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Abstract

Woven fabrics play an essential role in everyday textiles for clothing/sportswear, water filtration,

retaining walls, and reinforcements in stiff composites for lightweight structures in aerospace, sporting,

automotive, and marine industries. Several possible weave architectures (combinations of weave patterns

and material choices) present a challenging question about how they could influence the physical and

mechanical properties of woven fabrics and reinforced structures. This paper presents a novel Physics-

Constrained Neural Network (PCNN) to predict the mechanical properties (like modulus) of weave

architectures and the inverse problem of predicting pattern/material sequence for a design/target

modulus value. The inverse problem is particularly challenging as it usually requires many iterations

to find the appropriate architecture using traditional optimization approaches. We show that the

proposed PCNN can more accurately predict weave architecture for the desired modulus than several

baseline models considered. We present a feature-based optimization strategy to improve predictions

using features in the Grey Level Co-occurrence Matrix space. We combine PCNN with feature-based

optimization to discover near-optimal weave architectures and facilitate the initial design of weave

architecture. The proposed frameworks will primarily enable the woven composite analysis and

optimization process and be a starting point to introduce knowledge-guided neural networks into the

complex structural analysis.

Keywords: Machine Learning, Weave Architecture, Physics-Constrained Neural Network, GLCM,

Finite Element Analysis

1. Introduction1

Woven fabric, a textile material, is formed by weaving or interlacing warp and weft fiber bundles2

in the orthogonal directions. Woven fabric has a wide range of applications, from everyday textiles3

for clothing and fashion to reinforcements in stiff composites for lightweight structures like aerospace,4

sporting, automotive, and marine industries [1, 2, 3, 4]. Computer-controlled digital looms have5

revolutionized the textile industry by offering a level of precision and flexibility that was previously6

unimaginable. These advanced looms allow for intricate and complex designs to be woven with ease,7

enabling the creation of technical fabrics that were once difficult or even impossible to produce. These8

digitally controlled systems enable designers to experiment with patterns and materials in real time,9

leading to innovative and custom fabric designs. This is particularly valuable for specialized applications10

in industries such as aerospace, automotive, and fashion. Possible combinations of weave patterns and11

choices of materials for the warp/weft fiber bundles present a promising yet challenging question about12

how they could influence corresponding physical and mechanical properties. Plain, twill, and satin are13

the most common uniform weave patterns. The mechanical properties of woven fabric depend primarily14
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on the weave patterns and fiber properties. Although these common weave patterns have been studied15

in detail for their stiffening and strengthening capabilities, there is a lack of understanding of the16

influence of non-traditional or non-uniform patterns and multiple fiber materials on these properties.17

To that end, we present a novel Physics-Constrained Neural Network (PCNN) to predict the18

mechanical properties like the modulus of weave architectures (weave pattern, weave material sequence)19

and the inverse problem of predicting pattern/material sequence for a design/target modulus value.20

Though these frameworks can be applied to any woven fabric, we consider woven composites as our21

case study to develop and demonstrate their phenomenal advantage.22

Woven composites used for structural applications are stiff composites typically comprising woven23

fabrics with high-strength fibers like Carbon, glass, or Aramid embedded within a matrix material to24

enhance structural integrity and mechanical properties. Polymers, ceramics, or metals are commonly25

used as the matrix material in these composites. Polymers are a popular choice among these materials26

due to their advantages, which include versatility, cost-effectiveness, chemical and corrosion resistance,27

etc. These composites have drawn significant interest in recent years due to their tunable mechanical28

properties, high strength-to-weight ratio, high production rate, and structural durability[5]. To better29

understand woven composites, many researchers have been focusing on exploring the mechanical30

properties. Research to find woven composites’ mechanical properties largely relies on analytical31

representation or numerical analysis like Finite Element Analysis (FEA). Researchers first focus on the32

analytical representations. Naik et al.[6] proposed a shape function to define the woven fabric geometry33

by considering the actual strand cross-section geometry, the possible gap between adjacent strands, and34

the undulation and continuity of strands along the warp and weft directions. Jiang et al.[7] presented a35

three-dimensional representative volume-element model to study the micromechanical behavior of woven36

fabric composites; the model displayed a good agreement with the published experimental. Moreover,37

the relationship between geometric parameters and the macromechanical behavior of the composites38

could be obtained from the proposed model. Khan et al.[8] proposed a simplified mathematical39

micromechanics model for calculating the mechanical properties of plain weave composites using FEA.40

The proposed model considered geometry close to the actual fabric by utilizing geometric parameters41

like yarn undulations and interactions between warp and weft tows. Although the analytical approach42

is computationally efficient, it cannot accurately represent the model’s complexity and mechanical43

responses. Thus, several researchers focus on utilizing FEA to analyze the woven composites numerically.44

Ishikawa et al.[9] conduct the one-dimensional micromechanical analysis on the woven composites to45

derive the upper and lower bounds of stiffness and compliance constants. The result is further validated46

with 2D FEA. Whitcomb et al.[10, 11, 12] utilize FEA to analyze the three-dimensional stress of plain47

woven composites and the boundary effect. Gowayed et al.[13] presented different types of fiber and48

fiber arrangements in fiber-reinforced polymer woven fabrics. The impact of fiber assembling into yarns49

and fabrics is also discussed in the paper. Dong et al.[14] utilize experimental and Finite Element50

analysis to find the plain weave composites’ thermal conductivity and further compare the conductive51

behavior with unidirectional lamina. These methods have shown the power of FEA in analyzing woven52

composite models by including much more geometric complexity than the analytical approach. However,53

using FEA to explore the mechanical properties is time-consuming as each woven model needs to be54

solved numerically until convergence. Moreover, computational cost is even higher when dealing with55

woven composites optimization since there is a large design flexibility for the weave pattern and the56

2



choice of materials. Thus, these limitations of FEA have required a more efficient and convenient way to57

understand woven composites, which has driven researchers to utilize Machine Learning for composite58

material prediction and optimization-related problems.59

The emergence of Machine Learning (ML) methods research largely facilitates understanding compos-60

ite materials and predicting the corresponding mechanical properties. Among existing ML algorithms,61

Deep Convolutional Neural Network[15] (DCNN) and Generative Adversarial Network[16] (GAN) are62

the most widely used. DCNN is a class of deep neural networks consisting of several convolutional,63

pooling, and fully connected layers. DCNN has been widely used in different fields, including image64

classification[15], recommender system[17], image segmentation[18], and natural language processing[19].65

GAN is developed similarly to game theory, where Nash equilibrium is reached when the model converges.66

There is a generator and a discriminator Network in GAN. GAN has been used in different fields,67

including unsupervised learning[20, 21], semi-supervised learning[22], fully supervised learning[23], and68

reinforcement learning[24]. Regarding ML’s application in composite materials analysis, Wei et al.[25]69

demonstrate that machine learning methods like support vector regression, Gaussian process regression,70

and convolutional neural network (CNN) are useful tools to predict the effective thermal conductivities71

of composite materials and porous media. Chen et al.[26] give an overview of how different Machine72

Learning algorithms can accelerate composite materials research, including several different regression73

models, neural networks (especially CNN), and the Gaussian process. Feng et al.[27] propose a Deep74

Learning method to predict composite micromechanical models’ stress distribution contours using75

a Difference-based Neural Network, where the neural network focuses on predicting the differences76

to a reference sample. Bang et al.[28] propose a framework to identify the defects within composite77

materials by integrating thermo-graphic images of composite with deep learning. Liu et al.[29] propose78

a new failure criterion for fiber tows in woven composites by combining mechanics of structure genome79

and a deep neural network model. Nardi et al.[30] utilize the artificial neural network to predict the80

thermoforming process of thermoplastic composites. The authors focus on the glass fiber-reinforced81

polyetherimide woven composite and discuss the essential features needed for accurate predictions of82

the temperature fields over the thermoforming process. The authors further discuss the potentiality of83

using Machine Learning to determine the optimal range of the process parameters. Sepasdar et al.[31]84

propose the modified U-Net network to predict the damage and failure in microstructure-dependent85

composites. Gu et al.[32] use ML to analyze the strength and toughness of 2D checkerboard models for86

2D printed bi-material composites. The authors used a single-layer convolutional neural network with87

two binary classifiers. Further, Abueidda et al.[33] also focus on a 2D checkerboard model and utilized88

a genetic algorithm to optimize a checkerboard composite pattern for maximum strength and toughness89

based on different volume fractions. Bakar et al.[34] also utilized the genetic algorithm and parametric90

study to optimize the elastic modulus of the weave pattern. Wang et al.[35] also utilized the genetic91

algorithm-based method to increase the tensile strength of triaxial weave fabrics. Besides evolutionary92

algorithms-based optimization like genetic algorithm, there are other different types of optimization93

methods applied to woven composites or more general composite materials including gradient-based94

optimization[36], regression-based optimization[37], particle swarm optimization[38] and artificial bee95

colony algorithm[39]. These studies have proven the potentiality of accelerating design and analysis of96

woven composites with ML.97

Although insightful, these frameworks are limited to predicting material properties for a given98
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pattern or optimizing through heuristic searching, which is relatively easy to handle. On the contrary,99

the ability to solve the inverse design problem, which predicts patterns for target mechanical properties,100

can be more challenging and beneficial. Within woven composites, it could save a massive amount101

of time otherwise invested in testing weave design iterations. Feng et al.[40] considered a 2D woven102

composite with a single material and proposed the GAN-based framework for the inverse design problem.103

The research has shown the potentiality of utilizing neural networks with a relatively decent error104

rate of around 7%. Similarly, Chen et al.[41] consider the inverse design problem of the checkerboard105

composites using generative inverse design networks called GIDN. GIDN consists of a predictor and a106

designer, like the idea of GAN. The predictor is first trained with training data, and then trained weights107

in the predictor are directly assigned to the designer as non-trainable parameters. The designer further108

provides an optimized design from the initial Gaussian distributed design. GIDN has outperformed109

conventional gradient-based topology optimization and gradient-free algorithms for stiff-soft bi-material110

composites. This method brings promising ideas to optimize the composites, while this GAN-based111

approach does not build the connection between the mechanical properties of composites to its geometry.112

Also, neural network-based optimization is hard to understand in the physical space.113

In summary, woven composites offer significant advantages and design flexibility, given the choice of114

weaving pattern and yarn materials. However, this flexibility also suggests that there are potentially115

unexplored properties of woven composites that remain to be fully understood. Effective tools are,116

therefore, essential for accurately exploring these properties and optimizing composite structures. This117

paper addresses two key challenges related to woven composites to facilitate their faster and more118

efficient design: (1) How can we build a bi-directional bridge between woven composite architectures119

and their mechanical properties? (2) How to optimize the woven composites’ mechanical properties120

using ’physically meaningful’ features, so we can optimize the woven composites’ properties by directly121

manipulating physical and geometric parameters?122

2. Overview123

This section presents an overview of the overall targets of the research presented in this paper and124

the general Machine Learning approaches that we use for woven composites prediction and optimization.125

2.1. Research Tasks126

As mentioned in the previous section, we focus on solving two problems related to understanding the127

mechanical properties of woven composites and optimizing the woven architecture to achieve improved128

overall in-plane modulus. In this work, we particularly consider 2D woven composites, as they present129

a more manageable level of complexity compared to their 3D woven composites [42, 43]. This allows130

for less training data and facilitates more controlled analysis. This choice is also motivated by the131

fact that 2D woven composites have been studied more extensively by prior researchers than their 3D132

counterparts, and they serve as a suitable starting point for developing and validating our proposed133

framework. Nonetheless, the framework and the checkerboard representation presented in this work134

also apply to 3D woven composites. Woven composite architectures can be represented by different135

combinations of weave patterns and material sequences. For example, a 6-by-6 woven composite model136

will have 236 different patterns and 2∗n6 different material sequences, where n is the number of materials137

to choose from. Thus, it is essential to efficiently and accurately obtain the mechanical properties of138
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different woven composite architectures to determine the optimal architecture suitable for the problem139

of interest. Besides understanding the mechanical behavior of woven composites, optimization is also140

critical to minimizing the structure’s stresses, weight, or compliance for a given amount of material and141

boundary conditions. Through optimization, we want to determine the most advantageous structure or142

material distribution that results in the highest mechanical properties for the design requirement.143

In this paper, we consider two different woven composite models: single-material and bi-material144

woven composites. Single-material woven composites consist of yarns made of one material for the whole145

model, whereas bi-material woven composites have different yarns made of two materials. Specifically,146

we will consider three tasks (an overview is represented in Figure 1) as follows:147

1. Task 1: Establish the connection between woven composite architectures (pattern + material)148

and corresponding in-plane moduli. We will focus on the following tasks: (1) Forward Direction149

Prediction (FDP): predicting from woven composite architecture to the corresponding modulus.150

(2) Backward Direction Prediction (BDP): predicting from woven modulus to its architecture.151

We decouple the BDP problem into two sub-problems: prediction from weave in-plane modulus152

and material sequence to its pattern (named BDPa) and prediction from weave in-plane modulus153

and pattern to its material sequence (named BDPb).154

2. Task 2: Propose a feature-based statistical representation of the woven composites. Specifically,155

we propose representing the weave pattern using the Gray Level Co-occurrence Matrix (GLCM).156

We prove the uniqueness of GLCM statistical features from a binary matrix and how each statistical157

feature is related to the weave pattern feature in the physical space. We further represent the weave158

material sequence with features from the physical space. Later, we conduct statistical analysis159

to understand how each feature is correlated with the overall moduli (Eall = E1 + E2 +G12) of160

woven composites.161

3. Task 3: Propose the feature-based statistical optimization strategy to find the woven composite162

architecture with the highest overall moduli and discover the near-optimal design using the163

methods developed in Task 1 and Task 2. From the statistical analysis, we can determine whether164

each statistical feature is positively or negatively correlated with the woven composite’s overall165

in-plane modulus and further optimize the choice of weave pattern and material sequence based166

on such correlation relationship.167

For Task 1, to solve the FDP problem, we utilize DCNN to extract high-level features from the168

woven composite model and predict the in-plane modulus from its architecture. The BDP problems are169

more challenging than the FDP problems since the in-plane modulus can be sensitive to weave patterns170

and material sequences. Incorrect prediction at a single position in the pattern or material sequence171

could significantly change the in-plane modulus. Moreover, we will show that woven composites with172

different patterns could have similar in-plane modulus. Such similarity forms one-to-many mapping for173

BDP problems. So, a purely data-driven neural network makes it hard to achieve high accuracy in174

BDP problems. To constrain the predictions for BDP problems, a standard way is to combine physics175

knowledge with the neural network. The physics knowledge can be fused with input[27], model[44, 45]176

or loss function like Physics-Informed Neural Network (PINN)[46]. In this study, we combine such an177

idea with transfer learning[47, 48], and then propose the Physics-Constrained Neural Network178

(PCNN). Unlinke problems with well-defined governing equations like PINN, it is nearly impossible179
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Fig. 1: Overview of three Machine Learning tasks: (1) Task 1 builds the bridge between a woven composite and
its physical/mechanical properties. Task 1 is split into Forward Direction Prediction (FDP) and Backward Direction
Prediction (BDP) problems. BDP is further split into BDPa and BDPb, depending on predicting the weave pattern
or material sequence from a given target value of in-plane moduli. (2) Task 2 proposes the feature-based statistical
representation of woven composite for weave pattern and material sequence and describes the relationship between
extracted features and corresponding mechanical/physical properties through statistical analysis. (3) Task 3 proposes the
optimization strategy on a woven composite to achieve improved physical/mechanical properties (like higher strength) and
discovers the near-optimal woven composite design using the methods developed in Tasks 1 and 2. (Here, ’near-optimal’
refers to an improved woven composite design but might not guarantee to be the global optimal design.)

to describe the relationship between woven composite geometry and its mechanical properties with180

several equations. Thus, our PCNN embeds the existing physics knowledge from transfer learning as181

a regularization term in the loss function to constrain the inverse design process of neural networks.182

Specifically, PCNN will first utilize a similar structure as deep convolutional Autoencoder[49] to extract183

high-level features from the input data and make predictions based on these extracted features. Then,184

the PCNN will simultaneously embed our physics knowledge in the prediction layer and contribute185

certain losses to the loss function. Here, the physics knowledge refers to the relationship between woven186

composite architecture (pattern + material sequence) and its corresponding modulus, which comes187

from the trained DCNN in the FDP problem. We further validated that our proposed PCNN could188

enhance prediction accuracy compared to many widely used machine learning frameworks for BDPa189

and BDPb problems.190

For Task 2, we consider the feature-based statistical representation of weave patterns, which191

can be represented as a checkerboard model and treated as a type of texture. Then, we extract192

texture features from the weave pattern. Texture features describe the spatial distribution of pixels193

(cells), which reflect objects’ roughness, smoothness, granularity, and randomness. Common texture194

feature extraction methods include statistical, structural, and spectral methods. This paper utilizes195

the statistical method and proposes the GLCM feature-based optimization strategy. GLCM, referring196

to Gray-Level Co-Occurrence Matrix, is a statistical method of examining texture that considers the197

spatial relationship of pixels[50]. The GLCM features characterize an image’s texture by calculating198

how often pairs of pixels with specific values and in a specified spatial relationship occur in an image199

and then extracting statistical measures from the matrix. Since GLCM can measure the texture200

roughness, coarseness, and other properties in one calculation, it has been the primary method to201

describe texture-related methods in the field of medical sciences (CT scans, MRI)[51, 52], landscape202

analysis[53] and image-based defect detection[54]. In this paper, specifically, we use Haralick texture203

6



features[55]. Furthermore, we represent the weave material sequence using the statistical features in204

the physical space. Two vectors can represent the material sequence, and each vector describes the205

material sequence for weft and warp yarns. We consider statistical features directly from the material206

sequence vector, including mean, median, and standard deviation.207

For Task 3, utilizing the statistical features extracted from Task 2, we describe the correlation208

relationship between extracted GLCM-based Haralick features from weave patterns and the corre-209

sponding in-plane modulus of woven composites through statistical analysis to guide weave pattern210

optimization. Similarly, we determine how each statistical feature is correlated with the in-plane211

modulus for weave material sequence optimization and determine the optimal material sequence from212

statistical analysis. Finally, the statistical models based on weave pattern and material sequence can213

be combined to optimize a given woven architecture, which can be further combined with PCNN to214

discover near-optimal woven composite architecture at the initial design stage.215

2.2. Overview of Proposed Machine Learning Framework216

In Figure 2, we present the proposed machine-learning framework for the two tasks considered217

in this paper. First, weave patterns and materials are picked to define each woven composite model218

uniquely. Then, we can calculate the corresponding in-plane modulus through FEA by applying219

boundary conditions. After obtaining the weave pattern, material sequence, and corresponding in-plane220

modulus, we can start the Machine Learning process: (1) For FDP, we design a deep convolutional221

neural network that takes the weave pattern and material sequence as inputs and outputs the in-plane222

modulus. (2) For BDPa, we design the Physics-Constrained Neural Network (PCNN) that takes223

in-plane modulus and material sequence as inputs and predicts the pattern that matches the target224

in-plane modulus. For BDPb, we design another Physics-Constrained Neural Network similar to BDPa,225

which takes the pattern and in-plane modulus as inputs instead and predicts the possible material226

sequence that matches the target in-plane modulus.227

In this paper, we consider single-material and bi-material woven composites. As a constant vector228

can represent the material sequence for the single-material woven composites, it will not serve as input229

to train the Machine Learning framework. On the other hand, for bi-material woven composites, weave230

pattern, material sequence, and corresponding in-plane modulus will be input to train the Machine231

Learning framework.232

Throughout the paper, the machine learning framework is implemented in TensorFlow 2.5.0 and233

trained on NVIDIA GeForce RTX 2080 SUPER with 3072 CUDA cores and 1815 MHz frequency. We234

provide access to our implemented Machine Learning code on our GitHub page, as mentioned in the235

"Data Availability" section at the end of this paper. The GitHub page provides implementations of our236

proposed neural networks, our baseline models for comparison purposes, and the training data used in237

this paper.238

3. Finite Element Method for Training Data Generation239

As introduced in Section 1, woven composites are formed by inter-laced yarns impregnated with a240

resin matrix. The woven composite’s effective mechanical property depends on the considered material’s241

property, the cross-sectional geometry of yarn, and the weave pattern. In this paper, we utilize FEA to242

determine the in-plane modulus of woven composites (E1, E2, G12) based on different combinations243
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Fig. 2: Overview of the proposed Machine Learning framework: (1) Black arrows represent the FEA process, (2)
Red arrows represent the FDP problem, (3) Blue and Brown arrows represent two BDP problems: BDPa and BDPb.
Trapezium blocks are inputs to the Machine Learning framework. Initially, we have weave patterns and material sequences;
then, these models are brought into Finite Element solver ABAQUS[56] to find the corresponding in-plane modulus.
Circular blocks represent different Machine Learning tasks: FDP, BDPa, and BDPb. Square blocks are the predictions for
different Machine Learning tasks. Solid lines before circular blocks represent inputs for the Machine Learning framework,
and dashed lines represent outputs. The solid green line and rounded corner blocks are the optimization modules. We
introduce feature-based optimization for pattern and materials sequence, using GLCM and physical space statistical
features.

of weave patterns and material sequences. We performed FEA on a repeated unit cell (RUC) to244

understand the influence of weave patterns on the composite’s in-plane effective properties. We modeled245

the weave using TexGen [57], where all the geometrical input parameters are listed in Table 1.246

Table 1: Geometrical parameters for finite element modeling
Length L Width W Height H Yarn spacing Yarn height Yarn width

6mm 6mm 0.44mm 1mm 0.2mm 0.8mm

The FEA was divided into two stages: First, we analyzed the influence of the weave pattern for247

single-material woven composites. Second, the same process is extended to bi-material woven composites248

with two different yarn materials, Carbon and Kevlar. The homogenized mechanical properties of249

the fiber bundles embedded in the polymer matrix are shown in Table 2, which were calculated using250

Chamis micro-mechanical model[58]. We assumed the volume fraction of fiber to be 76% in this paper.251

Initially, the TexGen python scripting generates 9000 random weave patterns with carbon fiber yarns252

in woven composites. Later, another 9000 random weave patterns with random hybrid carbon-kevlar253

woven composites were generated. Each geometric model is exported as an input file with linear254

tetrahedron elements and periodic boundary conditions. In this paper, edge forces are applied in255

different directions. The corresponding displacement values were extracted from the applied tensile256

(shear) loading to evaluate the effective in-plane mechanical properties. A detailed explanation of257

boundary condition implementation can be found in Li et al.[59]. After preprocessing, we imported the258

input file into ABAQUS to determine the effective in-plane mechanical properties from the stress and259

displacement field.260

Table 2: Homogenized material properties of fiber yarn embedded in polymer matrix
E1 (GPa) E2 (GPa) E3 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) ν12 ν13 ν23

Carbon yarn 183.1 9.67 9.67 5.66 5.66 3.37 0.23 0.23 0.43
Kevlar yarn 116.03 3.96 3.96 2.45 2.45 1.69 0.35 0.35 0.45

4. Machine Learning Model Inputs261

We will establish the bridge between weave pattern, material sequence, and in-plane modulus (E1,262

E2, and G12) through deep neural networks. To transform these input data to fit the neural network263

8



training, we conduct data pre-processing to convert weave patterns and material sequences into matrices264

and vectors, respectively.265

4.1. Weave Pattern Representation266

The yarn placed along the x-axis is called weft, whereas the yarn along the y-axis is called warp. A267

checkerboard model represents each weave pattern as a matrix with ‘0’ or ‘1’ binary values, where ‘1’268

means warp lies below the weft and ‘0’ means warp lies above the weft. We denote Carbon yarn as269

material ‘0’ and Kevlar yarn as ‘1’ for material sequence. A weave pattern and material sequence for a270

bi-material woven composite are shown in Figure 4. This paper considers a woven composite unit cell271

size of 6-by-6, although others could consider larger unit sizes. So, each model is formed by weaving272

together six warp and six weft yarns, and a 6-by-6 binary value matrix can represent each pattern.273

Such unit cell is periodically repeated in a homogeneous weave pattern to create large woven fabric, as274

shown in Figure 3.275

Fig. 3: Woven composite model with highlighting a corresponding 6x6 repeating unit cell (RUC).

Previously, researchers have studied woven composites and depicted them in a physical manner.276

Ishikawa and Chou [60] proposed a "mosaic model" to analyze the mechanical performance of woven277

composites using analytical approaches. They used a geometrical factor ng to describe the number278

of warps interlaced with a single weft yarn. They also showed that weave patterns with smaller ng279

displayed inferior properties due to a higher number of undulations. Further, the bridging model was280

also proposed to highlight the effect of higher ng on the mechanical performance of woven composites. It281

was shown that weaves with higher ng values will contain straight yarns in the vicinity of the undulated282

region. This "quasi-crossply" area would have higher local moduli values and serve as a bridge between283

the neighboring undulated regions, resulting in higher in-plane moduli for the entire weave structure.284

We have provided a detailed description of the effect of physical factors on the mechanical performance285

of woven composites in Section Supplementary Section A. This work will use these parameters to justify286

the optimized weave patterns obtained from the GLCM optimization module.287

4.2. Weave Material Representation288

Since the material sequence for single-material woven composites will not serve as input to the289

neural network, only bi-material woven composites need the proper representation of their material290

sequences. As mentioned in Section 4.1, the woven composite is formed with six warp and six weft yarns,291

so the material sequence can be represented as two 6-by-1 binary vectors: the first vector represents292

warp materials, and the second vector represents weft materials.293
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Fig. 4: Weave pattern and material sequence representation for a bi-material woven composite

4.3. In-plane Modulus from FEA294

From the outputs of 9000 single-material and 9000 bi-material woven composite models, we obtain295

the distributions of different in-plane modulus (E1, E2, G12). Here we define the Identity Sum (IS) of a296

woven composite to be: IS =
∑n1

i=1

∑n2

j=1 1[Wij=1], where W is the weave pattern matrix, n1 = n2 = 6297

as the pattern matrix is 6-by-6. IS of a model represents the total number of ‘1’ regions within the298

matrix. Figure 5 and Figure 6 show the distribution of different in-plane modulus with respect to299

identity sum for single material and bi-material woven composites. Comparing these two figures, we300

discover that: (1) single-material and bi-material woven composites have similar distribution for tensile301

moduli, E1 and E2; (2) in-plane shear modulus G12 distribution for single-material woven composites302

is more concentrated compared to bi-material woven composites.303

(a) (b) (c)

Fig. 5: In-plane moduli distributions for 9000 single material woven composites

(a) (b) (c)

Fig. 6: In-plane moduli distributions for 9000 bi-material woven composites

4.4. Many-To-One Mapping304

From Figure 5 and Figure 6, we can also observe that woven composites with the same IS could305

have a completely different in-plane modulus. Moreover, our FEA outputs show that different woven306

composite patterns could have similar in-plane moduli values. For example, as shown in Supplementary307

Section B - Figure B.3, although the patterns look entirely different, both single material woven308
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composite models have the same modulus in the vertical direction E1. Such a conclusion can also be309

validated by histogram plots counting numbers of models having the same in-plane modulus component310

E1, E2, or G12 for both single material and bi-material woven composite models. Details of the311

histogram plots and descriptions are shown in Supplementary Section B. This many-to-one mapping312

poses challenges while predicting weave patterns for a given target in-plane modulus (BDP problems),313

which is later addressed within the deep neural network frameworks.314

4.5. Mechanical Properties of Plain Weave Composites Compared to Other Patterns315

Among different patterns typically used in woven composites, plain weave, alternating ’0’ and ’1’316

in its pattern, is the most fundamental weave design in different areas, including aerospace, fashion,317

and furnishing. However, this does not imply that a plain weave will result in the best mechanical318

properties. As shown in Figure 7, we can see that there are various patterns having better modulus in319

both E1 and E2 directions compared to plain weave (orange dot). The behavior can be attributed to320

the plain weave’s lowest value of ng for the plain weave, which is discussed in Section Supplementary321

Section A. The value of ng = 2 leads to a maximum number of undulations in both the horizontal and322

vertical directions, resulting in inferior mechanical properties in both directions. Therefore, it is crucial323

to explore weave patterns that will result in superior mechanical properties than plain weave.324

(a) (b) (c)

Fig. 7: (a) 6-by-6 representation of the plain weave pattern (b) mechanical properties of plain weave versus all 9000
patterns for single material woven composites (the yellow dot denotes the mechanical properties of plain weave and blue
dot denotes the mechanical properties of other weave patterns considered) (c) single material woven composites modulus
clustering based on different ratios, which is defined in Equation 1.

A ratio is defined as shown in Equation 1, where N1s and N0s represent the number of 1s and 0s in325

the pattern. dweave is the dimension of weave, which is 6X6 in this study.326

ratio = max

[
N1s

dweave
,

N0s

dweave

]
(1)

The numbers of models with a ratio higher than 70% and 80% are much smaller compared to the327

total samples. Such class imbalance can influence the neural network’s prediction accuracy for models328

with a high ratio, which is discussed further in Section 6.6.329

4.6. Loss Functions Considered330

This paper considers two types of commonly used loss functions: Mean Squared Error (MSE) and331

Binary Cross-Entropy (BCE). MSE measures how close the predicted value is to the true value. This332

paper uses MSE for in-plane modulus-related predictions, defined as Equation 2.333

MSE(y, ỹ) =
1

3n

n∑
i=1

3∑
j=1

(yij − ỹij)
2 (2)

Where n is the total sample size, ‘3’ means the size of the in-plane modulus vector, yij is the334

predicted value of ith data sample, and jth in-plane modulus. ỹij is the corresponding true value.335

11



MSE can be widely used for different prediction tasks. However, it could be a wrong choice for336

binary classification problems as MSE generally assumes data with normal distribution, while binary337

classification can be viewed as a Bernoulli distribution. Moreover, the MSE function is non-convex for338

binary classification problems using activation functions like the Sigmoid function. Thus, we will use339

BCE defined as Equation 3 for predicting binary woven pattern matrix or binary material sequence340

vector.341

BCE(y, ỹ) = − 1

nm

n∑
i=1

m∑
j=1

ỹij log(yij) + (1− ỹij)log(1− yij) (3)

Similar to the definition of MSE, n is the total sample size, and m is the target size. For example,342

m = 36 when predicting the 6-by-6 weave pattern and m = 12 when predicting the 6-by-2 weave343

material sequence. yij is the predicted value at jth component in ith model and ỹij is the corresponding344

true value.345

5. Deep Neural Network Frameworks346

This section will show the detailed deep neural network frameworks we propose to solve the FDP347

and BDP problems. As briefly mentioned in Section 1, we utilize DCNN to solve the FDP problem,348

and we propose our PCNN to solve the BDPa and BDPb problems.349

5.1. Forward Direction Prediction: Deep Convolutional Neural Network350

For the FDP problem, we developed a Deep Convolutional Neural Network (DCNN), with the351

overall framework shown in Figure 8. Initially, weave patterns and material sequences are fed into352

DCNN as inputs. Then, we will use Convolutional layers with ReLU as the activation function for353

the weave pattern to extract high-level features from the pattern. At the same time, the material354

assignment vector will be expanded by fully connected layers. Then, extracted features from the weave355

pattern and material sequence are concatenated into a new feature vector and further used to predict356

the in-plane modulus through fully connected layers with the ReLU activation function.357

5.2. Backward Direction Prediction: Physics-Constrained Network Framework358

As mentioned in Section 1, the BDP problem is decoupled into two problems: BDPa and BDPb. We359

have shown there exists a many-to-one mapping, which makes BDP problems much more challenging360

to handle than FDP problems. This paper proposes two PCNNs for BDPa and BDPb, respectively.361

Although the two frameworks are slightly different due to different input data, both frameworks are362

developed based on Physics-constrained using the trained DCNN from the FDP problem to constrain363

the prediction. To mitigate potential overfitting, we incorporate standard techniques such as dropout,364

batch normalization, and early stopping in our proposed framework. However, our tests do not show365

significant improvements with dropout and batch normalization, and only marginal gains are observed366

with early stopping. Consequently, these techniques were not included in the final framework. It is367

worth noting that the effectiveness of these methods may vary depending on the specific characteristics368

of different training datasets.369
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Fig. 8: Deep Convolutional Neural Network (DCNN) for FDP: pink blocks are the inputs to the neural network; orange
blocks are convolutional layers with ReLU activation function, and brown blocks are batch-normalization layers following
Convolutional layers; the blue block is the Flatten layer that reshapes the input into a vector; gray blocks are Fully
Connected layers with ReLU activation function; white blocks are the outputs of the framework. The green ball represents
the Concatenation layer. The modules inside the red dashed block are only activated when the material sequence serves
as the input for the bi-material woven composites. The neural network training is based on a stochastic gradient descent
algorithm and minimizes the mean squared error, with a fixed learning rate of 0.001. A comprehensive implementation
can be found in the GitHub link provided in the Data Availability section.

5.2.1. Predicting weave pattern from in-plane modulus and material sequence (BDPa)370

For single-material woven composites, the BDPa problem is to predict the weave pattern directly371

from the given in-plane modulus. In contrast, the problem is extended for bi-material woven composites372

to predict woven patterns from given in-plane modulus and material sequence. The whole framework373

to solve the BDPa problem is shown in Figure 9. In-plane modulus and material sequence in pink374

blocks are the inputs to the framework. The two inputs are expanded through several fully connected375

layers, concatenated into one vector, and brought into the Deconvolutional layers with LeakyReLU.376

The deconvolutional layers will expand the feature vector into its original physical space of 6-by-6.377

Since each weave pattern is a binary matrix, the last Deconvolutional layer uses the Sigmoid activation378

function. To embed our existing knowledge into the prediction and enhance the prediction accuracy,379

we add the trained DCNN from Section 5.1 after the predicted weave pattern and further evaluate the380

prediction’s accuracy in terms of in-plane modulus, as shown in the light green block. Such a trained381

DCNN acts as the regularization term to constrain the neural network prediction, which382

is why the framework is called ’Physics-Constrained’. To improve the prediction accuracy,383

we control the weights of modulus-related loss three times larger than the weights of pattern-related384

loss. For the loss function, the pattern-related loss is calculated based on BCE, and the corresponding385

modulus-related loss is calculated based on MSE.386

5.2.2. Predicting weave material sequence from in-plane modulus and pattern (BDPb)387

Compared to the BDPa problem, the BDPb problem focuses on predicting weave material sequence388

from in-plane modulus and pattern. This framework concentrates only on bi-material woven composites389

as single-material woven composites have a constant material vector, as shown in Figure 10. Weave390

in-plane modulus and pattern serve as inputs to the framework, where the in-plane modulus is passed391

into several fully connected layers with the ReLU activation function. In contrast, the pattern is passed392

into several convolutional layers with ReLU activation function followed by batch normalization. The393
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Fig. 9: Physics-constrained Neural Network framework for BDPa problem: pink blocks are inputs to the framework; gray
blocks are fully connected layers; orange blocks are Deconvolutional layers with LeakyReLU activation function, and
brown blocks are batch-normalization layers following the convolutional layers; white blocks are outputs of the framework;
the red ball is the rounding layer that rounds the predicted probability vector into binary values to get the binary material
vector; the dark green ball is the concatenation layer that concatenates extracted features from in-plane modulus and
material assignment; Light green block refers to the previously trained DCNN framework. The modules inside the red
dashed block and the green dashed arrow are only activated when material assignment serves as the bi-material woven
composites input. The neural network training is based on the Adams optimization algorithm and minimizes the mean
squared error, with a fixed learning rate of 0.001. A comprehensive implementation can be found in the GitHub link
provided in the Data Availability section.

extracted high-level features from the in-plane modulus and pattern are concatenated into a vector394

and passed into several fully connected layers with the ReLU activation function. Since the material395

sequence is a binary vector, the last fully connected layer has the sigmoid activation function. Similar396

to BDPa, to enhance prediction accuracy, we constrain the prediction by adding trained DCNN from397

Section 5.1 after the prediction layer. Similar to the BDPa problem, the weights of modulus-related loss398

are also three times larger than the weights of the material sequence-related loss. For the loss function,399

the material sequence-related loss is calculated based on BCE, and the corresponding modulus-related400

loss is calculated based on MSE.401
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Fig. 10: Physics-constrained Neural Network framework for BDPb problem: pick blocks are inputs to the framework;
gray blocks are fully connected layers with ReLU as activation function; the yellow block is the fully connected layer with
Sigmoid activation function; orange blocks are convolutional layers with ReLU activation function, and brown blocks are
batch-normalization layers following the convolutional layers; white blocks are outputs of the framework; the red ball is
the rounding layer that rounds the predicted probability vector into binary values to get the binary material vector; the
dark green ball is the concatenation layer that concatenates high-level features from in-plane modulus and pattern; light
green block refers to the previously trained DCNN framework. Similar to BDPa PCNN, the neural network training is
based on the Adams optimization algorithm and minimizes the mean squared error, with a fixed learning rate of 0.001. A
comprehensive implementation can be found in the GitHub link provided in the Data Availability section.
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6. Results and Discussion: Task 1 - Relating Woven Composite Architecture and In-Plane402

Moduli403

6.1. Overview of Baseline Models Considered404

In this research, we use 9000 single-material and 9000 bi-material woven composite models, re-405

spectively, to analyze the performance of the proposed Machine Learning frameworks. The data are406

randomly split into a 60% training set, 20% cross-validation set, and 20% testing set. To control the407

random split method for comparison, we control the random split seed such that different Machine408

Learning algorithms are evaluated based on the same data set.409

To evaluate the Machine Learning framework’s performance for the FDP problem, we directly410

assess the in-plane modulus prediction in terms of mean absolute percentage error (MAPE) defined in411

Equation 4.412

MAPE =
1

n

n∑
t=1

|At − Ft

At
| (4)

At is the actual value, Ft is the predicted value, and n is the total sample size. On the other413

hand, since BDP problems are more complex than FDP problems, we will evaluate the prediction414

error based on MAPE and compare our PCNN performance with other popular baseline models.415

There are three baseline models considered in this paper: (1) Woven-Decoder, which utilizes the416

Autoencoder structure[49]. Autoencoder framework has been widely used for image-based prediction,417

like predicting the stress contours[27, 31, 61]. The detailed framework of the Woven-Decoder is shown in418

Section Supplementary Section C.1. (2) Woven-GAN, which is developed based on the GAN framework.419

Here we represent the generator using the Woven-Decoder structure while adding the discriminator420

after the output to classify the output into a binary value. Such binary values will tell if the generator’s421

result is realistic. The GAN-based framework has been used to predict the checkerboard pattern of422

bi-material composites or to predict the stress distribution contours of different shapes of cantilever423

beams under certain loading conditions[41, 62]. The GAN and Woven-GAN setup details are shown in424

Section Supplementary Section C.2. (3) Woven-GA, developed based on Genetic Algorithm[63]. The425

genetic algorithm is a search heuristic from the theory of natural evolution. It generates new generations426

through crossover and mutations based on a user-defined fitness function by starting from randomly427

chosen first generations. A genetic algorithm has been used to determine the complex geometry from428

targeted mechanical properties, like finding the bi-material composite model designs with the highest429

strength[33]. The Woven-GA structure and parameter setup details are shown in Section Supplementary430

Section C.3. Although BDPa and BDPb problems have different prediction targets, both problems431

target finding the best pair of patterns and material sequences to match the target modulus. So both432

BDPa and BDPb are evaluated based on the MAPE between the target in-plane modulus and the433

predicted architecture’s in-plane modulus.434

6.2. Forward Direction Predictions using DCNN435

As mentioned in Section 6.1, the performance of the single-material woven composites is evaluated436

based on the MAPE values. Since FDP problem aims to predict the in-plane modulus, the MAPE is437

calculated based on E1, E2, and G12, respectively. We will validate the neural network’s performance438

on single-material and bi-material woven composites separately.439

Table 3 shows the prediction results of the single-material and bi-material woven composites. We440

see that for single material woven composites, our proposed DCNN’s prediction error for E1 and E2441
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are below 2%. The prediction error for G12 is low as shear modulus does not vary much for single442

material woven composites, as shown in Figure 5. For bi-material woven composites, as each in-plane443

modulus is more distributed for different models, the prediction error of our proposed DCNN will444

increase marginally. Our proposed DCNN could achieve prediction error at around 4% for E1 and E2445

and below 2% for G12. Since woven composites in-plane modulus ranges from around 15GPa ∼ 45GPa,446

the average error is around 0.1 ∼ 0.2GPa. These results indicate that our proposed DCNN effectively447

represents the relationship between woven architecture and its in-plane modulus.448

Table 3: FDP prediction error rate
Error Rate E1 E2 G12

Single-Material Woven 1.86% 1.89% 0.25%
Bi-Material Woven 3.81% 3.88% 0.20%

6.3. Backward Direction Predictions using PCNN449

As discussed, the BDP problem is split into two sub-problems: BDPa and BDPb. To evaluate the450

performance of our proposed PCNN, we consider the prediction error of BDPa and BDPb problems for451

single material and bi-material woven composites separately with different baseline algorithms.452

Single material woven composites prediction results. For single-material woven composites, we compare453

our proposed Machine Learning framework with three baseline models described in Section 6.1. To454

compare the prediction between different Machine Learning frameworks, we compare the prediction455

accuracy and duration, as shown in Table 4. From the results, we show that:456

1. Woven-GA gives the highest prediction accuracy for all models. However, since it is a heuristic457

searching algorithm, it will take more than one hour for each prediction, and such searching needs458

to be repeated every time we use it. Also, the performance of heuristic searching largely depends459

on the data sample. Thus Woven-GA is a costly method and will not be considered.460

2. For the rest of the deep neural network-based models, as the models are learned through training-461

predicting, it takes much less time for each prediction. Compared to Woven-Decoder and462

Woven-GAN, our PCNN has significantly reduced the prediction error to around 2% for E1 and463

E2 giving the best overall prediction compared to all baseline models.464

Table 4: BDPa prediction error rate for single material woven composite
Error Rate E1 E2 G12 Prediction Time

Woven-Decoder 7.87% 7.26% 0.33% 0.2sec
Woven-GAN 4.34% 5.27% 0.31% 0.3sec

PCNN 2.38% 1.72% 0.31% 0.3sec

Bi-material woven composites prediction results. Since BDP problems for bi-material woven composites465

consist of three inputs, prediction with Woven-GA will be even more expensive and will not be466

considered. Table 5 shows the prediction results for the BDPa problem, comparing our proposed model467

and the other two baseline models. Figure 12 shows images of the predicted woven patterns for a given468

in-plane modulus and material sequence. Based on the analysis results, we notice that:469

1. Compared to baseline models, PCNN significantly reduces the error rate of E1 and E2 predictions470

from around 10% to 3.6%, and the error rate of G12 also decreases to around 1.3%. Thus, PCNN471

outperforms the baseline models considered.472

16



2. For the predicted pattern, we can find that PCNN gives the closest prediction to the original weave473

pattern. Furthermore, we show a detailed quantitative explanation of why PCNN is superior to474

other models in Section 8.1.2 using our proposed GLCM-based feature (in Section 7) analysis.475

Table 5: BDPa prediction error rate for bi-material woven composite
Error Rate E1 E2 G12 Prediction Time

Woven-Decoder 9.31% 9.45% 5.01% 0.2sec
Woven-GAN 10.83% 11.71% 10.62% 0.3sec

PCNN 3.60% 3.71% 1.34% 0.3sec

(a) (b) (c) (d)

Fig. 11: Predicted bi-material weave pattern for BDPa problem: (a) original weave pattern (b) predicted weave pattern
from Woven-Decoder (c) predicted weave pattern from Woven-GAN (d) predicted weave pattern from PCNN

We next evaluate the performance of different models for BDPb problems. Table 6 shows the476

prediction result for the BDPb problem, comparing our proposed and baseline models. From these477

results, we observe that compared to baseline models, Woven-Decoder and Woven-GAN, our proposed478

PCNN could vastly reduce the prediction error from above 10% to around 5% for all three in-plane479

moduli. Consequently, we can conclude that for both BDPa and BDPb problems, our proposed PCNN480

can significantly improve the prediction accuracy for all three in-plane moduli.481

Table 6: BDPb prediction error rate for bi-material woven composites
Error Rate E1 E2 G12 Prediction Time

Woven-Decoder 11.74% 11.73% 11.50% 0.2sec
Woven-GAN 15.28% 12.35% 26.99% 0.3sec

PCNN 5.53% 5.65% 4.10% 0.3sec

Weave pattern modification by bound relaxation of modulus (for manufacturing purpose). When pre-482

dicting the weave pattern in the BDPa problem, we do not add constraints to the predicted pattern.483

However, during manufacturing, it is usually challenging to weave patterns with continuous yarns or484

fiber bundles running along the warp and weft directions without an area of interlacing. Solving this485

issue requires using pre-preg tapes made from "pre-impregnated" fibers and a partially cured polymer486

matrix. Alternatively, stitching of fibers is needed to maintain the structural integrity of the fabric487

during manufacturing. Since this process can be time-consuming and expensive, finding weave patterns488

that do not have continuous yarns (that is, with interlaced region) is essential. To solve this problem,489

we propose to find weave patterns by modifying the target modulus within specific ranges, which we490

call Modulus Bound Relaxation.491

The expression of Modulus Bound Relaxation can be represented as Equation 5.492

Mnew = Mold +R×B (5)

Where Mold is the target modulus vector containing E1, E2, G12, and Mnew is the updated new493

modulus vector. R ∈ [−1, 1]d=3 is a 3-by-1 vector, with each component randomly generated between -1494
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and 1. B is a range of scaling factor of R, the upper and lower bound of B can be specified by the user.495

R×B determines the maximum relaxation we want for the target modulus vector. We linearly increase496

the value of B from its lower bound to its upper bound to increase the relaxation until we find a weave497

pattern without continuous yarn. With this method, we can find a surrogate weave pattern with a498

modulus vector slightly different than our target, but with no continuous yarn issue – an example of499

how the Modulus Bound Relaxation algorithm works is shown in Supplementary Section G.500

6.4. PCNN Performance with Small Dataset501

This section tests how PCNN performs when the dataset is small. Specifically, we analyze the502

performance of PCNN when we select 3000 and 6000 bi-material woven composite samples each from503

the 9000 dataset. Table 7 and Table 8 show the prediction error for 3000 and 6000 samples. We observe504

consistent results compared to the previous analysis using 9000 samples from the results. Thus we505

conclude that for both BDPa and BDPb problems, PCNN provides better and more stable prediction506

accuracy than the two baseline models.507

Table 7: Prediction error rate with 3000 bi-material woven composite samples
Error Rate E1 E2 G12 Prediction Time

BDPa
Problem

Woven-Decoder 10.61% 11.97% 10.30% 0.2sec
Woven-GAN 8.67% 6.27% 6.87% 0.3sec

PCNN 4.23% 4.28% 3.63% 0.3sec

BDPb
Problem

Woven-Decoder 8.73% 8.84% 10.93% 0.2sec
Woven-GAN 11.53% 12.55% 11.65% 0.3sec

PCNN 4.69% 3.70% 1.53% 0.3sec

Furthermore, Table 8 shows the prediction error of BDPa and BDPb problems under the 6000508

sample. From the result, we can validate that for both BDPa and BDPb problems, PCNN has much509

better prediction accuracy compared to the two baseline models.510

Table 8: Prediction error rate with 6000 bi-material woven composite samples
Error Rate E1 E2 G12 Prediction Time

BDPa
Problem

Woven-Decoder 11.61% 12.20% 12.33% 0.2sec
Woven-GAN 6.48% 6.91% 6.14% 0.3sec

PCNN 3.81% 3.93% 3.18% 0.3sec

BDPb
Problem

Woven-Decoder 9.24% 9.43% 10.99% 0.2sec
Woven-GAN 12.20% 11.56% 10.24% 0.3sec

PCNN 4.10% 4.20% 1.49% 0.3sec

6.5. Backward Direction Prediction with Heuristic Algorithm511

After comparing the prediction performance with Deep Learning methods, we further explore the512

effectiveness of heuristic searching for the inverse design problem. We consider both the single material513

and bi-material woven composite predictions and summarize the prediction accuracy of Woven-GA in514

Table 9. We see that the Genetic Algorithm has a high prediction accuracy with less than 1% error515

rate. However, there are several drawbacks of a heuristic searching algorithm: the prediction time of516

a Genetic Algorithm is much longer (greater than 11 mins) compared to neural network frameworks,517

which is, on average, 0.3 sec. Moreover, the Woven-GA incorporates randomness during the operation,518

which could lead to potential run failures, especially when the loss function is complex like when a519

neural network is embedded inside. Thus in this study, for the sake of efficient prediction, we explored520

the deep learning-based frameworks more in detail.521
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Table 9: BDP Woven-GA prediction error rate
Error Rate E1 E2 G12 Prediction Time

Single-Material Woven 0.02% 0.02% 0.59% 11mins 57secs
Bi-Material Woven 0.45% 0.42% 0.63% 14mins 25secs

6.6. Discussion on the Applications and Limitations of PCNN522

Previous results have shown the potential of the PCNN framework compared to Deep Learning-based523

baseline models. Although PCNN is applied to woven composites in this study, the framework can be524

generalized into different fields of studies involving inverse designs like structural design given certain525

design criteria, especially when the input space (design criteria) is much smaller than the output space526

(model). Predicting from a smaller space to a larger space can be challenging due to the potential527

overfitting and the highly nonlinear mapping between inputs and outputs. To address this difficulty,528

PCNN adds a regularization term by embedding the physical relationship between the woven composite529

model and its corresponding modulus into a quadratic function. This method has shown tremendous530

improvement in the prediction accuracy.531

On the other hand, as a Deep Learning-based approach, PCNN also has its limitations compared to532

heuristic searching algorithms:533

1. Although much faster prediction time, the prediction accuracy of PCNN can be lower compared534

to heuristic searching algorithms as discussed above. In real life applications, PCNN is superior535

in providing excellent time efficiency as well as relatively high prediction accuracy. PCNN can536

be widely used to predict a large number of designs. On the other hand, the heuristic searching537

algorithm is superior when accuracy is important and time efficiency is not a concern.538

2. The training effectiveness of PCNN depends on the quality and variance of the training data. In539

this study, we notice that PCNN has a high prediction accuracy when predicting weaves with540

a ratio lower than 70%, attributed to the ample training data available. However, the PCNN541

prediction accuracy will decrease when the weave exceeds 70% radio (as shown in Figure 7(c)).542

7. Results and Discussion: Task 2 - Feature-based Statistical Representation543

In the previous sections, we proposed DCNN and PCNN to establish the bridge between woven544

architectures and the corresponding modulus. Our proposed Deep Learning frameworks deliver better545

predictions for FDP, BDPa, and BDPb problems than baseline models. However, the high-level features546

extracted by PCNN are challenging to understand and be used for other tasks like optimization. Thus,547

we want to know what physically or statistically meaningful features control the woven composites’548

in-plane modulus, and how we can use these features for further optimization. To that end, we conduct549

the GLCM-based feature analysis.550

7.1. Statistical Features from Weave Pattern551

Since weave patterns are represented by a checkerboard model, we considered this as a type of552

texture with pixel values of ’0’ or ’1’. Texture features describe the spatial distribution of pixels (cells)553

that reflect an object’s roughness, smoothness, granularity, and randomness. Texture can also be used to554

segment images into regions of interest and classify those regions into regular texture and quasi-regular555

texture. Regular texture’s element follows a specific pattern, whereas quasi-regular texture’s element has556

an arbitrary shape and is distributed based on intensity. Standard texture feature extraction methods557
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include statistical, structural, and spectral methods. This paper utilizes the statistical method and558

constructs the Gray Level Co-occurrence Matrices (GLCM). GLCM elements are defined in Equation 6.559

C∆x,∆y(i, j) =
n∑

x=1

m∑
y=1

1[I(x,y)=i,I(x+∆x,y+∆y)=j] (6)

where, I is the grey-level image, i and j are pixel values. n,m is the size of image, (x, y) is the560

starting position, and (∆x, ∆y) represent the offset from starting position. As our checkerboard models561

are binary matrices in this paper, the GLCM will be a 2-by-2 matrix, where we consider transitions562

of 0 → 0, 0 → 1, 1 → 0, and 1 → 1. Further, we consider four different directions (horizontal,563

vertical, and two diagonal directions) during GLCM calculation. The texture features considered are564

contrast, correlation, energy, and homogeneity. Definition of each statistical term is summarized in565

Supplementary Section D, where we refer to Beyer [53], Haralick [64], and Bevk [65]. Thus, for each566

woven composite pattern matrix, we will extract 4× 4 = 16 features. We can achieve several excellent567

properties by extracting statistical features from 2-by-2 GLCM in the form

a b

c d

, leading to the568

following propositions:569

Proposition 1. Weave pattern GLCM statistical features (Contrast, Correlation, Energy, Homogeneity)570

correspond to a unique 2-by-2 GLCM.571

Proposition 2. Weave pattern GLCM’s Energy (with the help of several other statistical features) tells572

the relative relationship between different pattern transitions (0 → 0, 0 → 1, 1 → 0, and 1 → 1) in the573

physical space.574

Proposition 3. Weave pattern GLCM’s Contrast and Homogeneity tell the frequencies of homogeneous575

transition (0 → 0, 1 → 1) and in-homogeneous transition (0 → 1, 1 → 0).576

Proofs of the above propositions can be found in Supplementary Section E.577

7.2. Statistical Features from Weave Material Sequence578

Statistical features from woven composite material are only considered for bi-material weaves, as579

the material sequence for a single material is a uniform constant vector. We split the material vector580

into the vector for the weft and the vector for the warp. First, we extract statistical features for each581

material vector, including mean, median, and standard deviation from the vector. For each material582

vector of a woven composite, we extract six features. Specifically, as material vectors can be constant,583

we do not include skewness and kurtosis in this study. Then, to account for the sequence information,584

we propose another statistical parameter called Vector Energy (VE): for any vector V , the vector energy585

is defined as V E =
∑L

i=1 i ∗ V (i). Here L denotes the length of the vector, and V (i) is the value of the586

i-th component in V .587

7.3. Regression Analysis of Extracted Features588

To understand whether each statistical feature is positively or negatively correlated with in-plane589

modulus, we use regression analysis to determine the weights of each feature. Specifically, we consider two590

different cases: (1) how each feature is correlated with the label of the composite model. We group the591

woven composite models into two groups: one group with a better overall modulus (Eall = E1+E2+G12)592

is labeled as ‘1,’ and the other group is labeled as ’0’; (2) how each feature is correlated with the593
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value of individual in-plane modulus. Here, the better overall modulus is selected based on the highest594

quantiles across all datasets under consideration.595

7.3.1. Regression analysis on the overall modulus of model596

To understand what features contribute to woven composite’s better overall modulus, we utilize597

the Ridge regression to predict the overall modulus directly from the target statistical features. The598

regression model is defined as Equation 7.599

min
w,λ

||y −Xw||2 + λ||w||2 (7)

where X is the matrix formed by feature vectors. y is vector containing Eall values. Similarly,600

values in vector w tell us how each statistical feature is correlated to the woven composite model’s Eall.601

7.3.2. Weave pattern feature analysis602

We first fix the weave material sequence and analyze how the weave pattern features are correlated603

with the overall composite modulus Eall. From the regression analysis results, we observe that the two604

regression models, one each for single and bi-material, have weights with the same signs, as shown in605

Table 10. From the results, we conclude that contrast and correlation are negatively correlated with606

the woven composite’s overall modulus, while energy and homogeneity are positively correlated. This607

trend can be validated by case studies shown later in Sections 8.1.3 and 8.1.4, where we show that608

each GLCM feature controls the woven composite’s modulus as indicated by the regression results.609

Furthermore, we prove that the GLCM features can be used to optimize weave patterns and guide the610

woven composite designs by case studies in Sections 8.1.3 and 8.1.4.611

The regression analysis found that the homogeneity is positively correlated, whereas the contrast is612

negatively correlated. These results also agree with the analytical models discussed in Supplementary613

Section A. If we subtract the value of contrast from homogeneity with a specific multiplication constant,614

we obtain the value of homogeneous transitions in weave patterns (0 → 0, 1 → 1). Therefore, according615

to regression analysis, we can conclude that increasing the number of homogeneous transitions will616

result in higher in-plane moduli. This can be attributed to fewer undulations in the weave patterns617

with introductions of more homogeneous transitions.618

Table 10: Sign of weights for weave pattern features
Contrast Correlation Energy Homogeneity Contrast Correlation Energy Homogeneity

GLCM 1 GLCM 2
Single Material - - + + - - + +

Bi-Material - - + + - - + +
GLCM 3 GLCM 4

Single Material - - + + - - + +
Bi-Material - - + + - - + +

7.3.3. Weave material feature analysis619

We further consider how the weave material features correlate with its overall modulus Eall by620

fixing the weave pattern. Here, we consider two fixed weave patterns as shown in Figure 14. Each621

weave pattern is combined with 500 randomly distributed binary material vectors for regression analysis.622

Similarly, we consider the one proposed regression model that corresponds to the two fixed weave623

patterns.624

The regression analysis results show that the mean value of the material vector significantly controls625

the overall modulus of the woven composites. This implies that the sequence of the material vector is626
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much less critical than the number of different materials on the property. This conclusion is validated627

through case studies later in Section Supplementary Section H.1 and Supplementary Section H.2 with628

different mean values of the material sequence. We have also shown that for the two patterns considered,629

we want to increase the ratio between material ‘1’ and material ‘0’ in vertical yarns and decrease it in630

horizontal yarns. Therefore, we can optimize the overall modulus for a given weave pattern by varying631

the mean value of the material vector followed by the sequence.632

8. Results and Discussion: Task 3 - Feature-based Statistical Optimization Case Studies633

After proposing the GLCM representation strategy in Section 7, in this section, we demonstrate634

how it can be effectively used for optimization by applying it to different weave models. Specifically, we635

focus on optimizing the weave pattern given a material sequence and optimizing the material sequence636

given a weave pattern.637

8.1. Weave Pattern Optimization638

In this section, we primarily investigate the effectiveness of our GLCM feature-based optimization639

approach for improving weave patterns through several case studies. Firstly, we compare our optimization640

strategy with the baseline model GIDN. Then, we utilize the GLCM to gain insights into why our641

PCNN produces better predictions and how GLCM features can be effectively employed to optimize642

the weave pattern.643

8.1.1. Weave pattern optimization compared with baseline model - GIDN644

We first compare our GLCM feature-based optimization with a baseline model GIDN[41] mentioned645

in Section 1. GIDN consists of a designer and predictor and aims to overcome the issue of local minima646

by using random initialization based on a Gaussian distribution. The authors claimed in their paper647

that GIDN, with 1000 randomly initialized models, can find the optimal design. To demonstrate that648

our GLCM method proposes superior weave models compared to GIDN, we consider GIDN with an649

increased number of random initialization samples, namely GIDN-1000, GIDN-2000, GIDN-5000, and650

GIDN-10000. To compare the performance of the GLCM model and GIDN, we randomly select a651

weave pattern and a material sequence each time and attempt to find the optimal weave model using652

GLCM features and different variants of GIDN. We tested for 20 randomly selected test cases, and we653

noticed that the GLCM-based method is producing better prediction accuracy when GIDN’s searching654

iteration is below 5000, and a comparable optimization performance with GIDN’s searching iteration655

reaches 10000. Some example optimizations are summarized in Table 11 and Table 12. The ’-N’ means656

’normalized’ as all tables demonstrate that the GLCM-based optimization method outperforms the657

GIDN models. Since the GLCM-based method can directly transform from GLCM space back to the658

original physical space, and the optimization is based on a regression model, it is significantly more659

efficient than the searching-based GIDN framework. For example, GIDN-5000 takes around 3-4 minutes660

to finish the optimization, and GIDN-10000 takes 7-8 minutes. Besides time efficiency, compared to a661

searching algorithm, the GLCM-based method provides a much deeper understanding of the correlations662

between weave pattern features and the corresponding mechanical properties, as illustrated in Table 10.663
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Table 11: Test Case 1: Optimization for weave model with material sequence [1,0,1,0,1,1,0,0,1,0,0,0]
Original Model GIDN-1000 GIDN-2000 GIDN-5000 GIDN-10000 GLCM

E1-N 33.73 29.23 25.72 30.69 33.86 39.80
E2-N 21.85 31.85 36.25 33.93 31.84 24.67
G12-N 25.02 25.88 25.85 25.32 26.38 27.40
Sum 80.60 86.96 87.82 89.94 92.09 91.87

Table 12: Test Case 2: Optimization for weave model with material sequence [1,1,0,0,1,1,1,1,0,0,1,1]
Original Model GIDN-1000 GIDN-2000 GIDN-5000 GIDN-10000 GLCM

E1-N 31.85 24.84 25.41 31.83 33.73 38.23
E2-N 18.99 30.18 30.94 25.33 27.46 22.43
G12-N 22.55 22.31 22.88 23.32 23.59 25.52
Sum 73.39 77.33 79.23 80.48 84.78 86.18

8.1.2. Comparing pattern prediction from different neural network frameworks based on GLCM features664

Figure 12 illustrates the predicted patterns generated by different neural network frameworks for a665

bi-material woven composite with the same material sequence and in-plane modulus. At first glance,666

the PCNN prediction appears closer to the original pattern. However, considering the many-to-one667

mapping discussed in Section 4.4, we aim to perform a more analytical comparison of the results.668

We employ our proposed GLCM-based feature analysis approach to achieve this by converting these669

predicted patterns into GLCMs. Subsequently, we will compare the statistical features of these GLCMs,670

as they can effectively represent the in-plane modulus.671

(a) (b) (c) (d)

Fig. 12: Predicted bi-material weave pattern for BDPa problem: (a) original weave pattern (b) predicted weave pattern
from Woven-Decoder (c) predicted weave pattern from Woven-GAN (d) predicted weave pattern from PCNN

We consider GLCM in all four directions: horizontal, vertical, 45◦ and −45◦. The corresponding672

GLCM statistical features are summarized in Table 13. From the regression analysis, we know the673

weights of the statistical features are at the same level, so we can roughly estimate the closeness of674

different feature vectors by the L2-norm of their differences. By calculating the corresponding L2-norm,675

we see that: ||Fo − Fd||2 = 0.629, ||Fo − Fg||2 = 0.668 and ||Fo − Fp||2 = 0.416, where Fo denotes the676

feature vector of the original pattern, Fd from the Woven-Decoder, Fg from the Woven-GAN, and Fp677

from the PCNN. Furthermore, we can notice that the feature vector of PCNN is closer to the original678

pattern than in other frameworks.679

Table 13: GLCM statistical features of predicted weave patterns
Correlation Contrast Energy Homogeneity Correlation Contrast Energy Homogeneity

GLCM 1 GLCM 2
Original Pattern 0.4333 -0.0476 0.2994 0.7833 0.5333 -0.2000 0.3067 0.7333
Woven-Decoder 0.6333 -0.2681 -0.2683 0.6833 0.5333 -0.0714 0.2533 0.7333
Woven-GAN 0.7000 -0.4016 0.2906 0.6500 0.5333 -0.0714 0.2533 0.7333

PCNN 0.4333 0.1086 0.2683 0.7833 0.6667 -0.3393 0.2800 0.6667
GLCM 3 GLCM 4

Original Pattern 0.4000 0.0809 0.3248 0.8000 0.5600 -0.2868 0.3184 0.7200
Woven-Decoder 0.5200 -0.0400 0.2504 0.7400 0.4400 0.1200 0.2536 0.7800
Woven-GAN 0.4000 0.1987 0.2608 0.8000 0.4800 0.0385 0.2512 0.7600

PCNN 0.4400 0.1143 0.2568 0.7800 0.4800 0.0385 0.2512 0.7600
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8.1.3. Case Study – shifting 1s vector in all 0s matrix horizontally or vertically680

Consider a weave pattern with all 0s. Then we artificially change each row of the matrix to be 1s.681

When all 1s row lies between the top and bottom row of the pattern, the corresponding GLCMs are the682

same. When all 1s row lies on top or bottom of the pattern, the GLCM will be different from others.683

However, for our woven analysis, we are picking the RUC of the model and using periodic boundary684

conditions, which means viewing globally, the GLCM for the woven pattern with all 1’s rows at the685

bottom or top will be the same as in other places. Thus, GLCM will be the same no matter where686

we put them all 1’s row. Furthermore, we prove from the FEA result that the woven modulus is not687

changing for all 1’s rows at different positions. When we further shift all 1s vectors at different columns688

of the all 0s pattern, where GLCM is also the same, we notice that the modulus is not changing. These689

results tell us that when GLCM are close, the two woven models’ modulus will also be close. That is to690

say, GLCM controls the features that determine the woven model’s modulus.691

8.1.4. Case Study – weave pattern optimization through GLCM692

We start by considering a weave pattern predicted by the PCNN-BDPa shown in Figure 13(a),693

which meets our desired mechanical properties requirement. The four corresponding GLCMs are:694

16 15

15 14


32 3

3 32


12 13

13 12


12 14

14 10

 (8)

If we want to optimize the prediction to achieve an even higher modulus, we can modify the GLCM.695

From our previous lemmas, we know that we have to achieve higher energy and homogeneity in GLCM.696

Thus, we can change the GLCM in a horizontal direction such that some elements in the GLCM are697

high and others are very low. Then, we can convert it back to a weave pattern and adjust the pattern698

to increase energy in other GLCMs. An example of a modified pattern is shown in Figure 13(b), whose699

GLCM are:700

24 18

18 0


40 0

0 20


20 15

15 0


20 15

15 0

 (9)

Here, we can easily tell that the second woven pattern has higher energy than the first. By further701

evaluation in FEA, we notice that if we use this pattern for a single material woven composite, the702

original pattern has modulus: E1 = 44.3 GPa, E2 = 26.3 GPa, and the modified pattern has modulus703

E1 = 49.5 GPa, E2 = 26.5 GPa. The improvement is more significant when considering bi-material704

woven composites, as each modulus’s variations are more significant. Here we will show one case where705

we assume the assigned material is an all ’1’s vector, and through FEA, we determine that the original706

woven pattern has a modulus of E1 = 28.4 GPa, E2 = 16.5 GPa, G12 = 1.96 GPa and the modified707

woven pattern has a modulus E1 = 35.2 GPa, E2 = 20.2 GPa, G12 = 2.30 GPa. Thus, GLCM gives us708

a way to validate the proposed weave pattern by PCNN and further enhance the modulus if needed.709

Analytical validation: To further validate the GLCM optimization, we will compare both models710

qualitatively using the weave parameters discussed in Supplementary Section A. Comparing both weave711

architectures in Figure 13, we observe that GLCM optimization has removed and reduced the regions of712

undulations in warp and weft directions, respectively. In previous research [60, 66], it has been shown713

that the regions of undulation result in lower in-plane moduli values. Therefore, the GLCM-optimized714
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pattern has higher in-plane moduli than the weave pattern obtained from the PCNN-BDPa.715

(a) (b)

Fig. 13: woven composite patterns for Case 3

8.2. Weave Material Optimization716

In this section, we further show weave material sequence optimization by conducting case studies717

of 2 randomly chosen patterns shown in Figure 14. For each pattern, different choices of mate-718

rial vectors are considered. Case studies and results regarding material optimization are shown in719

Supplementary Section H.720

(a) (b)

Fig. 14: Two weave patterns considered for weave material sequence case studies

8.3. Summary of Regression and Optimization Results721

Based on the regression analysis and optimization studies conducted on the weave pattern and722

material sequence, we conclude that:723

1. When optimizing the weave pattern with a fixed material sequence, the relationship between the724

weave pattern and overall in-plane modulus can be effectively described using GLCM features.725

The regression analysis reveals that energy and homogeneity positively correlate with the overall726

modulus, while contrast and correlation exhibit a negative correlation. This conclusion holds for727

all checkerboard-type models and can be utilized to optimize the weave pattern.728

2. Compared to the GIDN framework with different random samples, our proposed GLCM-based729

optimization approach outperforms GIDNs by achieving optimal designs and requiring less time,730

as it does not rely on random searching.731

3. When considering a fixed weave pattern, the relationship between the weave material sequence732

and overall in-plane modulus can be described by examining the mean of the material sequence733

vector in the physical space. It is important to note that this conclusion is specific to patterns in734

Figure14 and two materials considered in the study.735
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8.4. Discover Optimal Woven Composite Architecture at Initial Design Stage736

We have shown that PCNN can predict weave patterns or material sequences with high accuracy,737

and feature-based optimization can enhance the overall modulus of woven composite models. The738

proposed optimization strategy can be combined with PCNN to determine the optimal woven composite739

architecture even at the initial design stage. For example, to design a woven composite model, we740

assume there are two materials to choose from for each yarn. We can use any weave pattern to find the741

woven composite architecture with the highest overall modulus. To determine the optimal design, we742

can follow the steps below:743

1. Determine the optimal material sequence through the feature-based optimization strategy, then744

follow the procedure described in Section 7.2 and Section 7.3.745

2. Pick the maximum in-plane modulus (E1, E2, G12) within a reasonable range, choose the material746

sequence vector determined in Step 1, then use PCNN to predict the weave pattern.747

3. After obtaining the weave pattern, further utilize a feature-based optimization strategy to optimize748

the weave pattern to achieve the optimal woven composite designs.749

9. Conclusions750

The objective of this paper is twofold: 1) The first is to establish a bridge between woven architectures751

(patterns and material sequences) and the corresponding in-plane modulus by developing deep neural752

networks. We classify the prediction into the typical design process (FDP) and inverse design process753

(BDPa and BDPb). The FDP problem is solved by a Deep Convolutional Neural Network (DCNN).754

For the much more complex BDP problems, we proposed the Physics-constrained Neural Network755

(PCNN) to predict the woven composite architecture from the in-plane modulus. We have shown that756

our proposed DCNN delivers relatively accurate predictions. More importantly, PCNN can make sound757

predictions for BDP problems and vastly outperforms the baseline models we considered. 2) The second758

is to propose a feature-based optimization strategy to find optimal woven composite architecture. We759

proposed a GLCM feature-based optimization strategy for weave patterns and statistical feature-based760

optimization for weave material sequences. We further showed that the feature-based optimization761

strategy can accurately and conveniently optimize the woven composite architecture. Finally, we762

showed how to find the optimal woven composite architecture by combining PCNN with our proposed763

feature-based optimization strategy.764

To our knowledge, this is the first attempt toward a bi-directional design process for woven fabrics and765

textiles with deep neural networks. That is, predicting mechanical properties from weave architectures766

(pattern and material sequence) and vice-versa. We primarily focused on woven composites in this767

paper. However, this approach can be applied to generic woven fabrics and textiles.768

To solve the complex backward prediction (BDP) problems, we proposed our Physics-constrained769

Neural Network (PCNN) to bridge the woven composite’s modulus and architecture. We have shown770

that our proposed neural network vastly increases the prediction accuracy compared to several well-771

established baseline models.772

We further proposed feature-based optimization to optimize the woven composite architecture.773

We proposed a Gray Level Co-occurrence Matrix-based optimization strategy for weave pattern774

optimization and a statistical feature-based optimization strategy for weave material sequence. The775
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feature-based optimization strategy can be combined with PCNN to determine the optimal woven776

composite architecture even at the initial design stage.777

Although our proposed framework has been trained and validated using synthetic data, it is designed778

to enhance the design process for woven composites in practical applications. By providing faster and779

more accurate design capabilities, the framework offers significant benefits to industries that utilize780

woven composites. Specifically, it enhances efficiency by accelerating the design process and reduces781

costs by minimizing the need for costly trial-and-error experimental testing.782

10. Future Work783

This paper presents a deep neural network-based framework designed to enhance the design and784

prediction capabilities for woven composites. While the results are promising, several potential future785

directions could further enrich this work: 1) application to real-world problems: the dataset used786

in this study is synthetically generated using Finite Element Analysis software. However, in real-world787

applications, the data often contain noise, variability and uncertainty. Future research should focus on788

extending the current framework to handle real-world woven composites, where incorporating methods789

to account for stochastic variability and noise becomes essential, such as Monte Carlo simulations790

or Bayesian methods. 2) extending to 3D woven composite and other types of materials: al-791

though this study specifically targets 2D woven composites, the proposed PCNN framework has the792

potential to be adapted for inverse design of 3D woven composites and other composite materials.793

Each material type may present unique challenges and characteristics, requiring tailored adjustments794

to the neural network architecture and training process. Future work could explore these adap-795

tations, expanding the framework’s applicability to 3D woven composites and a broader range of796

materials, including those with different fiber orientations, matrix compositions, or hybrid structures.797

3) texture feature-based algorithm for woven composites: This study highlights the significant798

influence of texture features on the mechanical properties of woven composites. Future research799

could delve deeper into this aspect by developing texture feature-based algorithms or neural networks.800

Such algorithms could improve prediction accuracy or reduce the amount of training data required,801

making the framework more efficient and accessible. Exploring advanced techniques like texture feature802

extraction using deep learning, multi-scale feature analysis, or combining texture features with other803

material characteristics could lead to more refined models that better capture the complex behaviors of804

woven composites.805
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Supplementary Document963

Supplementary Section A. Explaining the weave parameters964

Supplementary Section A.1. ng and Crimp ratio965

Woven fabrics comprise sets of warp and weft threads that are interlaced together in different ways to966

achieve various architectures. Earlier, the weave patterns consisted of uniform interlacing of these yarns967

in perpendicular directions, and these patterns could be classified using the repeat of the interlaced968

regions. A geometrical parameter, ng defines the number of warp yarns that are interlaced with one969

single weft yarn. In Figure A.1(i), we have shown traditional weave patterns with their respective ng970

values. As we can observe, a plain weave has the lowest ng value of 2, whereas the 8-harness (8-H)971

satin has an ng value of 8. Another geometrical factor, crimp ratio (θg), reflects the undulation of the972

yarns at the interlaced region as shown in Figure A.1(ii). For 2D woven structures, the crimp ratio973

is defined for warp and weft directions. For a woven fabric, the crimp ratio increases with a decrease974

in ng value and vice-versa. For example, the crimp ratio of a plain weave will be higher than that of975

a satin weave. Osada et al. [66] compared the failure of composites with plain weave and 5-H satin976

weave, and they reported that the crimp ratio had a significant impact on the material properties. It977

was shown that the plain weave had a crimp ratio of 0.164 whereas the value was 0.023 for the satin978

weave. They also proposed that the initial slope and the strength of the satin weave composite were979

higher than the plain weave composite, with a delayed knee-point formation. Ishikawa and Chou [60]980

also exploited these geometrical parameters to propose an analytical model to predict the properties of981

woven composites. The model developed showed that the elastic moduli of composites reduce with the982

existence of the undulated regions in the warp and weft directions, respectively.983

Fig. A.1: (i) Examples of ng values for Plain, Twill, 4-H Satin, and 8-H Satin weave patterns and (ii) Section AA’ of the
plain weave to illustrate crimp ratio (θ(x)) at the interlaced region.

Supplementary Section A.2. Bridging effect984

Ishikawa and Chou [60] also proposed a "bridging" model to predict the mechanical properties985

of satin composites (ng ≥ 4). In this model, the surrounding region around the crimp region was986

considered to obtain the properties. In Figure A.2, we have shown a comparison between plain weave987

and 8-H satin weaves. In plain weave, we can observe that the surrounding regions also consist of the988

undulated region which will result in lower in-plane moduli. On the other hand, for 8-H satin weave,989

the surrounding region consists of straight yarns with no undulated region. Therefore, the surrounding990

region has higher local in-plane moduli compared to the undulated region. These straight yarns in991

surrounding regions act as a load-carrying bridge between neighboring interlaced regions.992
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Fig. A.2: Illustration of bridging concept for Plain and 8-H weave patterns. The red box depicts the area of undulation,
while the yellow box depicts the surrounding region.

Although the previous research is restricted to the mechanical properties of uniform weave archi-993

tectures, it has been shown that geometrical parameters of a weave architecture play a vital role in994

determining the mechanical behavior of woven composites. In this work, we will utilize these geometric995

parameters to evaluate the predictions made using the Machine Learning framework.996

Supplementary Section B. Woven composite models having same in-plane modulus997

Different woven composite models could have the same in-plane modulus as discussed earlier. This998

can be easily visualized through histogram plots, as shown in Figure B.4 and Figure B.5. For every999

single material and bi-material woven composite model, we use 9000 models for verification purposes.1000

(a) (b)

Fig. B.3: Single material weave patterns having the same modulus in E1.

(a) (b) (c)

Fig. B.4: In-plane modulus distribution for 9000 models of single material woven composite

(a) (b) (c)

Fig. B.5: In-plane modulus distribution for 9000 models of bi-material woven composite

32



Supplementary Section C. Machine Learning Baseline Models1001

Supplementary Section C.1. Convolutional-based Encoder-Decoder Network model (Woven-Decoder)1002

The Convolutional-based Encoder-Decoder Network is an encoder-decoder neural network that1003

consists of an encoder neural network and a decoder neural network in which one or both are convolutional1004

neural networks. For this paper, the woven-decoder extracts high-level features from two inputs and1005

predicts the results in output physical space. A brief framework overview is shown in Figure C.6.1006

Fig. C.6: Woven-Decoder overall framework for BDPa problem: modules inside green dashed line is the generator and
modules inside red dashed line is the discriminator. The ’Deconvolutional’ blocks are deconvolutional layers with ReLU
or Sigmoid as the activation function and ’Convolutional’ blocks are Convolutional layers with ReLU as the activation
function.

Fig. C.7: Woven-Decoder overall framework for BDPb problem: modules inside green dashed line is the generator and
modules inside red dashed line is the discriminator. The ’Convolutional’ blocks are Convolutional layers with ReLU as
activation function. The Dense layers are connected with either ReLU or Sigmoid activation function.

Supplementary Section C.2. Generative Adversarial Network model (Woven-GAN)1007

Generative Adversarial Network (GAN) is a class of machine learning framework. GAN consists1008

of a generator and a discriminator. GAN’s discriminator tells how much input is realistic, while the1009

generator is used to generate the output that can fool the discriminator. GAN’s core idea is ’indirect’1010
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training by adding a discriminator model after the prediction, such that the generator can produce1011

a prediction close to the true value. A brief framework overview for the BDPa problem is shown in1012

Figure C.8, and the framework overview for the BDPb problem is shown in Figure C.9.1013

Fig. C.8: Woven-GAN overall framework for BDPa problem: modules inside the green dashed lines are the generator,
and modules inside the red dashed line are the discriminator. Each ’Deconvolutional’ block consists of Deconvolutional
layers with ReLU, and each ’Convolutional’ block consists of Convolutional layers with ReLU. The ’logits’ module will
output the probabilities that our predicted material vector is ’realistic’.

Fig. C.9: Woven-GAN overall framework for BDPb problem: modules inside the green dashed line are the generator, and
modules inside the red dashed line are the discriminator. Each ’Convolutional’ block consists of Convolutional layers with
ReLU. The ’logits’ module will output the probabilities that our predicted material vector is ’realistic’.

Supplementary Section C.3. Genetic Algorithm (Woven-GA)1014

The Genetic Algorithm starts from several randomly generated samples as the first generation and1015

calculates their corresponding values based on the defined objective function, called the fitness function.1016

The crossover module with a predefined rate is performed to determine whether to perform crossover or1017

directly pass the parent into the next generation. Once crossover is performed, the mutation is further1018

used to make the population more diverse to avoid local optima. Such diversity allows the Algorithm1019

to approach global optima faster. This crossover-mutation process will continue as more generations1020

are generated until the termination criteria are met; either we already find the global optima or reach1021

the maximum number of generations. The brief flowchart of the Genetic Algorithm can be summarized1022

in Figure C.10.1023
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To find out the woven composite architecture with desired in-plane modulus with GA, we define the1024

objective function as Equation 10, where DCNN is the trained neural network from the FDP problem.1025

Pwoven, Mwoven are the woven pattern and material assignment. Here one of them is given, and the1026

other is the prediction. For example, for BDPa, Mwoven will be given, and Pwoven will be the predicted1027

woven pattern.1028

F = ||Etarget − Epredict||22 = ||Etarget −DCNN(Pwoven,Mwoven)||22 (10)

Fig. C.10: Genetic algorithm overall framework.

Supplementary Section D. Texture feature equations1029

This section provides detailed definitions of each statistical feature from GLCM, denoted by matrix1030

m.1031

Contrast =
∑
i

∑
j

(i− j)2m(i, j) (11)

Correlation =

∑
i

∑
j ij[m(i, j)]− µxµy

σxσy
(12)

Energy =
∑
i

∑
j

[m(i, j)]2 (13)

Homogeneity =
∑
i

∑
j

m(i, j)

1 + |i− j|
(14)
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Supplementary Section E. Proofs of Propositions in Section 7.11032

Proof of Proposition 1. We can express the four statistical features of the target GLCM as in1033

Equation 15.1034

contrast = b+ c

correlation =
d− µxµy

σxσy

energy = a2 + b2 + c2 + d2

homogeneity = a+
b

2
+

c

2
+ d

(15)

Where the more generic expression of the statistical features can be found in Supplementary Section1035

D. In Equation 15, there are four independent equations for four elements in GLCM, meaning the four1036

statistical features can uniquely determine the GLCM.1037

Proof of Proposition 2. For the same 2-by-2 GLCM as in proof 1, it is evident that a+b+c+d = C0,1038

where C0 is a constant depending on the size of the physical space matrix. Then we can prove that1039

energy tells us the number of transitions in the original space.1040

We can first consider extreme cases where maximum and minimum energy happens. We can quickly1041

show that maximum energy occurs when one of (a, b, c, d) is non-zero, and all others are zeros, while1042

the minimum energy happens when a = b = c = d (these proofs are shown in Supplementary Section F).1043

So when we have higher energy, one or two types of transition in physical space must be much larger1044

than the others. Furthermore, when we have small energy, frequencies of different types of transitions1045

will be more evenly balanced.1046

In addition to our understanding of energy, using other statistical features could further help1047

determine the specific dominated transitions in GLCM. For example, in the largest energy case, a1048

contrast equal to zero tells us a or d is not equal to zero; a correlation smaller than zero tells us d = 0.1049

Homogeneity square equals to energy tells as b = c = 0 but a or d ̸= 0.1050

Proof of Proposition 3. From Proposition 1, contrast (= b + c) is determined by the sum of off-1051

diagonal terms, while homogeneity (= a+ d+ b+c
2 ) is determined by the sum of diagonal and discounted1052

off-diagonal terms. Thus, combining contrast and homogeneity will tell us the sum of diagonal (a+ d =1053

Homogeneity - Contrast / 2) and off-diagonal terms (b+ c = Contrast).1054

Supplementary Section F. Proofs for Sub-Conclusions used in Proposition 21055

In the proofs of Claim 2, we mentioned that GLCM is defined as

a b

c d

 . High energy indicates1056

that one or two values in GLCM are much higher than others, and low energy indicates more balanced1057

values.1058

Proof. Finding the highest energy can be described as argmaxa,b,c,dE(a, b, c, d), where E(a, b, c, d) =1059

a2 + b2 + c2 + d2, subject to a + b + c + d = k. Then rewrite energy expression as E(a, b, c, d) =1060

a2 + b2 + c2 + (k− a− b− c)2. Then by considering the energy as a function of c and by finding ∂E
∂c = 01061

and noticing ∂2F
∂c2 = 4 > 0, the maximum value will happen at c = k or 0. If c = k, then a = b = d = 0,1062

conclusion proved. If c = 0, we can find a+ b = k and thus d = 0. Then by calculating ∂E(a,b)
∂a = 0 and1063

noticing ∂2F
∂a2 = 4 > 0, we know a = 0 or k.1064

Finding the lowest energy can be described as argmina,b,c,dE(a, b, c, d), where E(a, b, c, d) = a2 +1065

b2 + c2 + d2, subject to a+ b+ c+ d = C0. Like the above proof, we first rewrite energy express as1066
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E(a, b, c, d) = a2 + b2 + c2 + (k − a − b − c)2. Then by noticing ∂2F
∂c2 = 4 > 0, we want to solve c by1067

∂E
∂c = 0 and find c = d. Then we can further rewrite energy expression as E(a, b) = a2 + b2 +2(k−a−b

2 )2.1068

Then by noticing ∂2E
∂b2 > 0 we can find b = c, thus we must have a = b = c = d.1069

Conclusion proved.1070

1071

Supplementary Section G. Example of Modulus Bound Relaxation algorithm1072

This section shows how the Modulus Relaxation algorithm modifies the weave pattern predicted1073

for user-defined target moduli values. Figure G.11(a) is the original predicted weave pattern from1074

PCNN, and Figure G.11(b) is the modified weave pattern, which does not have a continuous yarn1075

problem. The original weave pattern was predicted for a target in-plane moduli of E1 = 26.0GPa,E2 =1076

26.0GPa,G12 = 2.30GPa with a material vector,

1 1 1 1 0 0

0 1 1 0 1 0

. The predicted weave pattern1077

has in-plane moduli of E1 = 25.6GPa,E2 = 25.3GPa,G12 = 2.25GPa. On the other hand, the1078

modified weave pattern having the same material vector has in-plane moduli of E1 = 25.5GPa,E2 =1079

25.0GPa,G12 = 2.26GPa, which is close to the modulus of the original predicted weave pattern. The1080

minor reduction in the in-plane moduli for the weave pattern in Figure G.11(b) can be attributed to1081

more undulations between the warp and weft thread.1082

(a) (b)

Fig. G.11: Weave pattern modification from the Modification Module: (a) original weave pattern predicted from PCNN
(b) modified weave pattern from Modification Module

Supplementary Section H. Weave material sequence optimization case study1083

Supplementary Section H.1. Case Study – weave material sequence sensitivity study1084

First, we consider two 1-by-6 material vectors, where the first material vector represents horizontal1085

yarn materials and the second represents vertical yarn materials. We consider two scenarios: (1) The1086

ratio between the two materials in each vector is 1 : 1. (2) the ratio between the two materials in each1087

material vector is 3 : 1 and 1 : 3, respectively. Then, we randomly choose several woven patterns, for1088

example, as shown in Figure 14. Regardless of our material vector sequence, the woven composite’s1089

in-plane modulus will be nearly the same if the ratio between the two materials is the same for horizontal1090

and vertical yarns. This validates our conclusion that only the material vector’s mean or sum controls1091

the corresponding in-plane modulus.1092

Supplementary Section H.2. Case Study – weave material sequence optimization for specific weave1093

patterns with different material ratios1094

Overall material ratio 1:1. Assume initially, we either have a material vector Mb or is proposed by1095

PCNN as:1096
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Mb =

1 0 1 1 0 1

0 1 0 0 0 1

 (16)

The first row represents the horizontal yarn materials, and the second represents the vertical yarn1097

materials. Such material assignment gives us the corresponding modulus E1 = 40.18 GPa, E2 = 23.391098

GPa, G12 = 2.702 GPa. Now, we want to enhance the corresponding overall modulus of the woven1099

pattern. Here, we introduce two material vectors; one completely follows our conclusion from the1100

regression-based analysis in Section 7.3.3 (say Mc), and the other reverses our conclusion (say Mr).1101

The corresponding material vectors can be expressed as:1102

Mc =

0 0 0 0 0 0

1 1 1 1 1 1

 and Mr =

1 1 1 1 1 1

0 0 0 0 0 0

 (17)

Overall material ratio 1:3. Here, our material vector is:1103

Mb =

1 1 0 1 0 1

1 1 0 1 1 1

 (18)

This material assignment gives us a modulus of E1 = 40.18 GPa, E2 = 23.39 GPa, G12 = 2.7021104

GPa. To enhance the corresponding overall modulus of the woven pattern, we introduce two material1105

vectors as above:1106

Mc =

0 0 0 1 1 1

1 1 1 1 1 1

 and Mr =

1 1 1 1 1 1

1 1 1 0 0 0

 (19)

Overall material ratio 3:1. For this case study, we have a material vector:1107

Mb =

1 0 0 1 0 0

0 0 0 1 0 0

 (20)

The corresponding modulus are E1 = 40.18 GPa, E2 = 23.39 GPa, and G12 = 2.702 GPa. We1108

introduce the two material vectors Mc and Mr as:1109

Mc =

0 0 0 0 0 0

0 0 0 1 1 1

 and Mr =

1 1 1 0 0 0

0 0 0 0 0 0

 (21)

Results. From Table 14, the sequence Mc, which follows our optimization strategy, consistently achieves1110

superior overall modulus over Mb and Mr. While, Mr, which contradicts our optimization strategy,1111

nearly always achieves the lowest modulus. Thus, using the GLCM based optimization strategy, we can1112

conclude that having more material 1 in the vertical yarn and material 0 in horizontal yarn is beneficial1113

for the patterns shown in Figure 14. This can be extended to other patterns considered by a user.1114

Table 14: Weave material sequence based optimization
Material Ratio Ratio 1:1 Ratio 1:3 Ratio 3:1

Modulus E1-N E2-N G12-N Sum E1-N E2-N G12-N Sum E1-N E2-N G12-N Sum

Pattern 1
Mb (GPa) 32.65 20.76 23.93 77.34 31.15 17.95 21.61 70.72 36.80 23.32 27.11 87.23
Mc (GPa) 36.33 20.03 25.04 81.40 32.23 17.81 21.98 72.01 38.70 22.57 27.60 88.86
Mr (GPa) 31.35 21.50 23.87 76.72 29.39 18.89 21.50 69.78 36.33 24.02 27.32 87.67

Pattern 2
Mb (GPa) 27.94 24.51 23.83 76.27 26.51 20.81 21.23 68.55 31.92 27.20 26.93 86.04
Mc (GPa) 31.67 23.04 24.51 79.23 27.69 20.51 21.46 69.56 34.05 26.12 27.19 87.35
Mr (GPa) 26.47 25.67 23.87 76.01 24.76 22.42 21.34 68.52 31.49 28.40 27.38 87.28
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