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Irreversibility in bacterial regulatory networks
Yi Zhao'*t, Thomas P. Wytock ™+, Kimberly A. Reynolds®*, Adilson E. Motter%%¢:

Irreversibility, in which a transient perturbation leaves a system in a new state, is an emergent property in
systems of interacting entities. This property has well-established implications in statistical physics but re-
mains underexplored in biological networks, especially for bacteria and other prokaryotes whose regulation
of gene expression occurs predominantly at the transcriptional level. Focusing on the reconstructed regula-
tory network of Escherichia coli, we examine network responses to transient single-gene perturbations. We
predict irreversibility in numerous cases and find that the incidence of irreversibility increases with the prox-
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imity of the perturbed gene to positive circuits in the network. Comparison with experimental data suggests
a connection between the predicted irreversibility to transient perturbations and the evolutionary response

to permanent perturbations.

INTRODUCTION

A common goal in both statistical physics and systems biology is
to connect the attributes of microscopic entities with observable
macroscopic properties. Of particular interest are macroscopic
properties that are emergent—including pattern formation (1) and
synchronization (2)—because they arise from interactions between
system entities and can therefore enable new system-level function-
ality. In statistical physics, an important emergent property is the
irreversibility of macroscopic processes (3), where entropy—a state
function—can increase irreversibly despite the time reversibility of the
microscopic dynamics. A related property is hysteresis (4), where a
cyclic (reversible) change of a variable leads to a persistent change in
the state of the system.

In molecular biophysics, a central dogma (5) posits that phenotype
is determined by genotype and would thus be reversible. That is, iden-
tical DNA sequences would yield identical observable characteristics,
which are assumed to arise from the proteins of the cell. The dogma
allows for the possibility that multiple DNA sequences can map to the
same protein amino acid sequence through synonymous codon us-
age, but multiple amino acids are not assigned to the same codon.
Thus, rigorous adherence to this dogma cannot account for eukary-
otic processes like organismal development (6), cell differentiation
(7), cell reprogramming (8-10), and nongenetic aspects of aging (11,
12), which may nevertheless be attributed to epigenetics (e.g., histone
modifications and DNA methylation). It also does not account for en-
vironmentally induced switches in prokaryotic systems, such as stalk-
ing in Caulobacter crescentus (13), sporulation in Bacillus subtilus
(14), and the lac and mar operons in Escherichia coli (15, 16)—despite
epigenetic mechanisms being largely absent in prokaryotes. The ex-
tent to which the phenotype-genotype correspondence holds for pro-
karyotes beyond specific cases remains an outstanding question. It is
thus natural to ask how and when phenotype, which is to first ap-
proximation a state function of gene activity, can change irreversibly
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in prokaryotes even in response to transient microscopic (e.g., single-
gene) perturbations. Here, we will consider a change to be irreversible
when such a short-lived perturbation leads to a long-lasting heritable
phenotypic change that persists across multiple cell divisions. In a de-
terministic mathematical model, these changes would be associated
with transitions between stable states and hence be permanent. While
dissipation is necessary for the existence of stable states, it is not suf-
ficient for irreversible changes to occur, since the final stable state may
be the same as the original one. By considering genetic rather than
environmental perturbations, we can address whether transcriptional
regulation itself deviates from the central dogma and does so even in
the absence of environmental inducers.

Here, we study the prevalence and network mechanisms of irre-
versibility in the gene regulatory network of E. coli, which is the
model organism with the most complete reconstructed network of
this kind now available. Because this reconstruction is the union of
potential regulatory interactions whose presence may depend on
the environmental conditions, we consider irreversibility across a
range of representative sets of interactions. Using Boolean dynamics
modeling, we examine the impact of transient single-gene perturba-
tions on the activity of the other genes. We predict that transient
knockouts (KOs) and transient overexpressions (OEs) of individual
genes in the central part of the regulatory network commonly result
in irreversible changes in the states of other genes in the network.
Our results identify positive circuits (network cycles with an even
number of repressive interactions) as the relevant network struc-
tures underlying the multistability necessary for irreversibility.
Mechanistically, a transient perturbation may lead to permanent
changes when it alters (directly or indirectly) the state of one or
more multistable positive circuits (Fig. 1). This condition is more
frequently satisfied the closer the perturbed gene is to a downstream
positive circuit, and thus the likelihood of a gene being irreversible
increases with its proximity to (or membership in) a nontrivial
strongly connected component (SCC) of the network. Comparing
with existing data on adaptive evolution experiments, our predic-
tions support the hypothesis that the genes remaining in different
states following adaptive evolution to a (permanent) gene KO are
largely determined by those that respond irreversibly to a transient
KO of the same gene. The results point to specific candidates for
observing irreversibility and reveal its presence in prokaryotes
despite the tight transcription-to-translation coupling and the still
largely unresolved role of epigenetic mechanisms in such organisms.
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Fig. 1. Example of the mechanism for irreversibility in a simple network of activating relationships. Before perturbation, genes are in the “OFF” state (blue color).
During the perturbation, gene 1 is perturbed (yellow star background), which turns “ON” genes 2 and 3 (red). After the perturbation, gene 1 is restored to its initial OFF

state, but genes 2 and 3 remain ON.

RESULTS

Network modeling approach

We focus our analysis on the transcriptional regulatory network
from the RegulonDB database, G(V, E), which is reconstructed from
empirical data and includes | V] = 1859 genes (nodes) and |E| = 5119
pairwise signed interactions (edges) (17). We retain only activating
(positive sign) and repressing (negative sign) interactions, leaving
out 148 edges with dual or unknown function. Recognizing that the
subset of regulatory interactions present (but not their polarity) may
vary depending on the cultivation conditions, we examine the aver-
age irreversibility propensity across a representative ensemble of
dynamical rules formed by these interactions. To ensure that our
analysis is conducted on a connected component of the network, we
identified all origons. An origon is a subnetwork that starts at a root
node with no incoming edges (other than autoreglatory ones) and
includes all downstream nodes and edges that can be reached from
the root node by following directed paths (18).

We analyze the largest origon, which is rooted at gene phoB and
consists of a 1406-node subnetwork; the results would be similar for
all other large origons since they are accounted for by related core
networks (table S1). The phoB origon is also the largest subnetwork
reachable from any individual node in the RegulonDB model. The
origon core is the subnetwork G’'(V’, E’) that remains after recur-
sively removing the nodes with zero outgoing edges. According to
this procedure, which generalizes the metabolic network trimming
used in (19), the core network shares similarities with the concept of
k-core applied to the outgoing edges. Our notion of core network is
nevertheless different from other generalizations of k-core on di-
rected networks (20) as the procedure here is tailored to capture the
irreversibility of the entire origon. This is the case because nodes
outside the core have no impact on the state of upstream nodes (in-
cluding all nodes in the core) and have reversible impacts on the
state of downstream nodes. In the case of the phoB origon, the core
network consists of | V’| = 87 nodes and |E’| = 290 edges. Given that
the number of Boolean network states scales as 2’|, our focus on the
core also leads to a dimension reduction that helps circumvent a
combinatorial explosion in simulations of the dynamics.

The network dynamics are modeled using a Boolean framework
(21, 22) on the core network with nodes u =1, ..., |V’| and edges E' C
V' x V'. Edges are denoted by (directed) ordered pairs (v, u), indi-
cating that the gene associated with tail node v regulates the gene
associated with head node u. The polarity of (v, u), W(v, u), is +1 or
—1 indicating activation or repression. The state of the network at
time ¢ is indicated by x' = (xi), where x! € {0,1} is the Boolean
state of gene u. Each x! is assumed to evolve according to a deter-
ministic Boolean function By, : {0, l}lv'| - {0,1}

xZ“ = Bu(xt) (1)

which accounts for the k7 edges incident on u in G’ and their po-
larities by obeying three network consistency constraints. The con-
straints are edge consistency (nodes with states on the right-hand

Zhao et al., Sci. Adv. 10, eado3232 (2024) 28 August 2024

side in Eq. 1 must connect to the node u), edge essentiality (all nodes
on the right-hand side are necessary to determine x'*'), and sign
consistency (x or X! appears on the right-hand side if v activates or
inhibits u). Here, we use that the negation of x, = 0 is X, = 1, and the
negation of x, = 1 is X, = 0. As a consequence, B,(x) can be written
as a sum of products of x, and/or x, (modulus 1) for all v with edges
incident on u, where x, (x,) appears and does so once if the polarity
W(v, u) is positive (negative) (23). For additional details and the
special case of autorepression, we refer to Materials and Methods.
As an example of consistent update rules, consider the regulatory
relationships illustrated in the three-gene network of Fig. 2A. Because
node u has two incoming edges (k* = 2), there are two feasible func-
tions that satisfy the network consistency constraints, BAN® = (BAND)

and BO® = (BOR) (Fig. 2, B and C, respectively). Both rules have
multiple attractors A, which are fixed point or periodic orbits
{xi4 } tT:l, T 4 > 1, to which the other states converge over time. Fig. 2D
shows the state transitions and attractors associated with BAN", The
attractors form the starting point for identifying irreversible tran-
sient perturbations as illustrated in Fig. 2E. Starting from each
attractor (t = O), each x, is perturbed independently of 1 to 0 for
KOs and from 0 to 1 for OEs (¢ = P). The states are allowed to evolve
under the perturbation until reaching a new attractor (t = Q).
The perturbation is removed upon reaching the attractor (t = R),
and the states evolve to the final attractor A’ (t = S). If A’ # A, then
we classify the transient KO or OE as an irreversible perturbation
and refer to genes that differ between attractors as irreversible re-
sponse genes.

To proceed with the analysis of irreversibility in our model, we
must first specify the rules of the core regulatory network. Because
the number of possible rules is too large to simulate exhaustively
(see Materials and Methods), we developed an algorithm to sample
the ensemble of rules based on key qualities of empirical and Boolean
regulatory networks. In Fig. 3A, we illustrate key properties of Boolean
networks relevant to our simulations. Regulatory networks have
been empirically observed to have a nested canalizing structure
(24-26), which occurs when the state of one incident node deter-
mines the output regardless of the state of the remaining incident
nodes. Mathematically, this condition is expressed as x, = x7 implies

B, ( Xy —pe ) = x7 independently of the states of a set of one or more

other nodes incident on u. As seen in the first two rows of Fig. 3A,
both variables in the simple AND (X) and OR (+) are canalizing,
while higher-order Boolean functions with higher levels of nesting
are shown in the third and fourth rows. Here, we quantify the nest-
edness by calculating the expected number of variable states needed
to determine the output of B,, which we refer to as the canalization
depth. This is calculated by expressing the Boolean rules in simplest
form using the Quine-McCluskey algorithm (27, 28). Briefly, we
break down the simplified rule into binary operators and read each
operator from left to right while keeping track of the canalization
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Fig. 2. Finding irreversible perturbations in a Boolean gene regulatory net-
work of three nodes. (A) Representation of a three-gene network, where the sec-
tors correspond to genes u, v, and w with states x,, x,, and x,. Here, as in all
subsequent network figures, pointed arrowheads indicate activating relationships,
and flat arrowheads indicate repressive relationships. (B and C) Boolean functions
consistent with the network edges and polarities in (A), as indicated by text colors
and negations (bars), respectively. The functions BAC and B"—labeled according
to the function assigned to update node u—provide rules for synchronous updates
of the node states at each time t. (D) State transitions for the update rules BAND
where sector colors indicate the node state. The yellow and green backgrounds
indicate fixed-point and period-2 attractors, respectively. (E) Application and re-
moval of a perturbation to each attractor state. This transient perturbation can
leave the network in a different attractor, with the altered node states between the
initial attractor .4 and final attractor .4’ indicated by a red outline.

depth and a list of variables (i.e., buffer) whose depth is grato be as-
signed. Figure 3B provides instructions on how to update the canaliza-
tion depth and list of variables when each operator is encountered.
For each pair of inputs, we decide whether (i) to assign the depth to
each variable in the buffer, (ii) to increase the canalization depth,
and/or (iii) to empty the buffer. We also account for the rule bias,
which is the probability of updating to 1, as this quantity has been
shown to play a role in determining the response to perturbations in
random Boolean networks (29, 30).

It is therefore natural to sample the ensemble using a nestedness
parameter r and a bias parameter s. Each Boolean function has a list
of Boolean variables determined by the network consistency con-
straints leaving the k* — 1 binary operations for us to specify. We
assign the nesting operator “x( ” between the variables with proba-
bility r. In the remaining 1 — r probability, we assign the + operator
with probability s and the X operator with probability 1 — s. Thus,
the binary operators X, +, and X( appear with probabilities (1 — r)(1 —
s), (1 — 1)s, and r, respectively. With these parameters defined, we
can enumerate all rules of k* variables, assign a probability of ran-
domly obtaining each rule, and determine the canalization depth of
each variable in each rule (according to the procedure in Fig. 3B). By
first averaging the canalization depth over the variables in each rule
and subsequently weighting by the probability of obtaining each
rule, we obtain an expression for the average canalization depth. The
parameters r and s also can be used to relate our representation of
the rules—which focuses on a core network of densely connected
cycles and explicitly accounts for the polarity of each edge in the
network—to representations that treat rule inputs as statistically in-
dependent (31, 32) and/or are agnostic of edge polarities (29, 30).

Figure 4 (A and B) shows, respectively, the rule bias and average
canalization depth as functions of r and s. These quantities are
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determined by enumerating the 2%~ possible input combinations
and their associated probabilities. In the cases (r=10,s=1), (s=0Vr),
and (r = 1 Vs), the rules are fully canalizing, since the first joins all
pairs with a 4+ operator and the latter two join all pairs with a X op-
erator. The rule bias and canalizing state for each input are, respec-
tively,1 — 275 and 1 in the first case and 2% and 0 for the remaining
cases. The average canalization depth reaches a maximum at the
point (7, s) = (0.5, 1), where the rule bias takes an intermediate val-
ue. For fixed values of r and s, the algorithm requires the specifica-
tion of an ordering of inputs. We consider two limiting cases:
concentrated control, in which an incident node v with the largest
out-degree k. tends to canalize the other inputs, and diffuse control,
in which a node with the smallest k tends to canalize the others.
The former scenario is analogous to the disassortativity observed in
the structure of regulatory networks, in which nodes with large k™
tend to be connected to nodes with small k™ (33). This situation al-
lows for the cell’s transcriptional state to be broadly altered by
changing a select few transcription factors, sometimes referred to as
“general transcription factors” in bacteria (34) or “master regula-
tors” in eukaryotes (35). Under diffuse control on the other hand,
genes referred to as “specific transcription factors” in bacteria (34)
or “secondary regulators” in eukaryotes (35) tend to canalize the
output. This scenario distributes control of the transcriptional state
across many small circuits, enabling the spatiotemporal encoding of
specific responses to particular signals (36). Together, concentrated
and diffuse control reflect competing strategies responsible for the
organization of gene regulatory networks, with the latter case ex-
pected to have many more attractors than the former case. In fig. S1,
we indeed observe a significantly larger number of attractors associ-
ated with networks in the latter scenario for parameters with large
average canalization depth. The geometric mean over realizations
ranges from the order of 10 attractors for concentrated control
(descending sorting) to 10° attractors for diffuse control (ascending
sorting).

This framework allows us to probe the irreversibility in the core
network of the phoB origon G'. We generate update rules B of the
core network for each r = [0, 0.2, 0.4, 0.6, 0.8, 1] with s = 1, and for
eachs=1[0,0.2,0.4,0.6,0.8, 1] with r =1 — s and 0. For the (r, s) pairs
with nonunique rules, we sample M = 20 realizations in each input
order (for later reference, we define M = 1 for unique rules). We de-
termine the attractors for each realization of B using an SAT-based
algorithm (37), finding that the number of attractors varies with the
rule nestedness and input sorting. The number of attractors is largest
for intermediate values of the rule nestedness—although we note
that the biological relevance of a given attractor varies widely.

Analysis of the irreversibility results

Figure 5 summarizes the average probability that each gene in the
phoB origon core network admits an irreversible perturbation. Be-
cause such perturbations are on nodes that cause others to change
when perturbed, these nodes reside in, or upstream of, nontrivial
SCC:s that contain at least one circuit with positive polarity. (An SCC
is by definition a subnetwork for which each node can be reached by
every other node, and we define trivial SCCs as single-node SCCs
with no autoregulation.) Circuits are directed loops in the network
formed by a set of m distinct nodes and m distinct edges, and the
circuit polarity is the product of the polarities of the edges. Positive
circuits are necessary for the existence of multiple fixed-point attrac-
tors (38), which constitute the most common attractor class observed
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Fig. 3. Example calculations of the key Boolean concepts underlying the network ensemble. (A) Examples of Boolean rules, their logic circuit representation, canalizing vari-
ables, variable canalization depth, and rule bias. (B) Scheme for calculating the canalization depth of the variables. Each row of the table explains how the binary operator determines

Canalizing Canalization Bias B Binary

Action on existing Change to Action on buffer
operator  buffer variables  canalization depth  (after assignment)
. Increase by the number
21 X (... (z2 Add z,, Assign of open parentheses Flush
z1) + (z2  Add zy, Assign None Flush
21 + ( Add 1, Assign Increase by 2 Flush
1 + o Add x1, Assign None Flush
T1 X Xy Add z; None None
(1 None Increase by 1 None
Z2) Add x5, Assign N/A (termination) Flush
Paths Path weights
a H! = (aﬁb) w(Hl) B %
(3] 3 I
s _3 H? = (a,¢,d) w(H?) = (3) 3

the assigment of the canalization depth of the variables. N/A, not applicable. (C) lllustration of the path weight calculation for network paths to SCCs that contain positive circuits.
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Fig. 4. Parameter dependence of the update rules. (A) Rule bias and (B) average canalization depth for k;' =3, ...
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,7.The rule properties are expressed as functions of the

nestedness parameter r, which is the probability of joining two inputs with the x( operator, and bias parameter s, which is the probability of joining two inputs with the + operator.

in our simulations. This creates the possibility of multiple stable
states (39, 40), which we show below is a necessary condition for ir-
reversibility. The probability that the change is irreversible increases
with proximity to downstream SCCs (shaded subnetworks in Fig. 5).
Because large SCCs tend to have more positive circuits, they create
more opportunities for multistability, which helps explain their ob-
served proximity to upstream nodes admitting irreversible perturba-
tions. At the same time, the greater complexity of large SCCs means
that they likely contain both positive and negative circuits. Figure S3
shows that, in a minority of cases, this combination strengthens the
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irreversible response of selected genes compared to (smaller) SCCs
with purely positive circuits by facilitating irreversible responses.
These results are an example of the network structure playing a role
in determining irreversibility.

Every node influencing a positive circuit in the network exhibits
irreversibility for some B in our simulations. The remaining nodes
cannot permanently alter the state of any positive circuit when tran-
siently perturbed, and they are one of two types: (i) leaf nodes (i.e.,
nodes with no outgoing edges to different nodes), which are reversible
because they cannot influence other nodes; and (ii) nodes influencing
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only autorepressive leaf nodes, which are reversible because the leaf
node circuits are necessarily monostable. We refer to the Supplementary
Materials for details and gene identities in each case. Leaf nodes can
still be irreversible response genes when they are downstream of an
irreversibly responding positive circuit, which illustrates that network
structure also constrains the possible irreversible response genes.

To establish necessary and sufficient conditions for irreversibility,
we examine the transitions induced by the application and removal
of perturbations. For a perturbation node u, we define the state inver-
sion operator g (x)=x|__-, and we refer to the time points in
Fig. 2E. The operator g, ch;.nées the state of variable x,, to its inversion
X, while leaving the remaining states in x unchanged. To prove the
necessary condition by contradiction, suppose that the perturbation
of u is irreversible (ie., A’ # A) and that gu(xQ) = x°. However, by
definition, gu(xQ) =xX so {xO, x5, xs} C A, making the perturbation
reversible, a contradiction. As a consequence, there exists a nonempty
set W= {w | w#u, xS * xf; } Irreversibility further requires the
existence of some v € V’ such that B,(x%) # Bv[gW(XR )], where we ex-
tend the g operator to sets of nodes W. In the absence of such a v, x"
and g W(xR) belong to the same A/, and A’ = A because g =" =x°
by the definition of W. We can now state a sufficient condition for ir-
reversibility in terms of the set W and the basin of attraction of A,
which is the set of states that reach A for some t > 0. The condition is
that x® cannot be in the basin of attraction of A, which implies B,(x)

# Bv[gw(xR)] for some v € V'. Direct inspection of our simulations
confirm that these conditions are satisfied in Fig. 5.

Since the basins of attraction are relevant to the sufficiency con-
dition for irreversibility, we recalculated a weighted average of
irreversibility in which the irreversibility in each initial attractor is
weighted proportional to the size of its basin (fig. S4). These weight-
ed irreversibility results remain qualitatively similar to unweighted
case, as indicated by the R* > 0.91 for both diffuse and concentrated
control input orderings. However, the rate of irreversibility is cut
approximately in half, and the basin sizes of the initial attractors are
on average approximately one-eighth the size of the final attractor
basins. This tendency for irreversible perturbations to drive the
network from attractors with smaller basins to those with larger
basins can be understood as a consequence of the necessary and
sufficient conditions: A set of downstream genes must change state
in response to the irreversible perturbation (necessary condition),
and the state reached upon reversion—provided that it is outside
the original basin (sufficient condition)—is more likely to belong to
a larger basin of attraction than a smaller one.

Dynamical versus structural factors

influencing irreversibility

Casting irreversibility in terms of the set W allows us to relate p,, the
average irreversibility probability across all rules of node u (a dynamical

Average irreversibility
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Fig. 5. The 87-gene core regulatory network of the phoB origon in E. coli. Node colors encode the average irreversibility probability across M realizations of the rules,
and edges denote regulatory interactions. The shaded background indicates the multinode SCCs, which all have one or more positive circuits. In total, 51 genes admit
irreversible perturbations. The average irreversibility probability across realizations is within 0.1 of the true value (fig. S2).
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property), to the weighted number of paths to downstream SCCs
with a positive circuit (a structural property). In Fig. 3C, we il-
lustrate a simple network with two paths to SCCs with a positive
circuit. Each path is defined as a sequence of £ > 2 nodes

H" = (Hlm, N H;") (indexed by m), in which (Him, HJW!) € E' and
H" # H]'” for all i # j; in addition, H'eK, where K, is the set of
nodes in all downstream SCCs of G’ with a positive circuit. We ar-

gue that, starting at u = H}", each path to K, can contribute to the
possibility that a perturbation gives rise to a nonempty W. We de-

-1
fine the weight of path H" to be o(H™) = ( H,‘iz k:lim ) . (Example
calculations of the path weight are provided in Fig. 3C.) Under cer-
tain approximations, the path weight corresponds to the probabili-
ty that the perturbation of u changes the state of nodes in £,
through the path H". These approximations are that each input of
By is equally probable to change its output and that the change in
state of each node in the path is independent. Now, considering all
paths from a node u to K,, the weighted number of paths to all
(other) nodes in SCCs for node u is K, = > yum o(H™). Figure 6
shows that 55 to 62% of the variance in p, in our simulations is ac-
counted for by the relationship p, = aK?, where b = 0.68 + 0.09 for
diffuse control and b = 0.93 + 0.14 for the concentrated control.
The larger exponent in the latter case reflects the reduced probabil-
ity among nodes u with a smaller number of weighted paths to C,,.

Figure 7 illustrates the trend in irreversibility averaged across
realizations as a function of the input orderings, perturbations
types, and values of r and s for the 25 most irreversible genes
(Fig. 7A) and the remaining genes (Fig. 7B). Within each panel
varying s and/or r, the columns are ordered such that the rule bias
increases from left to right. The first and last columns are common
to all panels of a given perturbation type because the rules are
unique for these parameter choices. In Fig. 7A, the irreversibility of
the set of genes formed by hns, stpA, crp, rcsB, leuO, bgl], rhaR, and
rha$ varies monotonically with the rule bias in all three panels for
each choice of ordering and perturbation type. Specifically, from

left to right, the irreversibility decreases for the KO of hns and the
KO of stpA, but it increases for the KOs of the remaining genes in
this set. For each of these genes, as a function of the rule bias, the
irreversibility of their OEs is anticorrelated with the irreversibility
of their KOs. The anticorrelation is related to the number of attrac-
tors in which a particular gene is on (or off) in a given realization of
the rules; that is, a perturbed gene tends to show greater irrevers-
ibility with respect to the perturbation (KO or OE) that can be ap-
plied to the largest number of attractors. This can be intuitively
understood by considering the limiting case in which only one at-
tractor has a given gene on. In this case, any irreversible transition
induced by the KO of this gene requires the perturbed gene to
change state after the restoration of the KO. Such a change in state
can only occur if the perturbed gene is in a circuit with other genes
that change state after the initial perturbation. This is in sharp con-
trast with the other extreme in which the given gene is on in all
attractors, and thus irreversibility is possible even if it remains un-
changed after the KO is restored.

Figure 7A also shows that genes phoB, cra, and fis exhibit a de-
crease in the irreversibility probability for intermediate values of r
and/or s, which may be attributed to the larger average canalization
depth for these parameter values. These genes have a large number
of regulatory outputs k and, because of the increased canalization
depth, become less likely to determine the state updates compared
to genes like fnr, fur, fliZ, and gadX, which have a lower overall ir-
reversibility probability but show an increase in this probability for
intermediate values of r and/or s. Genes in the latter group tend to
be located within large SCCs, while genes in the former group tend
to be situated upstream of multiple SCCs. Last, Fig. 7B shows the
remaining 26 genes that admit irreversible perturbations but have
smaller average irreversibility probability. These genes tend to have
a small out-degree (k), and thus they are most strongly affected by
the input ordering. In the descending input ordering, the genes with
large out-degree dominate those with small out-degree, resulting in
the dearth of irreversibility for this ordering compared to the as-
cending ordering.
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E phoB hns: E Ph"% hnspé
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Fig. 6. Irreversibility probability for all nodes in the phoB origon core network as a function of the weighted number of paths to SCCs with positive circuits
(SCCs™). (A and B) Results for diffuse and concentrated control scenarios (i.e., ascending and descending input sorting), respectively. The best fit trend is indicated by the
dotted line in each case with the indicated coefficient of determination (R?). The color code is the same as in Fig. 5.
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Fig. 7. Probability of admitting irreversible perturbations averaged over realizations for the input orderings and perturbation types indicated above the pan-
els. (A) Color-coded irreversibility probability as a function of r and s for the top 25 genes with the highest probability. For each input ordering and perturbation type,
the three panels (from left to right) show the irreversibility probability along three different straight lines in the (r, s)-space in Fig. 4. (B) Same plot as (A) for the
remaining 26 genes admitting irreversible perturbations. The first and last columns in each panel correspond to the cases of all inputs joined by + and all inputs joined

by %, respectively.

Irreversible genes in adaptive responses to crp KO

The irreversible responses to transient genetic perturbations pre-
dicted here have implications for adaptive evolution. Intuitively, the
response of the other genes to a gene KO followed by adaptive evolu-
tion is akin to the response to a gene KO followed by its reversion—
in the sense that both adaptation and the response to reversion tend
to compensate for the changes induced by the initial perturbation.
In Fig. 8, we examine this proposition by comparing the behavior of
the genes in the core network that respond irreversibly to crp KO—
the most irreversible perturbation in our simulations—with those
that do not in terms of their transcriptional changes during adaptive
evolution to this perturbation. The gene crp encodes the catabolite
repressor protein, a global transcriptional regulator that represses
genes associated with the metabolism of nonpreferred carbon
sources in the presence of glucose. We make use of existing RNA
sequencing (RNA-seq) data from experiments where the cells were

Zhao et al., Sci. Adv. 10, eado3232 (2024) 28 August 2024

evolved for 10 days in M9 glucose following crp KO, which provides
the highest-quality characterization of the transcriptome under
these conditions (41). Using these data, we compute the observed
sign and magnitude of the log fold change in expression between the
initial and adaptively evolved strains, which were characterized un-
der both batch and chemostat cultivation (details in Materials and
Methods). The observed sign for gene u, denoted GObS, is compared
against the sign predicted by the Boolean model GmOd The latter is
the opposite of the polarity of the shortest path of crp to the gene
(Fig. 7A). Using u’ to denote the genes ordered in terms of decreas-
ing magnitude of their log fold change, we compute the precision of
the top n genes

n

1
=~ 2 oy =op2)

u'=1

P(n) = (2)
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Fig. 8. Comparison of the irreversibility results with the observed transcrip-
tional changes in adaptive evolution. (A) Representation of the phoB origon core
network showing in black the edges that appear in the shortest paths to each node
from crp. The node outline colors indicate the sign of crp regulation, and the node
colors indicate the distance from crp, where irreversible response nodes are green.
The shaded backgrounds, autoregulatory edges, and network layout are the same
as in Fig. 5. (B) Precision-recall curves evaluating the agreement of the sign of ex-
pression change of each gene predicted by the Boolean network model with that
observed after adaptive evolution in batch (blue) and chemostat (orange) condi-
tions. The genes are ranked from largest to smallest in terms of their change in ex-
pression. The dotted lines indicate the threshold of 0.5 for the log fold change used
to calculate the (P) for each condition (marked on the legend). Genes above this
threshold in batch and chemostat conditions are listed in tables S2 and S3, respec-
tively. N.R,, not regulated; N.I., not irreversible.

which is the rate at which the signs match among these genes. Here,
[ is the indicator function, which takes the value 1 if its argument is
true and 0 if it is false. When there are multiple shortest paths of the
same length to a given gene and two of these paths have different
polarities, the indicator function evaluates to 1 for nonzero values of
sz‘. Figure 8B shows the precision P(n) for both batch and chemo-
stat conditions plotted as a function of n (normalized by |V’| — 1, the
total number of genes in the phoB origon core network other than
crp). The precision decreases rapidly in both conditions when log
fold change becomes less than a threshold of 0.5. Of the genes with
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a log fold change above this threshold, 10 of 11 in batch cultivation
and 33 of 42 in chemostat cultivation change in the direction pre-
scribed by the Boolean model. Then, the average precision, defined by

1
(PY(m) = — n; P(m) (3)
is 0.99 and 0.85 in batch and chemostat cultivation, respectively (tables S2
and S3). Both scenarios yield a significant P value less than 0.01, as
determined by bootstrapping (see Materials and Methods).

Having established that the correspondence between ¢°** and
omd js statistically significant, we examine the extent to which the
genes with 6° = 6™°? and a log fold change >0.5 also corresponded
to the 68 irreversible response genes associated with crp KO in the
Boolean model. We find that 8 of 9 irreversible response genes
match the predicted response compared to 2 of 2 reversible genes in
batch culture, and 28 of 34 irreversible response genes match re-
sponse compared to 5 of 8 reversible genes in chemostat culture,
yielding a P value of 0.03 when considering both conditions together
(see Materials and Methods). It is notable that a statistically signifi-
cant relationship between the predicted irreversibility and adaptive
evolution experiments is detected despite the limited information
on the actual regulatory rules in the Boolean model and the non-
regulatory factors known to influence adaptive evolution.

Making specific predictions

Motivated by the concordance between the gene expression changes
during adaptive evolution, we examine the irreversible perturbation
of ¢crp KO in the context of existing transcriptional data and more
detailed models of gene regulation (fig.S5). First, we calculate
whether each gene responds irreversibly to crp KO across all attrac-
tors for all realizations of the rules. We assess the biological rele-
vance of the attractors by weighting the irreversibility results based
on the similarity of each attractor to the observed transcriptional
states when calculating the average irreversibility (fig. S6). This anal-
ysis leads us to conclude that self-activating genes that are positively
regulated by crp are the most likely to be irreversible.

While the level of detail in the Boolean model allows us to deter-
mine the type of perturbation (KO) and the initial states of the genes
(both ON), it does not provide us with information regarding the
continuous dynamics of the gene expression. We obtain a continu-
ous version of the Boolean dynamics that preserves the stable states
by using the HillCube algorithm (42) to represent the Boolean AND
regulation as a differential equation. In fig. S7A, we use this repre-
sentation to calculate the conditions for multistability in terms of
phenomenological parameters like the transcriptional activation
strength and Hill coeflicient (a measure of how step-like the activa-
tion rule is). The irreversibility predictions from this analysis are
verified by simulating the equations (fig. S7B). From these simula-
tions, we infer qualitative aspects that enhance irreversibility in this
motif: Irreversible response genes will tend to have stronger self-
activation and exhibit a more switch-like response (i.e., have a larger
Hill coefficient).

Overall, this analysis suggests candidate irreversible response
genes such as zraR, melR, and rhaRS in response to crp KO. These
genes are convenient because they one can ensure that they are ini-
tially on by adjusting the cultivation conditions (e.g., by using glyer-
col which is known to activate crp and by supplementing the growth
media metabolites such as zinc, melibiose, or rhamnose in the cases
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of zraR, melR, and rhaRS, respectively). Meanwhile, one candidate
method for implementing the transient KO is inducible CRISPR in-
terference (43). Last, expression of the response genes could be mon-
itored via sequencing to ascertain whether irreversibility occurs.
Comparing with experiments exploring bistability in inducible sugar
utilization (44), we posit that there will be a range of modest concen-
trations of supplemental metabolites the irreversible response gene
will turn off, corresponding to the bistable region in fig. S7A.

DISCUSSION

The irreversibility of transient gene regulatory perturbations pre-
dicted here reveals a mechanism for prokaryotic cells to exhibit dis-
tinct phenotypes even when they are genetically identical. Our
analysis, which excludes extracellular factors and chromatin modifi-
cations from the model, emphasizes the ability of purely regulatory
mechanisms to precipitate heritable nongenetic changes that can
endure for multiple generations. This should be compared with the
phenomenon of cell fate commitment in eukaryotes, which is typi-
cally attributed to an environmental factor or signaling molecule
triggering the expression of a master regulator that orchestrates the
activation and repression of downstream genes to achieve a change
in phenotype (45, 46). In eukaryotes, epigenetic modifications such
as histone modification and DNA methylation play a role in locking
cells into their fates (47, 48), but the former process is absent and the
latter functions differently in prokaryotes.

Within the scope of our E. coli model, we establish that genes
admitting irreversible perturbations rely on positive circuits to gen-
erate multistability and stabilize their irreversible responses. This
finding reveals greatly enhanced complexity in the repertoire of pos-
sible cell states, well beyond those previously observed for bistable
chemosensory motifs (15, 16, 44). Together, the results lead to the
interesting possibility of nongenetically programming the state of
bacterial cells—a phenomenon ultimately related to the control aim
of steering between attractors in the regulatory network (49-51).
Broadening our model to account for stochastic fluctuations, cell
cycle, and other nonstationary factors can convert the permanently
irreversible responses seen in our model into temporarily irrevers-
ible but long-lived changes that persist over multiple generations.
The extent to which the predicted irreversibility will persist and be
inheritable is thus an important question for future experimental
studies, which can be interpreted using stochastic many-body phys-
ics approaches tailored to describe the processes of transcription,
translation, and degradation (52-57).

Finally, our analysis suggests that genes responding irreversibly are
significantly associated with those that undergo regulatory changes
in adaptive evolution experiments across conditions, even in the ab-
sence of full knowledge of the regulatory rules. This result is consis-
tent with the observation that incomplete models of gene regulatory
networks can still yield reliable predictions (32). Thus, notwith-
standing the simplifications of the model, the analysis of irreversible
responses to transient perturbations also contributes to the interpre-
tation of adaptive evolution responses to permanent perturbations.

MATERIALS AND METHODS

Construction of the phoB origon core network

We constructed the activating and repressing interactions of the
gene regulatory network based on the RegulonDB data using the file

Zhao et al., Sci. Adv. 10, eado3232 (2024) 28 August 2024

“generegulation_tmp.txt” (17), where pairwise regulatory relation-
ships between genes are recorded. The regulatory network dynamics
were simulated using R (version 4.2.3) and R package BoolNet (ver-
sion 2.1.8) (58). For the dynamics to be well defined, each node
must have at least one input, where we recognize the rule x'*! = x!,
as positive autoregulation. Therefore, in analyzing the phoB origon,
we added a self-activating loop (and no additional inputs) to phoB as
this is the only gene in the core network with no regulatory inputs.
This added edge fixes the initial state of the node and does not affect
our observation of irreversibility.

Generation of biologically realistic update rules

Because the available RegulonDB data are insufficient to specify all
the Boolean update rules, we examine the ensemble of consistent
rules. Rules are said to be consistent with RegulonDB if they satisfy
the three criteria laid out in the main text:

1) Edge consistency. The state variables x, (or their negation x,)
appearing on the right-hand side of Eq. 1 are those associated with
nodes v that have edges incident on u in G'.

2) Edge essentiality. Whenever v is a node incident on u in G,
there is at least one state x for which changing the variable x, chang-
es B,(x).

3) Sign consistency. We require that B,(x, —o) < B”(X|xv=1) if v
activates u and B,(Xy =0) > Bu(X|,=1) if v inhibits .

To exclude artifactual oscillations, we further assume that autore-
pressive regulation is silenced when x,, = 0 in the sign consistency
condition, which implies an exception to the edge essentiality condi-
tion. Specifically for every rule chosen, one or more edges into a auto-
repressive node will not influence the state of this node. If the
autorepressive node is in its own monomial, the self-edge is non-
essential. If the autorepressive node is joined with others in a mono-
mial, then the other input edges to this node in the monomial will be
nonessential.

Estimating the number of possible regulatory rules

Edge and sign consistency together guarantee that one of x! or X'
appears in the rule B,, and edge essentiality guarantees that all v
must appear once. Thus, the number of variables in the rule B,
is k*. Since all possible Boolean rules can be written as a sum of
products (23), the number of feasible rules is at least as large as

t

k:—l k: 1 k-1
2o =2%"" Because the B, are set independently for
n

each u, the number of feasible B is Hlv | 2Ki-1 which of the order

of 109" for the phoB origon core network.

Algorithm to sample realistic update rules

In the general case, given a network, there is an ensemble of possible
B that are consistent with the network structure and polarity of the
interactions. To facilitate the sampling of this ensemble, we intro-
oo | (v;u) € E'|for fixed

u, where y,. = x,, if W(v;, u) > 0 and Py, = x, if W(v;, u) < 0. The

duce the vector of inputsy = |, ...

inputs are indexed usingi € {1, ... ,k* } and ordered according to
k_, the number of outgoing edges of the associated node v;, for both
ascendmg (k; <k ) and descending (k; > k‘ ) orders. The sam-

pling of the ensemble of rules is parameterlzed by r and s, which
control the selection among three binary operators between inputs
yv; and Yviy Specifically, we join the inputs as y,, X ()’Vi+1 with
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probability , as y,, + y,, , with probability (1 — r)s, and as y,, X yy, |
with probability (1 — r)(1 — s). Larger values of the nestedness pa-
rameter increase the number of parentheses appearing in the rules,
and larger values of the bias parameter increase the number of pos-
sible input vectors that update to 1. We specify each B, by starting at
the first pair of inputs, choosing their binary operator according to
the probabilities above, and proceeding iteratively until all inputs
are included. This strategy is implemented in the following iterative
algorithm:

procedure GENERATE RULE (r, s, u, k", y)
n<0
i <— 1
BY « Yo,
while i < £ do
& ~1:(0,1)
if &, < r then
B o
n<n+1
else
&~ 12(0,1)
if {&, < s then
B« BY + g,
else
BUEHY  pW
end if
end if
141+ 1
end whlle
B, « B ) 2
return B
end procedure

> Iterate over all inputs

X (Yo > Open parentheses

X Yoia

> Close matching parentheses

In the algorithm, we use ~U(0,1) to denote a random number
drawn from the uniform distribution on the unit interval, and we
use )...) to denote the n closed parentheses in the rule.

Convergence of irreversibility estimates

For each pair (r, s) and input sorting that does not have unique rules
[r#1, s#0,and (r,s) # (0,1)], we generate M = 20 realizations of
the rules indexed by i € {1, ..., M}, identify the attractors (Fig. 2D),
and apply the irreversibility detection algorithm (Fig. 2E). Since the
attractors change between realizations of the rules, the irreversibility
of a perturbation (KO or OE) may also change. To account for this
source of variability, we average over the transient perturbations as
follows. Let g,,; be the fraction of attractors for which x,, = 1, and let
pﬁ? and p(u)f be the probabilities that the transient KO and OE of
gene u lead to irreversibility, respectively. Then

> PXOq, +p28(1

ieS

Pi=1g 5 | —du;) (4)
is the weighted average of the probability that gene u admits an ir-
reversible perturbation across a set of realizations S.

We test for the convergence of the average irreversibility as a
function of the ensemble size by fixing the number of realizations to
be M’ = {1, ..., 10}. The number of possible ensembles of size M’

M
taken out of M realizations is <
M/
M

M-M
) < > If Z(M, M’) > 1000,
M/ /

then we randomly sample 1000 pairs of ensembles. Otherwise, we
use all Z(M, M’) pairs. Denoting each ensemble pair as (1", V), we
apply Eq. 4 to each ensemble to obtain the root mean square
difference

>, and the number of pairs of

ensembles is Z(M,M') = (

V|

X (-l

u=1

RMSD = (5)
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where we recall that |V’| = 87 is the number of genes in the
core network.

Processing of the RNA-seq data

The transcriptional data for E. coli adaptively evolved after crp KO
are obtained and analyzed as follows. Raw counts of RNA were
obtained from the Gene Expression Omnibus (GEO) database (59)
maintained by the National Center for Biotechnology Information
(NCBI), accession number GSE152214. Experimental details of
the RNA collection have been described elsewhere (41). Raw
counts in GEO were converted into transcripts per million using

-1
N .
z; =102 (2} 2 Z) , where Ng is the number of genes in the

dataset, ¢; is the raw count of transcripts for gene i, and L; is the
length of the gene in kilobases. The transcript counts of genes that
are in the core regulatory network G’ in our model were examined
for changes before crp KO, after crp KO, and after adaptive evolution
of the crp KO strain. The data include strains cultivated under both
batch and chemostat conditions.

Calculating the observed sign of the transcriptional changes
For each environmental condition, p, = p¢* / p**" is the fold change
of the average expression for each gene between the adaptively
evolved strain and the initial wild-type strain. To account for the
overall shift in transcription (e.g., due to changes in the lab condi-
tions or variability in media preparation), we calculate the average
shift in expression (p) = v ZLvll e /. Then, the observed
sign of regulatory changes is

) ©

obs __
Gu sgn<

where sgn(e) is the sign function that takes the value 1 ife > 0, —1 if
€ < 0, and 0 if € = 0. In addition, the magnitude of the log fold
change in expression is |In(p,/{p))|.

Calculating the predicted sign of the transcriptional changes
The predicted sign of the transcriptional change in the Boolean
model is assigned according to the polarity of the shortest paths in
G’ from crp to each gene u. Recall that the a shortest path between
H} = crpand H} = uis denoted by H" = (H“ H“) and that the
polarity of the edges is given by the function W According to the
Boolean model, the sign of the expected change is

HWH“

where the negative sign appears because the perturbation of crp is a
KO. Equations 6 and 7 provide the quantities used in calculating the
precision in Eq. 2.

mod HY

l+1

7)

Statistical analysis of (P) and irreversibility

We assess statistical significance using a bootstrapping approach
(60). In this approach, we compute Ny, the number of times that
the randomized list returns a larger value of the statistic than the
observed lists out of Ngmp = 25,000 shufflings, and the P value is
given by 1 — Neyxe/Nsamp. Specifically, we compute (P) in each condi-
tion to evaluate whether the concordance between ngs and 0‘;0‘1 is

100f 12

GZ0T ‘17 KRNl UO I9JUS)) [BOIPIA] UISISOMUINOS SBXI], JO ANSIDATU() T8 TI0°00UdI0S" Mmm//:sd1IY WIOI) papRO[UMO(]



SCIENCE ADVANCES | RESEARCH ARTICLE

statistically significant. Using 4’ to denote the reordered list of genes,
(P) is repeatedly computed after shuffling GE}"d while keeping 62
and |In(p,/(p))| fixed.

Similarly, we compute the number of genes that satisfy 6% = c™°d
and |In(p,/(p))| > 0.5 for genes responding irreversibly (y;,) and
reversibly (Yrey) to crp KO in each cultivation condition. Using the
difference Y,y — Yrev in each condition, we assess whether genes that
show large changes during adaptive evolution are significantly more
likely to be irreversible in our simulations. In this case, we repeat-
edly compute Yiry — Yrev after shuffling o™md while keeping 6 and

u u
[In(p./{p))| fixed in each condition separately. We count cases
toward Neyc only when iy — Yrev €xceeds the observed value in both
environmental conditions.
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