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Abstract—Graphics Processing Units (GPUs) are widely de-
ployed and utilized across various computing domains including
cloud and high-performance computing. Considering its extensive
usage and increasing popularity, ensuring GPU reliability is cru-
cial. Software-based reliability evaluation methodologies, though
fast, often neglect the complex hardware details of modern GPU
designs. This oversight could lead to misleading measurements
and misguided decisions regarding protection strategies. This
paper breaks new ground by conducting an in-depth examination
of well-established vulnerability assessment methods for modern
GPU architectures, from the microarchitecture all the way to
the software layers. It highlights divergences between popular
software-based vulnerability evaluation methods and the ground
truth cross-layer evaluation, which persist even under strong
protections like triple modular redundancy. Accurate evaluation
requires considering fault distribution from hardware to soft-
ware. Our comprehensive measurements offer valuable insights
into the accurate assessment of GPU reliability.

Index Terms—reliability assessment, GPUs, fault injection

I. INTRODUCTION

Rapid developments in silicon manufacturing have enabled

increased performance and improved energy efficiency of

current graphics processing units (GPUs) [1]. Nowadays,

GPUs are extensively employed in pre-exascale supercom-

puters for their highly parallel computation throughput to ac-

celerate high-performance computing (HPC) applications [2],

[3], which often have strict reliability requirements. The long

execution time of these HPC applications also increases the

probability of encountering soft errors (hardware transient

faults) [3]–[6] that can result in faulty outputs or crashes.

Ensuring the reliability of these applications is even more

challenging under the growing prevalence of soft errors in

advanced manufacturing technologies [7]. The ever-increasing

rate of soft errors in newer manufacturing technologies can

jeopardize the aggressive evolution of GPUs, which brings

additional challenges. For example, since GPU applications are

written using the Single-Instruction-Multiple-Threads (SIMT)

paradigm, a single transient fault in a bit-cell of a hardware

structure can result in multiple data corruptions at the appli-

cation output [8] or a thread affected by a fault may supply

several subsequent parallel threads with corrupted data [9].

Assessing the impact of soft errors on GPU workloads at

the early (unprotected) GPU design phase is important for

unveiling potentially vulnerable hardware areas that need to be

protected. Reliability assessment of a computing system can be

realized using different techniques which vary in their design

maturity and granularity, the level of accuracy, and the speed

of the assessment process [10]. Simulation is a very widely

employed method for the assessment of the vulnerability to

soft errors, long before the product becomes available to users.

GPU reliability evaluations are often performed on models

of the actual GPU design using simulators [11]–[16]. Highly

detailed and accurate simulation models at the RTL (Register

Transfer Level), gate, or transistor level are extremely slow, not

scalable, and not feasible. Less detailed models, for example at

the microarchitecture level (using cycle-level simulators), are

much faster than low-level highly detailed models. Higher-

level ISA (Instruction Set Architecture) simulation models,

although faster, are even more abstract (hardware-agnostic).

Inaccurate reliability assessments can lead to pitfalls and

wrong design decisions, finally resulting in more vulnerabili-

ties [17], [18].

Assessing the Architectural Vulnerability Factor (AVF) [19]

of each microarchitectural structure of a chip during end-to-

end program execution is a comprehensive way to evaluate

the vulnerability of the entire system stack to soft errors, from

the microarchitecture to the software layers [17]. AVF is the

probability that a soft error (e.g., a bit flip) may produce an

observable error at the application output. While AVF has

been initially proposed for the assessment of reliability in

CPUs, it has also been naturally adapted to GPUs [20]–[22].

Typically, application resilience is measured by experimental

campaigns based on statistical fault injection (FI) [23] or

using analytical methods, such as the Architecturally Correct

Execution (ACE) analysis [19]. AVF measurements based on

statistical fault injection provide useful and accurate insights

for the application reliability profile but come with a lim-

itation: since AVF measurements are based on cycle-level,

microarchitecture-detailed simulation, obtaining the AVF of a

GPU program is very slow [24].

Software-based vulnerability estimation methods, assuming

software-visible origins of hardware bit flips, are significantly

faster than full-system hardware measurements, which con-

sider all hardware bits [12]–[14], [25]. The speed difference

can be two orders of magnitude or more1. These software-

1For example, the AVF experiments of this study require 1,258 single-
core machine days, compared to the 10 machine days used for the SVF
experiments.
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level methods derive the Software Vulnerability Factor (SVF,

as it is defined in [17]), representing the probability of a fault

affecting program execution in a single dynamic instruction.

They are commonly used under the assumption that (a) rea-

sonably model the effect of soft errors on the software layer

(i.e., the overall resilience) and (b) at least provide correct

relative vulnerability comparisons among different workloads.

This work challenges these assumptions and demonstrates that

neither stands for GPU reliability assessment.

In this paper, we present an unbiased comparison of GPGPU

reliability evaluation at different layers. To the best of our

knowledge, this is the first study that such a cross-layer

analysis has been performed in the GPU domain. We quantify

and explain the diverging estimation results obtained when

assessing the reliability of GPUs at different abstraction layers,

specifically at the microarchitecture and the software layers.

The contributions of this work are summarized as follows:

• We demonstrate the magnitude of measurement errors in-

troduced by software-level reliability evaluation methods,

compared to the ground-truth, cross-layer AVF analysis.

To this end, we employ two state-of-the-art, open-source

fault injection frameworks that both focus on NVIDIA

GPUs: gpuFI-4 [11], [26] and NVBitFI [25], [27], which

operate at the microarchitecture level and at the software

level, respectively.

• We conduct a case study to measure the effectiveness of a

strong software-based protection method, Triple Modular

Redundancy (TMR) [28], which aims to eliminate silent

data corruptions (SDCs) [29]–[31]. Our case study reveals

two major insights: 1) although software-level evaluation

(i.e., SVF) confirms that SDCs are effectively eliminated,

the cross-layer evaluation (i.e., AVF) shows that some

SDCs still remain despite the heavy penalty of protection

in terms of performance (and thus, energy consump-

tion [29], [32]–[34]), and 2) while most of the SDCs

are eliminated, Detected Unrecoverable Errors (DUEs)

instead increase, resulting frequently in higher vulnera-

bility of the heavily protected application compared to

the unprotected one.

• We provide insights and reasoning about the sources of

assessment error of software-level methods, which even-

tually lead to diverging results, and explain the reasons

that lead to such discrepancies.

II. EXPERIMENTAL SETUP

In this study, we employ two open-source fault injection

frameworks: gpuFI-4 [11] for microarchitecture-level assess-

ment and NVBitFI [25] for software-level assessment. To

ensure fairness, we carefully select closely matched GPUs

from gpuFI-4 and NVBitFI-supported sets: Quadro GV100 for

microarchitecture-level and Tesla V100 for software-level fault

injection. Both GPUs, based on NVIDIA Volta microarchitec-

ture, exhibit highly similar configurations for the considered

structures—register files, shared memory, L1 data and texture

caches, and L2 caches—meeting the essential criteria for an

equitable comparison.

A. Fault Model

We focus on a single-bit flip fault model for our evaluation,

anticipating similar outcomes with multi-bit flips. Physical

experiments of accelerated beam testing [35] establish that

on-chip storage arrays can suffer from multi-bit flips in ad-

jacent areas. In other words, even if a multi-bit flip occurs,

the corruption could not occur at two different instruction

locations, different threads, or different structures at the same

time. Recent studies have shown that this probability is highly

proportional to the number of bit flips [36], and single-bit

flips contribute the most to the total vulnerability compared to

multi-bit faults [36], [37]. Therefore, we do not expect multi-

bit fault occurrences to change our observations. Most of the

on-chip memory structures are protected through error correc-

tion codes (ECC), but with overhead. There are several new

proposals for alternative protection schemes aiming at lower

performance penalties and/or power consumption [38]–[41].

Reliability evaluation in the early design phases is necessary

to decide on the most appropriate protection technique for a

new design. Starting with an unprotected GPU design, we aim

to gauge the inherent vulnerability of each on-chip structure

to inform targeted protection strategies.

Aligned with prior works [17], [37], [42], our experimental

approach utilizes statistical fault injection [23]. Each exper-

iment involves injecting a single-bit fault at a random (i.e.,

uniformly distributed) location. We iterate this process 3,000

times to provide results with 99% confidence intervals and an

error margin of approximately ±2.35% [16], [23], [43]. We

classify the effect on the program output into the following

fault effect classes (typically used in fault injection studies):

• Masked outcome happens when the fault does not affect

the system or the application in any observable way.

• Silent Data Corruption (SDC) occurs when an application

completes its execution, yet the output differs from that

of the fault-free run.

• Timeout occurs when the application does not finish

within a certain amount of time.

• Detected unrecoverable errors (DUEs) occurs when the

execution does not complete because a catastrophic event

disturbs it. No output is produced, and it may refer to a

kernel or application crash.

B. Microarchitecture-Level Fault Injection

For microarchitecture-level fault injection, we employ

the open-source framework gpuFI-4 [11], a state-of-the-art

microarchitecture-level reliability assessment framework built

on top of the recent GPGPU-Sim 4.0 simulator [44]. We

inject faults in the five hardware structures that are supported

by gpuFI-4: register files (RF), shared memory (SMEM), L1

data caches (L1D), L1 texture caches (L1T), and L2 caches.

For a fair comparison between cross-layer and software-level

evaluation methods, we do not consider faults in the L1

instruction cache, since software-level fault injection tools do

not consider faults that affect any bit of the instruction format

(see details in subsection II-C).
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gpuFI-4 provides the cross-layer AVF (Architectural Vul-

nerability Factor), defined as the probability of a fault in a

hardware structure that would result in an error (i.e., the fault

is not masked) [19]. In AVF analysis, any bit at the microar-

chitecture level can be flipped, no matter if it is currently

valid (i.e., alive) or not. We follow the well-established AVF

methodology to calculate the AVF [17], [19] and describe the

detailed calculation below.

We define, as the failure rate (FR) of a hardware structure

h, the probability of all non-masked faults:

FR(h) = Pct(SDC ) + Pct(Timeout) + Pct(DUE )

where Pct(x) denotes the percentage of component x.

GPGPU-Sim 4.0 simulator does not have a real register file

hardware structure as a reference, but it dynamically allocates

each register of a thread during the execution (and frees them

when a thread finishes). Even if the total number of used

registers is known from the beginning, it is not possible to

inject a fault against the entire register file, i.e., currently used

and unused registers, but only to the registers that are active at

a specific cycle. Therefore, to accurately calculate the correct

probability (i.e., AVF), which depends on the total number of

registers (i.e., the entire population of bits, including currently

used and unused bits), we weight the AVF as if we were

targeting the entire register file. The same logic applies to

the shared memory, with the difference that this memory is

allocated per CTA and not per thread.

To overcome this inherent issue of the simulator, in our

register file and shared memory analysis, we define a derating

factor (DF) of a hardware structure h as follows:

DF (h) =
size per thread(h)× num threads

system size(h)

The derating factor is only for register files and shared

memory, as these two components have the previously dis-

cussed simulator issue. DF does not apply to other hardware

components like L1 data/texture caches and L2 caches. By

using the failure rate (FR) and corresponding derating factor

(DF) of each hardware structure h, we can accurately calculate

the cross-layer AVF of that structure:

AVF (h) = FR(h)×DF (h)

For a fair comparison between microarchitecture and

software-level resilience analysis (see subsection II-C), we

need to calculate the full AVF of the entire chip, i.e., the

consolidated AVF of all hardware structures. To this end, we

compute the accurate full GPU chip AVF by weighting all

the hardware structures h1, h2, ..., hn by their actual sizes (bit

counts), which is a well-established process for accurately

delivering the AVF of the entire chip [17]:

AVF (all) = Σn
i=1[AVF (hi)×

size(hi)

Σn
j=1size(hj)

]

For multi-kernel applications (of different execution times),

we first assess the AVF of each kernel separately by injecting

faults into each target kernel only. The AVF of the entire

application is calculated by weighting the kernel AVF by its

number of cycles to reflect its duration:

AVF (app) = Σk
i=1[AVF (keri)×

num cycles(keri )

Σk
j=1

num cycles(kerj )
]

C. Software-Level Fault Injection

For the software-level fault injection part of this study, we

employ the open-source framework NVBitFI [25]. NVBitFI

is a state-of-the-art software-level fault injector, officially

supported by NVIDIA. It is built on top of NVBit (NVIDIA

Binary Instrumentation Tool) [45], which is a dynamic binary

instrumentation library built for recent NVIDIA GPUs. NVBit

enables the instrumentation of SASS instructions of kernel

functions in GPU applications. Because of the nature of the

software-level fault injection, faults are only injected into

valid (i.e., alive) data. This is exactly how the software-

level fault injection measurements are naturally performed,

and we follow the same process as it is implemented in

NVBitFI tool. NVBitFI provides the Software Vulnerability

Factor (SVF). We define the SVF metric as the probability of a

fault in a single dynamic instruction that would affect program

execution, following its initial definition [17]. SVF expresses

the vulnerability factor of faults whose origin is at a software-

visible location (i.e., a flipped bit in the destination register)

and not a flipped hardware bit at the microarchitecture level.

SVF is microarchitecture-independent, in contrast to AVF.

NVBitFI injects faults into the destination registers of

executed instructions, thus there is no need to consider any

derating factor. The SVF of a kernel can be calculated from

the probability of all non-masked faults:

SVF (ker) = FR(ker)

= Pct(SDC ) + Pct(timeout) + Pct(DUE )

For applications with multiple kernels, we first assess the

SVF of each kernel separately by injecting faults into the target

kernel. For computing the SVF of the entire application, we

weight the kernel SVF with its number of executed instruc-

tions, since we assume a uniform fault distribution across time:

SVF (app) = Σk
i=1[SVF (keri)×

num instructions(keri )

Σk
j=1

num instructions(kerj )
]

D. Benchmarks

We carefully select 11 benchmarks (23 kernels) from two

very widely used benchmark suites CUDA [46] and Ro-

dinia [47] in reliability studies [15], [48], [49], covering

a wide range of applications, especially HPC applications,

including image processing, data mining, graph algorithms,

linear algebra, bioinformatics, and physics simulations. The

variety of these benchmarks eliminates the bias of program-

ming factors such as instruction types and counts, which may

affect application resilience.

III. COMPARISON OF AVF AND SVF

In this section, we present a detailed comparison between

the AVF (i.e., the cross-layer vulnerability) and the SVF (i.e.,

the software-only, hardware-agnostic vulnerability evaluation)
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that unveils the magnitude of estimation error that SVF de-

livers. Our experimental results include an application-wise

comparison and a kernel-wise comparison between AVF and

SVF. We profile diverse performance measurements and show

that resource utilization can be used as an indicator of some

trends. Furthermore, we consider the comparison of other

sub-metrics of AVF and SVF, such as AVF-RF (Register

File) and SVF, and AVF-Cache and SVF-LD (which is the

SVF calculated through injections in Load instructions only).

Through these specific comparisons, we bring up awareness

of inconsistencies across reliability assessment methodologies

and showcase the importance of bridging this cross-layer gap.

A. Comparison between AVF and SVF (Application-wise)

Figure 1 shows the AVF and SVF results of applications

studied in this work. Please note the different scales of the

vertical axis between the AVF and the SVF graphs: full-

system vulnerability absolute values (the bottom graph of

Figure 1) are always much smaller than the software-only

vulnerability ones (the top graph of Figure 1) because they

also consider the full hardware masking effects. Since AVF

and SVF assume different origins of faults (for the AVF the

origin is any microarchitectural bit; for SVF it is a bit of

the destination register of a dynamic instruction), there is no

direct comparison of absolute vulnerabilities. The focus here

is the relative trends (i.e., the vulnerability ranking of two

individual applications) and not the comparison of the actual

vulnerabilities. This method is in line with other research

works in the literature [17].

The differences between AVF and SVF in Figure 1 are

dramatic. Trends in SVF and AVF occasionally align and

sometimes diverge. In certain cases, SVF and AVF produce

entirely contrasting vulnerability estimations, impacting both

the overall vulnerability and the severity of specific fault effect

classes. We start our discussion with consistent trends. For

instance, in Figure 1, consider the pairings of SRADv1 and

SRADv2 benchmarks (first two bars) as well as the K-Means

and HotSpot benchmarks (third and fourth bars). Both SVF

and AVF consistently show that K-Means exhibits notably

lower vulnerability compared to HotSpot, just as SRADv1

demonstrates greater reliability than SRADv2. This pattern

remains consistent across all three fault effect classes: SDC,

timeout, and DUE.

However, there are many pairs of benchmarks that show

opposite vulnerability trends between SVF and AVF analysis.

Consider the pair of HotSpot and LUD benchmarks (fourth

and fifth bars in both graphs of Figure 1). From the cross-layer

AVF point of view, LUD is more resilient than HotSpot, while

based on SVF, LUD is significantly less resilient than HotSpot.

As another example, for the pair of SCP and VA benchmarks,

similar observations occur: SVF shows that SCP is more

resilient than VA, while the ground-truth AVF shows the exact

opposite trend. Moreover, the vulnerability trend of the SDC

fault effect is also different between the cross-layer AVF and

software-layer SVF. LUD exhibits significant vulnerabilities

considering SDC when measuring SVF (i.e., the SDC proba-
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Fig. 1. Application-level comparison: AVF (bottom) and SVF (top).

bility based on SVF is 74.47%), but from the AVF analysis, the

SDC rate is extremely low. This observation is very important,

since such diverging SVF evaluations may lead designers to

decide and apply a wrong protection scheme in practice. For

example, budgeted protection, or sometimes called partial pro-

tection, is a common practice given the expensive cost of pro-

tection overhead [41], [50]. The idea is simple, to protect only

the most vulnerable components (e.g., applications, kernels,

threads, or instructions) in the system. From the SVF analysis,

clearly, high protection priority should be given to LUD and

VA. However, based on AVF, the most vulnerable applications

are SRADv2, HotSpot, and SCP. Therefore, software designers

may decide to protect an application (e.g., the most vulnerable

application, LUD) against SDCs (which typically occur due

to faults in computations and the data flow) by applying

a software fortification method [41], [51]. However, since

AVF shows that the SDC rate is extremely low, protecting

this application from SDCs is unnecessary and the resources

are wasted. Even worse, a wrong-decided protection scheme

can increase the vulnerability of the application, instead of

decreasing it. section IV shows several cases in which wrong-

applied protection increases the software vulnerability rather

than decreases it.

Overall, there are 32 pairs (i.e., 58%) of applications with

consistent trends between AVF and SVF and 23 pairs (i.e.,

42%) of applications showing opposite trends between AVF

and SVF (see the first row of Table I). Explanations of these

trends are presented in subsection III-C.

TABLE I
OPPOSITE TRENDS IN APPLICATION OR KERNEL PAIRS.

Consistent Trend Opposite Trend

Application-Level 32 (58%) 23 (42%)

Kernel-Level 144 (57%) 109 (43%)

AVF-RF vs. SVF 32 (58%) 23 (42%)

AVF-Cache vs. SVF-LD 23 (42%) 32 (58%)

B. Comparison between AVF and SVF (Kernel-wise)

Since GPGPU application kernels normally implement in-

dependent modules/functions, we also conduct a kernel-wise

AVF and SVF comparison for a comprehensive analysis, see

Figure 2. Similar to application-wise comparisons, both con-

sistent and opposite vulnerability trends exist at the individual

kernel level. For example, K1 and K2 of BackProp show
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consistent trends between AVF and SVF; PathFinder K1 and

BackProp K1 also show consistent trends. An example of

opposite vulnerability trends is HotSpot K1 and LUD K1:

considering AVF, HotSpot K1 is more vulnerable, but based

on SVF, HotSpot K1 is significantly less vulnerable than

LUD K1. Overall, there are 144 pairs of kernels showing

consistent trends and 109 pairs of kernels with opposite trends

(see second row of Table I).

Opposite vulnerability trends between AVF and SVF not

only occur between different kernels of different applications

but also between different kernels of the same application. For

example, for the kernels of SRADv1 shown in Figure 2, AVF

analysis shows that SRADv1 K4 is the most vulnerable kernel,

while according to SVF, SRADv1 K1 is the most vulnerable

one. Another example is LUD in Figure 2. While the AVF

shows that LUD K3 is the most vulnerable kernel, the SVF

shows that the most vulnerable is LUD K2.

Insight #1: Software and microarchitecture level reliability

assessment methods deliver inconsistent relative vulnerabili-

ties of the studied applications and kernels. This observation

points to the need for exploration of the relationship of

application resilience among these layers.

C. Resource Utilization: An Indicator

In this section, we present a correlation of vulnerability

trends to diverse performance metrics collected by GPGPU-

Sim 4.0 [44] during fault-free executions and show that

resource utilization serves as an indicator for some resilience

trends. Such metrics include (among others) the register file

usage, the cache usage, and the total number of instructions.

Due to space constraints, we present those metrics that are

closely related and contribute the most to the major differences

between AVF and SVF. For a fair comparison, each metric is

normalized by the sum of the values of the certain metric of

two kernels:

Norm.Value(Ker 1 ) =
Value(Ker 1 )

Value(Ker 1 ) + Value(Ker 2 )

Norm.Value(Ker 2 ) =
Value(Ker 2 )

Value(Ker 1 ) + Value(Ker 2 )
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(c) Opposite trend: resource utilization and resilience of the application.

Fig. 3. AVF, SVF, and performance measurements for each application.

The result value of 50% means that the values of a certain

metric (e.g., AVF or SVF) of two kernels are the same. In

Figure 3a, the left-most bar shows that the AVF of HotSpot

K1 is much higher than LUD K1, but the second left bar

(SVF) shows that LUD K1 has a higher SVF, which shows

opposite trends between AVF and SVF. Considering other

metrics related to resource usage (as shown in the remaining

bars of the graph), for most of the metrics, HotSpot K1 has

higher resource utilization, indicating that faults injected at the

microarchitecture level have a higher chance to propagate to

the software level. This observation explains in part the reason

for this opposite trend.

Another example considering kernels with consistent trends

is shown in Figure 3b. Both AVF and SVF show that LUD

K2 is more vulnerable than LUD K1, which suggests that

the algorithm and the implementation of LUD K1 are more

resilient. In most cases, LUD K2 provides higher resource

utilization (i.e., the white-colored portion of bars is larger than

the blue-colored portion), therefore both its AVF and SVF are

higher than LUD K1.

Most of the applications and application kernels exhibit

similar behaviors, but resource utilization cannot be used

directly as a proxy. Figure 3c shows another example of

opposite trends, but without no clear conclusion of higher or

lower resource utilization. In section V we analyze in detail
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the sources of assessment errors that contribute to incorrect

SVF estimation and conclude that only cross-layer evaluation

methods can provide the correct application resilience.

Although resource utilization does not directly determine

the relationship between AVF and SVF, it serves as an effec-

tive indicator for resilience trends. In cases where a kernel

demonstrates lower SVF and decreased resource utilization,

its AVF also tends to be lower (as illustrated in Figure 3b).

This correlation holds across all 40 kernel pairs exhibiting both

reduced SVF and resource usage. This is reasonable because

1) lower SVF indicates higher fault tolerance at the application

level; 2) lower utilization suggests a lower probability of faults

propagating from hardware to software layers due to a reduced

chance of faults occurring in invalid (not alive) data.

Insight #2: Resource utilization of an application or a kernel

serves as an indicator for some trends. However, it is unlikely

to determine the precise relationship and inconsistencies

between AVF and SVF solely through simple resource usage

calculations.

D. AVF of Major Hardware Structures and Sub-Comparisons

Software-level fault injection methods only consider faults

at a currently used register, i.e., a bit flip occurs in the value

of an instruction. Here, to explain the sources of assessment

error of the high number of diverging results of SVF, we

present fine-grained comparisons: 1) between the AVF of the

register file only (i.e., labeled AVF-RF) and the SVF and 2)

between the AVF of the on-chip memory structures only (i.e.,

labeled AVF-cache) and the SVF of memory operations (i.e.,

labeled SVF-LD and referring to bit flips only to the loaded

values from memory). This allows us to compare as close as

possible the AVF and SVF by considering the same group

of corruptions and not the entire AVF and SVF results. The

diverging trends of these comparisons practically render SVF

and software-layer measurements incorrect, given that AVF

delivers the ground truth measurement.

1) AVF-RF vs. SVF: The comparison of AVF-RF and SVF

is shown in Figure 4 (see also the third row of Table I).

There are 32 consistent trends and 23 opposite trends across

all application pairs. The same number of opposite trends were

also observed earlier in Figure 12. It is clearly shown that even

if the comparison between AVF and SVF occurs only in the

register files, SVF remains a misleading measure of application

resilience. The main reason is attributed to the distribution of

faults in both measurements. On the one hand, AVF considers

faults in any currently valid or not valid (i.e., alive or not

alive) entry/datum of a hardware structure, which is the ground

truth, since a high-energy particle may affect any (valid or not)

hardware entry. On the other hand, SVF only considers fault

in a certain (alive) value in a register of a dynamic instruction.

2The relative trends of AVF and AVF-RF are the same, because register files
occupy the largest size in our fault and architecture model, i.e., the register
file affects the most the overall AVF due to its size.
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Insight #3: The distribution of faults is of paramount impor-

tance since it can significantly affect the overall estimation

and guide the final resilience assessment. SVF may lead to

diverging reliability measurement results because only the

software-level masking effect is evaluated.

2) AVF-Cache vs. SVF-LD: For the AVF-Cache experi-

ments we consider the L1 data caches, the L1 texture caches,

and L2 caches. Faults in these hardware components are

related to faults on memory operations that are visible (and

thus, accessible for fault injection) at the software level. By

injecting faults into load instructions, we can obtain memory-

related SVF (i.e., SVF-LD). Figure 5 shows the comparison

between AVF-Cache and SVF-LD. For memory-related op-

erations, AVF and SVF become more erratic compared to

the register file-only comparisons. 58% of the total pairs of

benchmarks (see also the fourth line of Table I) result in

opposite vulnerability trends.

Insight #4: Sub-metrics of AVF and SVF still exhibit

consistent and opposite trends. SVF remains a misleading

measure of error resilience. Only the full system, cross-layer

AVF measurement can deliver accurate comparison among

workloads vulnerabilities to faults.

IV. COMPARISON BETWEEN AVF AND SVF

USING A HARDENING METHOD

The final goal of reliability measurement and study is

always to fortify applications and systems against hardware

faults. In this section, we conduct a case study using both

AVF and SVF methodologies to measure the effectiveness
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of protection mechanisms. The aspiration herein is that the

diverging trends observed in the unprotected system analysis

and discussed in the previous section will be less dramatic. We

implement a powerful (and thus high-cost) software-level hard-

ening mechanism, Triple Modular Redundancy (TMR) [51],

on all application kernels. Both AVF and SVF are used to

measure the resilience of the protected application kernels.

A. Hardening Method and Implementation

We start with discussing the choice of hardening method

to be examined. Redundancy can be deployed at either the

hardware or software level. Hardware redundancy has to be

implemented in the simulator used for cross-layer vulnerability

assessment (AVF analysis) and on the physical GPU used for

software-level fault injection. In short, hardware redundancy

on these two deployments needs to be implemented separately,

which introduces additional threats to validity. For a fair

comparison, we implement TMR at thread level into the

application source code, so that the same hardened application

is evaluated for its AVF (using the GPGPU-Sim 4.0 [44]) and

SVF (using the NVBitFI [25], [27]).

Figure 6 shows the workflow of TMR application hardening.

The dark green color in Figure 6 shows the original execution

of the application or the kernel without hardening. The figure

also illustrates the additional steps for hardening, as enumer-

ated below:

1) Pre-processing. Two more copies of input data are added

for redundancy.

2) Kernel Execution. The number of threads of each appli-

cation is triplicated, i.e., the same execution is performed

three times in total (in parallel).

3) Post-processing. From Step 2, three copies of outputs are

generated from three identical executions. Majority voting

is then used to determine the final (correct) output. If one

of the three executions in Step 2 is corrupted and results

in incorrect output, the other two copies still have the

correct output.

B. Resilience of Hardened Kernels

In this section, we discuss the vulnerability of the hardened

application kernels. Figure 7 shows the AVF and SVF of the

kernels with and without hardening. For most of the kernels,

both AVF and SVF are improved when applying the software-

based hardening method, i.e., increased application resilience.

However, several kernels show increased vulnerability when

applying the software-based hardening method. Specifically,

BackProp K2 and SRADv1 K2 show increased AVF compared

to the unprotected kernels; BackProp K1, SRADv1 K2, and

SRADv1 K3 show increased SVF compared to the unprotected

kernels. Here we point out several opposite trends: 1) SRADv1

K3 where the SVF increases but AVF remains at the same lev-

els, 2) BackProp K1 with increasing SVF and decreased AVF,

and 3) BackProp K2 where the SVF is slightly decreasing

but AVF is much higher after hardening. Clearly, measuring

the resilience using the SVF can provide a completely wrong

indication of improved reliability. Nevertheless, applying TMR

Fig. 6. Triple Modular Redundancy (TMR) workflow.

significantly increases execution time (around 3x); hence, the

application has a higher chance of encountering soft errors.

This emphasizes again the importance of correct reliability

evaluation and decision.

The purpose of TMR is to correct SDC fault effects. SVF

shows that the SDCs (Silent Data Corruptions) are effectively

eliminated by TMR. Turning into AVF, we see that there is

a considerable number of SDCs even after hardening, see

Figure 8. For most kernels, the percentage of SDCs decreases

after hardening, but surprisingly this is not the case considering

the AVF of SRADv1 K2.

We further elaborate on the faults in some kernels that

result in SDCs in AVF after hardening. We note that these

faults cannot be detected by any software-based hardening

method, because they are hardware-induced faults that cannot

be visible to the software. Assume for example that a fault

occurs on a cache line that contains data that are part of the

application output. If the data of the cache line are not used

again by the application (i.e., they are not read again by an

instruction), they will be eventually written back to memory

without ever being read again by the program flow, and thus,

there is no further masking opportunity neither at the hardware

nor at the software layer. Since these data are part of the

program output, the output will be certainly corrupted (i.e.,

result in SDC). SVF methods cannot model or evaluate such

kinds of faults, since they are unknown to the software layer.

This is the reason that while AVF shows the remaining SDCs

after hardening, the SVF shows that SDCs are eliminated.

This particular phenomenon has been identified in CPUs as

well [17].

Figure 9 shows the percentage of timeouts and DUEs with

and without hardening. There are very few Timeouts for

SVF and very few DUEs for AVF (they are hardly visible

in the figure). In most of the kernels, the percentage of

DUE outcomes increases, because the resource usage of the

application is increasing. For example, the memory usage

is triplicated, leading to more “illegal memory accesses”

classified as DUE outcomes in software-level fault injection,

resulting in increased vulnerability in some kernels.

The detailed breakdown of AVF considering different com-

ponents with and without hardening for several kernels is

shown in Figure 10. Due to space constraints, we only present
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Fig. 7. AVF and SVF of hardened applications.
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Fig. 8. The percentage of SDC outcomes of AVF for applications with and
without hardening.

several representative kernels. For SRADv1 K2, the percentage

of SDC outcomes for register files and the shared memory

is reduced after hardening, but for the L1 data cache and

the L2 cache, there is a higher number of SDC outcomes,

which contributes to increased SDCs in the kernel AVF

due to the hardening. Note that when applying a software-

based hardening method, the reliability characteristics of an

application or a kernel are completely different compared to

the unhardened one. For example, in SCP K1, the SDC and

Timeout in register files and shared memory contribute to the

main source of SDC and Timeout in Figure 8 and Figure 9

before hardening; with hardening applied, the main source of

SDC and Timeout is from L2 caches. This case illustrates that

being agnostic of the underlying hardware structures is a clear
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shortcoming of SVF.

Comparing these four hardware structures, register files

and shared memory have an increased probability of getting

SDCs without hardening. Therefore, the improvement of TMR

mostly falls in register files and shared memory, which con-

firms its ability to correct SDC outcomes. Figure 10(c) shows

that L1 data caches have the smallest vulnerability across all

considered hardware structures. In Figure 10(d), we can see

that hardening introduces extra vulnerabilities in L2 caches,

for example, the increased SDCs in SRADv1 K2 and SCP

K1, the timeouts in SCP K1 and BackProp K2, and the DUEs

in NW K2. This level of detail in reliability assessment can

only be given by cross-layer analysis provided by AVF, but

not by SVF.

We are also interested in the effect of soft errors on the

control path and data path. Profiling every single executed

instruction would introduce tremendous overhead in our anal-

ysis. To this end, we profile the number of executed cycles

for the hardened kernel and use it as a proxy to track the

change of control path. For the data path, the final output is

the critical data, so the fault injection outcome, i.e., masked

or corrupted, represents the status of the data path. Figure 11

shows the percentage of control-path-affected masked runs

for each kernel with or without hardening. For most of the

kernels, the percentage of control-path-affected masked runs

increases after hardening, except for one outlier, SRADv1 K3.

This observation shows that hardening is able to correct many

control-path-affected runs and maintain the correctness of the

data path.

Insight #5: Although software-level evaluation confirms that

SDCs are effectively eliminated, the cross-layer evaluation

shows that some SDCs remain despite the heavy penalty of

protection. While most of the SDCs are eliminated, Detected

Unrecoverable Errors (DUEs) instead increase, resulting

frequently in higher vulnerability of the heavily protected

application compared to the unprotected one.

V. REASONING ABOUT DIVERGING RESULTS

The endeavor of GPU soft error vulnerability evaluation

is very challenging due to the massiveness of the hardware

and the highly parallel nature of workloads executed on them.

Vulnerability assessment methods considering hardware faults

for GPUs focus on one of the fundamental abstraction layers:

8

Authorized licensed use limited to: William & Mary. Downloaded on May 21,2025 at 21:31:58 UTC from IEEE Xplore.  Restrictions apply. 



SR
AD

v1
 K

2
SR

AD
v1

 K
1

SR
AD

v1
 K

3
SR

AD
v1

 K
4

SR
AD

v1
 K

5
SR

AD
v1

 K
6

SR
AD

v2
 K

1
SR

AD
v2

 K
2

K-
M

ea
ns

 K
1

K-
M

ea
ns

 K
2

Ho
tS

po
t K

1
LU

D 
K1

LU
D 

K2
LU

D 
K3

SC
P 

K1
VA

 K
1

NW
 K

1
NW

 K
2

Pa
th

Fi
nd

er
 K

1
Ba

ck
Pr

op
 K

1
Ba

ck
Pr

op
 K

2
BF

S 
K1

BF
S 

K2

0

2

4

6
Pe

rc
en

ta
ge

 (%
) w/o Hardening

w/ Hardening

Fig. 11. Control-path affected masked runs for microarchitecture-level fault
injection.

either at the microarchitecture or at the software layer. The

main difference among the evaluation methods is the presumed

origin of the fault: the microarchitecture level starts from the

actual hardware bits, while the software level starts even higher

from the (destination) register values of a single dynamic (i.e.,

currently executed) instruction. Apart from the fault origin, the

fault injection and simulation methodology followed by any

methodology are the same. They both assume a flipped bit as

the fault origin (in a certain abstraction layer) and simulate

an application to check if the fault affects the eventual output

of the program (SDC) or if it affects the program execution

before any output is generated (Crash, DUE).

In this section, we discuss two major aspects of soft error

vulnerability assessment for GPUs. Firstly, we clarify, for the

first time, the difference between microarchitecture-level and

software-level fault injection in GPUs. Secondly, we list the

most important reasons that, according to our study, higher-

level fault injection methods fail to provide correct results for

reliability evaluation.

A. Microarchitecture- vs. Software-Level Fault Injection

In the previous sections, we demonstrated that

microarchitecture-level and software-level fault injection

may result in dramatically different resilience estimations

for the same application with respect to both actual values

and relative trends. Such discrepancies stem from inherent

assumptions of the respective fault injection methodologies.

Microarchitecture-level fault injection assumes that the ori-

gin of the fault is any hardware bit. These hardware bits can be

residing in either architecturally visible or non-architecturally

visible locations. Architecturally visible locations are a subset

of the software resources (registers and memory) that are used

by a program. For example, since not the entire memory

address space is used by an application, only a part of the

available memory is used and is visible. In addition, the

executed instructions themselves and their operand fields, as

well as the data transactions between registers and memory,

are architecturally visible.

On the other hand, software-level fault injection assumes

that the origin of the fault is any directly addressable resource

of the software, which is a subset of architecturally visible

resources. For example, software-level fault injection tools

(e.g., GPU-Qin [14], SASSIFI [12], and NVBitFI [25]) inject

faults only at the values of currently used registers by the

program. Such faults can affect the computational results or

the temporal memory values (e.g., the fault affects the register

value in a load instruction). To the best of our knowledge, there

is no software-level fault injection tool that considers faults in

opcode or register operands. This means that, by definition,

software-level fault injection (and equivalently SVF) only

considers a subset of architecturally visible faults.

B. Sources of the Measurement Error of Software-Level Fault

Injection

As discussed earlier, SVF provides diverging reliability eval-

uation results compared to the ground-truth cross-layer AVF.

In this section, we analyze the main reasons that SVF fails to

provide correct estimation results and propose some potential

solutions that could significantly improve SVF estimation.

A major source of the measurement error of software-level

fault injection is that it only considers instantaneous faults

when a single instruction is executed, but not the effect of

multiple accesses of a bit flipped by a transient fault. By flip-

ping a bit in a destination register of an executed instruction,

the evaluation fails to assess potential repetitive corruptions

of following executed instructions, which depend on this bit

flip. For example, assume a hardware-induced fault that affects

a single bit of a register, the register R0 in instruction #4 of

Figure 12. Instruction #5 and #7 both read from this corrupted

register and would be affected by the same fault. This aspect

is completely ignored by software-level fault injection studies,

but microarchitecture-level fault injection methods cover such

a scenario by definition. A potential solution to this problem

is to enable fault injection into source registers and augment

the software-level fault injection tools with a register reuse

analyzer, along with fault injection. The register reuse analyzer

can be implemented at the compiler level, and a possibility is

to integrate it with the fault injector built on top of LLVM

(LLFI-GPU [9]).

Figure 12 shows an example of this process. Assume that

a fault is injected in register R0 of instruction #4, as shown

in Figure 12. In a typical SVF-based methodology, the fault

would affect only this instruction, assuming that an SVF

methodology injects in source registers as well. However, that

register is getting read again by more instructions (i.e., #5 and

#7), and thus, the fault should affect all these instructions.

Therefore, a register reuse analyzer could contribute to this

limitation of the SVF-based methodologies by replicating the

fault in any R0 register of any following instruction that

attempts to read from this register, until it is written for the

first time. The red circles represent all R0 occurrences that

need to be affected by the fault.

Another source of error in software-level fault injection is

that it completely fails to consider the hardware (microarchi-

tectural) masking effects. Assume, for example, cache line

eviction. Any valid cache line is an architecturally visible

resource if the same line is not valid on a higher cache

level [52]. However, a cache line eviction, which is a normal

microarchitectural operation, can immediately change this con-

dition, and a fault that was initially flagged as software visible

can turn into software invisible. Assume, that a hardware-

9
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Fig. 12. An example of the register reuse analyzer. A fault in the register R0
should affect every instruction that attempts to read from this register. The
analyzer could replicate the fault of instruction #4 into all R0 occurrences
until the R0 is written for the first time.

induced fault occurs in the L1 data cache and that the cache

line with the corrupted value is evicted. Eviction only happens

on cache lines that are not dirty so that the faulty cache line

will be never written back. Thus, a load instruction that loads

the data value from a lower memory level will retrieve the

correct (i.e., non-corrupted) value.

Insight #6: A microarchitecture-dependent resilience

measurement is the only solution.

A fault can be initially considered architecturally visible,

but it may eventually turn invisible to the architecture, and

thus, to the software. This aspect, by definition, changes the

distribution of faults that eventually become architecturally

visible. As long as software-level fault injection tools do

not consider hardware masking and the distribution of faults

that eventually become visible to the software, they fail to

provide correct reliability estimation results. Consequently,

the only solution for this limitation is a microarchitecture-

dependent evaluation. The simulation throughput of cross-

layer AVF measurements including the microarchitecture and

the software is a clear optimization aspect for tools along

these lines.

VI. FUTURE ENHANCEMENTS

In this section, we emphasize the key areas for improve-

ment, for GPU vulnerability studies aligned with our work:

• Compute Capability: Small discrepancies in com-

pute capabilities between GPGPU-Sim 4.0 (used for

microarchitecture-level fault injection) and NVBitFI (for

software-level fault injection) could marginally affect

the findings. Aligning compute capabilities closer could

refine absolute numbers. AccelSim [53], a trace-based

simulator supporting newer compute capabilities, might

offer a potential solution, although its current functional-

ity cannot provide a deterministic output file to determine

SDCs.

• GPGPU-Sim 4.0 Simulator: gpuFI-4, the chosen

microarchitecture-level fault injection tool, may introduce

biases due to the GPGPU-Sim 4.0 implementation (since

it is not an official Nvidia simulator). Despite this, it

remains the most faithful open-source simulator resem-

bling GPU hardware design. While lower-level simulators

(like RTL) could refine our findings, their use would

significantly increase simulation duration, making such

a study with realistic duration benchmarks infeasible.

• NVBitFI Instructions: NVBitFI performs fault injection

on general-purpose instructions exclusively (i.e., not all

the instruction types are supported). While this limitation

does not cover all instruction types, it cannot impact our

analysis and findings, since general-purpose instructions

are prevailed.

• GPU devices: In this work, the microarchitecture-level

and software-level fault injection experiments are per-

formed on two similar but distinct GPU devices, due to

the compatibility restrictions of tools. We carefully select

the closest pair of GPUs with the same microarchitecture,

and the considered hardware structures are all the same.

We acknowledge that this could marginally affect some

absolute values, but it cannot impact the final relative

trends.

• SVF in error propagation analysis: Using a single met-

ric, SVF, is misleading in resilience assessment. However,

software-level fault injection may still have its value,

for example, conducting fast error propagation analysis

across instructions to explore software-based protection

techniques. The correctness and possibility of using SVF

in error propagation analysis is an interesting angle but

out of the scope of this work.

Although there is always space for refinements,

GPGPU-Sim 4.0 stands as the predominant open-source

microarchitecture-level GPU simulator in recent research.

Similarly, gpuFI-4 and NVBitFI are the only open-source

microarchitecture-level fault injector and an industry-

supported tool, respectively, adding credibility to our research

on relative vulnerability analysis in modern GPUs.

VII. RELATED WORK

Application resilience has been measured at different

levels. In addition to the cross-layer AVF, Sridharan and

Kaeli introduced the concept of Program Vulnerability Fac-

tor (PVF), which measures the microarchitecture-independent

portion of AVF, by considering only the architecturally-visible

faults [54]. Fault injection techniques are applied in the

CPU domain at different levels to evaluate CPU application

resilience [10], [17], [55]–[62]. Fault injection is commonly

used to evaluate the resilience of GPGPU applications as

well [12], [14], [16], [41], [48], [63]–[67]. Tselonis et al.

in [15] proposed GUFI on top of GPGPU-Sim [44], to study

the reliability of GPGPU applications.

Neutron beam experiments [68]–[78] are used for resilience

assessment. Although these experiments can provide accurate

results, they are not always feasible, and it is hard to precisely

control fault occurrence and analyze error propagation. Li et

al. study the error propagation of different kernels in GPGPU

applications [9]. Trident [59] analyzes error propagation at

different levels to predict the percentage of SDC outputs

for the whole application and its instructions. G-SEPM [13]

incorporates different machine learning models to achieve
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accurate and efficient soft error prediction for GPGPU appli-

cations. Comparisons of resilience estimation methodologies

have been performed in several CPU studies [17], [79]–[82].

The closest study to the one presented here is done in the

CPU domain: Papadimitriou et al. consider single-bit faults

in different hardware components at the microarchitecture, at

the ISA level, and at the software level, and identify pitfalls

in CPU reliability evaluation [17]. Our study represents the

first extensive study comparing resilience estimation outcomes

from microarchitecture-level and software-level fault injection

on GPUs, highlighting divergent conclusions regarding appli-

cation resilience derived from SVF. Moreover, contrasting our

results with those of [17], we highlight a considerably greater

error magnitude in SVF methods on GPUs, indicating a higher

frequency of contradictory vulnerability trends compared to

ground-truth AVF, especially due to the underutilization of

large register files in GPUs. Consequently, software-level

vulnerability methods are more prone to yield inaccurate

estimation results for GPU applications compared to CPU

applications.

VIII. CONCLUSION

In this paper, we extensively measured and analyzed tran-

sient fault effects on NVIDIA GPUs examining both microar-

chitecture and software levels. Our key finding emphasizes the

discrepancy between software-level vulnerability assessments

and their accuracy when compared to microarchitecture-level

methods for applications. To delve deeper into this discov-

ery, we conducted a case study evaluating the efficacy of

thread triplication — a potent yet costly protection mech-

anism—using both SVF and accurate cross-layer evaluation

(AVF). The insights gained are enlightening: (a) software-level

evaluation indicates triplication effectively eliminates SDCs,

but cross-layer evaluation reveals the opposite for certain

benchmarks — they become more vulnerable despite the heavy

protection, and (b) while SDCs are eliminated, the probability

of other critical fault effects, like DUEs, impacting application

reliability, may significantly increase. We elaborated on why

neglecting underlying hardware in software-level fault injec-

tion yields divergent outcomes, emphasizing the necessity of

microarchitecture-aware evaluations for precise GPU vulner-

ability assessment. This study highlights the inconsistencies

in reliability assessment methodologies and paves the way for

addressing this cross-layer gap.
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