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Irreversibility in bacterial regulatory networks
Yi Zhao1,2†, Thomas P. Wytock1,2†, Kimberly A. Reynolds3,4, Adilson E. Motter1,2,5,6*
Irreversibility, in which a transient perturbation leaves a system in a new state, is an emergent property in 
systems of interacting entities. This property has well- established implications in statistical physics but re-
mains underexplored in biological networks, especially for bacteria and other prokaryotes whose regulation 
of gene expression occurs predominantly at the transcriptional level. Focusing on the reconstructed regula-
tory network of Escherichia coli, we examine network responses to transient single- gene perturbations. We 
predict irreversibility in numerous cases and find that the incidence of irreversibility increases with the prox-
imity of the perturbed gene to positive circuits in the network. Comparison with experimental data suggests 
a connection between the predicted irreversibility to transient perturbations and the evolutionary response 
to permanent perturbations.

INTRODUCTION
A common goal in both statistical physics and systems biology is 
to connect the attributes of microscopic entities with observable 
macroscopic properties. Of particular interest are macroscopic 
properties that are emergent—including pattern formation (1) and 
synchronization (2)—because they arise from interactions between 
system entities and can therefore enable new system- level function-
ality. In statistical physics, an important emergent property is the 
irreversibility of macroscopic processes (3), where entropy—a state 
function—can increase irreversibly despite the time reversibility of the 
microscopic dynamics. A related property is hysteresis (4), where a 
cyclic (reversible) change of a variable leads to a persistent change in 
the state of the system. 

In molecular biophysics, a central dogma (5) posits that phenotype 
is determined by genotype and would thus be reversible. !at is, iden-
tical DNA sequences would yield identical observable characteristics, 
which are assumed to arise from the proteins of the cell. !e dogma 
allows for the possibility that multiple DNA sequences can map to the 
same protein amino acid sequence through synonymous codon us-
age, but multiple amino acids are not assigned to the same codon. 
!us, rigorous adherence to this dogma cannot account for eukary-
otic processes like organismal development (6), cell di"erentiation 
(7), cell reprogramming (8–10), and nongenetic aspects of aging (11, 
12), which may nevertheless be attributed to epigenetics (e.g., histone 
modi#cations and DNA methylation). It also does not account for en-
vironmentally induced switches in prokaryotic systems, such as stalk-
ing in Caulobacter crescentus (13), sporulation in Bacillus subtilus 
(14), and the lac and mar operons in Escherichia coli (15, 16)—despite 
epigenetic mechanisms being largely absent in prokaryotes. !e ex-
tent to which the phenotype- genotype correspondence holds for pro-
karyotes beyond speci#c cases remains an outstanding question. It is 
thus natural to ask how and when phenotype, which is to #rst ap-
proximation a state function of gene activity, can change irreversibly 

in prokaryotes even in response to transient microscopic (e.g., single- 
gene) perturbations. Here, we will consider a change to be irreversible 
when such a short- lived perturbation leads to a long- lasting heritable 
phenotypic change that persists across multiple cell divisions. In a de-
terministic mathematical model, these changes would be associated 
with transitions between stable states and hence be permanent. While 
dissipation is necessary for the existence of stable states, it is not suf-
#cient for irreversible changes to occur, since the #nal stable state may 
be the same as the original one. By considering genetic rather than 
environmental perturbations, we can address whether transcriptional 
regulation itself deviates from the central dogma and does so even in 
the absence of environmental inducers.

Here, we study the prevalence and network mechanisms of irre-
versibility in the gene regulatory network of E. coli, which is the 
model organism with the most complete reconstructed network of 
this kind now available. Because this reconstruction is the union of 
potential regulatory interactions whose presence may depend on 
the environmental conditions, we consider irreversibility across a 
range of representative sets of interactions. Using Boolean dynamics 
modeling, we examine the impact of transient single- gene perturba-
tions on the activity of the other genes. We predict that transient 
knockouts (KOs) and transient overexpressions (OEs) of individual 
genes in the central part of the regulatory network commonly result 
in irreversible changes in the states of other genes in the network. 
Our results identify positive circuits (network cycles with an even 
number of repressive interactions) as the relevant network struc-
tures underlying the multistability necessary for irreversibility. 
Mechanistically, a transient perturbation may lead to permanent 
changes when it alters (directly or indirectly) the state of one or 
more multistable positive circuits (Fig. 1). !is condition is more 
frequently satis#ed the closer the perturbed gene is to a downstream 
positive circuit, and thus the likelihood of a gene being irreversible 
increases with its proximity to (or membership in) a nontrivial 
strongly connected component (SCC) of the network. Comparing 
with existing data on adaptive evolution experiments, our predic-
tions support the hypothesis that the genes remaining in di"erent 
states following adaptive evolution to a (permanent) gene KO are 
largely determined by those that respond irreversibly to a transient 
KO of the same gene. !e results point to speci#c candidates for 
observing irreversibility and reveal its presence in prokaryotes 
despite the tight transcription- to- translation coupling and the still 
largely unresolved role of epigenetic mechanisms in such organisms.
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RESULTS
Network modeling approach
We focus our analysis on the transcriptional regulatory network 
from the RegulonDB database, G(V, E), which is reconstructed from 
empirical data and includes ∣V∣ = 1859 genes (nodes) and ∣E∣ = 5119 
pairwise signed interactions (edges) (17). We retain only activating 
(positive sign) and repressing (negative sign) interactions, leaving 
out 148 edges with dual or unknown function. Recognizing that the 
subset of regulatory interactions present (but not their polarity) may 
vary depending on the cultivation conditions, we examine the aver-
age irreversibility propensity across a representative ensemble of 
dynamical rules formed by these interactions. To ensure that our 
analysis is conducted on a connected component of the network, we 
identi#ed all origons. An origon is a subnetwork that starts at a root 
node with no incoming edges (other than autoreglatory ones) and 
includes all downstream nodes and edges that can be reached from 
the root node by following directed paths (18).

We analyze the largest origon, which is rooted at gene phoB and 
consists of a 1406- node subnetwork; the results would be similar for 
all other large origons since they are accounted for by related core 
networks (table S1). !e phoB origon is also the largest subnetwork 
reachable from any individual node in the RegulonDB model. !e 
origon core is the subnetwork G′(V′, E′) that remains a%er recur-
sively removing the nodes with zero outgoing edges. According to 
this procedure, which generalizes the metabolic network trimming 
used in (19), the core network shares similarities with the concept of 
k- core applied to the outgoing edges. Our notion of core network is 
nevertheless di"erent from other generalizations of k- core on di-
rected networks (20) as the procedure here is tailored to capture the 
irreversibility of the entire origon. !is is the case because nodes 
outside the core have no impact on the state of upstream nodes (in-
cluding all nodes in the core) and have reversible impacts on the 
state of downstream nodes. In the case of the phoB origon, the core 
network consists of ∣V′∣ = 87 nodes and ∣E′∣ = 290 edges. Given that 
the number of Boolean network states scales as 2∣V′∣, our focus on the 
core also leads to a dimension reduction that helps circumvent a 
combinatorial explosion in simulations of the dynamics.

!e network dynamics are modeled using a Boolean framework 
(21, 22) on the core network with nodes u = 1, …, ∣V′∣ and edges E′ ⊆ 
V′ × V′. Edges are denoted by (directed) ordered pairs (v, u), indi-
cating that the gene associated with tail node v regulates the gene 
associated with head node u. !e polarity of (v, u), W(v, u), is +1 or 
−1 indicating activation or repression. !e state of the network at 
time t is indicated by xt =

(
xtu
)
 , where xtu ∈ {0, 1} is the Boolean 

state of gene u. Each xtu is assumed to evolve according to a deter-
ministic Boolean function Bu : {0, 1}∣V

′ ∣ → {0,1}

which accounts for the k+u  edges incident on u in G′ and their po-
larities by obeying three network consistency constraints. !e con-
straints are edge consistency (nodes with states on the right- hand 

side in Eq. 1 must connect to the node u), edge essentiality (all nodes 
on the right- hand side are necessary to determine xt+1u  ), and sign 
consistency ( xtv or xtv appears on the right- hand side if v activates or 
inhibits u). Here, we use that the negation of xv = 0 is xv = 1 , and the 
negation of xv = 1 is xv = 0 . As a consequence, Bu(x) can be written 
as a sum of products of xv and/or xv (modulus 1) for all v with edges 
incident on u, where xv ( xv ) appears and does so once if the polarity 
W(v, u) is positive (negative) (23). For additional details and the 
special case of autorepression, we refer to Materials and Methods.

As an example of consistent update rules, consider the regulatory 
relationships illustrated in the three- gene network of Fig. 2A. Because 
node u has two incoming edges ( k+u = 2 ), there are two feasible func-
tions that satisfy the network consistency constraints, BAND =

(
BAND
u

)
 

and BOR =
(
BOR
u

)
 (Fig. 2, B and C, respectively). Both rules have 

multiple attractors , which are fixed point or periodic orbits 
{
xt


}|||
T

t=1
 , T ≥ 1, to which the other states converge over time. Fig. 2D 

shows the state transitions and attractors associated with BAND. !e 
attractors form the starting point for identifying irreversible tran-
sient perturbations as illustrated in Fig. 2E. Starting from each 
attractor (t = O), each xu is perturbed independently of 1 to 0 for 
KOs and from 0 to 1 for OEs (t = P). !e states are allowed to evolve 
under the perturbation until reaching a new attractor (t = Q). 
The perturbation is removed upon reaching the attractor (t = R), 
and the states evolve to the #nal attractor ′ (t = S). If ′ ≠ , then 
we classify the transient KO or OE as an irreversible perturbation 
and refer to genes that di"er between attractors as irreversible re-
sponse genes.

To proceed with the analysis of irreversibility in our model, we 
must #rst specify the rules of the core regulatory network. Because 
the number of possible rules is too large to simulate exhaustively 
(see Materials and Methods), we developed an algorithm to sample 
the ensemble of rules based on key qualities of empirical and Boolean 
regulatory networks. In Fig. 3A, we illustrate key properties of Boolean 
networks relevant to our simulations. Regulatory networks have 
been empirically observed to have a nested canalizing structure 
(24–26), which occurs when the state of one incident node deter-
mines the output regardless of the state of the remaining incident 
nodes. Mathematically, this condition is expressed as xv = x∗v implies 
Bu

(
x|xv=x∗v

)
= x∗u independently of the states of a set of one or more 

other nodes incident on u. As seen in the #rst two rows of Fig. 3A, 
both variables in the simple AND (×) and OR (+) are canalizing, 
while higher- order Boolean functions with higher levels of nesting 
are shown in the third and fourth rows. Here, we quantify the nest-
edness by calculating the expected number of variable states needed 
to determine the output of Bu, which we refer to as the canalization 
depth. !is is calculated by expressing the Boolean rules in simplest 
form using the Quine- McCluskey algorithm (27, 28). Brie&y, we 
break down the simpli#ed rule into binary operators and read each 
operator from le% to right while keeping track of the canalization 

xt+1u = Bu

(
xt
)

(1)

Fig. 1. Example of the mechanism for irreversibility in a simple network of activating relationships. Before perturbation, genes are in the “OFF” state (blue color). 
During the perturbation, gene 1 is perturbed (yellow star background), which turns “ON” genes 2 and 3 (red). After the perturbation, gene 1 is restored to its initial OFF 
state, but genes 2 and 3 remain ON.
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depth and a list of variables (i.e., bu"er) whose depth is grato be as-
signed. Figure 3B provides instructions on how to update the canaliza-
tion depth and list of variables when each operator is encountered. 
For each pair of inputs, we decide whether (i) to assign the depth to 
each variable in the bu"er, (ii) to increase the canalization depth, 
and/or (iii) to empty the bu"er. We also account for the rule bias, 
which is the probability of updating to 1, as this quantity has been 
shown to play a role in determining the response to perturbations in 
random Boolean networks (29, 30).

It is therefore natural to sample the ensemble using a nestedness 
parameter r and a bias parameter s. Each Boolean function has a list 
of Boolean variables determined by the network consistency con-
straints leaving the k+u − 1 binary operations for us to specify. We 
assign the nesting operator “×( ” between the variables with proba-
bility r. In the remaining 1 − r probability, we assign the + operator 
with probability s and the × operator with probability 1 − s. !us, 
the binary operators ×, +, and ×( appear with probabilities (1 − r)(1 − 
s), (1 − r)s, and r, respectively. With these parameters de#ned, we 
can enumerate all rules of k+u  variables, assign a probability of ran-
domly obtaining each rule, and determine the canalization depth of 
each variable in each rule (according to the procedure in Fig. 3B). By 
#rst averaging the canalization depth over the variables in each rule 
and subsequently weighting by the probability of obtaining each 
rule, we obtain an expression for the average canalization depth. !e 
parameters r and s also can be used to relate our representation of 
the rules—which focuses on a core network of densely connected 
cycles and explicitly accounts for the polarity of each edge in the 
network—to representations that treat rule inputs as statistically in-
dependent (31, 32) and/or are agnostic of edge polarities (29, 30).

Figure 4 (A and B) shows, respectively, the rule bias and average 
canalization depth as functions of r and s. These quantities are 

determined by enumerating the 2k+u−1 possible input combinations 
and their associated probabilities. In the cases (r = 0, s = 1), (s = 0 ∀r), 
and (r = 1 ∀s), the rules are fully canalizing, since the #rst joins all 
pairs with a + operator and the latter two join all pairs with a × op-
erator. !e rule bias and canalizing state for each input are, respec-
tively, 1 − 2−k

+
u and 1 in the #rst case and 2−k+u and 0 for the remaining 

cases. !e average canalization depth reaches a maximum at the 
point (r, s) = (0.5, 1), where the rule bias takes an intermediate val-
ue. For #xed values of r and s, the algorithm requires the speci#ca-
tion of an ordering of inputs. We consider two limiting cases: 
concentrated control, in which an incident node v with the largest 
out- degree k−v  tends to canalize the other inputs, and di"use control, 
in which a node with the smallest k−v  tends to canalize the others. 
!e former scenario is analogous to the disassortativity observed in 
the structure of regulatory networks, in which nodes with large k− 
tend to be connected to nodes with small k− (33). !is situation al-
lows for the cell’s transcriptional state to be broadly altered by 
changing a select few transcription factors, sometimes referred to as 
“general transcription factors” in bacteria (34) or “master regula-
tors” in eukaryotes (35). Under di"use control on the other hand, 
genes referred to as “speci#c transcription factors” in bacteria (34) 
or “secondary regulators” in eukaryotes (35) tend to canalize the 
output. !is scenario distributes control of the transcriptional state 
across many small circuits, enabling the spatiotemporal encoding of 
speci#c responses to particular signals (36). Together, concentrated 
and di"use control re&ect competing strategies responsible for the 
organization of gene regulatory networks, with the latter case ex-
pected to have many more attractors than the former case. In #g. S1, 
we indeed observe a signi#cantly larger number of attractors associ-
ated with networks in the latter scenario for parameters with large 
average canalization depth. !e geometric mean over realizations 
ranges from the order of 102 attractors for concentrated control 
(descending sorting) to 103 attractors for di"use control (ascending 
sorting).

!is framework allows us to probe the irreversibility in the core 
network of the phoB origon G′. We generate update rules B of the 
core network for each r = [0, 0.2, 0.4, 0.6, 0.8, 1] with s = 1, and for 
each s = [0, 0.2, 0.4, 0.6, 0.8, 1] with r = 1 − s and 0. For the (r, s) pairs 
with nonunique rules, we sample M = 20 realizations in each input 
order (for later reference, we de#ne M = 1 for unique rules). We de-
termine the attractors for each realization of B using an SAT- based 
algorithm (37), #nding that the number of attractors varies with the 
rule nestedness and input sorting. !e number of attractors is largest 
for intermediate values of the rule nestedness—although we note 
that the biological relevance of a given attractor varies widely.

Analysis of the irreversibility results
Figure 5 summarizes the average probability that each gene in the 
phoB origon core network admits an irreversible perturbation. Be-
cause such perturbations are on nodes that cause others to change 
when perturbed, these nodes reside in, or upstream of, nontrivial 
SCCs that contain at least one circuit with positive polarity. (An SCC 
is by de#nition a subnetwork for which each node can be reached by 
every other node, and we de#ne trivial SCCs as single- node SCCs 
with no autoregulation.) Circuits are directed loops in the network 
formed by a set of m distinct nodes and m distinct edges, and the 
circuit polarity is the product of the polarities of the edges. Positive 
circuits are necessary for the existence of multiple #xed- point attrac-
tors (38), which constitute the most common attractor class observed 

A B

D E

C

Fig. 2. Finding irreversible perturbations in a Boolean gene regulatory net-
work of three nodes. (A) Representation of a three- gene network, where the sec-
tors correspond to genes u, v, and w with states xu, xv, and xw. Here, as in all 
subsequent network !gures, pointed arrowheads indicate activating relationships, 
and "at arrowheads indicate repressive relationships. (B and C) Boolean functions 
consistent with the network edges and polarities in (A), as indicated by text colors 
and negations (bars), respectively. The functions BAND and BOR—labeled according 
to the function assigned to update node u—provide rules for synchronous updates 
of the node states at each time t. (D) State transitions for the update rules BAND 
where sector colors indicate the node state. The yellow and green backgrounds 
indicate !xed- point and period- 2 attractors, respectively. (E) Application and re-
moval of a perturbation to each attractor state. This transient perturbation can 
leave the network in a di#erent attractor, with the altered node states between the 
initial attractor  and !nal attractor ′ indicated by a red outline.
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in our simulations. !is creates the possibility of multiple stable 
states (39, 40), which we show below is a necessary condition for ir-
reversibility. !e probability that the change is irreversible increases 
with proximity to downstream SCCs (shaded subnetworks in Fig. 5). 
Because large SCCs tend to have more positive circuits, they create 
more opportunities for multistability, which helps explain their ob-
served proximity to upstream nodes admitting irreversible perturba-
tions. At the same time, the greater complexity of large SCCs means 
that they likely contain both positive and negative circuits. Figure S3 
shows that, in a minority of cases, this combination strengthens the 

irreversible response of selected genes compared to (smaller) SCCs 
with purely positive circuits by facilitating irreversible responses. 
!ese results are an example of the network structure playing a role 
in determining irreversibility.

Every node in&uencing a positive circuit in the network exhibits 
irreversibility for some B in our simulations. !e remaining nodes 
cannot permanently alter the state of any positive circuit when tran-
siently perturbed, and they are one of two types: (i) leaf nodes (i.e., 
nodes with no outgoing edges to di"erent nodes), which are reversible 
because they cannot in&uence other nodes; and (ii) nodes in&uencing 

A

B

Fig. 4. Parameter dependence of the update rules. (A) Rule bias and (B) average canalization depth for k+
u
= 3, … , 7 . The rule properties are expressed as functions of the 

nestedness parameter r, which is the probability of joining two inputs with the ×( operator, and bias parameter s, which is the probability of joining two inputs with the + operator.

A

C

B

Fig. 3. Example calculations of the key Boolean concepts underlying the network ensemble. (A) Examples of Boolean rules, their logic circuit representation, canalizing vari-
ables, variable canalization depth, and rule bias. (B) Scheme for calculating the canalization depth of the variables. Each row of the table explains how the binary operator determines 
the assigment of the canalization depth of the variables. N/A, not applicable. (C) Illustration of the path weight calculation for network paths to SCCs that contain positive circuits.
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only autorepressive leaf nodes, which are reversible because the leaf 
node circuits are necessarily monostable. We refer to the Supplementary 
Materials for details and gene identities in each case. Leaf nodes can 
still be irreversible response genes when they are downstream of an 
irreversibly responding positive circuit, which illustrates that network 
structure also constrains the possible irreversible response genes.

To establish necessary and su'cient conditions for irreversibility, 
we examine the transitions induced by the application and removal 
of perturbations. For a perturbation node u, we de#ne the state inver-
sion operator gu(x)=x||xu=xu , and we refer to the time points in 
Fig. 2E. !e operator gu changes the state of variable xu to its inversion 
xu while leaving the remaining states in x unchanged. To prove the 
necessary condition by contradiction, suppose that the perturbation 
of u is irreversible (i.e., ′ ≠ ) and that gu(xQ) = xO. However, by 
de#nition, gu(xQ) = xR, so {xO, xR, xS} ⊆ , making the perturbation 
reversible, a contradiction. As a consequence, there exists a nonempty 
set  =

{
w ∣ w ≠ u, xQ

w
≠ xO

w

}
 . Irreversibility further requires the 

existence of some v ∈ V′ such that Bv(xR) ≠ Bv[g (xR)], where we ex-
tend the g operator to sets of nodes . In the absence of such a v, xR 
and g (xR) belong to the same ′, and ′ =  because g  (xR) = xO 
by the de#nition of . We can now state a su'cient condition for ir-
reversibility in terms of the set  and the basin of attraction of , 
which is the set of states that reach  for some t ≥ 0. !e condition is 
that xR cannot be in the basin of attraction of , which implies Bv(xR) 

≠ Bv[g (xR)] for some v ∈ V′. Direct inspection of our simulations 
con#rm that these conditions are satis#ed in Fig. 5.

Since the basins of attraction are relevant to the su'ciency con-
dition for irreversibility, we recalculated a weighted average of 
irreversibility in which the irreversibility in each initial attractor is 
weighted proportional to the size of its basin (#g. S4). !ese weight-
ed irreversibility results remain qualitatively similar to unweighted 
case, as indicated by the R2 > 0.91 for both di"use and concentrated 
control input orderings. However, the rate of irreversibility is cut 
approximately in half, and the basin sizes of the initial attractors are 
on average approximately one- eighth the size of the #nal attractor 
basins. !is tendency for irreversible perturbations to drive the 
network from attractors with smaller basins to those with larger 
basins can be understood as a consequence of the necessary and 
su'cient conditions: A set of downstream genes must change state 
in response to the irreversible perturbation (necessary condition), 
and the state reached upon reversion—provided that it is outside 
the original basin (su'cient condition)—is more likely to belong to 
a larger basin of attraction than a smaller one.

Dynamical versus structural factors 
in!uencing irreversibility
Casting irreversibility in terms of the set  allows us to relate pu, the 
average irreversibility probability across all rules of node u (a dynamical 

Fig. 5. The 87- gene core regulatory network of the phoB origon in E. coli. Node colors encode the average irreversibility probability across M realizations of the rules, 
and edges denote regulatory interactions. The shaded background indicates the multinode SCCs, which all have one or more positive circuits. In total, 51 genes admit 
irreversible perturbations. The average irreversibility probability across realizations is within 0.1 of the true value (!g. S2).
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property), to the weighted number of paths to downstream SCCs 
with a positive circuit (a structural property). In Fig. 3C, we il-
lustrate a simple network with two paths to SCCs with a positive 
circuit. Each path is defined as a sequence of + ≥ 2 nodes 
Hm =

(
Hm

1 , … ,Hm
𝓁

)
 (indexed by m), in which 

(
Hm

i ,H
m
j

)
∈ E′ and 

Hm
i ≠ Hm

j  for all i ≠ j; in addition, Hm

𝓁
∈ u

 , where u is the set of 
nodes in all downstream SCCs of G′ with a positive circuit. We ar-
gue that, starting at u = Hm

1  , each path to u can contribute to the 
possibility that a perturbation gives rise to a nonempty . We de-

#ne the weight of path Hm to be ω(Hm) =
(∏𝓁

i=2 k
+
Hm

i

)−1

 . (Example 
calculations of the path weight are provided in Fig. 3C.) Under cer-
tain approximations, the path weight corresponds to the probabili-
ty that the perturbation of u changes the state of nodes in u 
through the path Hm. !ese approximations are that each input of 
BHm

i
 is equally probable to change its output and that the change in 

state of each node in the path is independent. Now, considering all 
paths from a node u to u, the weighted number of paths to all 
(other) nodes in SCCs for node u is Ku = ∑{Hm} ‍ ω(Hm). Figure 6 
shows that 55 to 62% of the variance in pu in our simulations is ac-
counted for by the relationship p̂u = aKb

u , where b = 0.68 ± 0.09 for 
di"use control and b = 0.93 ± 0.14 for the concentrated control. 
!e larger exponent in the latter case re&ects the reduced probabil-
ity among nodes u with a smaller number of weighted paths to u.

Figure 7 illustrates the trend in irreversibility averaged across 
realizations as a function of the input orderings, perturbations 
types, and values of r and s for the 25 most irreversible genes 
(Fig. 7A) and the remaining genes (Fig. 7B). Within each panel 
varying s and/or r, the columns are ordered such that the rule bias 
increases from le% to right. !e #rst and last columns are common 
to all panels of a given perturbation type because the rules are 
unique for these parameter choices. In Fig. 7A, the irreversibility of 
the set of genes formed by hns, stpA, crp, rcsB, leuO, bglJ, rhaR, and 
rhaS varies monotonically with the rule bias in all three panels for 
each choice of ordering and perturbation type. Speci#cally, from 

le% to right, the irreversibility decreases for the KO of hns and the 
KO of stpA, but it increases for the KOs of the remaining genes in 
this set. For each of these genes, as a function of the rule bias, the 
irreversibility of their OEs is anticorrelated with the irreversibility 
of their KOs. !e anticorrelation is related to the number of attrac-
tors in which a particular gene is on (or o") in a given realization of 
the rules; that is, a perturbed gene tends to show greater irrevers-
ibility with respect to the perturbation (KO or OE) that can be ap-
plied to the largest number of attractors. !is can be intuitively 
understood by considering the limiting case in which only one at-
tractor has a given gene on. In this case, any irreversible transition 
induced by the KO of this gene requires the perturbed gene to 
change state a%er the restoration of the KO. Such a change in state 
can only occur if the perturbed gene is in a circuit with other genes 
that change state a%er the initial perturbation. !is is in sharp con-
trast with the other extreme in which the given gene is on in all 
attractors, and thus irreversibility is possible even if it remains un-
changed a%er the KO is restored.

Figure 7A also shows that genes phoB, cra, and !s exhibit a de-
crease in the irreversibility probability for intermediate values of r 
and/or s, which may be attributed to the larger average canalization 
depth for these parameter values. !ese genes have a large number 
of regulatory outputs k−u  and, because of the increased canalization 
depth, become less likely to determine the state updates compared 
to genes like fnr, fur, "iZ, and gadX, which have a lower overall ir-
reversibility probability but show an increase in this probability for 
intermediate values of r and/or s. Genes in the latter group tend to 
be located within large SCCs, while genes in the former group tend 
to be situated upstream of multiple SCCs. Last, Fig. 7B shows the 
remaining 26 genes that admit irreversible perturbations but have 
smaller average irreversibility probability. !ese genes tend to have 
a small out- degree ( k−u  ), and thus they are most strongly a"ected by 
the input ordering. In the descending input ordering, the genes with 
large out- degree dominate those with small out- degree, resulting in 
the dearth of irreversibility for this ordering compared to the as-
cending ordering.

A B

Fig. 6. Irreversibility probability for all nodes in the phoB origon core network as a function of the weighted number of paths to SCCs with positive circuits 
(SCCs+). (A and B) Results for di#use and concentrated control scenarios (i.e., ascending and descending input sorting), respectively. The best !t trend is indicated by the 
dotted line in each case with the indicated coe%cient of determination (R2). The color code is the same as in Fig. 5.
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Irreversible genes in adaptive responses to crp KO
!e irreversible responses to transient genetic perturbations pre-
dicted here have implications for adaptive evolution. Intuitively, the 
response of the other genes to a gene KO followed by adaptive evolu-
tion is akin to the response to a gene KO followed by its reversion—
in the sense that both adaptation and the response to reversion tend 
to compensate for the changes induced by the initial perturbation. 
In Fig. 8, we examine this proposition by comparing the behavior of 
the genes in the core network that respond irreversibly to crp KO—
the most irreversible perturbation in our simulations—with those 
that do not in terms of their transcriptional changes during adaptive 
evolution to this perturbation. !e gene crp encodes the catabolite 
repressor protein, a global transcriptional regulator that represses 
genes associated with the metabolism of nonpreferred carbon 
sources in the presence of glucose. We make use of existing RNA 
sequencing (RNA- seq) data from experiments where the cells were 

evolved for 10 days in M9 glucose following crp KO, which provides 
the highest- quality characterization of the transcriptome under 
these conditions (41). Using these data, we compute the observed 
sign and magnitude of the log fold change in expression between the 
initial and adaptively evolved strains, which were characterized un-
der both batch and chemostat cultivation (details in Materials and 
Methods). !e observed sign for gene u, denoted σobsu  , is compared 
against the sign predicted by the Boolean model σmod

u  . !e latter is 
the opposite of the polarity of the shortest path of crp to the gene 
(Fig. 7A). Using u′ to denote the genes ordered in terms of decreas-
ing magnitude of their log fold change, we compute the precision of 
the top n genes

P(n) =
1

n

n∑

u′=1

𝕝
(
σobs
u′

= σmod

u′

)
(2)

A

B

Fig. 7. Probability of admitting irreversible perturbations averaged over realizations for the input orderings and perturbation types indicated above the pan-
els. (A) Color- coded irreversibility probability as a function of r and s for the top 25 genes with the highest probability. For each input ordering and perturbation type, 
the three panels (from left to right) show the irreversibility probability along three different straight lines in the (r, s)- space in Fig. 4. (B) Same plot as (A) for the 
remaining 26 genes admitting irreversible perturbations. The !rst and last columns in each panel correspond to the cases of all inputs joined by + and all inputs joined 
by ×, respectively.
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which is the rate at which the signs match among these genes. Here, 
𝕝 is the indicator function, which takes the value 1 if its argument is 
true and 0 if it is false. When there are multiple shortest paths of the 
same length to a given gene and two of these paths have di"erent 
polarities, the indicator function evaluates to 1 for nonzero values of 
σobsu  . Figure 8B shows the precision P(n) for both batch and chemo-
stat conditions plotted as a function of n (normalized by ∣V′∣ − 1, the 
total number of genes in the phoB origon core network other than 
crp). !e precision decreases rapidly in both conditions when log 
fold change becomes less than a threshold of 0.5. Of the genes with 

a log fold change above this threshold, 10 of 11 in batch cultivation 
and 33 of 42 in chemostat cultivation change in the direction pre-
scribed by the Boolean model. !en, the average precision, de#ned by

is 0.99 and 0.85 in batch and chemostat cultivation, respectively (tables S2 
and S3). Both scenarios yield a signi#cant P value less than 0.01, as 
determined by bootstrapping (see Materials and Methods).

Having established that the correspondence between σobsu  and 
σmod
u  is statistically signi#cant, we examine the extent to which the 

genes with σobsu = σmod
u  and a log fold change >0.5 also corresponded 

to the 68 irreversible response genes associated with crp KO in the 
Boolean model. We #nd that 8 of 9 irreversible response genes 
match the predicted response compared to 2 of 2 reversible genes in 
batch culture, and 28 of 34 irreversible response genes match re-
sponse compared to 5 of 8 reversible genes in chemostat culture, 
yielding a P value of 0.03 when considering both conditions together 
(see Materials and Methods). It is notable that a statistically signi#-
cant relationship between the predicted irreversibility and adaptive 
evolution experiments is detected despite the limited information 
on the actual regulatory rules in the Boolean model and the non-
regulatory factors known to in&uence adaptive evolution.

Making speci"c predictions
Motivated by the concordance between the gene expression changes 
during adaptive evolution, we examine the irreversible perturbation 
of crp KO in the context of existing transcriptional data and more 
detailed models of gene regulation (#g. S5). First, we calculate 
whether each gene responds irreversibly to crp KO across all attrac-
tors for all realizations of the rules. We assess the biological rele-
vance of the attractors by weighting the irreversibility results based 
on the similarity of each attractor to the observed transcriptional 
states when calculating the average irreversibility (#g. S6). !is anal-
ysis leads us to conclude that self- activating genes that are positively 
regulated by crp are the most likely to be irreversible.

While the level of detail in the Boolean model allows us to deter-
mine the type of perturbation (KO) and the initial states of the genes 
(both ON), it does not provide us with information regarding the 
continuous dynamics of the gene expression. We obtain a continu-
ous version of the Boolean dynamics that preserves the stable states 
by using the HillCube algorithm (42) to represent the Boolean AND 
regulation as a di"erential equation. In #g. S7A, we use this repre-
sentation to calculate the conditions for multistability in terms of 
phenomenological parameters like the transcriptional activation 
strength and Hill coe'cient (a measure of how step- like the activa-
tion rule is). !e irreversibility predictions from this analysis are 
veri#ed by simulating the equations (#g. S7B). From these simula-
tions, we infer qualitative aspects that enhance irreversibility in this 
motif: Irreversible response genes will tend to have stronger self- 
activation and exhibit a more switch- like response (i.e., have a larger 
Hill coe'cient).

Overall, this analysis suggests candidate irreversible response 
genes such as zraR, melR, and rhaRS in response to crp KO. !ese 
genes are convenient because they one can ensure that they are ini-
tially on by adjusting the cultivation conditions (e.g., by using glyer-
col which is known to activate crp and by supplementing the growth 
media metabolites such as zinc, melibiose, or rhamnose in the cases 

⟨P⟩(n) = 1
n

n∑

m=1

P(m) (3)

Fig. 8. Comparison of the irreversibility results with the observed transcrip-
tional changes in adaptive evolution. (A) Representation of the phoB origon core 
network showing in black the edges that appear in the shortest paths to each node 
from crp. The node outline colors indicate the sign of crp regulation, and the node 
colors indicate the distance from crp, where irreversible response nodes are green. 
The shaded backgrounds, autoregulatory edges, and network layout are the same 
as in Fig. 5. (B) Precision- recall curves evaluating the agreement of the sign of ex-
pression change of each gene predicted by the Boolean network model with that 
observed after adaptive evolution in batch (blue) and chemostat (orange) condi-
tions. The genes are ranked from largest to smallest in terms of their change in ex-
pression. The dotted lines indicate the threshold of 0.5 for the log fold change used 
to calculate the 〈P〉 for each condition (marked on the legend). Genes above this 
threshold in batch and chemostat conditions are listed in tables S2 and S3, respec-
tively. N.R., not regulated; N.I., not irreversible.
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of zraR, melR, and rhaRS, respectively). Meanwhile, one candidate 
method for implementing the transient KO is inducible CRISPR in-
terference (43). Last, expression of the response genes could be mon-
itored via sequencing to ascertain whether irreversibility occurs. 
Comparing with experiments exploring bistability in inducible sugar 
utilization (44), we posit that there will be a range of modest concen-
trations of supplemental metabolites the irreversible response gene 
will turn o", corresponding to the bistable region in #g. S7A.

DISCUSSION
!e irreversibility of transient gene regulatory perturbations pre-
dicted here reveals a mechanism for prokaryotic cells to exhibit dis-
tinct phenotypes even when they are genetically identical. Our 
analysis, which excludes extracellular factors and chromatin modi#-
cations from the model, emphasizes the ability of purely regulatory 
mechanisms to precipitate heritable nongenetic changes that can 
endure for multiple generations. !is should be compared with the 
phenomenon of cell fate commitment in eukaryotes, which is typi-
cally attributed to an environmental factor or signaling molecule 
triggering the expression of a master regulator that orchestrates the 
activation and repression of downstream genes to achieve a change 
in phenotype (45, 46). In eukaryotes, epigenetic modi#cations such 
as histone modi#cation and DNA methylation play a role in locking 
cells into their fates (47, 48), but the former process is absent and the 
latter functions di"erently in prokaryotes.

Within the scope of our E. coli model, we establish that genes 
admitting irreversible perturbations rely on positive circuits to gen-
erate multistability and stabilize their irreversible responses. !is 
#nding reveals greatly enhanced complexity in the repertoire of pos-
sible cell states, well beyond those previously observed for bistable 
chemosensory motifs (15, 16, 44). Together, the results lead to the 
interesting possibility of nongenetically programming the state of 
bacterial cells—a phenomenon ultimately related to the control aim 
of steering between attractors in the regulatory network (49–51). 
Broadening our model to account for stochastic &uctuations, cell 
cycle, and other nonstationary factors can convert the permanently 
irreversible responses seen in our model into temporarily irrevers-
ible but long- lived changes that persist over multiple generations. 
!e extent to which the predicted irreversibility will persist and be 
inheritable is thus an important question for future experimental 
studies, which can be interpreted using stochastic many- body phys-
ics approaches tailored to describe the processes of transcription, 
translation, and degradation (52–57).

Finally, our analysis suggests that genes responding irreversibly are 
signi#cantly associated with those that undergo regulatory changes 
in adaptive evolution experiments across conditions, even in the ab-
sence of full knowledge of the regulatory rules. !is result is consis-
tent with the observation that incomplete models of gene regulatory 
networks can still yield reliable predictions (32). !us, notwith-
standing the simpli#cations of the model, the analysis of irreversible 
responses to transient perturbations also contributes to the interpre-
tation of adaptive evolution responses to permanent perturbations.

MATERIALS AND METHODS
Construction of the phoB origon core network
We constructed the activating and repressing interactions of the 
gene regulatory network based on the RegulonDB data using the #le 

“generegulation_tmp.txt” (17), where pairwise regulatory relation-
ships between genes are recorded. !e regulatory network dynamics 
were simulated using R (version 4.2.3) and R package BoolNet (ver-
sion 2.1.8) (58). For the dynamics to be well de#ned, each node 
must have at least one input, where we recognize the rule xt+1u = xtu 
as positive autoregulation. !erefore, in analyzing the phoB origon, 
we added a self- activating loop (and no additional inputs) to phoB as 
this is the only gene in the core network with no regulatory inputs. 
!is added edge #xes the initial state of the node and does not a"ect 
our observation of irreversibility.

Generation of biologically realistic update rules
Because the available RegulonDB data are insu'cient to specify all 
the Boolean update rules, we examine the ensemble of consistent 
rules. Rules are said to be consistent with RegulonDB if they satisfy 
the three criteria laid out in the main text:

1) Edge consistency. !e state variables xv (or their negation xv ) 
appearing on the right- hand side of Eq. 1 are those associated with 
nodes v that have edges incident on u in G′.

2) Edge essentiality. Whenever v is a node incident on u in G′, 
there is at least one state x for which changing the variable xv chang-
es Bu(x).

3) Sign consistency. We require that Bu(xxv=0) ≤ Bu(x|xv=1) if v 
activates u and Bu(xxv=0) ≥ Bu(x|xv=1) if v inhibits u.

To exclude artifactual oscillations, we further assume that autore-
pressive regulation is silenced when xu = 0 in the sign consistency 
condition, which implies an exception to the edge essentiality condi-
tion. Speci#cally for every rule chosen, one or more edges into a auto-
repressive node will not in&uence the state of this node. If the 
autorepressive node is in its own monomial, the self- edge is non-
essential. If the autorepressive node is joined with others in a mono-
mial, then the other input edges to this node in the monomial will be 
nonessential.

Estimating the number of possible regulatory rules
Edge and sign consistency together guarantee that one of xtv or xtv 
appears in the rule Bu, and edge essentiality guarantees that all v 
must appear once. Thus, the number of variables in the rule Bu 
is k+u  . Since all possible Boolean rules can be written as a sum of 
products (23), the number of feasible rules is at least as large as 
∑k+

u
−1

n=0

(
k+
u
−1

n

)
= 2k

+
u
−1 . Because the Bu are set independently for 

each u, the number of feasible B is 
∏∣V ′∣

u=1
2k

+
u
−1 , which of the order 

of 1061 for the phoB origon core network.

Algorithm to sample realistic update rules
In the general case, given a network, there is an ensemble of possible 
B that are consistent with the network structure and polarity of the 
interactions. To facilitate the sampling of this ensemble, we intro-
duce the vector of inputs y =

[
yv1 , … , yvk+u

∣
(
vi , u

)
∈ E′

]
 for #xed 

u, where yvi = xvi if W(vi, u) > 0 and yvi = xvi if W(vi, u) < 0. !e 
inputs are indexed using i ∈

{
1, … , k+u

}
 and ordered according to 

k−vi
 , the number of outgoing edges of the associated node vi, for both 

ascending ( k−vi ≤ k−vi+1
 ) and descending  (k−

vi
≥ k−

vi+1
)  orders. !e sam-

pling of the ensemble of rules is parameterized by r and s, which 
control the selection among three binary operators between inputs 
yvi and yvi+1. Specifically, we join the inputs as yvi × (yvi+1 with 
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probability r, as yvi + yvi+1 with probability (1 − r)s, and as yvi × yvi+1 
with probability (1 − r)(1 − s). Larger values of the nestedness pa-
rameter increase the number of parentheses appearing in the rules, 
and larger values of the bias parameter increase the number of pos-
sible input vectors that update to 1. We specify each Bu by starting at 
the #rst pair of inputs, choosing their binary operator according to 
the probabilities above, and proceeding iteratively until all inputs 
are included. !is strategy is implemented in the following iterative 
algorithm:

In the algorithm, we use ∼ 𝕌(0,1) to denote a random number 
drawn from the uniform distribution on the unit interval, and we 
use )…) to denote the n closed parentheses in the rule.

Convergence of irreversibility estimates
For each pair (r, s) and input sorting that does not have unique rules 
[r ≠ 1,  s ≠ 0, and (r, s) ≠ (0,1)], we generate M = 20 realizations of 
the rules indexed by i ∈ {1, …, M}, identify the attractors (Fig. 2D), 
and apply the irreversibility detection algorithm (Fig. 2E). Since the 
attractors change between realizations of the rules, the irreversibility 
of a perturbation (KO or OE) may also change. To account for this 
source of variability, we average over the transient perturbations as 
follows. Let qu,i be the fraction of attractors for which xu = 1, and let 
pKOu,i  and pOEu,i  be the probabilities that the transient KO and OE of 
gene u lead to irreversibility, respectively. !en

is the weighted average of the probability that gene u admits an ir-
reversible perturbation across a set of realizations .

We test for the convergence of the average irreversibility as a 
function of the ensemble size by #xing the number of realizations to 
be M′ = {1, …, 10}. !e number of possible ensembles of size M′ 
taken out of M realizations is 

(
M

M′

)
 , and the number of pairs of 

ensembles is Z
(
M,M′

)
=

(
M

M′

)(
M−M′

M′

)
 . If Z(M, M′) > 1000, 

then we randomly sample 1000 pairs of ensembles. Otherwise, we 
use all Z(M, M′) pairs. Denoting each ensemble pair as ( , ), we 
apply Eq.  4 to each ensemble to obtain the root mean square 
di"erence

where we recall that ∣V′∣ = 87 is the number of genes in the 
core network.

Processing of the RNA- seq data
!e transcriptional data for E. coli adaptively evolved a%er crp KO 
are obtained and analyzed as follows. Raw counts of RNA were 
obtained from the Gene Expression Omnibus (GEO) database (59) 
maintained by the National Center for Biotechnology Information 
(NCBI), accession number GSE152214. Experimental details of 
the RNA collection have been described elsewhere (41). Raw 
counts in GEO were converted into transcripts per million using 

zi = 106
ci

Li

(
∑Ng

j=1

cj

Lj

)−1

 , where Ng is the number of genes in the 

dataset, ci is the raw count of transcripts for gene i, and Li is the 
length of the gene in kilobases. !e transcript counts of genes that 
are in the core regulatory network G′ in our model were examined 
for changes before crp KO, a%er crp KO, and a%er adaptive evolution 
of the crp KO strain. !e data include strains cultivated under both 
batch and chemostat conditions.

Calculating the observed sign of the transcriptional changes
For each environmental condition, ρu = μevou ∕μwtu  is the fold change 
of the average expression for each gene between the adaptively 
evolved strain and the initial wild- type strain. To account for the 
overall shi% in transcription (e.g., due to changes in the lab condi-
tions or variability in media preparation), we calculate the average 
shi% in expression ⟨ρ⟩ = |V ′|−1

∑∣V ′∣
u=1

μevo
u

∕μwt
u

 . !en, the observed 
sign of regulatory changes is

where sgn(ϵ) is the sign function that takes the value 1 if ϵ > 0, −1 if 
ϵ < 0, and 0 if ϵ = 0. In addition, the magnitude of the log fold 
change in expression is ∣ln(ρu/〈ρ〉)∣.

Calculating the predicted sign of the transcriptional changes
!e predicted sign of the transcriptional change in the Boolean 
model is assigned according to the polarity of the shortest paths in 
G′ from crp to each gene u. Recall that the a shortest path between 
Hu

1 = crp and Hu
𝓁
= u is denoted by Hu =

(
Hu

1 , … ,Hu
𝓁

)
 and that the 

polarity of the edges is given by the function W. According to the 
Boolean model, the sign of the expected change is

where the negative sign appears because the perturbation of crp is a 
KO. Equations 6 and 7 provide the quantities used in calculating the 
precision in Eq. 2.

Statistical analysis of 〈P〉 and irreversibility
We assess statistical signi#cance using a bootstrapping approach 
(60). In this approach, we compute Nexc, the number of times that 
the randomized list returns a larger value of the statistic than the 
observed lists out of Nsamp = 25,000 shu(ings, and the P value is 
given by 1 − Nexc/Nsamp. Speci#cally, we compute 〈P〉 in each condi-
tion to evaluate whether the concordance between σobsu  and σmod

u  is 

p̂


u
=

1

∣ ∣

∑

i∈

p
KO
u,i

qu,i + p
OE
u,i

(
1 − qu,i

)
(4)

RMSD =

√√√√ 1

∣V ′ ∣

∣V ′∣∑

u=1

(
p̂


u
− p̂



u

)2

(5)

σobsu = sgn

(
ln

ρu
⟨ρ⟩

)
(6)

σmod
u = −

𝓁−1∏

i=1

W
(
Hu

i ,H
u
i+1

)
(7)
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statistically signi#cant. Using u′ to denote the reordered list of genes, 
〈P〉 is repeatedly computed a%er shu(ing σmod

u′
 while keeping σobsu  

and ∣ln(ρu/〈ρ〉)∣ #xed.
Similarly, we compute the number of genes that satisfy σobsu = σmod

u  
and ∣ln(ρu/〈ρ〉)∣ > 0.5 for genes responding irreversibly (γirr) and 
reversibly (γrev) to crp KO in each cultivation condition. Using the 
di"erence γirr − γrev in each condition, we assess whether genes that 
show large changes during adaptive evolution are signi#cantly more 
likely to be irreversible in our simulations. In this case, we repeat-
edly compute γirr − γrev a%er shu(ing σmod

u′
 while keeping σobsu  and 

∣ln(ρu/〈ρ〉)∣ fixed in each condition separately. We count cases 
toward Nexc only when γirr − γrev exceeds the observed value in both 
environmental conditions.
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