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Abstract

Context Dynamic feedbacks between physical struc-
ture and ecological function drive ecosystem pro-
ductivity, resilience, and biodiversity maintenance.
Detailed maps of canopy structure enable comprehen-
sive evaluations of structure—function relationships.
However, these relationships are scale-dependent, and
identifying relevant spatial scales to link structure to
function remains challenging.

Objectives We identified optimal scales to relate struc-
ture heterogeneity to ecological resistance, measured as
the impacts of wildfire on canopy structure, and ecologi-
cal resilience, measured as native shrub recruitment. We
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further investigated whether structural heterogeneity can
aid spatial predictions of shrub recruitment.

Methods Using high-resolution imagery from unoc-
cupied aerial systems (UAS), we mapped structural het-
erogeneity across ten semi-arid landscapes, undergoing
a disturbance-mediated regime shift from native shrub-
land to dominance by invasive annual grasses. We then
applied wavelet analysis to decompose structural heter-
ogeneity into discrete scales and related these scales to
ecological metrics of resilience and resistance.

Results We found strong indicators of scale depend-
ence in the tested relationships. Wildfire effects were
most prominent at a single scale of structural het-
erogeneity (2.34 m), while the abundance of shrub
recruits was sensitive to structural heterogeneity at a
range of scales, from 0.07 — 2.34 m. Structural het-
erogeneity enabled out-of-site predictions of shrub
recruitment (R?=0.55). The best-performing predic-
tive model included structural heterogeneity metrics
across multiple scales.

Conclusions Our results demonstrate that identify-
ing structure—function relationships requires analyses
that explicitly account for spatial scale. As high-res-
olution imagery enables spatially extensive maps of
canopy heterogeneity, models for scale dependence
will aid our understanding of resilience mechanisms
in imperiled arid ecosystems.

Keywords Structural heterogeneity - Scale-

dependence - Arid ecosystems - Ecosystem
resilience - UAS
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Introduction

The concepts of ecological resistance and resilience
provide insight into how ecosystems respond to dis-
turbance in an era of unprecedented anthropogenic
change (Chambers et al. 2014). Howeyver, identifying
resistance and resilience in ecological data remains
a long-standing challenge. Structural heterogene-
ity, including the spatial pattern of plant locations, its
geometry in space, and functional diversity, provides a
metric of ecosystem structure with broad relevance for
post-disturbance recovery (Atkins et al. 2018; Ilanga-
koon et al. 2018; Walter et al. 2021; Lines et al. 2022).
Heterogeneity generated by spatial variability in veg-
etation canopy and canopy gaps (interspaces) dictates
soil erosion, snow distribution, and wildlife habitat
(Webb et al. 2021; Johnson et al. 2021; Hojatimalek-
shah et al. 2023). Structural heterogeneity also deter-
mines impacts of disturbance, including wildfire sever-
ity (Koontz et al. 2020), and establishes trajectories of
post-disturbance recovery (Fernandez-Guisuraga et al.
2022). Utilizing structural heterogeneity to under-
stand structure—function relationships will enhance our
capacity to apply concepts of ecological resilience and
resistance to conservation (Nimmo et al. 2015).
Structural heterogeneity can provide a barometer of
ecological change with relevance across many systems
(LaRue et al. 2019). For example, woody encroach-
ment into grasslands and the degradation of shrub-
lands by annual grass invasion both represent ongoing
global ecosystem transformations characterized by loss
of structural heterogeneity (Davies et al. 2011; Maes-
tre et al. 2016). Across these ecosystem transforma-
tions, vegetation structure reflects state transitions and
directions of change, including critical tipping points
and recovery potential (Suding et al. 2004; Chambers
et al. 2014). Nevertheless, the descriptors of spatial
structure change across scales, complicating general
rules for structure—function relationships (Levin 1992;
Wu 2004; Maestre et al. 2016; Ilangakoon et al. 2021).
Scale-dependent ecological processes, including distur-
bance and recovery, often result in divergent structural
outcomes (Standish et al. 2014) because disturbance
factors impact vegetation structure at specific spatial,
temporal, and biological scales (Hobbs and Huenneke
1992; Buma and Wessman 2012; Atkins et al. 2020;
Spake et al. 2022). Fulfilling the promise of structural
data to advance ecological theory and aid land man-
agement will require defining scale-specific structural

@ Springer

patterns relative to disturbance effects (Chuang et al.
2018; Roberts et al. 2021).

While recent advances in remote sensing have ena-
bled detailed maps of structural heterogeneity across
large spatial extents (Getzin et al. 2014; Spiers et al.
2021; Lines et al. 2022), identifying scale-dependent
ecological patterns from high-resolution data remains
challenging. One solution is mathematical techniques
that use wavelet transformation to quantify scale-
dependence by decomposing variability in the data into
discrete or continuous scales. In other words, wavelet
transformation reduces complex spatial patterns into
different components, each representing a unique scale.
Wavelet analysis is widely used in fields such as signal
processing, image analysis, and data compression, where
understanding patterns at different levels of detail is
important. In ecology, wavelet analysis can identify dis-
tinct scale-dependent patterns that are linked to spatial
processes, such as seed dispersal and competition (Detto
and Muller-Landau 2013). Applications of wavelet anal-
ysis in forestry have revealed scale-specific patterns in
canopy heterogeneity related to disturbance-mediated
ecosystem functions (Bradshaw and Spies 1992; Detto
and Muller-Landau 2013). These analytical approaches
can be powerful when management goals are explicitly
defined in terms of structural complexity (Fahey et al.
2018; Seidel et al. 2019; Willim et al. 2020). As spatially
extensive high-resolution data become increasingly
available, wavelet analysis presents a promising way to
extract scale-specific and ecologically relevant informa-
tion from maps of canopy structure.

Drylands represent an ecosystem with an urgent
need for the information that maps of structural hetero-
geneity could provide. Drylands are globally important
yet vulnerable ecosystems where changes in structural
heterogeneity often indicate state transitions (Maes-
tre et al. 2021; Roberts et al. 2021). Anthropogenic
threats to dryland ecosystems demand understand-
ing the drivers of ecosystem resilience (Maestre et al.
2016; Berdugo et al. 2022). The Great Basin of the
Western US exemplifies a threatened dryland ecosys-
tem, where native shrublands are threatened by chang-
ing fire regimes, invasive species, and land use change
(Davies et al. 2011; Pilliod et al. 2021). These disparate
threats all result in changes in structural heterogeneity.
Patchy shrub cover characterizes intact shrubland eco-
systems in the region with clumps of native plants and
interspaces dominated by soil biocrust. Novel wildfire
regimes reduce structural heterogeneity in these patchy
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ecosystems, decreasing shrub cover and expanding
monocultures of invasive annual grasses (Ellsworth
et al. 2020). Changes in the structural heterogeneity in
shrublands can also result from woody encroachment,
which reduces interspaces between shrubs with corre-
sponding declines in ecosystem function (Pyke et al.
2015). These examples demonstrate how structural
heterogeneity directly relates to ecological resilience in
dryland ecosystems, including the Great Basin (Rein-
hardt et al. 2020; Pilliod et al. 2021).

We investigated the impacts of wildfire distur-
bance on structural heterogeneity and the relation-
ship between recovery and structural heterogene-
ity in post-wildfire landscapes of the Great Basin.
Ecological resistance to wildfire in the region,
including where remnant shrub patches will per-
sist, is spatially variable and not well understood
(Applestein et al. 2022). After wildfire disturbance,
native shrub recruitment is a crucial component of
ecosystem resilience, representing the re-establish-
ment of foundational plant species (Capdevila et al.
2020). Nevertheless, determinants of shrub recruit-
ment are scale-dependent and remain challenging to
predict (Germino et al. 2018a). Our study has two
complementary objectives: exploring relevant eco-
logical scales of heterogeneity after disturbance and
testing how structural heterogeneity across scales
predicts shrub recruitment. Using spatial data from
ten post-fire landscapes, we ask the following ques-
tions: (i) What scales of structural heterogeneity best
capture the impact of wildfire disturbance? (ii) What
scales of structural heterogeneity are most sensitive
to recovery, measured as the abundance of shrub
recruits? As land management in the region increas-
ingly relies on spatial decision-making (Meinke
et al. 2009; Pilliod et al. 2021; Duchardt et al. 2021;
Zaiats et al. 2023), we also determined how maps of
structural heterogeneity can predict recovery by ask-
ing: (iii) Does a scale-explicit approach to analyzing
structural heterogeneity enable out-of-site predic-
tions of native shrub recruitment?

Methods
Overview

To answer our research questions, we used a com-
bined dataset of unoccupied aerial systems (UAS)

surveys and field observations in the Northern Great
Basin. We surveyed ten sites with a consumer-grade
UAS along the edge of a wildfire line, followed by
extensive, randomized ground surveys of shrub abun-
dance. We mapped all shrubs within 729 plots of 78.5
m? (circular shape with 5 m radius, Fig. 1) using a
high-precision GPS system and stratified the shrubs
into recruit (<0.25 m) and adult (>0.25 m) catego-
ries. Surveys resulted in 17 ha of high-resolution aer-
ial imagery (<2 cm/pixel ground sampling distance)
and > 10,000 mapped shrub recruits. Next, we quanti-
fied the structural heterogeneity within each surveyed
plot using a UAS-derived canopy height model and
a discrete wavelet transform (DWT), which sum-
marizes differences between neighboring pixels at a
range of scales (i.e., grain sizes, Fig. 2). To answer
questions 1 and 2, we used generalized linear mod-
els (GLMs) to quantify heterogeneity-wildfire and
recruitment-heterogeneity relationships. To address
question 3, we used GLMs and out-of-site cross-val-
idation to quantify how well structural heterogeneity
at different scales can predict recruitment at sites not
used as training data.

Field surveys

Our research took place in southwestern Idaho, USA,
in a cold semi-arid steppe with characteristic shrub
vegetation cover. We selected field sites to include a
range of elevation and time since wildfire site condi-
tions (Table S1). We surveyed each site with the same
sampling design: positioning approximately half of the
rectangular footprint in intact shrubland, and the other
half in an area previously burnt in a wildfire (Fig. 1).
The previously burnt areas were intended to capture
various states of post-disturbance recovery, ranging
from 7 to 26 years since a wildfire event. To obtain
the wildfire boundaries, we used a wildfire database
(Welty and Jeffries 2021). We further refined the wild-
fire boundaries within our sites by hand-digitizing the
abrupt change in shrub cover using the Google Earth
historic imagery, corresponding to the year as close as
possible after the wildfire event.

We randomly distributed 78.5 m? circular plots
across the burnt and unburnt parts of the sites, plac-
ing between 49 to 97 plots per site. This design
allowed for a representative sample of the references
and disturbed vegetation states (White and Walker
1997). Because our sites spanned a wide range of
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Fig.1 The sampling design of UAS surveys and ground
observations on an example of Cold wildfire site (2007) in
SW Idaho, USA. The yellow dot on the map of North Amer-
ica indicates the location of our study region. The top right
panel displays the location of our study landscapes relative to
regional elevation. The true color image (bottom left) shows

environmental conditions, each site had a different
species composition, including the predominant spe-
cies of canopy formation. In proportional representa-
tion across our field sites, approximately 75% of the
data were represented by Artemisia tridentata (big
sagebrush), 17% by Artemisia arbuscula (low sage-
brush), 1-2% by Chrysothamnus viscidiflorus (yel-
low rabbitbrush), Ericameria nauseosa (rubber rab-
bitbrush), Purshia tridentata (antelope bitterbrush),
and<1% by Eriogonum sphaerocephalum (rock
buckwheat), Ribes aureum (golden currant) and Rosa
woodsia (Wood’s rose). Within each 78.5 m? circular
plot, we exhaustively mapped all shrubs by placing
the GPS unit in the middle of the shrub crown. We
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contrasts between the burnt and unburnt parts of the landscape,
with predominantly shrub-less vegetation in the burnt section.
The same area visualized as vegetation canopy height (bottom
right) shows the distribution of field plots (hollow circles) and
the locations of exhaustively mapped shrub recruits within the
plots (black dots)

used a survey-grade RTK GPS unit (Topcon HiPer
V, Topcon Positioning Systems Inc., Livermore, CA,
USA) to collect geospatial data with~0.02 m accu-
racy (Rayburn et al. 2011). Each plant was assigned a
binary index to indicate whether the plant was above
or below the 0.25 m maximum height threshold. We
considered plants below the 0.25 m height threshold
as recruits. Shrubs below 0.25 m tend to have lower
probabilities of survival and fecundity, characteris-
tic of juvenile plants (Shriver et al. 2019). Once the
geospatial field data were collected, a post-process-
ing correction was necessary to reduce the position-
ing errors. We used Online Positioning User Service
(OPUS) and the proprietary software MagnetTools
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Fig. 2 Raster plots visual-
izing vegetation structure
through the canopy height
model (left column) and
spatial patterns of structural
heterogeneity using discrete
wavelet decomposition
(DWT) with Haar wavelet
filter applied to the same
sections of the canopy
height model (right col-
umn). The DWT disen-
tangles the contribution of
variance at different scales
to spatial patterns in data.
When the DWT is applied
to a canopy height model,
component scales represent
structural heterogeneity

(Topcon Positioning Systems Inc., Livermore, CA,
USA) to correct the data points.

UAS data

We used unoccupied aerial systems (UAS) data to
obtain spatially explicit structural metrics of the veg-
etation (Marie et al. 2023a, a, b, c, d, e, f, g). Each
UAS survey was conducted with a consumer-grade
DJI Mavic 2 Pro (SZ DIJI Technology Co., Ltd.,
Nanshan, Shenzhen, China). Briefly, all surveys had
comparable flight parameters: 44 m flight altitude,
cross grid flight with 20° yaw offset combined with
nadir+5° offset camera angle for the second grid
path, 2 m/s flight speed, 75/80 forward and side over-
lap, with the flight times between 10 am and 3 pm
under uniform lighting conditions (see Marie et al.
2023a-h for more details). The flight parameters
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resulted in high-resolution imagery with <2 cm/pixel
ground sampling distance (GSD). Each UAS prod-
uct included a raster and a point cloud representing
the digital surface model (DSM), which tracks veg-
etation and topographic changes over the landscape.
We restricted our focus to the structural characteris-
tics composed only of the vegetation component and
removed the topographic variation from the DSM by
subtracting the digital terrain model (DTM).

We generated the DTM by applying existing soft-
ware tools to fine-tune the DSM, using open-source
tools CloudCompare and ‘lidR’ package (Girardeau-
Montaut 2016; Zhang et al. 2016; Roussel et al.
2020), https://github.com/andriizayac/uas_data_prepr
ocess). As an initial step, we applied Cloth Simulation
Filter (Zhang et al. 2016) to roughly separate veg-
etation from ground. Next, we used Statistical Out-
lier Removal (SOR) to filter remaining ("floating")
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clusters of points missed by CSF. Because CSF and
SOR may not accurately separate ground from veg-
etation along the margins of shrub crowns or near
small shrub recruits, we relied on surface curvature to
further refine the terrain model. Specifically, we used
two radii for calculating the curvatures and thresh-
old filtering to capture the surfaces characterized by
high curvature including margins of crowns and small
vegetation features (e.g., recruits). We hand-adjusted
the input values for the CSF and curvature filtering
and thresholding based on each landscape scene to
acquire the most accurate digital terrain and canopy
height models. We used the resultant canopy height
model (CHM) as an input to quantify vegetation
structure.

Structural heterogeneity

We used Discrete Wavelet Transform (DWT) to
quantify structural heterogeneity from the CHM
and decompose it into discrete scales of variabil-
ity. We use the term “scale” to refer to compari-
sons between different levels of aggregated pixels,
following previous work that has applied wavelet
transform to spatial data (Bradshaw and Spies 1992;
Detto and Muller-Landau 2013). Wavelet transform
decomposes a signal (e.g., canopy height) into low-
to high-frequency changes (Bradshaw and Spies
1992). For example, low-frequency canopy changes
may correspond to the presence and arrangement of
large plants, while high-frequency canopy changes
may reflect branches or seedlings. Wavelet trans-
form has broad applications in ecology, including
understanding scale-dependence in forest spatial
structure and community dynamics (Bradshaw and
Spies 1992; Keitt and Fischer 2006; Walter et al.
2017). We used the ‘wavethresh’ package (Nason
and Nason 2016) to decompose spatial variability
in the CHM into discrete scales of variation using
a multi-resolution representation of the DWT (65,
p- 70):

My
CHM,, = CHM,, + ' D, )

m=1

Here, Eq. 1 shows the original canopy height
model (CHM,,) as a sum of a smoothed canopy at
scale my, CHM,,, , and detail coefficients D, at scales
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from the finest to the coarsest level of smooth-
ing, m,. Scale M was the original resolution of the
CHMs, while m=1 and m=9 corresponded to the
finest and coarsest levels of the DWT, respectively.
We chose my, the level of CHM smoothing in DWT,
at the resolution 18.72 m as it exceeded the extent
of our field plots. An overarching objective of our
study is to identify which scales are most informa-
tive for quantifying ecological resilience and resist-
ance. The spatially explicit, two-dimensional array
D,, is the sum of horizontal, vertical, and diago-
nal difference coefficients, D, =D" +D", +D?
(Fig. 3; 65, p. 127). Multiple options exist for the
choice of the wavelet function with subtle differ-
ences in the inferred patterns (Keitt and Fischer
2006). We chose the Haar wavelet in DWT to high-
light the vertical changes in canopy structure, i.e.,
plant margins, as canopy features representing
structural heterogeneity, and to mitigate boundary
artifacts in the transform due to the local support of
the Haar wavelet (Bradshaw and Spies 1992; Addi-
son 2017).

We quantify structural heterogeneity for
each plot (i) at the scale (m) as a sum of
squared Haar difference (detail) coefficients,
Heterogeneity,, (x,y) = Z;':]Df(xj, y;), where vec-
tors (x, y) delineate the 78.5 m? buffer area of a 5 m
radius from plot center, and n indicates all pixels
(x;,y;) within the plot boundaries. Difference coef-
ficients characterize changes in the canopy structure
by comparing the canopy height values at neighbor-
ing pixels. For example, a high wavelet coefficient
at scale (m) would correspond to four very differ-
ent pixels at a finer scale (m-1). The finest scale,
M, corresponds to the original raster input of the
canopy height model. Note that the index m is a
discrete integer that corresponds to nine different
scales from 0.04 to 9.36 m.

Data analysis

Wavelet transformation of the CHM resulted in char-
acteristic variability of the canopy across nine scales.
We ran three separate analyses designed to answer
our three primary questions. To answer our first ques-
tion and identify the optimal scale to detect wildfire
effects, we ran the following set of linear mixed-effect
regressions:
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Fig. 3 The scale-dependent
effect sizes in (a) structural
heterogeneity-wildfire and
(b) recruitment-heteroge-
neity relationships in Great
Basin shrublands. The
x-axis in (a-b) corresponds
to structural heterogeneity
measured at distinct scales
(meters). The effect of wild-
fires (a) indicates changes
in structural heterogeneity
relative to intact vegetation
(Fig. 1). The eftect size
shows the decline in canopy
structural heterogeneity in
units of squared differ-

O-.__

-1000 -

-2000 -

Fire effect,

-3000 -

(a)

ences between neighboring i T T
pixels. The results of the 0.04 0.07

T T
0.15 0.29 0.58 1.17 2.34 4.68 9.36

sparse model (b) show the
effects of different scales

of heterogeneity on recruit
abundance, where the effect
size indicates the expected
change in log-recruit abun-
dance under an increase

of predictors by one SD of
log-structural heterogene-
ity. The points indicate the
means, and the error bars
correspond to 95% CI of the
posterior distribution

- -

Effect on recruit abundance,
o

H™ ~ N(ﬂ(’") + B wildfire, 0') )
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Differences between the estimated ﬁ]('") across

models (m) indicate that heterogeneity at each scale
m, H™, has varying degrees of sensitivity to wild-
fire effects. The wildfire effect was quantified using a
binary variable indicating whether the plot was within
the burnt or the reference, unburnt area, where ﬁim) is
vector of two coefficients for each model correspond-
ing to (m) scale. We used site as a random effect to
account for baseline site differences in heterogeneity.
This random effect reflects the myriad factors that
influence fire severity in sagebrush steppe landscapes
(Chambers et al. 2014). To address our second ques-
tion and identify optimal scales of heterogeneity for

L T T T
0.15 0.29 0.58 1.17 2.34 4.68 9.36
Scale, m

shrub recruitment, we ran a sparse linear regression
with negative binomial error distribution and a regu-
larizing horseshoe prior (Piironen and Vehtari 2017):

R ~ NegBinom(exp(fy + H « B,), ¢) 3)

where H is a matrix of nine log-transformed hetero-
geneity predictors (m=1, 2, ..., 9), and B, is a vec-
tor of nine coefficients quantifying the effect size of
each heterogeneity scale on the recruit abundance.
We used a strong regularizing horseshoe prior with
maximum local and global shrinkage that allowed for
model convergence (df =1, dfy,, =2), with the ratio
of expected non-zero to zero coefficients set to 0.01
(Biirkner 2017; Piironen and Vehtari 2017; Simler-
Williamson et al. 2022). Similar sparse models have

@ Springer
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been successfully applied to select relevant scale of
wavelet coefficients through the shrinkage variable
selection (Zhao et al. 2012, 2015).

In question three, we focused on quantifying how
well structural heterogeneity can predict recruit-
ment. We implemented two predictive models using

R~ NegBinom(exp(ﬁgn) + ﬂfm)elevation + H[g:m]ﬂ(zm)

negative binomial generalized linear models. First,
we tested an additive effect of scale-specific struc-
tural heterogeneity, starting from the coarsest scale
(9.36 m) of heterogeneity as a single predictor and
adding one other scale at the next, finer resolution
per model.

),¢>,f0rm=9,8,...,l )

As a result, we obtained a set of models with a
varying number of coefficients in ,B(zm), (1:m), cor-
responding to a subset of columns in matrix H\g.,,.
We included elevation in our model to account for
the site differences as elevation is a key determi-

nant of sagebrush recruitment in heterogeneous

R~ NegBin0m<exp(ﬂg") + B elevation + Hy,y ™), ¢), form=9.8, ... 1

1 2

landscapes (Germino et al. 2018b). The second pre-
dictive analysis paralleled the structure of Egq. 4, but
included only one scale of structural heterogeneity
per model (Eq. 5). Including a single scale of heter-
ogeneity at a time directly compares the predictive
power of each scale relative to the others.

&)

For each model, we generated an R? metric of
model fit and a predicted recruit abundance (Gel-
man et al. 2019). We then calculated the mean abso-
lute error (MAE) following:

N
| .
MAE = Z, ly; = 5l

where N is the number of field plots, y is the observed
abundance data, and y is the predicted abundance
of shrub recruits. We evaluated R> and MAE using
k-fold cross-validation approach. Specifically, we split
the dataset into 10 groups and withheld one group at
a time from model fitting—the withheld group corre-
sponded to all plots belonging to a single site.

We used ‘brms’ package and ran the linear models
in the Bayesian framework with default priors, except
the sparse models, where we used regularizing priors
(Biirkner 2017). For all data manipulation and analy-
sis we used R software v4.2.2 (R Core Team 2021),
including ‘tidyverse’, ‘sf’, ‘terra’, ‘ggplot2’ packages
(Wickham 2011; Pebesma 2018; Wickham et al. 2019;
Hijmans et al. 2022).
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Results

Structural heterogeneity and ecological resistance to
wildfires

Relative to the unburnt vegetation, wildfires reduced
structural heterogeneity in the burnt areas by 74%
(95%CI: 59-87). This difference emerged across
ten sites that differed considerably in elevation
(867-1514 m), time-since-fire (7-26 years), aver-
age slope (1.7-23.4°), and wildfire severity (low-
moderate). The magnitude of wildfire-related struc-
tural changes varied across scales. Our scale-explicit
analysis identified a single optimal scale for detect-
ing structural differences between burnt and unburnt
areas (2.34 m; Fig. 3a), with weaker effects at both
the finest (0.04 m) and coarsest (9.36 m) scales. There
was high certainty that the 2.34 m scale best captured
wildfire effects, including the probability of differ-
ence between posterior distributions for 2.34 m and
all other scales >0.99, except the 1.17 m scale, where
the probability of difference was 0.87. This outcome
highlights strong agreement between our disparate
sites that 2.34 m provided an optimal scale to summa-
rize structural heterogeneity for wildfire legacy.
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Recruitment and structural heterogeneity

In contrast to the unimodal relationship between
scales of structural heterogeneity and disturbance
effects, ecosystem resilience, measured as the abun-
dance of shrub recruits, was associated with struc-
tural heterogeneity across multiple scales (Fig. 3b).
Across the nine scales of structural heterogeneity we
tested, we found peak effect sizes at 0.07, 0.29, and
2.34 m, with decreased effect sizes for other scales.
Effect sizes also indicate that heterogeneity from
coarse to fine scales increases in magnitude, suggest-
ing a stronger association between finer scale hetero-
geneity and recruit count.

Structural heterogeneity as a predictor of recruitment

Scale-explicit analyses of structural heterogeneity
enabled spatial predictions of shrub recruits across
post-fire landscapes. A combination of structural
heterogeneity metrics from 9.36—0.07 m scales
resulted in out-of-site Bayesian R of 0.55 (95%CI:
0.47-0.62), with a mean absolute error (MAE) of
0.28 recruits m~2. These metrics indicate that struc-
ture-from-motion data collected by UAS imagery
can predict shrub recruitment at sites without avail-
able field data. When each scale of heterogeneity was
tested as an individual predictor in a single model,
the model with the greatest predictive power incor-
porated structural heterogeneity at the 0.29 m scale
(Fig. 4b). At this resolution, pixel sizes derived from
the canopy height model are likely bigger than an
average shrub recruit. However, high heterogeneity
at this resolution implies greater differences between
neighboring pixels at the scale of 0.15 m, which
could indicate a plant recruit. Scales of heterogeneity
smaller or greater than 0.29 m individually predicted
recruitment with similar or lesser accuracy.

The decomposition of total heterogeneity into dis-
crete scales improved prediction accuracy compared
to the baseline model, a model with a single predictor
for total structural heterogeneity within each plot (i.e.,
all nine scales added together). The model with total
structural heterogeneity had an out-of-site predictive
R? of 0.39 (95%CI: 0.34-0.44) and an MAE of 0.41
shrub recruits m~2, a loss of R? at 0.16 and MAE at

0.13 shrubs m~2 compared to the model with multiple
structural heterogeneity metrics. Because effect sizes
for structural heterogeneity on recruitment varied
across scales, including positive and negative effects
(Fig. 3b), averaging across these scales results in a
loss of information. This result suggests that differ-
ent scales of heterogeneity contain different informa-
tion related to ecological processes (Fig. 4a). When
evaluating scales individually (best model R?=0.43,
MAE=0.32 shrubs m™2; Fig. 4b), structural heteroge-
neity at the scale of 0.29 m resulted in lesser improve-
ments over the total heterogeneity model.

Discussion

Mapping structural heterogeneity enables insights
into ecosystem functions that determine ecologi-
cal resistance and resilience (Koontz et al. 2020;
Mahood et al. 2023). We found strong evidence for
scale-dependent effects of structural heterogeneity
on resistance and resilience to wildfires in a semi-
arid ecosystem. Our approach highlights the impor-
tance of fundamental questions of scale in interpret-
ing structural information (Levin 1992). An explicit
approach to choosing spatial scales in data analysis
will enhance the applied value of ecological mod-
els (Spake et al. 2021). We found that structural dif-
ferences between burned and unburned areas were
greatest at approximately the scale of adult shrubs.
This indicates that a foundational component of sage-
brush ecosystems has relatively low ecological resist-
ance to wildfire. Our findings also reveal multi-scale
impacts of structural heterogeneity on shrub recruit-
ment, a starting point for understanding demographic
mechanisms that underlie ecological resilience in our
study system. Positioning scale-dependent effects of
structural heterogeneity within existing management
and theoretical frameworks will boost the capacity of
remotely sensed data to provide ecological insight.

Structural heterogeneity and wildfires
Wildfires reduced structural heterogeneity across

all scales (Fig. 3a). However, our models identi-
fied a single optimal scale where the relationship

@ Springer
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Fig. 4 The line plot shows
the importance of different
scales of canopy structural
heterogeneity for predicting
shrub recruit abundance.
Scales correspond to (a) a
step-wise addition of finer
resolutions starting from
the finest level at 0.04 m,

and (b) individual scales of
structural variation with the
rest of the scales removed.
Solid black lines indicate
the mean, while dotted
black lines represent the
95% credibility interval

of R? metric. Dashed gray
lines correspond to the
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solid horizontal lines show
the predictive power of the
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between structural heterogeneity and wildfire was
strongest. The presence of a single optimal scale
is consistent with previous evidence from forest
ecosystems: pulse disturbances like wildfire may
impose functionally similar effects on vegetation
structure despite differences in site conditions, time
since fire, and wildfire severity (Atkins et al. 2020).
Wildfires in the Great Basin may equally remove
large and small vegetation from the landscape
(Miller et al. 2013; Requena-Mullor et al. 2019;
Mahood et al. 2023), inherently erasing or modify-
ing structural patterns across multiple scales. Post-
disturbance heterogeneity across scales is unequal

@ Springer
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and depends on vegetation properties. For exam-
ple, in a forest ecosystem, the maximum individual
tree complexity within a plot explains stand-level
structural heterogeneity better than the sum of indi-
vidual tree complexities (Seidel et al. 2019). In our
study, the selected optimal scale (2.34 m) roughly
captures a single large shrub and its boundaries,
suggesting that patterns related to adult plants
drive post-disturbance changes in structural het-
erogeneity. We hypothesize that the optimal scale
of structural heterogeneity as an effect of wildfires
may be related to the absence of at least one adult
large shrub in burnt areas. These results suggest
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that the best scale to aggregate canopy height mod-
els to represent structural heterogeneity may be
proportional to the size of largest plant crowns in
the landscape.

Identifying which scales respond most strongly to
wildfire provides insight into which ecological com-
ponents are least resistant to disturbance, for exam-
ple, adult shrubs. Sagebrush shrublands may take
30 years or more to regenerate cover and height to
pre-disturbance levels (Baker 2006; Ziegenhagen
and Miller 2009). Our results show the potential for
structural patterns to indicate remnant patches in
sagebrush shrublands after wildfire.

Our analyses demonstrate how structural het-
erogeneity can provide insight into resistance to
disturbance in dryland ecosystems. Heterogene-
ous vegetation cover, including shrubs, herba-
ceous plants, bare ground, and soil crusts (Davies
et al. 2011; Condon and Pyke 2018), characterizes
healthy shrublands of the Great Basin. In contrast
to biomass or cover estimates that may not always
be sensitive metrics of ecosystem change (Atkins
et al. 2020), structural heterogeneity provides
information about vegetation presence and its spa-
tial arrangement, including quantitative estimates
of shrub interspaces. The~2 m scale we identify
as a strong predictor of disturbance in our analy-
ses likely quantifies the presence of foundational
shrub species and characteristic canopy gaps in our
study sites (Condon and Pyke 2018). In ecosystems
where herbaceous species are the primary compo-
nents of ecosystem structure with low patchiness,
we expect to observe strong effects of disturbance
at finer scales. Overall, our results demonstrate the
overall value of structural heterogeneity and the
importance of scale-explicit analytical approaches
for quantifying resistance to disturbance.

Recruitment and structural heterogeneity

Our models suggest that multiple scale-specific
processes drive structural heterogeneity associated
with ecosystem resilience (Levin 1992; Maestre
et al. 2016). We found evidence for both positive
and negative relationships between recruitment
and structural heterogeneity, depending on spatial
scale. Structural heterogeneity increased recruit-
ment at spatial scales from 0.29-0.58 m. Poten-
tial explanations for these positive relationships

include the presence of small canopy gaps that
may facilitate shrub recruitment (Condon and
Pyke 2018) or short-distance seed dispersal from
nearby adult shrubs (Applestein et al. 2022).
In contrast, we observed negative relationships
between structural heterogeneity and recruitment
at scales of 0.07 and 2.34 m. We hypothesize that
competitive interactions may underlie these nega-
tive associations. The negative effect at the 2.34 m
scale may point to competitive pressures from
adult shrubs that limit favorable spaces and con-
ditions for shrub recruits (Schwinning and Weiner
1998; Adler et al. 2010). Fine-scale heterogene-
ity (0.07 m) was also negatively associated with
recruitment. The negative effect of structural het-
erogeneity on recruitment at fine scales may be
due to competition with invasive annual grasses
and forbs. Exotic vegetation creates adverse con-
ditions for shrub recruitment by limiting shrub
seed arrival or imposing high resource competition
(Arkle et al. 2014, p. 20; Applestein and Germino
2022). Our results highlight the need for future
studies that link structural heterogeneity to plant-
plant interactions, including competition and facil-
itation between neighboring plants.

An alternate explanation for positive relation-
ships between shrub recruitment and structural
heterogeneity is that, at some scales, remote sens-
ing imagery is detecting shrub canopies. The
abundance of shrubs below 0.25 m likely contrib-
utes most to structural heterogeneity at scales of
0.29-0.58 m, where we found positive relationships
recruitment and structural heterogeneity. Wavelet-
based techniques for edge detection are heavily
used in image analysis, with a demonstrated capac-
ity to recognize plants in aerial imagery (Strand
et al. 2007; Addison 2017). The delineation of
plant edges using wavelet techniques directly cor-
responds to structural heterogeneity metrics, as
plant edges create heterogeneity at specific scales.
This scale-specific positive sensitivity of struc-
tural heterogeneity and recruit abundance suggests
structural heterogeneity as a data source to detect
and predict recruitment.

Structural heterogeneity as a predictor of recruitment

Our results emphasize how structural heterogeneity
can be a powerful predictor of ecosystem function
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(LaRue et al. 2019). Decomposing structural hetero-
geneity into specific scales boosts the ability of these
metrics to predict ecologically relevant outcomes,
particularly when multi-scale metrics are included
in the same predictive model. Predictions of natural
regeneration after disturbance, including recruitment,
will aid decision-making on where to allocate limited
resources for restoration (Barber et al. 2022).

We demonstrate how remotely sensed structural
information can aid predictions of natural regenera-
tion capacity. UAS, in particular, have potential for
rapid deployment over large areas. While the extent
of a single flight designed to collect ultra high-reso-
lution imagery (<1 cm), such as the RGB imagery
used in this paper, may be less than the extent of
land management units, we anticipate that multi-
ple flights could sample entire landscapes. We have
demonstrated the capacity of relatively inexpensive
commercial UAS platforms to collect high-quality
structural data, with relevance to ecological resilience
and resistance. The ease of use of these platforms
should facilitate multiple flights capable of capturing
larger extents. Structure-for-motion algorithms enable
extraction of structural data from relatively inexpen-
sive commercial UAS platforms, including RGB-only
sensors (Zahawi et al. 2015). The advance we have
developed in this paper is to show that structural het-
erogeneity can accurately predict shrub recruitment
without relying on site-specific training data. This
approach is relatively simple compared to remote
sensing workflows that apply machine learning
algorithms to identify objects in imagery and clas-
sify them to species (e.g., Retallack et al. 2022). The
most complex step in our workflow is developing a
canopy height model, which may require site-specific
fine-tuning. Fortunately, publicly-available work-
flows and open source software (e.g., CloudCompare;
Girardeau-Montaut 2016) exist to aid with this step.
Low-cost maps of structural heterogeneity could ena-
ble rapid assessments of ecological resilience, even
for sites where no field data is available.

Expanding scale-explicit analyses to data sources
with broader geographic extents, beyond the foot-
print of individual UAS flights, could aid regional
conservation efforts. Potential data sources that
could map structural heterogeneity across large areas
include aerial lidar and satellite-borne radar sensors
(Fernandez-Guisuraga et al., In press). Structural het-
erogeneity measurements from these sensors could

@ Springer

address region-wide conservation challenges, from
tree encroachment to expansion of invasive annual
grass monocultures (Pilliod et al. 2021; Smith et al.
2021). Scale-explicit analyses could also improve the
spatial placement of restoration treatments by match-
ing the scale of spatial patterns generated by manage-
ment interventions (e.g., seeding or fuel reduction
treatments) to the scales of ecological outcomes (e.g.,
recruitment limitation or fire extent and severity).

Conclusions

Feedback between ecosystem structure and function
underlies ecosystem recovery after disturbance. We
found that maps of canopy structural heterogeneity
enabled us to quantify structure—function relation-
ships during post-fire recovery in a semi-arid shrub-
land. Accounting for scale-dependence in these rela-
tionships was critical for ecological inference and
prediction. Structural heterogeneity captured the
impacts of wildfires across divergent landscapes,
with the strongest effects at a single spatial scale.
In contrast, native shrub recruitment, indicative of
ecosystem functioning after succession, was related
to structural heterogeneity across a range of scales.
In practical applications, detecting optimal scales
for monitoring disturbance effects and regeneration
can guide future remote sensing efforts for natural
resource management. Optimal scales of structural
heterogeneity also show promise as a predictive tool
to assess the recovery trajectories of degraded eco-
systems. We conclude that the scale decomposition of
vegetation structural information will likely be fruit-
ful for future studies aiming to link ecosystem struc-
ture and function.
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