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Abstract

1. Estimating and monitoring plant population size is fundamental for ecologi-
cal research, as well as conservation and restoration programs. High- resolution 
imagery has potential to facilitate such estimation and monitoring. However, 
remotely sensed estimates typically have higher uncertainty than field measure-

ments, risking biased inference on population status.
2. We present a model that accounts for false negative (missed plants) and false pos-

itive (misclassified or double- counted plants) error in counts from high- resolution 
imagery via integration with ground data. We apply it to estimate the abundance 
of a foundational shrub species in post- wildfire landscapes in the western United 
States. In these landscapes, plant recruitment is crucial for ecological recovery 
but locally patchy, motivating the use of spatially extensive measurements from 
unoccupied aerial systems (UAS). Integrating >16 ha of UAS imagery with >700 

georeferenced field plots, we fit our model to generate insights into the preva-

lence and drivers of observation errors associated with classification algorithms 
used to distinguish individual plants, relationships between abundance and land-

scape context, and to generate spatially explicit maps of shrub abundance.
3. Raw counts of plant abundance in high- resolution imagery resulted in substantial 

false negative and false positive observation errors. The probability of detect-
ing (p) adult plants (≥0.25 m tall) varied between sites within 0.52 < p̂adult < 0.82, 
whereas the detection of smaller plants (<0.25 m) was lower, 0.03 < p̂small < 0.3. 
On average, we estimate that 19% of all detected plants were false positive er-
rors, which varied spatially in relation to topographic predictors. Abundance 
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1  |  INTRODUC TION

Monitoring plant species distribution and abundance is critical for 
both fundamental research and adaptive land management (McCord 
& Pilliod, 2021). For example, the abundance of invasive plant spe-

cies can foreshadow leading edge invasion of neighbouring areas 
(Ibáñez et al., 2009). Similarly, changes in the density of a plant 
species following restoration can inform restoration effectiveness 
or adaptive management decision- making (Caughlin et al., 2019). 
While field- based counts are fundamental data for estimating spe-

cies distributions, population trends and demographic parameters 
(Gurevitch et al., 2016), collecting these data is logistically difficult 
and resource intensive at large spatial extents relevant to many eco-

logical problems.
Recent advances in remotely sensed data, particularly high- 

resolution imagery where individual plants can be detected, enables 
scalable estimates of species abundance (Rominger & Meyer, 2019; 

Weinstein et al., 2020; Young et al., 2022). Individual tree crowns 
have been delineated in both high- resolution satellite imagery 
(Brandt et al., 2020) and high- resolution aerial imagery (Young 
et al., 2022). These advances present exciting opportunities in ecol-
ogy and conservation: for example, recent research has revealed 
that trees outside forests contribute substantially to national- level 
carbon storage (Liu et al., 2023). Mapping individual plants using 
remote sensing can provide new perspectives on long- standing 
questions like the role of negative density dependence on tree pop-

ulation dynamics (Kellner & Hubbell, 2018), and facilitate efforts 
to monitor endangered populations in fragile or inaccessible land-

scapes (Rominger & Meyer, 2019).
Delineating individuals to quantify abundance from high- 

resolution imagery comes with risk of observation error from at-
mospheric distortion, crown overlap, sensor limitations and other 
factors (Davis et al., 2022). Counts of individual plants in high- 
resolution imagery likely exhibit both false negative error (an indi-
vidual is not detected within the image) and false positive error (a 
non- target object is mistaken as a target individual, or the crown 
of a single individual is mistakenly classified as multiple individu-

als). These errors are well- acknowledged within wildlife surveys 

performed in- situ or using remote sensing, and several statistical 
models have been described to account for these errors when 
using varied data types to estimate different ecological quantities 
(Chambert et al., 2015; Clare et al., 2021; Doser et al., 2021; Kéry & 
Royle, 2020; Miller et al., 2011). Although observational errors can 
bias studies focusing on plant occurrence or abundance (e.g. Chen 
et al., 2013; Louthan & Doak, 2018; Perret et al., 2023), these errors 
are rarely addressed within studies using imagery to study plants.

Models that disentangle false positive and false negative error 
processes from an ecological process of interest typically require 
some form of data replication (Chambert et al., 2015; Clement 
et al., 2022; Conn et al., 2014; Miller et al., 2011). A type of replicated 
data that is relatively common in maps of plant abundance and could 
be used to inform observation error is auxiliary ‘ground- validated’ 
data (georeferenced ground points indicating an individual's location). 
Integrating relatively accurate but spatially limited ground- validated 
counts with remotely sensed counts that are less accurate but highly 
scalable provides a means to address multiple types of error and bor-
row from the strengths of both approaches (Miller et al., 2019). Here, 
we develop two models that leverage ground- validated counts within 
an integrated framework to estimate plant population abundance 
with appropriate uncertainty when remotely sensed count data are 
subject to false negative and false positive errors.

We demonstrate our model by estimating the abundance of 
a plant species with spatially variable recruitment. In our study 
region, novel wildfire regimes threaten many plant and animal spe-

cies, including our focal species, big sagebrush (Artemisia triden-

tata; hereafter, sagebrush). The abundance of sagebrush recruits is 
an important indicator of post- fire recovery (Germino et al., 2018; 

Schlaepfer et al., 2014). However, sagebrush recruitment after 
fire is difficult to quantify in the field because it is spatially vari-
able and sensitive to fine- grained environmental variation (Arkle 
et al., 2022; O'Connor et al., 2020; Ziegenhagen & Miller, 2009), 
motivating our use of remotely sensed data to detect recruitment 
hotspots. Our objectives for this application were to estimate 
total sagebrush abundance across our field sites, clarify key driv-

ers of abundance (e.g. topography and distance to fire edges) and 
present initial drivers of observation errors in plant focused UAS 

declined toward the interior of previous wildfires and was positively associated 
with terrain roughness.

4. Our study demonstrates that integrated models accounting for imperfect detec-

tion improve estimates of plant population abundance derived from inherently 
imperfect UAS imagery. We believe such models will further improve inference 
on plant population dynamics—relevant to restoration, wildlife habitat and related 
objectives—and echo previous calls for remote sensing applications to better dif-
ferentiate between ecological and observational processes.

K E Y W O R D S
abundance, aerial surveys, imperfect detection, misclassification, population monitoring, 
remote sensing, UAS
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surveys. More broadly, our work aims to establish the importance 
of hierarchical models that distinguish ecological and observation 
processes when estimating abundance of plant species from high- 
resolution imagery.

2  |  MATERIAL S AND METHODS

2.1  |  Problem overview

We first envision a situation where only error- prone count data 
from imagery are available. Let Ni denote the abundance of a 
species across a collective of H sampling units: a set of discrete 
and equally sized areal units (cells) within an image (or multiple 
images), where i indexes specific units (i = 1, 2, … H). Assume 
Ni ∼ Poisson

(

�
TP
)

 and that the latent abundance states or their ex-

pected value �TP are the focus of interest. The Poisson distribution 
is a natural choice for quantities like abundance, but this distribu-

tional assumption is not strict. In each unit, a count c∗
i
 is recorded. 

In many remote sensing applications, it is common to assume that 
c∗
i
= Ni. However, some individuals may be missed, others may be 

counted multiple times and the count may include misclassified 
species or other phenomena. In these circumstances, the count 
is a mixture of true detections cTP

i
 and false detections cFP

i
, where 

c∗
i
= cTP

i
+ cFP

i
 and cTP

i
 may be smaller than Ni. For example, following 

Royle (2004), let cTP
i

∼ Binomial
(

Ni , p
)

 , where p is the probability of 
detecting an individual organism. Let cFP

i
 arise from another pro-

cess, for example, cFP
i

∼ Poisson
(

�
FP
)

.

This situation in which entities are counted and true and false 
detections are difficult to distinguish is common to aerial surveys 
(Conn et al., 2014). In this simple case, the marginal distribution of 
the observed data c∗

i
 is not Poisson

(

�
TP
)

 but Poisson
(

�
TPp + �

FP
)

. The 

challenge is that not only are Ni, p, �TP and �FP unknown but also cTP
i

 

and cFP
i

. Hence, a unique solution to the values of p, �TP and �FP under 

the assumptions above requires additional information (Chambert 
et al., 2015). We focus on two designs (Scenario 1 and 2 below) that 
use ground- validated observations to harmonize and correct esti-
mates (sensu Chambert et al., 2015; Doser et al., 2021).

2.2  |  Auxiliary data

In both scenarios, a subset of the H sampling units (J) are subject to 
further ground sampling, and the complementary subset K only is 
sampled using a less accurate method (e.g. aerial survey). We index 
individual units as j = 1, 2, …, J ( j ∈ H), k = 1, 2, …, K (k ∈ H), where 
H = J ∪ K and J ∩ K = 0.

2.2.1  |  Auxiliary data: Scenario 1

Under Scenario 1, we assume that target individuals within sam-

pling units J can be perfectly enumerated by ground sampling. Thus, 

Nj is an observed variable. By spatially resolving the correctly enu-

merated ground data (mapped individuals within a subset of units) 
with detections made using high resolution imagery (e.g. mapped 
crowns), the total count of image- based detections in a unit 

(

c∗
j

)

 can 

be subdivided into individuals correctly detected via aerial o b -

servation 
(

cTP
j

)

, and observations introduced by misclassification or 
over- segmentation (double- counting) 

(

cFP
j

)

.

The state process is shared across J and K, such that Ni ~ Poisson 
(�TP). To be more explicit about this information sharing, we can 
equivalently subdivide H into J and K (where K denotes sub- units 
without aerial sampling):

Within the ground- validated units J, the likelihood for the aerial data 
follows as:

In the unvalidated sampling units K, cTP
k

 and cFP
k

 remain latent, and only 
their sum c∗

k
 is observed. Conditioning on a latent NTP

k
 sampled during 

Markov chain Monte Carlo simulation, the likelihood for c∗
k
 is the con-

volution of the likelihoods for cTP
k

 and cFP
k

 that integrates (sums) over 
their potential combinations:

Although ground- sampled data is often treated as ‘ground- 
truthed’ data, previous assessments suggest that observers on 
the ground also fail to detect plants (Chen et al., 2013; Perret 
et al., 2023). In this case, operating under Scenario 1 assumptions will 
result in biased estimates, although if the ground- validated counts 
exhibit less observation error than the aerial counts, the estimates 
may still be better than treating c∗

i
 as the truth. Hence, further ex-

tension may be useful.

2.2.2  |  Auxiliary data: Scenario 2

In the second scenario, we assume the auxiliary ground data across 
sampling units J may be subject to false negative error but not false 
positive error—a person may miss an individual plant on the ground 
but will not falsely introduce one. Field practices like flagging counted 
plants to reduce risk of repeat counting may help ensure this assump-

tion is met. If the probability of detecting a plant on the ground p(g) 
and in high- resolution imagery p(a) are the same, then a single ground 

(1)
[
Nj| �TP

]
∼ Poisson

(
�
TP
)

(2)
[
Nk| �TP

]
∼ Poisson

(
�
TP
)

(3)
[
cTP
j
| NTP

j
, p
]
∼ Binomial

(
Nj , p

)

(4)
[
cFP
j
| �FP

j

]
∼ Poisson

(
�
FP
)

(5)
[
c∗
k

|||N
TP
k
, p, �FP] =

c∗
k∑

cTP
k
=0

[
cTP
k

| NTP
k
, p
][ (

cFP
k

= c∗
k
− cTP

k

)
| �FP

]
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replicate is sufficient to correct for aerial observation errors. This 
seems unlikely in practice, and to estimate distinct p(g) and p(a) param-

eters, the ground- validated counting and mapping procedure must be 
replicated L times using multiple observers or visits. In this scenario, 
neither Nj nor aerial false positives cFP

j
 are directly observed. Instead, 

there L independent efforts to map individuals, where each replicate 
is indexed as l (l = 1, 2, . . L) and the count for each replicate l  arises 
as cg

j,l
∼ Binomial

(

Nj , p(g)
)

. We subsequently assume L = 2 for simplic-

ity. In turn, the aerial count c∗
j
 remains a convolution of true posi-

tives ca,TP
j

∼ Binomial
(

Nj , p(a)
)

 and false positives ca,FP
j

∼ Poisson
(

�
FP
)

. Assuming the mapped ground counts and aerial detections can be 
spatially resolved across replicates such that one can derive the total 
number of distinct individuals detected on the ground across all repli-
cate surveys 

(

nj
)

, the total count of individuals can be subdivided into 7 
different classes (assuming L = 2): (1) detected on the first ground sur-
vey only, (2) detected on the second ground survey only, (3) detected 
on both first and second ground surveys, (4) detected on first ground 
survey and via the air, (5) detected on the second ground survey and 
via the air, (6) detected on both ground surveys and aerially and (7) 
detected aerially only. The likelihoods for Nj and nj are:

We re- arrange intersections of cg
j,l
 and c∗

j
 into a count- matrix y 

with J rows and 7 columns that correspond to the combinations of 
aerial and ground- validated detections when L = 2. Counts y j,1:6 are 

definitively true positives that we model as

where

Division by p∗
g
 is needed for � to sum to 1, as y j is conditional on 

the nj individuals detected on the ground.
This leaves yj,7, the count of individuals detected in aerial imagery 

only that includes true 
(

yTP
j,7

)

 positive observations that eluded 

ground- validated detection 
[
yTP
j,7

| Nj , p(a), p(g)

]
 ~Binomial (Nj, 

p(a)
(

1−p(g)
)2) and false positive observations 

[
yFP
j,7
| �FP

]
 ~ Poisson 

(�FP ). We sum over the latent composition sensu Equation 5 as

Finally, the likelihood in the sampling units K without ground- sampling 
follows Equations 2 and 5:

Equations 6–9 describe a conditional multinomial N- mixture model 
(Kéry & Royle, 2015, p. 334), where the ground- validated surveys arise 
from a ‘independent double- observer’ protocol. Other approaches like 
a ‘removal’ protocol—where the first survey flags and maps all plants 
detected in the unit, and the second flags and maps only remaining 
unflagged plants in the unit—might be more efficient in the field and 
only require a few modifications to the equations above. Both reframe 
the issue as a capture- recapture problem (see Section 4).

2.3  |  Simulation study

We performed a simulation study to determine that models with 
auxiliary data under Scenario 1 and Scenario 2 could recover gen-

erating parameters and latent abundance states. To briefly explore 
sensitivity to the amount of auxiliary data, we ran simulations with 
varying proportions of ground- sampled data, from 3% to 13% cover-
age (50–500 cells/units in a 1600 unit lattice). Further details and 
results are provided in Appendix S1.

2.4  |  Application to sagebrush steppe

We apply the model to data collected from 10 non- contiguous land-

scapes in southwestern Idaho, USA. Each site included an aerial UAS 
survey and ground- mapped individual plants obtained in a support-
ing field campaign (no permissions were needed for field work: see 
Appendix S2 for additional details on data collection, Figure S10 for a 
visual overview of our approach, and Marie et al., 2023 for details on 
image processing and georeferencing). We discretized high- resolution 
imagery into 5 m grid cells (H = 6605). Approximately 11% were ran-

domly validated with exhaustive ground sampling of individual plants 
(J = 729) using a survey- grade RTK GPS unit (Topcon HiPer V, Topcon 

(6)
[
Nj

|||
�
TP] ∼ Poisson

(
�
TP
)

(7)
[
nj|Nj , p(g)

]
∼ Binomial

(
Nj , p

∗

g

)

(8)p∗
g
= p2

(g)
+ 2

(

p(g)
(

1 − p(g)
))

(9)
[
y j,1:6| nj ,�

]
∼ Multinomial

(
nj ,�

)

�1 =
p(g)

(

1 − p(g)
)(

1 − p(a)
)

p∗
g

�2 =

(

1 − p(g)
)

p(g)
(

1 − p(a)
)

p∗
g

�3 =
p(g)p(g)

(

1 − p(a)
)

p∗
g

�4 =
p(g)

(

1 − p(g)
)

p(a)

p∗
g

�5 =

(

1 − p(g)
)

p(g)p(a)

p∗
g

�6 =
p(g)p(g)p(a)

p∗
g

(10)

[
yj,7

|||Nj , p(g), p(a), �
FP
j
]=

yj,7∑

yTP
j,7
=0

[
yTP
j,7

| Nj , p(g), p(a)

][ (
yFP
j,7

=yj,7−yTP
j,7

)
| �FP

]

(11)
[
Nk| �TP

]
∼ Poisson

(
�
TP
)

(12)
[
c∗
k

|||Nk , p(a), �
FP
k
] =

c∗
k∑

cTP
k
=0

[
cTP
k

| Nk , p(a)
][ (

cFP
k

= c∗
k
− cTP

k

)
| �FP

]
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Positioning Systems Inc., Livermore, CA, USA) with ~0.02 m accuracy 
(Rayburn et al., 2011). This ground- sampling process took about 20 h 
per replicate landscape on average. The remaining cells (K = 5876) 
contained only aerial counts. We processed the aerial data using an 
object- based image analysis (OBIA) that resulted in a map of sage-

brush crowns. Our OBIA used an algorithm for tree segmentation 
applied to the canopy height model (Silva et al., 2016) implemented 
in the lidR R package (Roussel et al., 2020), and we refer readers to 
Appendix S2 for additional details. We next overlaid the crown maps 
from OBIA with field- mapped sagebrush points (Figure 1b), which 
allowed us to spatially match aerial and ground detections and ag-

gregate the aerial detections across J cells (Figure 1c) as the counts 
of true detections (cj

TP), missed detections (cj
FN) and misclassified or 

double- counted plants (cj
FP). The unvalidated cells contained only the 

total count of plants detected from air (ck
* = ck

TP + ck
FP).

We note two important caveats about our application. As a 
pre- processing step (Young et al., 2022), we used random for-
est classification to ‘thin’ likely non- sagebrush crowns initially 
identified via the OBIA using additional spectral data. This step 
is not necessary to implement the statistical model, and explora-

tion suggests using the crowns initially identified strictly during 
OBIA process as input data without thinning results in very similar 

inference about plant abundance. However, inference about error 
parameters is sensitive to this step, which likely reduces false pos-

itive errors within the initial pool of observations and introduces 
additional false negative error, and we emphasize that our esti-
mates of false positive and false negative error parameters  reflect 
OBIA data after this pre- processing. We later discuss extensions 
to more directly leverage machine learning scores within the sta-

tistical model. A second caveat is that the pre- processing classifi-
cation model was trained using the ground- validation data used 
within the statistical model. Thus, the application uses certain 
data twice, which we do not recommend but which was unavoid-

able here because there was not external data to use for classifier 
training. However, we believe the steps used here create a more 
valid comparison between our approach and current approaches 
where users might use ground- sampling to inform a classification 
model and treat the count of predicted target individuals as the 
truth (see further discussion in Appendix S2).

We expected the abundance of juvenile and mature plants to ex-

hibit different abundance associations with topography and wildfire 
legacy, and early analysis focusing on field- labelled plants only sug-

gested the probability of detection was relatively stable for plants 
with a photogrammetrically estimated height >0.25 m. Therefore, 

F I G U R E  1  Sampling design (a, b) used in the statistical model for imperfect detection. Purple segments represent plant crowns. Starting 
from the top, (a) an unmanned aircraft systems (UAS) image capturing a landscape partially burnt in a wildfire collected as part of the study, 
with crowns identified as big sagebrush (Artemisa tridentata) shaded in purple. Magnified sections of the UAS orthomosaic (b), showing the 
automatically delineated shrub crowns (outlined in purple) overlaid on top of the field GPS points that mark ground- mapped sagebrush 
(black points). The labels indicate whether a field identified plant was detected in high- resolution imagery (true positive, TP), a field identified 
plant was not detected in high- resolution imagery (false negative, FN), or if a field identified plant was either double- counted or if a non- 
target entity was misclassified as big sagebrush in the high- resolution imagery (false positive, FP).
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we applied the model separately to two distinct classes of sage-

brush, ‘juvenile’ (<0.25 m height) and ‘adult’ (≥0.25 m height) individ-

uals. For each plant mapped in the field, we used a tape measure to 
record whether the plant was above or below the 0.25 m threshold. 
We applied the same 0.25 m threshold to detected plants in canopy 
height models derived from aerial imagery, assuming the plant height 
corresponded to the highest canopy pixel within a delineated crown.

We hypothesized three covariates would influence the prob-

ability of detecting individuals across the replicate landscapes: (1) 
maximum wind recorded during the UAS flight (Wind_max), (2) av-

erage vegetation height (Height_avg) and (3) the proportion of area 
segmented into objects (Area_segment). The last metric, the ratio 
between the total area of individual objects to the area of the site, 
reflects the OBIA parameter choices determining the process of 
canopy delineation based on canopy height. Smaller polygons (i.e. 
conservative segmentation parameters) are less likely to overlap a 
ground- validated GPS point compared to relatively large polygons 
that would result from less conservative segmentation parameters. 
Our detection model with these covariates is as follows, with sub-

script s indicating replicate landscapes:

We hypothesized that surface topography would primarily influ-

ence variation in false positive errors. Topographic properties of the 
terrain, for example terrain roughness or sun exposure, may trans-

late to variable performance of structure- from- motion algorithm 
on UAS data. We obtained topographic predictors based on digital 
terrain models (DTMs), including topographic roughness index (TRI), 
topographic position index (TPI) and heat load index (HLI) derived 
from the calculated aspect of each cell (Hijmans et al., 2022). We 
scaled the topographic predictors by centring and dividing them by 
two standard deviations (SD). We modelled the FP errors as

Third, we were interested in quantifying the effect of surface 
topography and of the distance from wildfire edge on the true 
abundance of sagebrush (Equation 14). We hypothesized that the 
topographic predictors in Equation 13 also influenced the cell- level 
abundance of sagebrush, by creating microsites that alter establish-

ment (Condon & Weisberg, 2016; Germino et al., 2018). We also 
hypothesized that sagebrush abundance declined with distance to 
unburned patches, due to seed limitation (Applestein et al., 2022). 
To quantify this effect, we used distance from wildfire edge as a pre-

dictor (Equation 14, parameters �1 and �2), assuming an exponential 
decline in sagebrush abundance further from wildfire edge. We as-

signed a zero value for the distance- to- edge variable to all unburnt 
cells. To account for residual spatial autocorrelation in sagebrush 
abundance, we included an intrinsic conditional autoregressive 

effect �i at the cell level (Morris et al., 2019). Finally, we assumed 
NTP

i
~ NB

(

�
TP

i
, �
)

, where � is a dispersion parameter and

We use the same model specification for both small and large plants.
We processed the data and model outputs in R version 4.2.2 (R Core 

Team, 2021). We fit models using Markov- Chain Monte Carlo simulation 
in ‘NIMBLE’ package in R version 4.1.1 (de Valpine et al., 2017) employing 
regularizing priors: � ,� ∼ N(0,0.25I) and ecologically informed priors on 
the distance- dependent wildfire edge effect, �1 ∼ Half − normal(0, 1) 

and �2 ∼ Gamma(3, 0.58) based on previous estimates of sagebrush 
seed dispersal (Applestein et al., 2022). Each simulation consisted of 8 
chains of 140,000 iterations, where 20,000 were discarded as burn- in, 
and the remainder were thinned by 120. We used standard diagnos-

tics and visually inspected trace- plots to assess mixing and convergence 
(Brooks & Gelman, 1998). We used ‘tidyverse’, ‘terra’, ‘sf’’ and ‘ggspatial’ 
packages for data processing and visualization (Dunnington, 2021; 

Hijmans et al., 2022; Pebesma, 2018; Wickham et al., 2019) and 
‘MCMCvis’ for model post- processing (Youngflesh, 2018).

3  |  RESULTS

Simulation confirmed the proposed models were identifiable and es-

timator performance generally improved with increased ground sam-

pling. Futher details are in the Supporting Information (Appendix S1 

and Figures S1–S6 therein).

3.1  |  Observation errors: False negatives

Detection parameters varied among sites and between the two size 
classes (Figures 2 and 3). For ‘adults’, the average probability of de-

tection across all sites was 0.63 (95% CI: 0.46, 0.84), with site- level 
detection probabilities 

(

ps
)

 ranging from 0.47 (95% CI: 0.44, 0.50) 
to 0.82 (95% CI: 0.75, 0.88). ‘Juvenile’ detection probabilities were 
much lower, with an average of 0.13 (95% CI: 0.02, 0.32) and ranged 
across sites from 0.03 (95% CI: 0.02, 0.03) to 0.30 (95% CI: 0.26, 
0.35). Juvenile and adult detection probabilities increased with 
greater overall plant canopy height, and adult detection probability 
was positively associated with segmentation area and negatively as-

sociated with wind speed (Figure 2).

3.2  |  Observation errors: False positives

Posterior simulations predicted an average of 0.04 (95% CI: 0.004, 
0.37) and 0.06 (95% CI: 0.02, 0.45) false positive adult and juvenile 
false positive detections per m−2, respectively. Overall, topographic 
covariates each affected the rates of FP detections (Figure 3), al-
though we interpret results cautiously because post- hoc assessment 
suggests mediocre fit for this process (Figure S7).

(13)[cTP
j

|||
NTP
j
, ps[j]

]
∼ Binomial

(
NTP
j
, ps[j]

)

(14)

logit
(

ps
)

= �0 + �1 Wind_maxs + �2 Height_avgs + �2 Area_segments

(15)log
(

�FP
i

)

= �FP
0

+ �FP
1
TRIi + �FP

2
TPIi + �FP

3
HLIi

(16)log
(

�TP
i

)

= X i�
TP + �1exp

(

− dist2
i
∗�2

)

+ �i; i ⊇ {j, k}
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3.3  |  Abundance effects

Mean predicted abundance across cells was 0.32 plants m−2 (95% 
CI: <0.01, 1.76) for adult and 1.67 (95% CI: <0.01, 7.96). Terrain 
roughness was positively associated with both juvenile and adult 
abundance and the rate of false positive errors for each size class. 
Topographic position index was positively associated with true 

abundance for the juvenile size class but had an uncertain effect 
on true abundance of adult plants. Although heat load index was 
negatively associated with FP detections for both juvenile and adult 
plants, it was positively associated with abundance of adult plants.

The effect of distance to wildfire edge manifested over a larger 
range with a shallower decline for the juvenile size class but had 
higher uncertainty (Figure 4). Adult plants were effectively absent 

F I G U R E  2  The estimated detection probabilities of sagebrush from high- resolution unmanned aircraft systems imagery across 10 sites in 
SW Idaho, USA (a) and factors explaining detection variability across sites (b). Points indicate mean parameter estimates, and the error bars 
correspond to 95% credibility intervals. Colour of points indicates size class: Blue points are adults and green points are juveniles. The effect 
size (right x- axis) is shown on the logit scale relative to the mean detection by size class, indicated by zero.

F I G U R E  3  The effect of surface 
topography on the abundance of 
sagebrush (a) and false positive detections 
(b) from unmanned aircraft systems 
imagery across 10 sites in SW Idaho, USA. 
The variables (y- axis) summarize the effect 
of TRI (topographic roughness index), TPI 
(topographic position index), and HLI (heat 
load index) derived from Digital Terrain 
Models (DTM) at 5 m resolution.
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100 m within the wildfire burn scar, while the expected density for 
juvenile plants was 0.35 m−2 at the same distance.

3.4  |  Goodness of fit

Posterior predictions suggested agreement between observed 
and predicted false positive errors (mean absolute error estimates 
of 0.07 and 0.14 false positive detections m−2 for the adult and ju-

venile classes, respectively; Figure S7), although overall fit and the 
coverage of predictive intervals suggested room for improvement. 
In contrast, posterior predictions of plant abundance within ground- 
validated cells and well as the number of detected features in cells 
without ground- validation exhibited broader uncertainty, but the 
uncertainty appeared better calibrated and predictive fit appeared 
stronger (Figures S8 and S9). While we suggest that estimates of 
false positive error parameters should be interpreted cautiously 
(the effect uncertainty presented is likely overconfident), we believe 
inference about drivers of plant abundance and abundance predic-

tions is more robust.

3.5  |  Abundance estimates

Overall, juvenile plants were more abundant than adults, with esti-
mates of >150,000 juvenile and >30,000 adult plants in burnt areas 
averaged across our 10 sites (Table S1, Figure 5). The variation in av-

erage density between sites was also substantially greater for juve-

niles than for adults (Table S2). Compared to model- based estimates 
of abundance, raw OBIA counts were generally negatively biased 
(Table S4). Across all sites and size- classes, <50% of the OBIA counts 
were within the 95% CI of the predicted site- level abundance, with 
counts at 4/10 sites for adult and 7/10 for juvenile size class falling 

beneath the lower 95% CI. As previous posterior predictive results 
suggest abundance estimates fit reasonably well and uncertainty in-

tervals were reasonably well- calibrated, it appears that raw counts 
of OBIA classifications (even with pre- processing) provided poor es-

timates of sagebrush abundance.

4  |  DISCUSSION

Our purpose here was to: (1) develop an approach to estimate plant 
abundance in high- resolution imagery accounting for both false 
negative and false positive observation errors, (2) gain insights into 
potential drivers of spatial variation in sagebrush abundance and (3) 
initially assess the magnitude of these observation errors within sim-

ilar applications and potential factors moderating their magnitude. 
Scalable and spatially contiguous estimates of plant species abun-

dance derived from high- resolution imagery have direct applica-

tion for landscape- level restoration and conservation efforts (Arkle 
et al., 2022) and provide a starting point for spatial models of plant 
population dynamics (Kellner & Hubbell, 2018). However, harness-

ing imagery to achieve these objectives will require grappling with 
observation errors. In our application, counts from an object- based 
image analysis that were pre- processed to reduce false positive er-
rors failed to detect more than 1/3 of plants observed on the ground, 
and roughly 19% of plants detected via aerial imagery in a typical cell 
were still false positives. Our approach provides a means to account 
for biases associated with these errors and account for detection 
uncertainty when estimating abundance and its environmental asso-

ciations. Although our approach requires auxiliary ground data, this 
is commonly collected in UAS or other remote sensing campaigns. 
Indeed, the general approach is transferable to any type of remotely 
sensed data where distinguishing individual plant crowns is possi-
ble. This includes aerial lidar (Barber et al., 2022) and high- resolution 

F I G U R E  4  The spatial effect of a wildfire edge on the abundance of sagebrush in partially burnt areas across 10 sites in SW Idaho, USA. 
The y- axis indicates the marginal effect of unburnt vegetation relative to the corresponding means for the two size classes. The left panel (a) 
shows the predicted effect of unburnt vegetation on the average expected count. The right panel (b) shows the same effect using posterior 
prediction to simulate counts. Thick lines depict means and shadowed regions indicate the central 95% CI of the predicted effect.
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satellite data (Liu et al., 2023), although application to different data- 
sources will likely require identifying different covariates for obser-
vation errors (e.g. changing the terms in Equation 13–16).

4.1  |  Drivers of variation in abundance and 
observation errors

Our approach reduces the frailty associated with high- resolution 
imagery efforts while retaining its advantages. Sparse but eco-

logically important areas of recruitment in post- fire landscapes 
are difficult to reliably delineate without the data volume and 
spatial coverage provided by remote sensing (Ziegenhagen & 
Miller, 2009). We found pronounced spatial variability in the 
abundance of smaller (likely younger) plants: >90% of ground- 
sampled plots contained zero recruits but some had as many as 
17.4 recruits m−2. Proximity to unburnt locations where adult seed 
sources remain prevalent was a useful predictor of sagebrush re-

cruit abundance. Associations between undisturbed vegetation 
and recruitment are both crucial for forecasts of natural regenera-

tion (Barber et al., 2022) and difficult to determine with patchy 
in- situ sampling (Applestein et al., 2022), and contiguous (‘wall to 
wall’) coverage provided by aerial imagery data can help resolve 

these issues. Spatial patterns of juvenile and adult plant abun-

dance here are consistent with an expanding wave of natural re-

generation, with juvenile plants more abundant deeper within the 
burn footprint.

Understanding abundance drivers is often of equal interest to 
estimating population size. Here, we used a structure- from- motion 
algorithm to estimate fine- scale differences in relative topography, 
topographic roughness, topographic position and heat load. Of these, 
the topographic roughness index had the strongest effect on both 
adult and juvenile abundance. Microtopographic variation captured 
by this index may represent differences in soil moisture, crucial for 
shrub demography in semi- arid ecosystems (Germino et al., 2018). 
In contrast, topographic position index, which represents whether 
a point is higher or lower than the surrounding landscape, had a 
positive effect on juvenile abundance, but an uncertain effect on 
adult abundance. Heat load index showed the reverse pattern: a 
positive effect for adults, but not juveniles. Repeat UAS flights to 
quantify individual plant growth and survival (e.g. Olsoy et al., 2024) 
may advance our understanding of stage- structured differences in 
abundance.

Several factors appeared to influence variation in observation 
errors. False- negative errors were more pronounced when vege-

tation was shorter on average, imagery was collected under windy 

F I G U R E  5  Predictive maps of sagebrush abundance within a single landscape (see aerial image in Figure 1). Top row shows model 
predictions of true abundance. The bottom row shows the uncertainty (the standard deviation of the posterior distribution). Cells with 
SD = 0 represent cells where field- validated counts occurred (under the assumption that all plants were detected). The north–south white 
line indicates the boundary of a wildfire that occurred 26 years before the data collection east of the line, with adults more abundant in the 
unburnt section (west) and recruits more abundant near the edge of the burn (east).
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flight conditions and when more conservative segmentation param-

eters were employed within the OBIA. False- positive errors were 
impacted by environmental variation, with topographic roughness 
having the strongest (and positive) estimated effect. As our data 
processing sought to limit misclassification, it is not surprising that 
plant abundance was also greater in areas with rougher topography 
as it suggests most false positive errors arose from double counting. 
Continued application will improve understanding of the factors 
that affect detection error associated with plants in UAS imagery 
and as it has for other remote sensing applications (e.g. Hofmeester 
et al., 2019). While our application assumed that false- negative 
error was predominantly related to site- level factors and false- 
positive error was related to finer- grained environmental variation, 
we expect each process is impacted by sampling and environmental 
considerations. For example, it seems likely—given relatively poor 
predictive fit to false positive counts—that factors we assumed im-

pacted false negative error only, such as segmentation parameters, 
play an important role in the false positive process, too. A practi-
cal benefit is that our model makes optimizing the segmentation 
parameters somewhat less important: rather than needing to tune 
these to make the immediate OBIA output as accurate as possible, 
one can use the statistical model to account for the (inevitable) er-
rors that arise during segmentation.

4.2  |  Contextualizing and improving the model

Our approach modifies previous models for binary data with false 
negative and positive error and a binary state variable at a set of 
replicate units (Chambert et al., 2015; Miller et al., 2011) or binary 
data and varying state variables (Clare et al., 2021) to address simi-
lar issues with count data and a count state variable. We assume 
ground- validation at the level of spatial units (i.e. the unit is exhaus-

tively searched for individuals). Validation could instead focus on a 
sub- set of putative individuals within units, in which case Ni is never 
observed, but can still be inferred by considering further processes 
(e.g. equation 7 in Doser et al., 2021). Consistent with these afore-

mentioned works, we lump misclassification and double- counting 
errors into an omnibus false positive error. It may be beneficial to 
differentiate these (Clement et al., 2022; Conn et al., 2014; Spiers 
et al., 2022; Wright et al., 2020), although this may require ground 
sampling to partially enumerate and map non- target objects (rocks, 
other plant species) and may increase field- time. Such data were not 
available for our application, although we believe more false positives 
in our application arose from double counting errors than misclassifi-
cation due to data pre- processing decisions (see Appendix S2).

The two models we present differ in that Scenario 1 assumes the 
ground data lacks any observation error and Scenario 2 assumes the 
ground data may exhibit false- negative error. Although our appli-
cation follows Scenario 1 due to the available data, ground surveys 
may also be imperfect (Chen et al., 2013; Perret et al., 2023). Thus, 
while we expect that expect ground- based counts will typically 
be more accurate than counts from high- resolution imagery—and 

that Scenario 1 will improve estimates relative to using raw counts 
from high- resolution imagery—we recommend that future applica-

tions employ Scenario 2. Both models assume individuals detected 
on the ground and via the air can be reconciled. The assumption is 
more important for Scenario 2, but we believe it is reasonably met 
when locations of individuals detected on the ground are mapped 
with high accuracy (e.g. the survey- grade GPS used here has <3 cm 
horizontal error on average), and the high- resolution imagery is 
georeferenced with high precision. If individual reconciliation 
proves challenging, there are number of other ways to collect aux-

iliary data that might either relax the need to reconcile individuals 
(independent replicated counts following Royle, 2004) or leverage 
similar spatial location and other individual characteristics (size, 
spectral characteristics) to probabilistically reconcile individuals 
(Augustine et al., 2020).

Because Scenario 2 invokes a capture- recapture design for 
ground data, there are further opportunities for improvement be-

yond accounting for false negative error in the field. Our results 
indicate that aerial false negative error is associated with individual 
size. Rather than split detected objects into size groups, capture- 
recapture approaches employing data augmentation or simi-
lar techniques allow variation in detection to be associated with 
individual- level predictors (Royle, 2009). Similarly, double- counting 
due to segmentation error also seems more likely for larger individ-

uals, and the rate with which individual plants are ‘correctly’ de-

tected (but also double counted) could be posed as increasing with 
size (extending Clement et al., 2022). Many users may wish to use 
machine learning scores and additional spectral information to help 
distinguish between target and non- target objects as we did here, 
even if misclassification and double- counting are not distinguished. 
Rather than use pre- processing to alter the input to a subsequent 
statistical model, one could ‘couple’ the two by treating machine 
learning scores as individual level covariates that influence the 
probability that a detected object is a target object or non- target 
object (Kéry & Royle, 2020; Rhinehart et al., 2022). This may fur-
ther reduce bias and better account for uncertainty associated with 
imperfect machine learning scores used for pre- processing.

Although our application focuses on two closed populations with 
different stage/size attributes assumed to be independent, exten-

sions focusing on open populations or with explicit dependencies 
between stage- structured abundance in space or time are relatively 
straightforward (Clare et al., 2016; Dail & Madsen, 2011; Hostetler 
& Chandler, 2015; Zipkin et al., 2014). Such extensions might im-

prove insights into the processes structuring population patterns, 
population change and limitations to natural regeneration (Paniw 
et al., 2023).

4.3  |  Summary

Spatially explicit and contiguous estimates of plant abundance 
are critical for landscape- level understanding of population vari-
ability and practical management (Gurevitch et al., 2016; Shriver 
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et al., 2019; Young et al., 2022). However, our results demonstrate 
that studies leveraging remotely sensed data and segmenta-

tion algorithms to achieve this goal must contend with substantial 
observation error that compromises population inference even 
if using post- hoc classification algorithms to limit errors. Issues 
arising from observation errors have been long recognized in 
wildlife ecology and more recently both in plant ecology (Chen 
et al., 2013) and remote sensing applications focused on land sur-
face attributes (Veran et al., 2012). High- resolution imagery has 
opened new frontiers into studying plant distributions and demog-

raphy, and we urge investigators pursuing these questions to be 
conscientious of such errors. We hope the framework here pro-

vides a useful starting point.
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