going to zero as p — 1, which happensasp — 1. O

5.2. Mixing time for trees with single-component boundary conditions. In this section, we provide a
bound on the mixing time of the FK dynamics on trees with single-component boundary conditions. In view
of its application in the following section for treelike balls of expanders (possibly having a finite number
of cycles), it will be helpful for us to recall certain standard definitions that will allow us to relate the
convergence rate of various Markov chains.

For a Markov chain on a finite state space {2 with transition matrix P and stationary distribution p, the
Dirichlet form of the chain is defined for any function f : ) — R by

LS =5 X ww) P )@ — @), 52
w,w'eNR
and its spectral gap is given by
)
f:Var, [ 10 Vary[ f]
where Var, [ f] = E,[f2] — E,[f]? with E,[f] = 3,0 1(w)f().

Ap =

) (5.3)
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The inverse of the spectral gap is closely connected to the mixing time of a Markov chain. In particular,
(Ap' —Dlog () < twix(e) < Ap'log (- (5.4)

where fimin = mingeq u(w). (We refer the reader to e.g., [LP17, Chapter 12.2] for more details.)
We establish the following bounds for the mixing time and inverse spectral gap of the FK dynamics on a
tree with any single-component boundary condition.

EMmin ) )

Lemma 5.10. Consider any tree Ty, of maximum degree /A and depth h with single-component boundary
condition §. There exist constants a = a(A, q) > 0and C = C(p,q) > 0 such that the inverse spectral gap
of the FK dynamics on Ty, with boundary condition & are at most C exp(ah).

Proof. We use the classical bound on the spectral gap obtained from the cut-width of a graph via the canon-
ical paths method, though a little care is needed for the purpose of handling the random-cluster boundary
condition. The edge-cut-width of 73 (in other words, the cut-width of its line graph) is defined as follows:
enumerate the edges of 7, as 1, ..., |E(7)| and define

W(Tp) = mlnmax\V({eU(] 1 <i})n V({ea(]—) 17 >1})]

where the minimum is over permutations o on {1, ..., | E(7y)|}. We claim that there exists a constant K (A)
such that uniformly over all trees of degree at most A, their edge-cut-width is at most K h; this follows e.g.,
from [BKMPO5, Lemma 2.1] and the fact that the edge-cut-width is within a factor of A of the (vertex)
cut-width. Let o be the permutation that attains this edge-cut-width bound for 7.

For any two random-cluster configurations I, F' € €2 on 7}, define the canonical path 7 r as the path of
FK dynamics transitions which sequentially processes the edges of F/(7}) according to the ordering induced
by o, 1.e., €5(1); €5(2)s -+ Ex(|E(T;,)|» @0d Whenever there is a discrepancy I(eo(i)) # F(ea(i)), the transition
is the one that changes the state of e, ;) from I(eq(;)) to F'(ey;)-

For an FK dynamics transition (1, ') where n° := n @ €, (4)» construct a bijection from the set of {I1,F:

(n,n%) € v1,F} to £ by setting
wp(L, F) = {I(es;)) 1 J < i} v {F(e U(j):j>z'}.

This is a bijection because I is recovered via I = {wy(eq(j)) + J < i} U {nleg;)) + j > i} and F'is
analogously recovered via F' = {77( eos)) 1 J < i} U {wyles)) ] > i}.

For ease of notation, let 7 = 7r . The standard canonical paths bound (see [LP17, Corollary 13.20]) then
ensures the inverse gap satisfies

1
A5l < maxmax —————— W(I)W(F)WI F‘
o ) POn) | F:(n;)e,w ’

1 w(I)mw(F)
< |E(Tp)|max  max , .
R L e Pl ) wG)(an(L, F))
The probability P(n,n") is at least the probability of picking the edge €o(s) to update (1/|E(T)|) times
the minimal probability of flipping an edge, which is some C' = C(p,q) > 0. The ratio of probabilities
is bounded by noticing that the number of edges present in the multisets {I, F'} and {n,w,(I, F')} are the
same, leaving only the factor of ¢ to contribute. Without the boundary conditions on 7, we claim that

|k(I)+k(F> _k(n)_k(wn(lvF))‘ Q‘V( ])j<z) ﬁV( o(j )j>1)’7 (5.5

where we recall that k(w) is the number of connected components in the subgraph (V(G),w) (2.1). To
see (5.5), note that the only component counts that can differ between k(1) + k(F) and k(1) + k(wy, (I, F))
are from components that intersect the vertex boundary between {e,(;) : j < i} and {e,(;) : j > i}.

The addition of the boundary conditions can only change the bound on the left-hand side of (5.5) addi-
tively by at most 2. This is because up to a change of the number of components by at most 1, we can split
the boundary condition ¢ into two parts, one being its part that intersects vertices of {e :j < i} and

a(j)
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one being its part that intersects vertices of {eg(j) : j > i}. With this modification, the same reasoning as
in the no boundary condition case holds, that the component counts only differ through components that hit
the vertex boundary, and this number of components is evidently bounded above by the size of the vertex
boundary. Altogether, we get that the spectral gap satisfies

Apt < ClE(Th)? exp (2(CW(Ty,) + 1) log ) < CAhehlosa

which implies the claimed bound up to a change of constants. U

6. MIXING TIME ON LOCALLY TREELIKE GRAPHS

We now use the understanding from Section 5 on the random-cluster model on trees with r-wired bound-
ary conditions to control their mixing time on treelike graphs having exponentially strong supercritical
phases for the edge-percolation: namely, to prove Theorem 1.6. As mentioned in the introduction, the
prototypical example to have in mind in this section is a treelike expander like the random A-regular graph.

The proof strategy of Theorem 1.6 consists of the following three steps, which will organize the section:

(1) An O(1) burn-in period to obtain (nearly) r-wired boundary conditions on the locally treelike
O(log n)-radius balls of the graph;

(2) Censoring of the dynamics after burn-in to localize to a treelike ball (and an estimate on how long
the mixing time will be on the local ball with (nearly) r-wired boundary conditions);

(3) A spatial mixing property with (nearly) r-wired boundary conditions to couple the two censored
copies after they have each respectively reached equilibrium.

6.1. Burn-in to induce (7, L)-wired boundary conditions on treelike balls. In this subsection, we demon-
strate that FK dynamics after an O(1) burn-in period will be such that the boundary conditions it induces
on 4 logn sized balls are (almost) r-wired. This will be essential to the application of the spatial mixing
results of the previous section. Since the property of being r-wired is a monotone increasing property on
the distribution over single-component boundary conditions, it will essentially suffice to establish it for the
Ber(p) edge percolation @, and use Lemma 4.1. (In reality, there are some added complications by the pos-
sible O(1) many extra wirings outside the single-component, as a bound on those extra wirings is no longer
an increasing event.)

In what follows, suppose G is a graph of minimum degree 3. Let By, = By, (0) be the ball of radius h about
a fixed vertex o and suppose it is K -treelike, meaning the removal of at most K edges from E(Bj,) leaves
a tree. By taking the breadth-first exploration of By, any vertex w can be assigned a height via h — d(w, o)
and children which are all vertices adjacent to w having smaller height. Let the descendant graph of w,
denoted D,, (in analogy with 7} ,,), be the set of all descendants of w, together with their descendants, etc.

Definition 6.1. A distribution P over boundary conditions on a K -treelike ball By, is called (r, L)-wired if
it is generated as follows:

e Some arbitrary L vertices in 0B}, are chosen and an arbitrary wiring is placed on them;
e On the remainder, a subset stochastically dominating the product Ber(r) subset is wired together
into one large component.

The main result of this subsection is that the boundary conditions induced on a treelike ball by the FK
dynamics after an O(1) burn-in time are (p, L)-wired. This will follow from the following.

Lemma 6.2. Suppose G has an exponentially strong supercritical phase per Definition 1.4, and for h =
nlogn, the graph G is (K, h)-treelike. For every r, there exists p(n,r,cp, Do) such that if w > @, then
for every o € V(G), the distrbituion over boundary conditions induced by w(E(G)\E(By/2)) on 0By, is
within TV-distance n=° of a (r, K )-wired boundary condition.

The complications for establishing the above lemma are that the class of (r, L)-wired boundary condi-
tions are not a monotone family, and that the wirings of boundary vertices of B}, are dictated by events of
connectivity to a giant which are not independent even under w. We develop an auxiliary set of events on
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the random-cluster configuration which provide the necessary monotonicity and independence. For this, we
note that all cycles in By, have either 1 or 2 vertices of minimal height; for a vertex w € 0By, we say the
descendant graph D,, in By, is a simple subtree if it does not contain any vertices of minimal height of a
cycle of By,

e Define E; as the event that every component of w of size at least 7 logn coincides (i.e., w has at
most one component of size greater than 7 log n).

e For vertices w € 0By, , whose descendant graph D,, in By, is a simple subtree, let Ey, be the event
that the configuration w(D,,) has size greater than g log n. (For other w, let E, be vacuous.)

On the event F, the subset of w € 0By, 5 such that E,, holds will all be wired together through the giant,
and the set of additional wirings of boundary vertices must be confined to those w for which its descendant
graph in By, is not a simple subtree, which is deterministically at most 2K since G is (K, h)-treelike. It
therefore suffices for us to establish that for all  sufficiently large, if w > @,

Plw¢ B) <n® and {w:we E,} > (X)Ber(p),

whence on the event Fy, the boundary conditions induced by w(E(G)\E(B},/2) on 0By, /2 would be (r, K)-
wired. In particular, Lemma 6.2 is an immediate consequence of the following two lemmas.

Lemma 6.3. Suppose G satisfies Definition 1.4 with some c;, po. For every n > 0, there exists pj, such that
ifp = py, and w > O, then

P(w¢ Fy) <n®.

Proof. Inorder for w ¢ E1, there must exist a component of size between g log A n and n/2 (two components
both of size at least /2 evidently coincide). Thus, by a union bound the probability of w ¢ F is bounded by
the probability that there exists some connected set A of size between I loga n and n/2 with w(0.A) = 0;
this being a decreasing event, it suffices to upper bound its probability under &, whence we can apply
Definition 1.4 with £ = 7 loga n to get

#@ ¢ By) < ne~conlosn

Since ¢ goes to o0 as p — 1, as long as p is larger than some po(n) the right-hand side will be at most
-5
n-°. U

Lemma 6.4. Suppose G is (K, h)-treelike For every r < 1, there exists p such that if w > @ then the
distribution of {w : w € Ey} stochastically dominates a Ber(r) subset of 0By, js.

Proof. Since the E,, are increasing events, {w : w € E,,} stochastically dominates {w : @ € E,,}, it suffices
to establish the above for &. Since the descendant graphs D,, are disjoint for the w € 0By, j, for which D,,
are subtrees (and hence F,, is not vacuous), the events E,, are independent under &. It remains to argue
that P(w € E,) > r as long as p is sufficiently large. Since the descendant graphs D,, contain full binary
trees as subgraphs, the probability of & € E,, is larger than the probability that the branching process with
offspring distribution Bin(2, p) survives 3 log n generations, which happens with probability going to 1 as
p — 1: see e.g., Fact 5.9. In particular, for every r, the probability of & € E,, is greater than r as long as p
is large enough (depending only on 7). g

6.2. Spatial mixing on treelike balls with (r, L)-wired boundary. We now describe how minor adjust-
ments to Section 5.1 lead to spatial mixing on treelike graphs with boundary conditions that are (r, L)-wired.

Lemma 6.5. Suppose By, is K-treelike, and suppose P is (r, L)-wired. Then except with P-probability
—er(1L1ME0) (with ¢, > 0 for r large), & is such that

[, ((Bay) € ) = wh, (w(Bay) € )ry < Ceor WKL),

(&

for some constant ¢, going to o0 as p — 1.
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Proof. Since By, is K -treelike, there is an edge-set H of size at most K such that B\ H is a tree. Following
the breadth-first search of By, there is a stretch of at least h/(2K) consecutive levels between depth /2 and
h such that the restriction of Bj, to those levels is a forest and every tree in that forest contains a full binary
tree as a subgraph (using the minimum degree 3 condition). There exists m > h/2 + h/(2K) such that this
forest is By \By—n/(2K)-

Let S”h,g be the event that there is a wired separating surface in every one of the constituent trees of
height h/(2K) in the configuration w(By\H). (Notice that since the boundary conditions are at depth h,
this depends on the full configuration, not just the restriction to the stretch of h/(2K) heights; moreover by
definition of wired separating surface, if w(By,\H) has a wired separating surface then so does w(B,).)

The first claim is that under this definition, there is a minor modification of the revealing procedure of
Lemma 5.6 such that the probability of w, € S’g ¢ upper bounds the total-variation distance. This is done by
first revealing the entire configurations we and wy on (By\H )\ B, 41/(2k) under the monotone coupling. In

this manner, the revealed part of w, induces some single-component boundary conditions f on By, 1/(25)-
We can then apply Lemma 5.6 to each of the constituent trees of By, \B,,_p/ 2k and it follows that on
the event that they all have wired separating surfaces in wg, then we is coupled to wy above those wired
separating surfaces and in particular on all of B,,. As such, we have the analogous

%, (@(Bhyo) € ) = 1k, (@(Buya) € v < T (W(Bi\H) € S5 ).

To control the probability of S’,CME, we follow the reasoning of Lemma 5.8, with the modifications being
minimal. The only difference that arises is that when considering the probability of the event in item (2) in
that proof, the sub-tree from a vertex v; € By, 4/(2k)\Bm in By\H no longer necessarily contains a full
binary tree: for up to K many vertices, it could be the pruning of a binary tree with up to X many subtrees
of depth at least h/2K deleted from it. The easiest thing to do is to simply disregard these vertices which
leads to a change from h to h — K in the concentration quality. Similarly, at most L of the subtrees contain
at their boundary one of the L vertices where the (r, L) boundary conditions are arbitrarily rewired, and we
can disregard these L vertices as well. Nothing else will be affected in the proof. ([

6.3. Local mixing time on treelike balls with (r, L)-wired boundary. We now show that the 7 logn-
radius balls in the treelike expander, with the boundary conditions induced on them by the remainder of the
FK dynamics configuration, have a polynomial mixing time. By Lemma 6.2, after a burn-in, these will look
like treelike balls with boundary conditions that have an O(1) number of distinct components, one of them
being macroscopic, and the rest all being O(1) sized. At this point we can appeal to comparison estimates for
Markov chains together with the bound on the inverse spectral gap on trees with single-component mixing
times from Lemma 5.10.

Remark 6.6. We do not use any further information on the boundary conditions (like the r-wired property
or the randomness), only the fact that there is at most 1 large component and O(1) many vertices in the union
of all other components. In theory, it is likely that we could use the r-wired property to get a significantly
better bound on the mixing time of a tree. However, the extra O(1) wirings and the O(1) many non-tree
edges force us to at some point perform a comparison through a spectral gap, and getting back a mixing time
bound from this will anyways end up costing a factor of the volume per (5.4).

To perform comparisons, we formalize a notion of distance between boundary conditions. Two “sim-
ilar” random-cluster boundary conditions (in terms of the wiring they induce) have similar effects on the
underlying random-cluster distribution and on the behavior of the corresponding FK dynamics. In turn, the
Dirichlet form, and spectral gaps of their corresponding dynamics should be “close” to one another. We
compile a few definitions and results that formalize this idea.

Definition 6.7. For two boundary conditions ¢ < ¢/, define D (¢, ¢') := k(¢) — k(¢') where k() is the
number of components in ¢. For two partitions ¢, ¢’ that are not comparable, let ¢” be the smallest partition
such that ¢” > ¢ and ¢” > ¢’ and set D (¢, ¢') = k(o) — k(¢") + k(¢') — k(¢").
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The following lemma is then straightforward from the definition of the random-cluster measure (2.1).

Lemma 6.8 (E.g., Lemma 2.2 from [BGV20]). Let G be arbitrary, p € (0,1) and ¢ > 0. Let ¢ and ¢' be
any two partitions of V(G). Then, for all random-cluster configurations w € {0, 1}E, we have

q_2D(¢’¢/)Trg (w) < ﬂ_g(w) < q2D(¢7¢’)ﬂ'g (W) .

The following corollary is a standard comparison of spectral gaps, and follows from Lemma 6.8, the
definition of the transition matrix of the FK dynamics, and Theorem 4.1.1 in [SC97].

Corollary 6.9. Let G = (V, E) be an arbitrary graph, p € (0,1) and q > 0. Consider the FK dynamics on
G with boundary conditions ¢ and ¢', and let \, \' denote their respective spectral gaps. Then,

Using the above, we are able to deduce the following bound.

Lemma 6.10. Consider a K-treelike ball By, with boundary conditions & that have one component of ar-
bitrary size together with at most L many additional boundary wirings. There exists a(A, q) such that the
inverse spectral gap on Bfl is at most Cp, g exp(a(h + K + L)).

Proof. Consider the modification of BfL where all endpoints of the set H are wired up to one another via a

boundary condition, and denote it by éfb By Corollary 6.9, their spectral gaps are within a factor of ¢'01#| of

one another. The FK dynamics on E’i are a product of the FK dynamics on B\ H with boundary conditions

¢ and the wirings of the edges of H (call this (E;T\T’J )%), and | H| independent FK dynamics chains on single
edges with wired boundary. By tensorization of the spectral gap (see e.g., [SC97]) the spectral gap of the FK
dynamics on By, is then the minimum of the gap on those individual edges, and the gap of the FK dynamics
on (Bp\H)S.

The spectral gaps of the individual edges are clearly some constant depending on p, so it suffices to
bound the spectral gap of FK dynamics on (/B;\h\?l )€. For this purpose, notice that with a cost of goUHI+L)
we can perform a further boundary modification and remove the wirings of the edges in H as well as those
L additional wirings in £ to end up with the tree By \ H with a single-component boundary condition. At this
point, we can bound the spectral gap of this resulting single-component tree of depth h using Lemma 5.10.
Putting together the costs from the various comparisons we obtain the desired. g

6.4. Mixing times on locally treelike graphs. In this section, we combine the above parts to establish the
near-linear mixing time bound of Theorem 1.6 for FK dynamics on locally treelike graphs, as long as they
have an exponentially strong supercritical phase for edge-percolation.

Proof of Theorem 1.6. Recall that we use X;* to denote the FK dynamics at time ¢ from initialization wy.
By monotonicity, under the grand coupling, we have

maxP(Xf = X7') < ). P(XP(e) # Xi(e))
w,w’

eeE(G)
< ) P(XP(e) # XMe) = > E[X}(e)] - E[XP(e)]. (6.1)
ecE(G) eeB(G)

Fix an edge e € E(G) and consider the difference in expectations on the right. Set X? to be the censored
FK dynamics that agrees with Xt0 for all times until some 7 but that then censors (ignores) all updates after
time Ty outside of B, = Bj(0) for some o € e and for h = glog n. Let th be the Markov chain that
censors all updates of X} outside of By, (regardless of ¢). Then, by the censoring inequality of [PW13],

E[X{ (e)] - E[X?(e)] < E[X] (e)] — E[XP(e)]. (6.2)

By Lemma 4.1 and Lemma 6.2, for every r, there exist 7y(r, ¢) and pg large enough that for all p > py, the
FK dynamics X%) , X%O induce (r, K')-wired boundary conditions on 0B, /2-
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Let A, = A,(B},) be the set of boundary conditions { on By, that are single-component together with
at most K additional Wirings and furthermore that are such that the inequality of Lemma 6.5 holds with
constant ¢, = +. Since XT ,XT induce (r, K')-wired boundary conditions on 0B, /2, by Lemma 6.5,

P(XTO(B}CL/Q) ¢ A7) < emer(BDMH (6.3)
At the same time, by definition of A, we have
g%x (legh (we) — W%h (we)) < Ce "/ BK) (6.4)
5

so long as n is large enough that h/(2K) — K — K > h/(3K). Since the event {)_(%O(B,Cl) e A} =
{X%O (By) € A,} is measurable w.r.t. Fr, (the filtration generated by the grand coupling up to time 7p),

E[XT, 1 5(e)] — E[X2, 1 5(e)] < P(XP,(Bf) ¢ Ay) + P(XT,y5(e) # Xy 5(e) | X7, (Bf) € Ay)

<P, (BR) ¢ Ar) + s (EIV 5y (€)] — ELZ3 pe(e)).

where YS1 p1and Z OB ¢ are Glauber chains on B}, with boundary conditions 1 and ¢ respectively, initialized
"“h 5,0y,
from 1 and O respectively. We have used here the definition of censored dynamics and monotonicity. The

first term is at most e~ (1-1)"/2% by (6.3).
For the second term, fix any £ € A,(By), let Yy = Y, and Z, = Zng, and write
"“h P

E[Ys(e)] — E[Zs(e)] = (E[Ys (e)] — mp1 (we)) + (wgz (we) — 7 pe (we)) + (mpe (we) — E[Z5(e)])
The middle term is at most C'e~7"/(3K) by (6.4). For the first and third, suppose

1
S = Cplogn- max log <()> AL
w

. £
§eA~(Bp) min,, WEB By

where A\ ! Bt is the inverse spectral gap of the FK dynamics on Bj, with boundary conditions £. Then by (5.4)

and sub- multlphcatlvuy of TV-distance to stationarity, for a universal constant Cj, both the first and third
terms will be at most n~°. Combining, we get

E[X,5(0)] — E[XD, 4 5(e)] < CemrDE 4 em WO 4 pp9), (6.5)
At this point we make the following choices for 7, v, T, S:
(1) h = Zlogn for n > 0 sufficiently small that for every £ € A (Bp,),
log <7£) >\ ¢ < A2 1°g”)\ ! log(l —p) isatmost n%log(l—p);
min, 73 (w)
(2) S = Cin?logn where C; = () log(1 — p);
(3) ~ large enough that e="*/(2K) is at most n=?;

(4) r large enough that c, > 0
(5) Tp and p large enough that X%) induces (r, K')-wired boundary on 0B}, 5.

The existence of such an 7(A, ¢, K) follows from Lemma 6.10 and the fact that a only depends on A, q.
Furthermore, by taking r large, we can make y and c, arbitrarily large, to satisfy items (3)—(4). Finally,
Lemma 6.2 ensures we can take 7j, pg large enough that for all p > py, item (5) is satisfied.

With these choices, for n sufficiently large, the right-hand side of (6.5) is at most n~*. Combining these
with (6.1)—(6.2), we get that there exists po(cp, po, A, 1, ¢, K') such that for all p > po,

max [P(XF 5 € ) = 7y < maxP(XTO+s¢XTO+s) o(1),

which concludes the proof since evidently Ty + S = O(n/?logn) = O(n?). O



30 ANTONIO BLANCA AND REZA GHEISSARI

7. GRAPHS WITH SLOW MIXING AT ARBITRARILY LOW TEMPERATURES

In this section, we establish the following slow mixing result for the FK dynamics. Theorem 1.8 is the
special case where we have restricted to integer ¢ and used the comparison results of [Ull14].

Theorem 7.1. Fix A > 3 and py < 1.

(1) For any q = 3, there exists p > py and a sequence of locally treelike graphs (G,), of maximum
degree A such that the FK dynamics on G,, have tyix = exp(2(n)).

(2) For any q > 4 (possibly non-integer), there exists p > po and a sequence (G,)y of polynomial
volume growth and maximum degree A such that the FK dynamics of Gy, have tyix = exp(2(y/n)).

The key tool for this proof will be the so-called “series law” for the random-cluster model. That is, split-
ting any edge e into two edges, and changing the edge probability parameter for e from p. to approximately
\/Pe for each of the two new resulting edges preserves the random-cluster measure when one re-identifies
the edges and takes the status of e as being open if the two new edges are open. This gives a mechanism for
boosting any fixed p into a p’ which gets closer and closer to 1, while only increasing the number of edges
and vertices in the graph by a constant factor. In this manner, if a graph H has slow mixing for its FK dy-
namics at some value of p (no matter how small), then its modification G (obtained by multiple applications
of the series law) can be made to have slow mixing at p/, for p’ that can be arbitrarily close to 1. Moreover,
the graph modifications do not distort the maximum degree and volume growth (though they importantly do
distort the isoperimetric dimension, and expansion rates, which we recall were fundamental to the presence
of a strongly supercritical phase for the edge-percolation on the graph).

Remark 7.2. Both items (1)—(2) of Theorem 7.1 should hold for all ¢ > 2. The gap for ¢ non-integer in
item (1) and ¢ € (2, 4] in item (2) come from the present lack of proof (to our knowledge) of a slowdown
for FK dynamics on bounded degree graphs (satisfying the corresponding graph condition) at those values
of ¢. Such a slowdown is widely expected at the critical points both for the random regular graph and on
(Z/mZ)? for large d. The values of ¢ for which we can establish our lower bound come from the slowdowns
of the random regular graph at integer ¢ > 3 [COGG*23], and the torus (Z//nZ)? at ¢ > 4 [GL18].

Let us precisely recall the series law of the random-cluster model from [Gri04, Theorem 3.89].
Lemma 7.3. Two edges e, f of a graph G = (V, E) are in series if e = {u,v} and f = {v,w} and v has no
other incident edges. Let
Yy

I+(-1)A-2)1-y)
Let G' = (V\{v}, (E\{e, f}) u {u,w}). For a random-cluster configuration w on G, define w' on G’ by
setting w'(a) = w(a) for a € E\{e, f} and o' ({u,w}) = w(e) - w(f). Then, if w is sampled from the
random-cluster distribution on G with parameters (pg)acp and q > 0, W' is distributed according to the
random-cluster distribution on G' with parameters (pa)acg\fe, } @Nd Piyw) = 0(Pe; Dy q)-

7.1

o(r,y,q) =

Proof of Theorem 7.1. For item (1), let (H,,),, be a locally treelike sequence of n-vertex graphs of degree
at most A such that the mixing time of FK dynamics at some fixed value of p € (0,1) is exp(€2(n)). From
Theorem 1.2 of [COGG™23], we know that a randomly drawn sequence of A-regular graphs satisfies this
bound with high probability if ¢ > 3 is an integer and p = p.(g, A). For item (2), let (H,,),, be the torii
(Z/+/nZ)?. We then know from Theorem 2 of [GL18] that at fixed p = p.(q) € (0,1) the mixing time of
FK dynamics on H,, is exp(€2(4/n)) for all real g > 4.

Let GG, be the modification of H,, in which every edge of H,, is split into 2K edges in series, for K
determined as follows. Let (;(p) be the inverse of o (x, x, ¢) from (7.1), i.e.,

a(Cq(p), Cq(p)a q) = p.

Such an inverse exists and is increasing for p € (0, 1) by virtue of the fact that o(x, z, q) is continuously
increasing from 0 to 1 as z ranges from [0,1]. Since 2%/q < o(x,z,q) < 22 it must be the case that

Co(p)?/q < a(Cy(p), ¢u(p), @) < Cy(p)%. Inorder for this to be equal to p, it must be that VP < G(p) < /g
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Take K such that
G (1) = Gol( G Gy(P) ) = o
K

The inequality \/p < (4(p) ensures that for any

1
Ko (52).

we have C;K (p) = po. By Lemma 7.3, if w’ is a random-cluster configuration on G,, with parameters

p = C;’K(p) and ¢, and we = [ [, w;, for every edge e € E(H,,), where (ei)?fl are the edges in G, derived
from splitting e, then w is a sampled from the random-cluster measure on H,, with parameters p and q.

We now claim that the FK dynamics on G,, with parameters p’ and ¢ have exp(£2(n)) mixing if H,, has
exp(€)(n)) mixing at parameters (p, ¢) (the reasoning that it has exp(£2(y/n)) mixing if H,, has exp(2(y/n)
mixing is identical, so we omit it). This is achieved by lifting a bottleneck set from H,, to G,. In what
follows, it is convenient to work with the discrete-time Glauber dynamics (though the same proof would
work in the continuous-time setting as well). Let Py denote the transition matrix of the discrete-time FK
dynamics on H,, at parameter p and Pg the transition matrix of the discrete-time FK dynamics on G,, at
parameter p’. Similarly, 7z is at parameter p while 7, is at parameter p’.

By assumption, the mixing time of FK dynamics on H,, is exponential in n. As such, there exists a subset
of configurations A < {0,1}¥ (Hn) of exponentially small conductance. More precisely, there must exist
A < {0,1}PHn) such that 77, (A) < 1/2 and

ZzeA,yGAC THp, (l’)PH (l’, y)
i, (A)

see, e.g., [LP17, Theorem 13.10]. Let 0p, A = {x € A : Py (x,y) > 0 for some y € A°}. Since for each

x € 0p, A, each entry of Py, is at least %ﬁ, we see that there exists a constant ¢ > 0 such that

Op(A) =

= exp(—€2(n)); (7.2)

an(apHA) erapHAﬂ-Hn(x) 1
T (A i (A) <np Py(A) <exp(—cn). (7.3)
Let T4 be the subset of {0, 1}#(Gn) defined by T4 = {w’ : w € A} where the relationship between w and '’
is defined per the operation described above. By Lemma 7.3, n¢,, (T4) = 7g, (A). Every configuration in
0Ty must be in T4 because if Pg(w’, 0’) > 0, for o’ ¢ T4, then o’ projects down to a configuration in A€,
so w’ must project into dA. Therefore, by Lemma 7.3, 7¢, (0p,Ta) < g, (Op, A). Altogether, it follows
from (7.3) that

76, (0p;Ta)
76, (Ta)

Using the facts that for every z, the number of y € T'4¢ for which Pg(x, y) is positive is at most E(Gy,),
ZZ’ETA,yGTf‘ TGr (x)PG(xv y) TGy, (aPGTA)
TG, (Ta) 76, (Ta)
implies that T4 is a set of exponentially small conductance for the FK dynamics on GG,,. This then implies
the inverse gap and mixing time of FK dynamics on G,, are both exponential in n.

It remains to reason that the number of vertices and edges of (G, are of the same order as the number of
vertices and edges of H,, so that the resulting bounds are indeed exponential in |V (G,,)|. Notice that as
long as p = Q(1) and 1 — py = (1), then K = O(1). As such, G,, will have |V (G,)| < |V(H,)| +
2K|E(H,)| = O(|V(H,)|), and |E(G},)| < 25|E(H,,)|. This yields the claimed bound. O

< exp(—cn).

< [E(Gh)l
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