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Abstract 
Context  Dynamic feedbacks between physical struc-
ture and ecological function drive ecosystem pro-
ductivity, resilience, and biodiversity maintenance. 
Detailed maps of canopy structure enable comprehen-
sive evaluations of structure–function relationships. 
However, these relationships are scale-dependent, and 
identifying relevant spatial scales to link structure to 
function remains challenging.
Objectives  We identified optimal scales to relate struc-
ture heterogeneity to ecological resistance, measured as 
the impacts of wildfire on canopy structure, and ecologi-
cal resilience, measured as native shrub recruitment. We 

further investigated whether structural heterogeneity can 
aid spatial predictions of shrub recruitment.
Methods  Using high-resolution imagery from unoc-
cupied aerial systems (UAS), we mapped structural het-
erogeneity across ten semi-arid landscapes, undergoing 
a disturbance-mediated regime shift from native shrub-
land to dominance by invasive annual grasses. We then 
applied wavelet analysis to decompose structural heter-
ogeneity into discrete scales and related these scales to 
ecological metrics of resilience and resistance.
Results  We found strong indicators of scale depend-
ence in the tested relationships. Wildfire effects were 
most prominent at a single scale of structural het-
erogeneity (2.34  m), while the abundance of shrub 
recruits was sensitive to structural heterogeneity at a 
range of scales, from 0.07 – 2.34  m. Structural het-
erogeneity enabled out-of-site predictions of shrub 
recruitment (R2 = 0.55). The best-performing predic-
tive model included structural heterogeneity metrics 
across multiple scales.
Conclusions  Our results demonstrate that identify-
ing structure–function relationships requires analyses 
that explicitly account for spatial scale. As high-res-
olution imagery enables spatially extensive maps of 
canopy heterogeneity, models for scale dependence 
will aid our understanding of resilience mechanisms 
in imperiled arid ecosystems.
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Introduction

The concepts of ecological resistance and resilience 
provide insight into how ecosystems respond to dis-
turbance in an era of unprecedented anthropogenic 
change (Chambers et  al. 2014). However, identifying 
resistance and resilience in ecological data remains 
a long-standing challenge. Structural heterogene-
ity, including the spatial pattern of plant locations, its 
geometry in space, and functional diversity, provides a 
metric of ecosystem structure with broad relevance for 
post-disturbance recovery (Atkins et  al. 2018; Ilanga-
koon et al. 2018; Walter et al. 2021; Lines et al. 2022). 
Heterogeneity generated by spatial variability in veg-
etation canopy and canopy gaps (interspaces) dictates 
soil erosion, snow distribution, and wildlife habitat 
(Webb et  al. 2021; Johnson et  al. 2021; Hojatimalek-
shah et  al. 2023). Structural heterogeneity also deter-
mines impacts of disturbance, including wildfire sever-
ity (Koontz et al. 2020), and establishes trajectories of 
post-disturbance recovery (Fernández-Guisuraga et al. 
2022). Utilizing structural heterogeneity to under-
stand structure–function relationships will enhance our 
capacity to apply concepts of ecological resilience and 
resistance to conservation (Nimmo et al. 2015).

Structural heterogeneity can provide a barometer of 
ecological change with relevance across many systems 
(LaRue et  al. 2019). For example, woody encroach-
ment into grasslands and the degradation of shrub-
lands by annual grass invasion both represent ongoing 
global ecosystem transformations characterized by loss 
of structural heterogeneity (Davies et  al. 2011; Maes-
tre et  al. 2016). Across these ecosystem transforma-
tions, vegetation structure reflects state transitions and 
directions of change, including critical tipping points 
and recovery potential (Suding et  al. 2004; Chambers 
et  al. 2014). Nevertheless, the descriptors of spatial 
structure change across scales, complicating general 
rules for structure–function relationships (Levin 1992; 
Wu 2004; Maestre et al. 2016; Ilangakoon et al. 2021). 
Scale-dependent ecological processes, including distur-
bance and recovery, often result in divergent structural 
outcomes (Standish et  al. 2014) because disturbance 
factors impact vegetation structure at specific spatial, 
temporal, and biological scales (Hobbs and Huenneke 
1992; Buma and Wessman 2012; Atkins et  al. 2020; 
Spake et al. 2022). Fulfilling the promise of structural 
data to advance ecological theory and aid land man-
agement will require defining scale-specific structural 

patterns relative to disturbance effects (Chuang et  al. 
2018; Roberts et al. 2021).

While recent advances in remote sensing have ena-
bled detailed maps of structural heterogeneity across 
large spatial extents (Getzin et  al. 2014; Spiers et  al. 
2021; Lines et  al. 2022), identifying scale-dependent 
ecological patterns from high-resolution data remains 
challenging. One solution is mathematical techniques 
that use wavelet transformation to quantify scale-
dependence by decomposing variability in the data into 
discrete or continuous scales. In other words, wavelet 
transformation reduces complex spatial patterns into 
different components, each representing a unique scale. 
Wavelet analysis is widely used in fields such as signal 
processing, image analysis, and data compression, where 
understanding patterns at different levels of detail is 
important. In ecology, wavelet analysis can identify dis-
tinct scale-dependent patterns that are linked to spatial 
processes, such as seed dispersal and competition (Detto 
and Muller-Landau 2013). Applications of wavelet anal-
ysis in forestry have revealed scale-specific patterns in 
canopy heterogeneity related to disturbance-mediated 
ecosystem functions (Bradshaw and Spies 1992; Detto 
and Muller-Landau 2013). These analytical approaches 
can be powerful when management goals are explicitly 
defined in terms of structural complexity (Fahey et  al. 
2018; Seidel et al. 2019; Willim et al. 2020). As spatially 
extensive high-resolution data become increasingly 
available, wavelet analysis presents a promising way to 
extract scale-specific and ecologically relevant informa-
tion from maps of canopy structure.

Drylands represent an ecosystem with an urgent 
need for the information that maps of structural hetero-
geneity could provide. Drylands are globally important 
yet vulnerable ecosystems where changes in structural 
heterogeneity often indicate state transitions (Maes-
tre et  al. 2021; Roberts et  al. 2021). Anthropogenic 
threats to dryland ecosystems demand understand-
ing the drivers of ecosystem resilience (Maestre et al. 
2016; Berdugo et  al. 2022). The Great Basin of the 
Western US exemplifies a threatened dryland ecosys-
tem, where native shrublands are threatened by chang-
ing fire regimes, invasive species, and land use change 
(Davies et al. 2011; Pilliod et al. 2021). These disparate 
threats all result in changes in structural heterogeneity. 
Patchy shrub cover characterizes intact shrubland eco-
systems in the region with clumps of native plants and 
interspaces dominated by soil biocrust. Novel wildfire 
regimes reduce structural heterogeneity in these patchy 
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ecosystems, decreasing shrub cover and expanding 
monocultures of invasive annual grasses (Ellsworth 
et al. 2020). Changes in the structural heterogeneity in 
shrublands can also result from woody encroachment, 
which reduces interspaces between shrubs with corre-
sponding declines in ecosystem function (Pyke et  al. 
2015). These examples demonstrate how structural 
heterogeneity directly relates to ecological resilience in 
dryland ecosystems, including the Great Basin (Rein-
hardt et al. 2020; Pilliod et al. 2021).

We investigated the impacts of wildfire distur-
bance on structural heterogeneity and the relation-
ship between recovery and structural heterogene-
ity in post-wildfire landscapes of the Great Basin. 
Ecological resistance to wildfire in the region, 
including where remnant shrub patches will per-
sist, is spatially variable and not well understood 
(Applestein et al. 2022). After wildfire disturbance, 
native shrub recruitment is a crucial component of 
ecosystem resilience, representing the re-establish-
ment of foundational plant species (Capdevila et al. 
2020). Nevertheless, determinants of shrub recruit-
ment are scale-dependent and remain challenging to 
predict (Germino et  al. 2018a). Our study has two 
complementary objectives: exploring relevant eco-
logical scales of heterogeneity after disturbance and 
testing how structural heterogeneity across scales 
predicts shrub recruitment. Using spatial data from 
ten post-fire landscapes, we ask the following ques-
tions: (i) What scales of structural heterogeneity best 
capture the impact of wildfire disturbance? (ii) What 
scales of structural heterogeneity are most sensitive 
to recovery, measured as the abundance of shrub 
recruits? As land management in the region increas-
ingly relies on spatial decision-making (Meinke 
et al. 2009; Pilliod et al. 2021; Duchardt et al. 2021; 
Zaiats et al. 2023), we also determined how maps of 
structural heterogeneity can predict recovery by ask-
ing: (iii) Does a scale-explicit approach to analyzing 
structural heterogeneity enable out-of-site predic-
tions of native shrub recruitment?

Methods

Overview

To answer our research questions, we used a com-
bined dataset of unoccupied aerial systems (UAS) 

surveys and field observations in the Northern Great 
Basin. We surveyed ten sites with a consumer-grade 
UAS along the edge of a wildfire line, followed by 
extensive, randomized ground surveys of shrub abun-
dance. We mapped all shrubs within 729 plots of 78.5 
m2 (circular shape with 5  m radius, Fig.  1) using a 
high-precision GPS system and stratified the shrubs 
into recruit (< 0.25 m) and adult (> 0.25 m) catego-
ries. Surveys resulted in 17 ha of high-resolution aer-
ial imagery (< 2 cm/pixel ground sampling distance) 
and > 10,000 mapped shrub recruits. Next, we quanti-
fied the structural heterogeneity within each surveyed 
plot using a UAS-derived canopy height model and 
a discrete wavelet transform (DWT), which sum-
marizes differences between neighboring pixels at a 
range of scales (i.e., grain sizes, Fig.  2). To answer 
questions 1 and 2, we used generalized linear mod-
els (GLMs) to quantify heterogeneity-wildfire and 
recruitment-heterogeneity relationships. To address 
question 3, we used GLMs and out-of-site cross-val-
idation to quantify how well structural heterogeneity 
at different scales can predict recruitment at sites not 
used as training data.

Field surveys

Our research took place in southwestern Idaho, USA, 
in a cold semi-arid steppe with characteristic shrub 
vegetation cover. We selected field sites to include a 
range of elevation and time since wildfire site condi-
tions (Table S1). We surveyed each site with the same 
sampling design: positioning approximately half of the 
rectangular footprint in intact shrubland, and the other 
half in an area previously burnt in a wildfire (Fig. 1). 
The previously burnt areas were intended to capture 
various states of post-disturbance recovery, ranging 
from 7 to 26  years since a wildfire event. To obtain 
the wildfire boundaries, we used a wildfire database 
(Welty and Jeffries 2021). We further refined the wild-
fire boundaries within our sites by hand-digitizing the 
abrupt change in shrub cover using the Google Earth 
historic imagery, corresponding to the year as close as 
possible after the wildfire event.

We randomly distributed 78.5 m2 circular plots 
across the burnt and unburnt parts of the sites, plac-
ing between 49 to 97 plots per site. This design 
allowed for a representative sample of the references 
and disturbed vegetation states (White and Walker 
1997). Because our sites spanned a wide range of 
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environmental conditions, each site had a different 
species composition, including the predominant spe-
cies of canopy formation. In proportional representa-
tion across our field sites, approximately 75% of the 
data were represented by Artemisia tridentata (big 
sagebrush), 17% by Artemisia arbuscula (low sage-
brush), 1–2% by Chrysothamnus viscidiflorus (yel-
low rabbitbrush), Ericameria nauseosa (rubber rab-
bitbrush), Purshia tridentata (antelope bitterbrush), 
and < 1% by Eriogonum sphaerocephalum (rock 
buckwheat), Ribes aureum (golden currant) and Rosa 
woodsia (Wood’s rose). Within each 78.5 m2 circular 
plot, we exhaustively mapped all shrubs by placing 
the GPS unit in the middle of the shrub crown. We 

used a survey-grade RTK GPS unit (Topcon HiPer 
V, Topcon Positioning Systems Inc., Livermore, CA, 
USA) to collect geospatial data with ~ 0.02  m accu-
racy (Rayburn et al. 2011). Each plant was assigned a 
binary index to indicate whether the plant was above 
or below the 0.25 m maximum height threshold. We 
considered plants below the 0.25 m height threshold 
as recruits. Shrubs below 0.25 m tend to have lower 
probabilities of survival and fecundity, characteris-
tic of juvenile plants (Shriver et  al. 2019). Once the 
geospatial field data were collected, a post-process-
ing correction was necessary to reduce the position-
ing errors. We used Online Positioning User Service 
(OPUS) and the proprietary software MagnetTools 

Fig. 1   The sampling design of UAS surveys and ground 
observations on an example of Cold wildfire site (2007) in 
SW Idaho, USA. The yellow dot on the map of North Amer-
ica indicates the location of our study region. The top right 
panel displays the location of our study landscapes relative to 
regional elevation. The true color image (bottom left) shows 

contrasts between the burnt and unburnt parts of the landscape, 
with predominantly shrub-less vegetation in the burnt section. 
The same area visualized as vegetation canopy height (bottom 
right) shows the distribution of field plots (hollow circles) and 
the locations of exhaustively mapped shrub recruits within the 
plots (black dots)



Landsc Ecol (2024) 39:108	

1 3

Page 5 of 16  108

Vol.: (0123456789)

(Topcon Positioning Systems Inc., Livermore, CA, 
USA) to correct the data points.

UAS data

We used unoccupied aerial systems (UAS) data to 
obtain spatially explicit structural metrics of the veg-
etation (Marie et  al. 2023a, a, b, c, d, e, f, g). Each 
UAS survey was conducted with a consumer-grade 
DJI Mavic 2 Pro (SZ DJI Technology Co., Ltd., 
Nanshan, Shenzhen, China). Briefly, all surveys had 
comparable flight parameters: 44  m flight altitude, 
cross grid flight with 20° yaw offset combined with 
nadir + 5° offset camera angle for the second grid 
path, 2 m/s flight speed, 75/80 forward and side over-
lap, with the flight times between 10 am and 3  pm 
under uniform lighting conditions (see Marie et  al. 
2023a-h for more details). The flight parameters 

resulted in high-resolution imagery with < 2 cm/pixel 
ground sampling distance (GSD). Each UAS prod-
uct included a raster and a point cloud representing 
the digital surface model (DSM), which tracks veg-
etation and topographic changes over the landscape. 
We restricted our focus to the structural characteris-
tics composed only of the vegetation component and 
removed the topographic variation from the DSM by 
subtracting the digital terrain model (DTM).

We generated the DTM by applying existing soft-
ware tools to fine-tune the DSM, using open-source 
tools CloudCompare and ‘lidR’ package (Girardeau-
Montaut 2016; Zhang et  al. 2016; Roussel et  al. 
2020), https://​github.​com/​andri​izayac/​uas_​data_​prepr​
ocess). As an initial step, we applied Cloth Simulation 
Filter (Zhang et  al. 2016) to roughly separate veg-
etation from ground. Next, we used Statistical Out-
lier Removal (SOR) to filter remaining ("floating") 

Fig. 2   Raster plots visual-
izing vegetation structure 
through the canopy height 
model (left column) and 
spatial patterns of structural 
heterogeneity using discrete 
wavelet decomposition 
(DWT) with Haar wavelet 
filter applied to the same 
sections of the canopy 
height model (right col-
umn). The DWT disen-
tangles the contribution of 
variance at different scales 
to spatial patterns in data. 
When the DWT is applied 
to a canopy height model, 
component scales represent 
structural heterogeneity

https://github.com/andriizayac/uas_data_preprocess
https://github.com/andriizayac/uas_data_preprocess
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clusters of points missed by CSF. Because CSF and 
SOR may not accurately separate ground from veg-
etation along the margins of shrub crowns or near 
small shrub recruits, we relied on surface curvature to 
further refine the terrain model. Specifically, we used 
two radii for calculating the curvatures and thresh-
old filtering to capture the surfaces characterized by 
high curvature including margins of crowns and small 
vegetation features (e.g., recruits). We hand-adjusted 
the input values for the CSF and curvature filtering 
and thresholding based on each landscape scene to 
acquire the most accurate digital terrain and canopy 
height models. We used the resultant canopy height 
model (CHM) as an input to quantify vegetation 
structure.

Structural heterogeneity

We used Discrete Wavelet Transform (DWT) to 
quantify structural heterogeneity from the CHM 
and decompose it into discrete scales of variabil-
ity. We use the term “scale” to refer to compari-
sons between different levels of aggregated pixels, 
following previous work that has applied wavelet 
transform to spatial data (Bradshaw and Spies 1992; 
Detto and Muller-Landau 2013). Wavelet transform 
decomposes a signal (e.g., canopy height) into low- 
to high-frequency changes (Bradshaw and Spies 
1992). For example, low-frequency canopy changes 
may correspond to the presence and arrangement of 
large plants, while high-frequency canopy changes 
may reflect branches or seedlings. Wavelet trans-
form has broad applications in ecology, including 
understanding scale-dependence in forest spatial 
structure and community dynamics (Bradshaw and 
Spies 1992; Keitt and Fischer 2006; Walter et  al. 
2017). We used the ‘wavethresh’ package (Nason 
and Nason 2016) to decompose spatial variability 
in the CHM into discrete scales of variation using 
a multi-resolution representation of the DWT (65, 
p. 70):

Here, Eq.  1 shows the original canopy height 
model (CHMM) as a sum of a smoothed canopy at 
scale m0, CHMm0

 , and detail coefficients Dm at scales 

(1)CHMM = CHMm0
+

m0∑

m=1

Dm

from the finest to the coarsest level of smooth-
ing, m0. Scale M was the original resolution of the 
CHMs, while m = 1 and m = 9 corresponded to the 
finest and coarsest levels of the DWT, respectively. 
We chose m0, the level of CHM smoothing in DWT, 
at the resolution 18.72 m as it exceeded the extent 
of our field plots. An overarching objective of our 
study is to identify which scales are most informa-
tive for quantifying ecological resilience and resist-
ance. The spatially explicit, two-dimensional array 
Dm is the sum of horizontal, vertical, and diago-
nal difference coefficients, Dm = Dh

m + Dv
m + Dd

m 
(Fig.  3; 65, p. 127). Multiple options exist for the 
choice of the wavelet function with subtle differ-
ences in the inferred patterns (Keitt and Fischer 
2006). We chose the Haar wavelet in DWT to high-
light the vertical changes in canopy structure, i.e., 
plant margins, as canopy features representing 
structural heterogeneity, and to mitigate boundary 
artifacts in the transform due to the local support of 
the Haar wavelet (Bradshaw and Spies 1992; Addi-
son 2017).

We quantify structural heterogeneity for 
each plot (i) at the scale (m) as a sum of 
squared Haar difference (detail) coefficients, 
Heterogeneitym,i(x, y) =

∑n

j=1
D2

s
(xj, yj) , where vec-

tors (x, y) delineate the 78.5 m2 buffer area of a 5 m 
radius from plot center, and n indicates all pixels 
(xj, yj) within the plot boundaries. Difference coef-
ficients characterize changes in the canopy structure 
by comparing the canopy height values at neighbor-
ing pixels. For example, a high wavelet coefficient 
at scale (m) would correspond to four very differ-
ent pixels at a finer scale (m-1). The finest scale, 
M, corresponds to the original raster input of the 
canopy height model. Note that the index m is a 
discrete integer that corresponds to nine different 
scales from 0.04 to 9.36 m.

Data analysis

Wavelet transformation of the CHM resulted in char-
acteristic variability of the canopy across nine scales. 
We ran three separate analyses designed to answer 
our three primary questions. To answer our first ques-
tion and identify the optimal scale to detect wildfire 
effects, we ran the following set of linear mixed-effect 
regressions:
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Differences between the estimated �(m)
1

 across 
models (m) indicate that heterogeneity at each scale 
m, H(m), has varying degrees of sensitivity to wild-
fire effects. The wildfire effect was quantified using a 
binary variable indicating whether the plot was within 
the burnt or the reference, unburnt area, where �(m)

1
 is 

vector of two coefficients for each model correspond-
ing to (m) scale. We used site as a random effect to 
account for baseline site differences in heterogeneity. 
This random effect reflects the myriad factors that 
influence fire severity in sagebrush steppe landscapes 
(Chambers et al. 2014). To address our second ques-
tion and identify optimal scales of heterogeneity for 

(2)H(m) ∼ N
(
�
(m)

0|site + �
(m)

1
wildfire, �

) shrub recruitment, we ran a sparse linear regression 
with negative binomial error distribution and a regu-
larizing horseshoe prior (Piironen and Vehtari 2017):

where H is a matrix of nine log-transformed hetero-
geneity predictors (m = 1, 2, …, 9), and �1 is a vec-
tor of nine coefficients quantifying the effect size of 
each heterogeneity scale on the recruit abundance. 
We used a strong regularizing horseshoe prior with 
maximum local and global shrinkage that allowed for 
model convergence (df = 1, dfglobal = 2), with the ratio 
of expected non-zero to zero coefficients set to 0.01 
(Bürkner 2017; Piironen and Vehtari 2017; Simler-
Williamson et al. 2022). Similar sparse models have 

(3)R ∼ NegBinom
(
exp(�0 +H ∙ �1),�

)

Fig. 3   The scale-dependent 
effect sizes in (a) structural 
heterogeneity-wildfire and 
(b) recruitment-heteroge-
neity relationships in Great 
Basin shrublands. The 
x-axis in (a-b) corresponds 
to structural heterogeneity 
measured at distinct scales 
(meters). The effect of wild-
fires (a) indicates changes 
in structural heterogeneity 
relative to intact vegetation 
(Fig. 1). The effect size 
shows the decline in canopy 
structural heterogeneity in 
units of squared differ-
ences between neighboring 
pixels. The results of the 
sparse model (b) show the 
effects of different scales 
of heterogeneity on recruit 
abundance, where the effect 
size indicates the expected 
change in log-recruit abun-
dance under an increase 
of predictors by one SD of 
log-structural heterogene-
ity. The points indicate the 
means, and the error bars 
correspond to 95% CI of the 
posterior distribution
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been successfully applied to select relevant scale of 
wavelet coefficients through the shrinkage variable 
selection (Zhao et al. 2012, 2015).

In question three, we focused on quantifying how 
well structural heterogeneity can predict recruit-
ment. We implemented two predictive models using 

negative binomial generalized linear models. First, 
we tested an additive effect of scale-specific struc-
tural heterogeneity, starting from the coarsest scale 
(9.36 m) of heterogeneity as a single predictor and 
adding one other scale at the next, finer resolution 
per model.

(4)R ∼ NegBinom
(
exp(�

(m)

0
+ �

(m)

1
elevation +H[9∶m]�

(m)

2
),�

)
, form = 9, 8,… , 1

As a result, we obtained a set of models with a 
varying number of coefficients in �(m)

2
 , (1:m), cor-

responding to a subset of columns in matrix H[9∶m] . 
We included elevation in our model to account for 
the site differences as elevation is a key determi-
nant of sagebrush recruitment in heterogeneous 

landscapes (Germino et al. 2018b). The second pre-
dictive analysis paralleled the structure of Eq. 4, but 
included only one scale of structural heterogeneity 
per model (Eq. 5). Including a single scale of heter-
ogeneity at a time directly compares the predictive 
power of each scale relative to the others.

(5)
R ∼ NegBinom

(
exp(�

(m)

0
+ �

(m)

1
elevation + H[m]�

(m)

2
),�

)
, form = 9, 8,… , 1

For each model, we generated an R2 metric of 
model fit and a predicted recruit abundance (Gel-
man et al. 2019). We then calculated the mean abso-
lute error (MAE) following:

where N is the number of field plots, y is the observed 
abundance data, and ŷ is the predicted abundance 
of shrub recruits. We evaluated R2 and MAE using 
k-fold cross-validation approach. Specifically, we split 
the dataset into 10 groups and withheld one group at 
a time from model fitting—the withheld group corre-
sponded to all plots belonging to a single site.

We used ‘brms’ package and ran the linear models 
in the Bayesian framework with default priors, except 
the sparse models, where we used regularizing priors 
(Bürkner 2017). For all data manipulation and analy-
sis we used R software v4.2.2 (R Core Team 2021), 
including ‘tidyverse’, ‘sf’, ‘terra’, ‘ggplot2’ packages 
(Wickham 2011; Pebesma 2018; Wickham et al. 2019; 
Hijmans et al. 2022).

MAE =
1

N

N∑

i=1

|yi − ŷi|

Results

Structural heterogeneity and ecological resistance to 
wildfires

Relative to the unburnt vegetation, wildfires reduced 
structural heterogeneity in the burnt areas by 74% 
(95%CI: 59–87). This difference emerged across 
ten sites that differed considerably in elevation 
(867–1514  m), time-since-fire (7–26  years), aver-
age slope (1.7–23.4°), and wildfire severity (low-
moderate). The magnitude of wildfire-related struc-
tural changes varied across scales. Our scale-explicit 
analysis identified a single optimal scale for detect-
ing structural differences between burnt and unburnt 
areas (2.34  m; Fig.  3a), with weaker effects at both 
the finest (0.04 m) and coarsest (9.36 m) scales. There 
was high certainty that the 2.34 m scale best captured 
wildfire effects, including the probability of differ-
ence between posterior distributions for 2.34  m and 
all other scales > 0.99, except the 1.17 m scale, where 
the probability of difference was 0.87. This outcome 
highlights strong agreement between our disparate 
sites that 2.34 m provided an optimal scale to summa-
rize structural heterogeneity for wildfire legacy.



Landsc Ecol (2024) 39:108	

1 3

Page 9 of 16  108

Vol.: (0123456789)

Recruitment and structural heterogeneity

In contrast to the unimodal relationship between 
scales of structural heterogeneity and disturbance 
effects, ecosystem resilience, measured as the abun-
dance of shrub recruits, was associated with struc-
tural heterogeneity across multiple scales (Fig.  3b). 
Across the nine scales of structural heterogeneity we 
tested, we found peak effect sizes at 0.07, 0.29, and 
2.34  m, with decreased effect sizes for other scales. 
Effect sizes also indicate that heterogeneity from 
coarse to fine scales increases in magnitude, suggest-
ing a stronger association between finer scale hetero-
geneity and recruit count.

Structural heterogeneity as a predictor of recruitment

Scale-explicit analyses of structural heterogeneity 
enabled spatial predictions of shrub recruits across 
post-fire landscapes. A combination of structural 
heterogeneity metrics from 9.36—0.07  m scales 
resulted in out-of-site Bayesian R2 of 0.55 (95%CI: 
0.47–0.62), with a mean absolute error (MAE) of 
0.28 recruits m−2. These metrics indicate that struc-
ture-from-motion data collected by UAS imagery 
can predict shrub recruitment at sites without avail-
able field data. When each scale of heterogeneity was 
tested as an individual predictor in a single model, 
the model with the greatest predictive power incor-
porated structural heterogeneity at the 0.29  m scale 
(Fig. 4b). At this resolution, pixel sizes derived from 
the canopy height model are likely bigger than an 
average shrub recruit. However, high heterogeneity 
at this resolution implies greater differences between 
neighboring pixels at the scale of 0.15  m, which 
could indicate a plant recruit. Scales of heterogeneity 
smaller or greater than 0.29 m individually predicted 
recruitment with similar or lesser accuracy.

The decomposition of total heterogeneity into dis-
crete scales improved prediction accuracy compared 
to the baseline model, a model with a single predictor 
for total structural heterogeneity within each plot (i.e., 
all nine scales added together). The model with total 
structural heterogeneity had an out-of-site predictive 
R2 of 0.39 (95%CI: 0.34–0.44) and an MAE of 0.41 
shrub recruits m−2, a loss of R2 at 0.16 and MAE at 

0.13 shrubs m−2 compared to the model with multiple 
structural heterogeneity metrics. Because effect sizes 
for structural heterogeneity on recruitment varied 
across scales, including positive and negative effects 
(Fig.  3b), averaging across these scales results in a 
loss of information. This result suggests that differ-
ent scales of heterogeneity contain different informa-
tion related to ecological processes (Fig.  4a). When 
evaluating scales individually (best model R2 = 0.43, 
MAE = 0.32 shrubs m−2; Fig. 4b), structural heteroge-
neity at the scale of 0.29 m resulted in lesser improve-
ments over the total heterogeneity model.

Discussion

Mapping structural heterogeneity enables insights 
into ecosystem functions that determine ecologi-
cal resistance and resilience (Koontz et  al. 2020; 
Mahood et  al. 2023). We found strong evidence for 
scale-dependent effects of structural heterogeneity 
on resistance and resilience to wildfires in a semi-
arid ecosystem. Our approach highlights the impor-
tance of fundamental questions of scale in interpret-
ing structural information (Levin 1992). An explicit 
approach to choosing spatial scales in data analysis 
will enhance the applied value of ecological mod-
els (Spake et al. 2021). We found that structural dif-
ferences between burned and unburned areas were 
greatest at approximately the scale of adult shrubs. 
This indicates that a foundational component of sage-
brush ecosystems has relatively low ecological resist-
ance to wildfire. Our findings also reveal multi-scale 
impacts of structural heterogeneity on shrub recruit-
ment, a starting point for understanding demographic 
mechanisms that underlie ecological resilience in our 
study system. Positioning scale-dependent effects of 
structural heterogeneity within existing management 
and theoretical frameworks will boost the capacity of 
remotely sensed data to provide ecological insight.

Structural heterogeneity and wildfires

Wildfires reduced structural heterogeneity across 
all scales (Fig.  3a). However, our models identi-
fied a single optimal scale where the relationship 
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between structural heterogeneity and wildfire was 
strongest. The presence of a single optimal scale 
is consistent with previous evidence from forest 
ecosystems: pulse disturbances like wildfire may 
impose functionally similar effects on vegetation 
structure despite differences in site conditions, time 
since fire, and wildfire severity (Atkins et al. 2020). 
Wildfires in the Great Basin may equally remove 
large and small vegetation from the landscape 
(Miller et  al. 2013; Requena‐Mullor et  al. 2019; 
Mahood et al. 2023), inherently erasing or modify-
ing structural patterns across multiple scales. Post-
disturbance heterogeneity across scales is unequal 

and depends on vegetation properties. For exam-
ple, in a forest ecosystem, the maximum individual 
tree complexity within a plot explains stand-level 
structural heterogeneity better than the sum of indi-
vidual tree complexities (Seidel et al. 2019). In our 
study, the selected optimal scale (2.34 m) roughly 
captures a single large shrub and its boundaries, 
suggesting that patterns related to adult plants 
drive post-disturbance changes in structural het-
erogeneity. We hypothesize that the optimal scale 
of structural heterogeneity as an effect of wildfires 
may be related to the absence of at least one adult 
large shrub in burnt areas. These results suggest 

Fig. 4   The line plot shows 
the importance of different 
scales of canopy structural 
heterogeneity for predicting 
shrub recruit abundance. 
Scales correspond to (a) a 
step-wise addition of finer 
resolutions starting from 
the finest level at 0.04 m, 
and (b) individual scales of 
structural variation with the 
rest of the scales removed. 
Solid black lines indicate 
the mean, while dotted 
black lines represent the 
95% credibility interval 
of R2 metric. Dashed gray 
lines correspond to the 
average mean absolute error 
(MAE, right y-axis). The 
solid horizontal lines show 
the predictive power of the 
base model, where all scales 
of structural heterogeneity 
were added together and 
used as a single predictor. 
The solid black horizontal 
line indicates the R2 metric 
for the base model, while 
the dashed gray horizontal 
line indicates MAE for the 
base model
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that the best scale to aggregate canopy height mod-
els to represent structural heterogeneity may be 
proportional to the size of largest plant crowns in 
the landscape.

Identifying which scales respond most strongly to 
wildfire provides insight into which ecological com-
ponents are least resistant to disturbance, for exam-
ple, adult shrubs. Sagebrush shrublands may take 
30  years or more to regenerate cover and height to 
pre-disturbance levels (Baker 2006; Ziegenhagen 
and Miller 2009). Our results show the potential for 
structural patterns to indicate remnant patches in 
sagebrush shrublands after wildfire.

Our analyses demonstrate how structural het-
erogeneity can provide insight into resistance to 
disturbance in dryland ecosystems. Heterogene-
ous vegetation cover, including shrubs, herba-
ceous plants, bare ground, and soil crusts (Davies 
et  al. 2011; Condon and Pyke 2018), characterizes 
healthy shrublands of the Great Basin. In contrast 
to biomass or cover estimates that may not always 
be sensitive metrics of ecosystem change (Atkins 
et  al. 2020), structural heterogeneity provides 
information about vegetation presence and its spa-
tial arrangement, including quantitative estimates 
of shrub interspaces. The ~ 2  m scale we identify 
as a strong predictor of disturbance in our analy-
ses likely quantifies the presence of foundational 
shrub species and characteristic canopy gaps in our 
study sites (Condon and Pyke 2018). In ecosystems 
where herbaceous species are the primary compo-
nents of ecosystem structure with low patchiness, 
we expect to observe strong effects of disturbance 
at finer scales. Overall, our results demonstrate the 
overall value of structural heterogeneity and the 
importance of scale-explicit analytical approaches 
for quantifying resistance to disturbance.

Recruitment and structural heterogeneity

Our models suggest that multiple scale-specific 
processes drive structural heterogeneity associated 
with ecosystem resilience (Levin 1992; Maestre 
et  al. 2016). We found evidence for both positive 
and negative relationships between recruitment 
and structural heterogeneity, depending on spatial 
scale. Structural heterogeneity increased recruit-
ment at spatial scales from 0.29–0.58  m. Poten-
tial explanations for these positive relationships 

include the presence of small canopy gaps that 
may facilitate shrub recruitment (Condon and 
Pyke 2018) or short-distance seed dispersal from 
nearby adult shrubs (Applestein et  al. 2022). 
In contrast, we observed negative relationships 
between structural heterogeneity and recruitment 
at scales of 0.07 and 2.34 m. We hypothesize that 
competitive interactions may underlie these nega-
tive associations. The negative effect at the 2.34 m 
scale may point to competitive pressures from 
adult shrubs that limit favorable spaces and con-
ditions for shrub recruits (Schwinning and Weiner 
1998; Adler et  al. 2010). Fine-scale heterogene-
ity (0.07  m) was also negatively associated with 
recruitment. The negative effect of structural het-
erogeneity on recruitment at fine scales may be 
due to competition with invasive annual grasses 
and forbs. Exotic vegetation creates adverse con-
ditions for shrub recruitment by limiting shrub 
seed arrival or imposing high resource competition 
(Arkle et al. 2014, p. 20; Applestein and Germino 
2022). Our results highlight the need for future 
studies that link structural heterogeneity to plant-
plant interactions, including competition and facil-
itation between neighboring plants.

An alternate explanation for positive relation-
ships between shrub recruitment and structural 
heterogeneity is that, at some scales, remote sens-
ing imagery is detecting shrub canopies. The 
abundance of shrubs below 0.25 m likely contrib-
utes most to structural heterogeneity at scales of 
0.29–0.58 m, where we found positive relationships 
recruitment and structural heterogeneity. Wavelet-
based techniques for edge detection are heavily 
used in image analysis, with a demonstrated capac-
ity to recognize plants in aerial imagery (Strand 
et  al. 2007; Addison 2017). The delineation of 
plant edges using wavelet techniques directly cor-
responds to structural heterogeneity metrics, as 
plant edges create heterogeneity at specific scales. 
This scale-specific positive sensitivity of struc-
tural heterogeneity and recruit abundance suggests 
structural heterogeneity as a data source to detect 
and predict recruitment.

Structural heterogeneity as a predictor of recruitment

Our results emphasize how structural heterogeneity 
can be a powerful predictor of ecosystem function 
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(LaRue et al. 2019). Decomposing structural hetero-
geneity into specific scales boosts the ability of these 
metrics to predict ecologically relevant outcomes, 
particularly when multi-scale metrics are included 
in the same predictive model. Predictions of natural 
regeneration after disturbance, including recruitment, 
will aid decision-making on where to allocate limited 
resources for restoration (Barber et al. 2022).

We demonstrate how remotely sensed structural 
information can aid predictions of natural regenera-
tion capacity. UAS, in particular, have potential for 
rapid deployment over large areas. While the extent 
of a single flight designed to collect ultra high-reso-
lution imagery (< 1  cm), such as the RGB imagery 
used in this paper, may be less than the extent of 
land management units, we anticipate that multi-
ple flights could sample entire landscapes. We have 
demonstrated the capacity of relatively inexpensive 
commercial UAS platforms to collect high-quality 
structural data, with relevance to ecological resilience 
and resistance. The ease of use of these platforms 
should facilitate multiple flights capable of capturing 
larger extents. Structure-for-motion algorithms enable 
extraction of structural data from relatively inexpen-
sive commercial UAS platforms, including RGB-only 
sensors (Zahawi et  al. 2015). The advance we have 
developed in this paper is to show that structural het-
erogeneity can accurately predict shrub recruitment 
without relying on site-specific training data. This 
approach is relatively simple compared to remote 
sensing workflows that apply machine learning 
algorithms to identify objects in imagery and clas-
sify them to species (e.g., Retallack et al. 2022). The 
most complex step in our workflow is developing a 
canopy height model, which may require site-specific 
fine-tuning. Fortunately, publicly-available work-
flows and open source software (e.g., CloudCompare; 
Girardeau-Montaut 2016) exist to aid with this step. 
Low-cost maps of structural heterogeneity could ena-
ble rapid assessments of ecological resilience, even 
for sites where no field data is available.

Expanding scale-explicit analyses to data sources 
with broader geographic extents, beyond the foot-
print of individual UAS flights, could aid regional 
conservation efforts. Potential data sources that 
could map structural heterogeneity across large areas 
include aerial lidar and satellite-borne radar sensors 
(Fernández-Guisuraga et al., In press). Structural het-
erogeneity measurements from these sensors could 

address region-wide conservation challenges, from 
tree encroachment to expansion of invasive annual 
grass monocultures (Pilliod et  al. 2021; Smith et  al. 
2021). Scale-explicit analyses could also improve the 
spatial placement of restoration treatments by match-
ing the scale of spatial patterns generated by manage-
ment interventions (e.g., seeding or fuel reduction 
treatments) to the scales of ecological outcomes (e.g., 
recruitment limitation or fire extent and severity).

Conclusions

Feedback between ecosystem structure and function 
underlies ecosystem recovery after disturbance. We 
found that maps of canopy structural heterogeneity 
enabled us to quantify structure–function relation-
ships during post-fire recovery in a semi-arid shrub-
land. Accounting for scale-dependence in these rela-
tionships was critical for ecological inference and 
prediction. Structural heterogeneity captured the 
impacts of wildfires across divergent landscapes, 
with the strongest effects at a single spatial scale. 
In contrast, native shrub recruitment, indicative of 
ecosystem functioning after succession, was related 
to structural heterogeneity across a range of scales. 
In practical applications, detecting optimal scales 
for monitoring disturbance effects and regeneration 
can guide future remote sensing efforts for natural 
resource management. Optimal scales of structural 
heterogeneity also show promise as a predictive tool 
to assess the recovery trajectories of degraded eco-
systems. We conclude that the scale decomposition of 
vegetation structural information will likely be fruit-
ful for future studies aiming to link ecosystem struc-
ture and function.
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