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Methods to compare sites concerning a category’s change during various time 
intervals
Thomas Mumuni Bilintoh , Robert Gilmore Pontius Jr and Aiyin Zhang

School of Geography, Clark University, Worcester, USA

ABSTRACT
This paper presents new methods to analyze a category’s change through a time series of maps, 
even when the time intervals have inconsistent durations. The methods include an option to 
facilitate comparison among sites by expressing results as an annual percentage of each site’s 
unified size. A site’s unified size is the union of where the category exists at any of the site’s time 
points. The methods also specify gross losses, gross gains, eight trajectories, and three compo
nents: Quantity, Exchange, and Alternation. The illustrative application compares maps of the 
marsh category for three Long-Term Ecological Research sites: Plum Island Ecosystems (PIE), 
Georgia Coastal Ecosystems (GCE), and the Virginia Coast Reserve (VCR). The application analyzes 
marsh’s changes during two time intervals that have unequal durations within each site’s distinct 
temporal extent. Results show that PIE has the fastest change during each site’s temporal extent. 
Gross change is more than double the quantity change for all sites. Exchange accounts for most of 
the change in GCE, while Alternation accounts for most of the change in PIE and VCR. The methods 
provide more information than popular methods that quantify annual net change. Our 
timeseriesTrajectories R package performs the analysis and is available for free at https://github. 
com/bilintoh/timeseriesTrajectories.
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1. Introduction

Quantifying land change is critical for understanding 
human society, climate change, and food security 
(Chowdhury et al. 2017; Feng and Tong 2018; 
Grekousis, Mountrakis, and Kavouras 2016; Molotoks, 
Smith, and Dawson 2021). Researchers want to analyze 
land change, such as deforestation, reforestation, affor
estation, agricultural shift, and land alteration due to 
climate change (Borrelli et al. 2020; Clement and 
Amezaga 2008; Heintzman et al. 2024; Ruskule et al.  
2012; Zomer et al. 2008). Researchers and organizations 
such as the Food and Agriculture Organization, United 
Nations, and Intergovernmental Panel on Climate 
Change have advocated for research to facilitate site 
comparison regarding land cover categories such as 
water, forest, urban, and cropland (Dasgupta et al.  
2009; FAO and JRC 2012; Taubert et al. 2018). New 
methods are necessary to analyze a category’s change 
across multiple sites and time intervals to reveal impor
tant information concerning a category’s behavior 
within and among sites because popular methods 
have several deficiencies. Our manuscript answers this 

call by introducing a method to alleviate the deficien
cies in existing methods that scientists tend to use.

Furthermore, existing methods frequently use 
equations to compare land change that are inap
propriate or challenging to interpret. A popular 
approach to compare a category’s change across 
sequential time intervals and sites is to express 
annual net change as a percentage that relies on 
both the start size during each time interval and the 
duration of the time interval (Pontius, Huang, et al.  
2017). Three equations are popular and distinct, 
while authors sometimes fail to report the equa
tions that they use. One equation to compute 
annual percent net change portrays linear change, 
while other equations portray exponential change 
with base e or (1+p), where p is the annual propor
tional net change during a time interval. The two 
exponential equations give the same mathematical 
relationship but the numerical value of the annual 
percentage that derives from the equation with 
base e differs from the numerical value of the 
annual percentage that derives from the equation 
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with base (1+p). The literature includes examples of 
these equations and publications that report 
annual percent net change while not giving the 
equation (Burns, Alber, and Alexander 2021; Liu et 
al. 2003; Puyravaud 2003).

These three popular equations have drawbacks, mak
ing them inappropriate, unnecessarily complicated, or 
challenging to interpret for various reasons. First, each 
equation includes both the start size of each time inter
val and the duration of the time interval, so if both 
factors vary across consecutive time intervals, then inter
pretation can be confusing because the variation in the 
annual percentage across sequential time intervals is 
due to variation in the start size and the duration. 
Second, even if the duration is constant across consecu
tive time intervals, each time interval in a series can have 
a distinct start size, so the annual percent net change 
from the start of each consecutive interval can vary even 
when the absolute size of net change is identical across 
sequential time intervals. Third, all the equations pro
duce undefined results when a category grows from 
zero, but many phenomena can grow from zero, such 
as the gain of a newly introduced crop or the gain of 
built land around a newly created road. Fourth, the 
exponential equation with base e generates undefined 
results when a category decays to zero, while the other 
two equations compute a 100% decrease during the 
time interval. Fifth, the three popular equations can be 
confusing when comparing across sites when the sizes 
of the sites vary and when the prevalence of the cate
gory within the site varies through time. Authors should 
use and explain an equation that is easily interpretable 
across multiple time intervals and across multiple sites.

Some existing methods reveal how a category’s 
gross losses and gross gains form components of dif
ference. Pontius and Millones (2011) showed how 
gross loss and gross gain combine to form two com
ponents: Quantity and Allocation. Pontius and 
Santacruz (2014) showed how to quantify the changes 
of a categorical variable across time intervals of varying 
duration using three components: Quantity, Exchange, 
and Shift. Aldwaik and Pontius (2012) introduced 
Intensity Analysis, which expresses category-level 
annual gross losses and annual gross gains across 
time intervals of varying duration. However, those 
approaches miss important insights concerning 
a location’s trajectory through sequential time intervals 
because those methods fail to track individual locations 
through the time series. Our new method builds on the 

methods of Pontius, Krithivasan, et al. (2017), who gave 
methods to track individual pixels through a time series 
as opposed to the traditional methods of analyzing 
each time interval independently of the other time 
intervals. Winkler et al. (2021) quantified the global 
gross gains and gross losses of forest, cropland, and 
pasture through a time series. Their map of change has 
a legend entry called “Gain and Loss” to denote loca
tions that experienced more than one change during 
the time series. Our methods offer additional details 
and are appropriate to analyze data of the format of 
Winkler et al. (2021).

We address the drawbacks of the popular 
methods by creating the concept of the unified 
size, which is the union of observations that have 
presence of the category at any time point. The 
unified size is constant across all time intervals, 
while we account for the duration of each time 
interval. The unified size is the relevant subset of 
the site’s extent. For example, a raster GIS data
base’s extent is frequently an arbitrary polygon 
that bounds the category of interest. If the data 
derive from remote sensing, then the bounds of 
the remotely sensed image dictate an arbitrary 
region. Various arbitrary regions can contain the 
category of interest. Some authors might be 
tempted to report change as a percentage of 
the rectangular region or of the region that was 
remotely sensed, which can contain many pixels 
that are irrelevant because the pixels show 
absence of the category at all time points. It is 
confusing when authors report the change as 
a percentage of an arbitrary region of the data
base’s spatial extent. Readers need to know the 
size of change with respect to a relevant constant 
region, which the unified size is. Therefore, our 
methods facilitate comparison among sites that 
vary in the prevalence of the category, the dura
tions of time intervals, and the duration of tem
poral extents.

Additionally, our manuscript presents new meth
ods to compare sites by specifying gross losses, gross 
gains, eight trajectories, and three components: 
Quantity, Exchange, and Alternation. The results give 
insights into the speed of gross loss, speed of gross 
gain, speed of net change, acceleration of change, 
and reversal of change. The methods apply to many 
professions, particularly Remote Sensing and Land 
Change Science.
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Subsection 2.1 shows the maps of land change 
for three sites, while subsection 2.2 gives simplified 
data to illustrate the equations. Section 3 gives the 
results for the data in subsection 2.1. Section 4 dis
cusses the results and concepts. Section 5 concludes 
by inviting readers to use the free package in the 
software R.

2. Data and methods

2.1. Data and study area

The data are raster land cover maps for three sites 
within the United States Long-Term Ecological 
Research Network (LTER) funded by the National 
Science Foundation (Burns, 2020). Our methods 

Figure 1. The location of the three LTER sites: PIE, GCE, and VCR. The maps are in the US 83 UTM zone 18 projection. Thus, the 
coordinates in the lower right corners show the center coordinates of each site in meters.
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apply to raster GIS files and tabular data, while the 
LTER data sets are available in raster and vector GIS 
formats; thus, we analyze the raster GIS files for the 
three LTER sites. Figure 1 shows the three sites: Plum 
Island Ecosystems (PIE), Georgia Coastal Ecosystems 
(GCE), and Virginia Coast Reserve (VCR). Table 1 pro
vides information about the date of acquisition, scale, 
and quality associated with each land cover map. 
Burns, Alber, and Alexander (2021) describe how 
LTER scientists created the land cover maps.

Our manuscript analyzes the marsh category in raster 
maps that have a spatial resolution of 10-by-10 m. 
Figure 2 shows an overlay of binary maps where 0 
denotes the absence of marsh, and 1 denotes the pre
sence of marsh.

Marshes in the three LTER sites provide several 
ecosystem services, including storm protection, 
habitat provision, nutrient cycling, and carbon sto
rage (Roy, Byrnes, and Mavrommati 2024). Rising sea 
level influences these ecosystem services. For exam
ple, sea-level rise could cause cordgrass to become 
flooded, thus causing cordgrass to shift to higher 
elevations. Measuring and visualizing these changes 
are crucial for understanding the relationship 
between changes and the ecosystem function. 
Thus, scientists need methods that compare marsh 
change across the three sites. Our manuscript pro
poses a generalized method that compares sites 
concerning any particular category’s changes across 
various time intervals.

2.2. Methods

The timeseriesTrajectories package in R creates for 
each site 1) a map that shows the trajectories of the 
category, 2) a stacked bar graph that shows gross loss 

and gross gain during each time interval, and 3) 
a stacked bar graph that shows three components 
of change during the temporal extent.

The timeseriesTrajectories package reads raster or 
tabular data that show the category’s presence or 
absence for each observation at each time point. 
Figure 3 gives example data to describe the trajectory 
patterns. The example data show 12 observations at 5 
time points. The first column identifies 12 observa
tions. The second column specifies each observation’s 
trajectory during the time series. The next five col
umns give either 0 for the absence or 1 for the pre
sence of the binary variable at time points t = 0, 1, 2, 3, 
4. For example, ID observation 4 is trajectory 2, which 
derives from a time series with Y values 0, 0, 1, 1, and 1 
corresponding to time points 2000, 2001, 2002, 2003, 
and 2005. We designed the method to work when the 
variable is any non-negative number, for which 
a simple case is where the variable is 0 for absence 
and 1 for presence. The number below each t is 
the year; thus, the first three time intervals have 
a duration of 1 year, and the fourth time interval has 
a duration of 2 years. Table 2 defines the trajectories. 
Trajectories 1 and 2 each have exactly one change 
during the time series. Alternation is a pair of loss and 
gain at a location during the time series. Trajectories 3 
and 4 have an odd number of changes greater than 
one, while trajectories 5 and 6 have an even number 
of changes greater than zero, thus trajectories 3–
6 have Alternation. Trajectories 7 and 8 have zero 
changes.

The definitions in Table 2 and the equations use 
the notation in Table 3. The unified size is a new 
concept that facilitates comparison among sites and 
across time intervals. The unified size is the union of 
the locations where the category exists at any time 
point. The research question of a particular case 

Table 1. Description of data for each LTER site. The error as a percent of the extent derives from pixel 
resolution, georectification, and digitization (Burns, Alber, and Alexander 2021).

LTER Site Acquisition Date Image Image Scale Error (%)

PIE 1Nov 1938 Black and white 1:25,000 4
11 June 1971 Black and white 1:20,000 5

April 2013 Orthomosaic - 2
GCE 28 November 1942 Black and white 1:40,000 4

2 December 1972 Color aerial photograph 1:20,000 3
Early 2013 Orthomosaic - 3

VCR 2 February 1949 Black and white 1:20,000 2
20 October 1957 Black and white 1:20,000 3

Spring 2013 Orthomosaic - 3

4 T. M. BILINTOH ET AL.



study dictates the selection of U, which the user 
must specify. Equation 1 gives the three options to 
define U, which is a factor in the denominator of 
equations 2, 3, 7 and 8. The first option is U = 1, in 

which case the results are in annual units of Y. 
The second option is U=E, where the user sets E so 
the results are in an annual proportion of E. The 
third option computes the results as a proportion 
of the unified size where the double summation in 
equation 1 computes the unified size. We recom
mend scientists use the unified size when compar
ing across sites to avoid a variety of problems that 
our manuscript’s Introduction explains.

Equation 2 computes a negative number to indi
cate an annual loss for a particular trajectory during 
each time interval as a proportion of U. Equation 3 
computes a positive number to indicate annual gain 
for a particular trajectory during each time interval as 
a proportion of U. Equations 2 and 3 have the dura
tion of the time interval in the denominator to annual
ize the results, which is necessary to account for the 
possibility that the durations of the time intervals vary 
for a single site or that the durations of the temporal 
extents vary among sites. Equation 4 computes 
a negative number for gross loss during the site’s 
temporal extent by summing across trajectories 
where each time interval is weighted by its duration. 
Similarly, equation 5 computes a positive number for 

Figure 2. (a) Plum Island ecosystems, (b) Georgia ecosystems, 
and (c) Virginia coast Reserve’s overlaid binary maps. The → 
symbol shows the flow through time where 0 means marsh’s 
absence and 1 means the marsh’s presence.

Figure 3. Example data illustrates a binary variable’s trajectories 
during a time series. 0 denotes absence, while 1 denotes the 
presence of the category.
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the gross gain during the site’s temporal extent. 
Equation 6 adds the gross loss and gross gain to 
compute net change. Equation 7 computes the quan
tity component as the absolute value of net change, 
which relies on the difference between time point 0 
and the final time point T in the first four trajectories. 
Equation 8 computes the exchange component, 
which relies on the difference between time point 0 
and the final time point T in the first four trajectories. 
Equation 9 computes the Alternation component, 
which relies on all time intervals. Equation 10 com
putes the category’s size at each time point. 

Figure 4 shows stacked bars for each time interval of 
the example data. The vertical axis is the annual gross 
change as a percentage of the unified size. The gains 
rise above the time axis, while the losses drop below. 
The colors within the stacked bars indicate the trajec
tories. The vertical length from the top of the gain to 
the bottom of the loss indicates the speed of change 
during each time interval. The horizontal length of 
each stack indicates the duration of the time interval. 
Thus, the area of each interval’s stack is the size of the 
change during the interval. The horizontal Gross Loss 
and Gross Gain lines derive from equations 4 and 5, 

Table 2. Description of the trajectories where Yjmt is the value of variable Y in trajectory j of cell m at time t.
Code Trajectory Color Definition

0 Mask White Eliminated from computation
1 Loss without Alternation Dark Red Y1m0 > Y1mT and Y1mt-1 ≥ Y1mt for all t
2 Gain without Alternation Dark Blue Y2m0 < Y2mT and Y2mt-1 ≤ Y2mt for all t
3 Loss with Alternation Light Red Y3m0 > Y3mT and Y3mt-1 < Y3mt for at least one t
4 Gain with Alternation Light Blue Y4m0 < Y4mT and Y4mt-1 > Y4mt for at least one t
5 All Alternation Loss First Dark Yellow Y5m0 = Y5mT and loss is the first change
6 All Alternation Gain First Light Yellow Y6m0 = Y6mT and gain is the first change
7 Stable Presence Dark Gray Y7mt-1 = Y7mt > 0 for t = 1, 2, . . . T
8 Stable Absence Light Gray Y8mt-1 = Y8mt = 0 for t = 1, 2, . . . T

Table 3. Mathematical notation for equations.
Symbol Meaning

dt 1 or duration of time interval in years from time t-1 to t where dt > 0
E Possible value for U to customize the units of the results
Gjt Annual gross gain as a proportion of the unified size in trajectory j from time t-1 to t. Gjt ≥ 0
j Index for trajectory where j = 1, 2, 3, 4, 5, 6, 7, 8
J Number of trajectories in the region defined by the user = 7 or 8
Ljt Annual gross gain as a proportion of the unified size in trajectory j from time t-1 to t. Ljt ≤ 0
m Index for a cell in trajectory j where m = 1, 2, . . . , Mj

Mj Number of cells in trajectory j
St Size of Y at time t
t Index for a time point where t = 0, 1, 2, . . . , T
T Number of time intervals where T ≥ 1
U Factor in the denominator of the results
Yjmt Value of variable Y in trajectory j of cell m at time t

6 T. M. BILINTOH ET AL.



respectively, which indicate change averaged over 
the temporal extent.

Figure 5 has the same vertical axis as Figure 4. 
Figure 5 shows the three components of Quantity, 
Exchange, and Alternation. The quantity component 

measures the absolute net change between time 
point 0 and time point T, which is the final time 
point of the series. The legend specifies that the 
quantity component derives from net loss rather 
than net gain. Exchange measures the simultaneous 

Figure 4. Stacked bars for the example data during four time intervals expressed as the annual percentage of the unified size. The 
fourth time interval is twice as wide as the other time intervals because the fourth time interval is two years while the other intervals 
are one year each.

Figure 5. Three components of change during the temporal extent expressed as the annual percentage of the unified size.
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gain at some locations and loss at other locations 
between time point 0 and the final time point of the 
series. Alternation measures pairs of gain and loss at 
an observation through the time series.

3. Results

Figure 6 shows maps of the six trajectories for the 
marsh category in PIE, GCE, and VCR. The number of 
time intervals determines the number of possible 
trajectories. The sites have two time intervals, hence 
have trajectories 1, 2, 5, 6, 7, and 8. Trajectories 3 and 
4 require at least three time intervals. The maps show 
that change occurs nearer the edges of the patches 
for all three sites. The trajectory Loss without 
Alternation is the largest trajectory for PIE and GCE. 
In contrast, Gain without Alternation accounts for 
most of the change in VCR.

Figure 7 facilitates comparison among the sites. 
Figures 7a, c, and e show how the trajectories form 
the gross loss and gain during each time interval. 
Figures 7b, d, and f show how the three components 
form the speed of gross change during each site’s 
temporal extent.

PIE experiences more loss than gain during each 
time interval; therefore, PIE’s Gross Loss line is farther 
from the time axis than PIE’s Gross Gain line, while the 
Quantity component derives from net loss. 
Alternation accounts for about half of the change 
during PIE’s temporal extent.

In GCE, gross loss nearly equals gross gain during 
each time interval; therefore, GCE’s Gross Loss line is 
nearly the same distance from the time axis as GCE’s 
Gross Gain line, while the quantity component is nearly 
zero. Most of GCE’s change derives from equal sizes of 
trajectories 1 and 2; therefore, exchange accounts for 
most of the change during GCE’s temporal extent.

VCR experiences more gain than loss during each 
time interval; therefore, VCR’s Gross Gain line is farther 
from the time axis than VCR’s Gross Loss line, while 
the Quantity component derives from net gain. VCR’s 
Quantity component is the largest among the three 
sites. Quantity, Exchange, and Alternation are distrib
uted more equally in VCR than in the other sites.

For all three sites, the range of the stacked bars 
during the first time interval is greater than the ver
tical range of the stacked bars during the second time 
interval, indicating that change decelerates from the 

first to the second time interval. The sum of the 
components of change shows that the speed of 
change during each site’s temporal extent is fastest 
in PIE and slowest in GCE.

4. Discussion

4.1. The implications of alternation in marsh 
ecosystems

Alternation requires a times series of at least two time 
intervals from three time points. However, many of 
the existing studies of change involving marsh ana
lyzed only one time interval or analyzed each time 
interval independently from other time intervals dur
ing the series; thus, failing to show Alternation. For 
example, Campbell et al. (2022) analyzed the change 
in global salt marsh across four time intervals during 
the temporal extent of 2000–2019; however, they 
measured loss and gain of salt marsh at each indivi
dual time interval, missing crucial change trajectories 
such as Alternation. In another study, Lopes et al. 
(2020) gave a graph to show the size of salt mash at 
each of 35 years using Landsat imagery in Tagus 
Estuary, Portugal. The graph showed time on the 
horizontal axis and the size of marsh on the vertical 
axis in a manner that each time point derived from 
one image. The procedure did not analyze all the time 
points simultaneously. Such procedures show net 
change, but fail to show gross loss, gross gain, and 
Alternation.

Alternation accounts for most of the change in PIE. 
Alternation indicates a reversal of a previous change, 
which can have several implications for the marsh 
ecosystem. For example, variations in tide levels 
could cause a marsh loss followed by a marsh gain 
at the same location (Fagherazzi et al. 2020). Such 
change could impact the migratory patterns of organ
isms that use marsh vegetation as their habitat. 
Gillanders and Kingsford (2020) described the impacts 
of changes in the flow of freshwater on estuarine and 
open coastal habitats and admonished coastal envir
onment managers to monitor these impacts. 
Monitoring the impacts can be challenging without 
the appropriate methods. Our paper presents the 
methods to facilitate such monitoring. Erosion and 
accretion of sediments can also account for 
Alternation. Alternation can sometimes derive from 
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Figure 6. Trajectories for (a) PIE, (b) GCE, and (c) VCR.
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poor data quality when analyzing a category such as 
urban, which is unlikely to alternate on the ground.

4.2. Denominators facilitate comparison across 
and within sites

Figure 6 shows that the sites vary in size of their spatial 
extents and marsh’s prevalence in the extent at each 

time point. Equations 2 and 3 account for this variation 
by including each site’s unified size in the denominator, 
facilitating comparison across sites. Furthermore, the 
years vary among the sites. Equations 4-5 and 7–8 have 
the duration of each site’s temporal extent in the 
denominator, which facilitates comparison across 
sites. Equations 2 and 3 have each time interval’s dura
tion in the denominator, which facilitates comparison 

Figure 7. Marsh’s trajectories of change in (a) PIE, (c) GCE, and (e) VCR during each time interval, and components of change in (b) PIE, 
(d) GCE, and (f) VCR.

10 T. M. BILINTOH ET AL.



across time intervals within each site. The denomina
tors allow Figure 7 to express the vertical axis as the 
annual percentage of each site’s unified size, which 
helps interpretation across sites. Our approach, there
fore, avoids all the drawbacks of the three popular 
equations we described in the Introduction section 
(see Burns, Alber, and Alexander 2021; Liu et al. 2003; 
Puyravaud 2003).

Scientists tend to quantify land change by plotting 
the size of each land category as a function of time, 
which reveals net change during a time series (ICIMOD  
2017; Kastens et al. 2017; MapBiomas n.d.; One Tree 
Planted n.d.; Padhee and Dutta 2019; Rosa et al. 2021). 
However, if a site experiences gross loss in some loca
tions and gross gain in other locations during a time 
interval, then gross change is greater than absolute net 
change. For many sites, gross change is several times 
larger than absolute net change, in which case abso
lute net change misses most of the change.

The Quantity components in Figure 7 show that PIE 
experiences net loss of marsh, VCR experiences net 
gain of marsh, and GCE experiences close to zero net 
change, which is a function of only the size of marsh at 
start and end of the temporal extent. The Quantity 
component in our methodology shows the net 
change, including whether it is a net loss or net gain. 
However, our method goes deeper by evaluating tra
jectories of gross changes, which are impossible to see 
by considering only the size of marsh at each time 
point. For example, Figures 7a, c, and e show that 
gross change during the first time interval is greater 
than gross change during the second time interval for 
all sites, meaning change decelerates for all sites. 
Figures 7b, d, and f show that gross change during 
the temporal extent is fastest in PIE and slowest in 
GCE. The largest component in PIE is Alternation, in 
GCE is Exchange, and in VCR is Quantity. Quantity and 
Exchange derive from trajectories 1–4. Alternation 
derives from trajectories 3–6.

4.3. Interpretation must consider land change 
processes and data quality

Proper interpretation across sites requires an appre
ciation of the data’s characteristics and knowledge of 
the land change processes (Pontius et al. 2018; Sertel, 

Robock, and Ormeci 2010; Washington-Ottombre 
et al. 2010). A coastal site’s marsh can change 
by decade due to sea-level rise, by year due to sedi
mentation and erosion, by month due to seasonality, 
by week due to weather, and by hour due to tides 
(Burns, Alexander, and Alber 2020). Information avail
ability dictated the data’s years, which do not neces
sarily capture the temporal resolutions of the 
dynamics on the ground. Table 1 shows that the 
time points vary across winter, summer, and spring. 
We lack information concerning the precipitation in 
the days before the images and the tide level during 
the hour of the images. Therefore, it is unclear 
whether the variations across the three time points 
are due to changes on the ground across 
decade, year, season, day, or hour. Table 1 also 
shows how the images vary in terms of the technol
ogy that generated the images, which is likely to 
cause some of the maps’ variation among the time 
points. Table 1 also reports the error in each map at 
each time point, which is typical for map producers to 
report. However, overall error does not give insight 
concerning errors for specific categories. 
Furthermore, errors at time points do not indicate 
the errors of change during the time intervals; there
fore, it is unclear whether map errors could account 
for the differences between the time points.

4.4. Next steps

Our manuscript relies on pixel-by-pixel overlays of 
maps at various time points, thus capturing trajec
tories through time. However, this method does not 
capture spatial relationships because the method 
does not consider the patterns among neighboring 
pixels. Future publications will use the Total 
Operating Characteristic and multiple spatial resolu
tions to quantify the spatial relationships that the 
maps show. Visual inspection indicates that 
a substantial portion of the marsh’s change is along 
the edge of the marsh, which makes sense as the 
marsh loses along its edge due to erosion and gains 
along the edge due to sedimentation. This indicates 
another potential flaw in the traditional equations 
that express a category’s change during a time inter
val as a function of the category’s size at the start of 
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the time interval. The marsh category is likely to 
change as a function of its edge length more than 
as a function of its size. Our future work will charac
terize the spatial relationship of change concerning 
distance to edge.

5. Conclusions

Our new methods quantify temporal change for 
a category to compare sites that vary in terms of 
spatial extent, temporal extent, temporal resolution, 
and the category’s prevalence. The novel concept of 
Alternation quantifies the size of change that derives 
from gains and losses during sequential time intervals 
at the same location, while the unified size facilitates 
comparison across time intervals and among sites. 
The proposed methods quantify a category’s change 
during a time series, as they facilitate cross-site com
parison and provide more information than previous 
methods. We invite users to analyze the trajectories of 
a category during a time series by applying our 
timeseriesTrajectories R package, which is available 
f o r  f r e e  a t  h t t p s : / / g i t h u b . c o m / b i l i n t o h /  
timeseriesTrajectories.
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