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Abstract

Woven fabrics play an essential role in everyday textiles for clothing/sportswear, water filtration,
retaining walls, and reinforcements in stiff composites for lightweight structures in aerospace, sporting,
automotive, and marine industries. Several possible weave architectures (combinations of weave patterns
and material choices) present a challenging question about how they could influence the physical and
mechanical properties of woven fabrics and reinforced structures. This paper presents a novel Physics-
Constrained Neural Network (PCNN) to predict the mechanical properties (like modulus) of weave
architectures and the inverse problem of predicting pattern/material sequence for a design/target
modulus value. The inverse problem is particularly challenging as it usually requires many iterations
to find the appropriate architecture using traditional optimization approaches. We show that the
proposed PCNN can more accurately predict weave architecture for the desired modulus than several
baseline models considered. We present a feature-based optimization strategy to improve predictions
using features in the Grey Level Co-occurrence Matrix space. We combine PCNN with feature-based
optimization to discover near-optimal weave architectures and facilitate the initial design of weave
architecture. The proposed frameworks will primarily enable the woven composite analysis and
optimization process and be a starting point to introduce knowledge-guided neural networks into the
complex structural analysis.

Keywords: Machine Learning, Weave Architecture, Physics-Constrained Neural Network, GLCM,

Finite Element Analysis

1. Introduction

Woven fabric, a textile material, is formed by weaving or interlacing warp and weft fiber bundles
in the orthogonal directions. Woven fabric has a wide range of applications, from everyday textiles
for clothing and fashion to reinforcements in stiff composites for lightweight structures like aerospace,
sporting, automotive, and marine industries [1, 2, 3, 4]. Computer-controlled digital looms have
revolutionized the textile industry by offering a level of precision and flexibility that was previously
unimaginable. These advanced looms allow for intricate and complex designs to be woven with ease,
enabling the creation of technical fabrics that were once difficult or even impossible to produce. These
digitally controlled systems enable designers to experiment with patterns and materials in real time,
leading to innovative and custom fabric designs. This is particularly valuable for specialized applications
in industries such as aerospace, automotive, and fashion. Possible combinations of weave patterns and
choices of materials for the warp/weft fiber bundles present a promising yet challenging question about
how they could influence corresponding physical and mechanical properties. Plain, twill, and satin are

the most common uniform weave patterns. The mechanical properties of woven fabric depend primarily
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on the weave patterns and fiber properties. Although these common weave patterns have been studied
in detail for their stiffening and strengthening capabilities, there is a lack of understanding of the
influence of non-traditional or non-uniform patterns and multiple fiber materials on these properties.
To that end, we present a novel Physics-Constrained Neural Network (PCNN) to predict the
mechanical properties like the modulus of weave architectures (weave pattern, weave material sequence)
and the inverse problem of predicting pattern/material sequence for a design/target modulus value.
Though these frameworks can be applied to any woven fabric, we consider woven composites as our
case study to develop and demonstrate their phenomenal advantage.

Woven composites used for structural applications are stiff composites typically comprising woven
fabrics with high-strength fibers like Carbon, glass, or Aramid embedded within a matrix material to
enhance structural integrity and mechanical properties. Polymers, ceramics, or metals are commonly
used as the matrix material in these composites. Polymers are a popular choice among these materials
due to their advantages, which include versatility, cost-effectiveness, chemical and corrosion resistance,
etc. These composites have drawn significant interest in recent years due to their tunable mechanical
properties, high strength-to-weight ratio, high production rate, and structural durability[5]. To better
understand woven composites, many researchers have been focusing on exploring the mechanical
properties. Research to find woven composites’ mechanical properties largely relies on analytical
representation or numerical analysis like Finite Element Analysis (FEA). Researchers first focus on the
analytical representations. Naik et al.[6] proposed a shape function to define the woven fabric geometry
by considering the actual strand cross-section geometry, the possible gap between adjacent strands, and
the undulation and continuity of strands along the warp and weft directions. Jiang et al.|7] presented a
three-dimensional representative volume-element model to study the micromechanical behavior of woven
fabric composites; the model displayed a good agreement with the published experimental. Moreover,
the relationship between geometric parameters and the macromechanical behavior of the composites
could be obtained from the proposed model. Khan et al.[8] proposed a simplified mathematical
micromechanics model for calculating the mechanical properties of plain weave composites using FEA.
The proposed model considered geometry close to the actual fabric by utilizing geometric parameters
like yarn undulations and interactions between warp and weft tows. Although the analytical approach
is computationally efficient, it cannot accurately represent the model’s complexity and mechanical
responses. Thus, several researchers focus on utilizing FEA to analyze the woven composites numerically.
Ishikawa et al.[9] conduct the one-dimensional micromechanical analysis on the woven composites to
derive the upper and lower bounds of stiffness and compliance constants. The result is further validated
with 2D FEA. Whitcomb et al.[10, 11, 12] utilize FEA to analyze the three-dimensional stress of plain
woven composites and the boundary effect. Gowayed et al.[13] presented different types of fiber and
fiber arrangements in fiber-reinforced polymer woven fabrics. The impact of fiber assembling into yarns
and fabrics is also discussed in the paper. Dong et al.[14] utilize experimental and Finite Element
analysis to find the plain weave composites’ thermal conductivity and further compare the conductive
behavior with unidirectional lamina. These methods have shown the power of FEA in analyzing woven
composite models by including much more geometric complexity than the analytical approach. However,
using FEA to explore the mechanical properties is time-consuming as each woven model needs to be
solved numerically until convergence. Moreover, computational cost is even higher when dealing with

woven composites optimization since there is a large design flexibility for the weave pattern and the
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choice of materials. Thus, these limitations of FEA have required a more efficient and convenient way to
understand woven composites, which has driven researchers to utilize Machine Learning for composite
material prediction and optimization-related problems.

The emergence of Machine Learning (ML) methods research largely facilitates understanding compos-
ite materials and predicting the corresponding mechanical properties. Among existing ML algorithms,
Deep Convolutional Neural Network[15] (DCNN) and Generative Adversarial Network[16] (GAN) are
the most widely used. DCNN is a class of deep neural networks consisting of several convolutional,
pooling, and fully connected layers. DCNN has been widely used in different fields, including image
classification[15], recommender system[17], image segmentation[18], and natural language processing[19].
GAN is developed similarly to game theory, where Nash equilibrium is reached when the model converges.
There is a generator and a discriminator Network in GAN. GAN has been used in different fields,
including unsupervised learning[20, 21], semi-supervised learning[22], fully supervised learning[23], and
reinforcement learning[24]. Regarding ML’s application in composite materials analysis, Wei et al.[25]
demonstrate that machine learning methods like support vector regression, Gaussian process regression,
and convolutional neural network (CNN) are useful tools to predict the effective thermal conductivities
of composite materials and porous media. Chen et al.[26] give an overview of how different Machine
Learning algorithms can accelerate composite materials research, including several different regression
models, neural networks (especially CNN), and the Gaussian process. Feng et al.[27] propose a Deep
Learning method to predict composite micromechanical models’ stress distribution contours using
a Difference-based Neural Network, where the neural network focuses on predicting the differences
to a reference sample. Bang et al.[28] propose a framework to identify the defects within composite
materials by integrating thermo-graphic images of composite with deep learning. Liu et al.[29] propose
a new failure criterion for fiber tows in woven composites by combining mechanics of structure genome
and a deep neural network model. Nardi et al.[30] utilize the artificial neural network to predict the
thermoforming process of thermoplastic composites. The authors focus on the glass fiber-reinforced
polyetherimide woven composite and discuss the essential features needed for accurate predictions of
the temperature fields over the thermoforming process. The authors further discuss the potentiality of
using Machine Learning to determine the optimal range of the process parameters. Sepasdar et al.[31]
propose the modified U-Net network to predict the damage and failure in microstructure-dependent
composites. Gu et al.[32] use ML to analyze the strength and toughness of 2D checkerboard models for
2D printed bi-material composites. The authors used a single-layer convolutional neural network with
two binary classifiers. Further, Abueidda et al.[33] also focus on a 2D checkerboard model and utilized
a genetic algorithm to optimize a checkerboard composite pattern for maximum strength and toughness
based on different volume fractions. Bakar et al.[34] also utilized the genetic algorithm and parametric
study to optimize the elastic modulus of the weave pattern. Wang et al.[35] also utilized the genetic
algorithm-based method to increase the tensile strength of triaxial weave fabrics. Besides evolutionary
algorithms-based optimization like genetic algorithm, there are other different types of optimization
methods applied to woven composites or more general composite materials including gradient-based
optimization[36], regression-based optimization[37], particle swarm optimization[38] and artificial bee
colony algorithm|[39]. These studies have proven the potentiality of accelerating design and analysis of
woven composites with ML.

Although insightful, these frameworks are limited to predicting material properties for a given
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pattern or optimizing through heuristic searching, which is relatively easy to handle. On the contrary,
the ability to solve the inverse design problem, which predicts patterns for target mechanical properties,
can be more challenging and beneficial. Within woven composites, it could save a massive amount
of time otherwise invested in testing weave design iterations. Feng et al.[40] considered a 2D woven
composite with a single material and proposed the GAN-based framework for the inverse design problem.
The research has shown the potentiality of utilizing neural networks with a relatively decent error
rate of around 7%. Similarly, Chen et al.[41] consider the inverse design problem of the checkerboard
composites using generative inverse design networks called GIDN. GIDN consists of a predictor and a
designer, like the idea of GAN. The predictor is first trained with training data, and then trained weights
in the predictor are directly assigned to the designer as non-trainable parameters. The designer further
provides an optimized design from the initial Gaussian distributed design. GIDN has outperformed
conventional gradient-based topology optimization and gradient-free algorithms for stiff-soft bi-material
composites. This method brings promising ideas to optimize the composites, while this GAN-based
approach does not build the connection between the mechanical properties of composites to its geometry.
Also, neural network-based optimization is hard to understand in the physical space.

In summary, woven composites offer significant advantages and design flexibility, given the choice of
weaving pattern and yarn materials. However, this flexibility also suggests that there are potentially
unexplored properties of woven composites that remain to be fully understood. Effective tools are,
therefore, essential for accurately exploring these properties and optimizing composite structures. This
paper addresses two key challenges related to woven composites to facilitate their faster and more
efficient design: (1) How can we build a bi-directional bridge between woven composite architectures
and their mechanical properties? (2) How to optimize the woven composites’ mechanical properties
using ’physically meaningful’ features, so we can optimize the woven composites’ properties by directly

manipulating physical and geometric parameters?

2. Overview

This section presents an overview of the overall targets of the research presented in this paper and

the general Machine Learning approaches that we use for woven composites prediction and optimization.

2.1. Research Tasks

As mentioned in the previous section, we focus on solving two problems related to understanding the
mechanical properties of woven composites and optimizing the woven architecture to achieve improved
overall in-plane modulus. In this work, we particularly consider 2D woven composites, as they present
a more manageable level of complexity compared to their 3D woven composites [42, 43]. This allows
for less training data and facilitates more controlled analysis. This choice is also motivated by the
fact that 2D woven composites have been studied more extensively by prior researchers than their 3D
counterparts, and they serve as a suitable starting point for developing and validating our proposed
framework. Nonetheless, the framework and the checkerboard representation presented in this work
also apply to 3D woven composites. Woven composite architectures can be represented by different
combinations of weave patterns and material sequences. For example, a 6-by-6 woven composite model
will have 236 different patterns and 2%n® different material sequences, where n is the number of materials

to choose from. Thus, it is essential to efficiently and accurately obtain the mechanical properties of
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different woven composite architectures to determine the optimal architecture suitable for the problem
of interest. Besides understanding the mechanical behavior of woven composites, optimization is also
critical to minimizing the structure’s stresses, weight, or compliance for a given amount of material and
boundary conditions. Through optimization, we want to determine the most advantageous structure or
material distribution that results in the highest mechanical properties for the design requirement.

In this paper, we consider two different woven composite models: single-material and bi-material
woven composites. Single-material woven composites consist of yarns made of one material for the whole
model, whereas bi-material woven composites have different yarns made of two materials. Specifically,

we will consider three tasks (an overview is represented in Figure 1) as follows:

1. Task 1: Establish the connection between woven composite architectures (pattern + material)
and corresponding in-plane moduli. We will focus on the following tasks: (1) Forward Direction
Prediction (FDP): predicting from woven composite architecture to the corresponding modulus.
(2) Backward Direction Prediction (BDP): predicting from woven modulus to its architecture.
We decouple the BDP problem into two sub-problems: prediction from weave in-plane modulus
and material sequence to its pattern (named BDPa) and prediction from weave in-plane modulus

and pattern to its material sequence (named BDPDb).

2. Task 2: Propose a feature-based statistical representation of the woven composites. Specifically,
we propose representing the weave pattern using the Gray Level Co-occurrence Matrix (GLCM).
We prove the uniqueness of GLCM statistical features from a binary matrix and how each statistical
feature is related to the weave pattern feature in the physical space. We further represent the weave
material sequence with features from the physical space. Later, we conduct statistical analysis
to understand how each feature is correlated with the overall moduli (E,; = E1 + E2 + G12) of

woven composites.

3. Task 3: Propose the feature-based statistical optimization strategy to find the woven composite
architecture with the highest overall moduli and discover the near-optimal design using the
methods developed in Task 1 and Task 2. From the statistical analysis, we can determine whether
each statistical feature is positively or negatively correlated with the woven composite’s overall
in-plane modulus and further optimize the choice of weave pattern and material sequence based

on such correlation relationship.

For Task 1, to solve the FDP problem, we utilize DCNN to extract high-level features from the
woven composite model and predict the in-plane modulus from its architecture. The BDP problems are
more challenging than the FDP problems since the in-plane modulus can be sensitive to weave patterns
and material sequences. Incorrect prediction at a single position in the pattern or material sequence
could significantly change the in-plane modulus. Moreover, we will show that woven composites with
different patterns could have similar in-plane modulus. Such similarity forms one-to-many mapping for
BDP problems. So, a purely data-driven neural network makes it hard to achieve high accuracy in
BDP problems. To constrain the predictions for BDP problems, a standard way is to combine physics
knowledge with the neural network. The physics knowledge can be fused with input[27], model|[44, 45]
or loss function like Physics-Informed Neural Network (PINN)[46]. In this study, we combine such an
idea with transfer learning[47, 48|, and then propose the Physics-Constrained Neural Network

(PCNN). Unlinke problems with well-defined governing equations like PINN, it is nearly impossible
5
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Fig. 1: Overview of three Machine Learning tasks: (1) Task 1 builds the bridge between a woven composite and
its physical/mechanical properties. Task 1 is split into Forward Direction Prediction (FDP) and Backward Direction
Prediction (BDP) problems. BDP is further split into BDPa and BDPb, depending on predicting the weave pattern
or material sequence from a given target value of in-plane moduli. (2) Task 2 proposes the feature-based statistical
representation of woven composite for weave pattern and material sequence and describes the relationship between
extracted features and corresponding mechanical/physical properties through statistical analysis. (3) Task 3 proposes the
optimization strategy on a woven composite to achieve improved physical/mechanical properties (like higher strength) and
discovers the near-optimal woven composite design using the methods developed in Tasks 1 and 2. (Here, 'near-optimal’
refers to an improved woven composite design but might not guarantee to be the global optimal design.)

Water
filtration

to describe the relationship between woven composite geometry and its mechanical properties with
several equations. Thus, our PCNN embeds the existing physics knowledge from transfer learning as
a regularization term in the loss function to constrain the inverse design process of neural networks.
Specifically, PCNN will first utilize a similar structure as deep convolutional Autoencoder[49] to extract
high-level features from the input data and make predictions based on these extracted features. Then,
the PCNN will simultaneously embed our physics knowledge in the prediction layer and contribute
certain losses to the loss function. Here, the physics knowledge refers to the relationship between woven
composite architecture (pattern + material sequence) and its corresponding modulus, which comes
from the trained DCNN in the FDP problem. We further validated that our proposed PCNN could
enhance prediction accuracy compared to many widely used machine learning frameworks for BDPa
and BDPb problems.

For Task 2, we consider the feature-based statistical representation of weave patterns, which
can be represented as a checkerboard model and treated as a type of texture. Then, we extract
texture features from the weave pattern. Texture features describe the spatial distribution of pixels
(cells), which reflect objects’ roughness, smoothness, granularity, and randomness. Common texture
feature extraction methods include statistical, structural, and spectral methods. This paper utilizes
the statistical method and proposes the GLCM feature-based optimization strategy. GLCM, referring
to Gray-Level Co-Occurrence Matrix, is a statistical method of examining texture that considers the
spatial relationship of pixels[50]. The GLCM features characterize an image’s texture by calculating
how often pairs of pixels with specific values and in a specified spatial relationship occur in an image
and then extracting statistical measures from the matrix. Since GLCM can measure the texture
roughness, coarseness, and other properties in one calculation, it has been the primary method to
describe texture-related methods in the field of medical sciences (CT scans, MRI)[51, 52], landscape

analysis[53] and image-based defect detection[54]. In this paper, specifically, we use Haralick texture
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features[55]. Furthermore, we represent the weave material sequence using the statistical features in
the physical space. Two vectors can represent the material sequence, and each vector describes the
material sequence for weft and warp yarns. We consider statistical features directly from the material
sequence vector, including mean, median, and standard deviation.

For Task 3, utilizing the statistical features extracted from Task 2, we describe the correlation
relationship between extracted GLCM-based Haralick features from weave patterns and the corre-
sponding in-plane modulus of woven composites through statistical analysis to guide weave pattern
optimization. Similarly, we determine how each statistical feature is correlated with the in-plane
modulus for weave material sequence optimization and determine the optimal material sequence from
statistical analysis. Finally, the statistical models based on weave pattern and material sequence can
be combined to optimize a given woven architecture, which can be further combined with PCNN to

discover near-optimal woven composite architecture at the initial design stage.

2.2. Querview of Proposed Machine Learning Framework

In Figure 2, we present the proposed machine-learning framework for the two tasks considered
in this paper. First, weave patterns and materials are picked to define each woven composite model
uniquely. Then, we can calculate the corresponding in-plane modulus through FEA by applying
boundary conditions. After obtaining the weave pattern, material sequence, and corresponding in-plane
modulus, we can start the Machine Learning process: (1) For FDP, we design a deep convolutional
neural network that takes the weave pattern and material sequence as inputs and outputs the in-plane
modulus. (2) For BDPa, we design the Physics-Constrained Neural Network (PCNN) that takes
in-plane modulus and material sequence as inputs and predicts the pattern that matches the target
in-plane modulus. For BDPb, we design another Physics-Constrained Neural Network similar to BDPa,
which takes the pattern and in-plane modulus as inputs instead and predicts the possible material
sequence that matches the target in-plane modulus.

In this paper, we consider single-material and bi-material woven composites. As a constant vector
can represent the material sequence for the single-material woven composites, it will not serve as input
to train the Machine Learning framework. On the other hand, for bi-material woven composites, weave
pattern, material sequence, and corresponding in-plane modulus will be input to train the Machine
Learning framework.

Throughout the paper, the machine learning framework is implemented in TensorFlow 2.5.0 and
trained on NVIDIA GeForce RTX 2080 SUPER with 3072 CUDA cores and 1815 MHz frequency. We
provide access to our implemented Machine Learning code on our GitHub page, as mentioned in the
"Data Availability" section at the end of this paper. The GitHub page provides implementations of our
proposed neural networks, our baseline models for comparison purposes, and the training data used in

this paper.

3. Finite Element Method for Training Data Generation

As introduced in Section 1, woven composites are formed by inter-laced yarns impregnated with a
resin matrix. The woven composite’s effective mechanical property depends on the considered material’s
property, the cross-sectional geometry of yarn, and the weave pattern. In this paper, we utilize FEA to

determine the in-plane modulus of woven composites (E1, E2, G12) based on different combinations
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Fig. 2: Overview of the proposed Machine Learning framework: (1) Black arrows represent the FEA process, (2)
Red arrows represent the FDP problem, (3) Blue and Brown arrows represent two BDP problems: BDPa and BDPb.
Trapezium blocks are inputs to the Machine Learning framework. Initially, we have weave patterns and material sequences;
then, these models are brought into Finite Element solver ABAQUSJ56] to find the corresponding in-plane modulus.
Circular blocks represent different Machine Learning tasks: FDP, BDPa, and BDPb. Square blocks are the predictions for
different Machine Learning tasks. Solid lines before circular blocks represent inputs for the Machine Learning framework,
and dashed lines represent outputs. The solid green line and rounded corner blocks are the optimization modules. We
introduce feature-based optimization for pattern and materials sequence, using GLCM and physical space statistical
features.

24 of weave patterns and material sequences. We performed FEA on a repeated unit cell (RUC) to
x5 understand the influence of weave patterns on the composite’s in-plane effective properties. We modeled
25 the weave using TexGen [57], where all the geometrical input parameters are listed in Table 1.

Table 1: Geometrical parameters for finite element modeling

Length L. Width W  Height H Yarn spacing Yarn height Yarn width
6mm 6mm 0.44mm 1mm 0.2mm 0.8mm

247 The FEA was divided into two stages: First, we analyzed the influence of the weave pattern for
us  single-material woven composites. Second, the same process is extended to bi-material woven composites
29 with two different yarn materials, Carbon and Kevlar. The homogenized mechanical properties of
0 the fiber bundles embedded in the polymer matrix are shown in Table 2, which were calculated using
21 Chamis micro-mechanical model[58]. We assumed the volume fraction of fiber to be 76% in this paper.
2 Initially, the TexGen python scripting generates 9000 random weave patterns with carbon fiber yarns
3 in woven composites. Later, another 9000 random weave patterns with random hybrid carbon-kevlar
4 woven composites were generated. Each geometric model is exported as an input file with linear
»s  tetrahedron elements and periodic boundary conditions. In this paper, edge forces are applied in
»6 different directions. The corresponding displacement values were extracted from the applied tensile
257 (shear) loading to evaluate the effective in-plane mechanical properties. A detailed explanation of
253 boundary condition implementation can be found in Li et al.[59]. After preprocessing, we imported the
0 input file into ABAQUS to determine the effective in-plane mechanical properties from the stress and

x%0 displacement field.

Table 2: Homogenized material properties of fiber yarn embedded in polymer matrix

El (GPa) E2 (GPa) E3 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) V19 V13 V93

Carbon yarn 183.1 9.67 9.67 5.66 5.66 3.37 0.23 0.23 0.43
Kevlar yarn 116.03 3.96 3.96 2.45 2.45 1.69 0.35 0.35 0.45

%1 4. Machine Learning Model Inputs

262 We will establish the bridge between weave pattern, material sequence, and in-plane modulus (Eq,

263 Fo, and G12) through deep neural networks. To transform these input data to fit the neural network

8
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training, we conduct data pre-processing to convert weave patterns and material sequences into matrices

and vectors, respectively.

4.1. Weave Pattern Representation

The yarn placed along the x-axis is called weft, whereas the yarn along the y-axis is called warp. A
checkerboard model represents each weave pattern as a matrix with ‘0’ or ‘1’ binary values, where ‘1’
means warp lies below the weft and ‘0’ means warp lies above the weft. We denote Carbon yarn as
material ‘0" and Kevlar yarn as ‘1’ for material sequence. A weave pattern and material sequence for a
bi-material woven composite are shown in Figure 4. This paper considers a woven composite unit cell
size of 6-by-6, although others could consider larger unit sizes. So, each model is formed by weaving
together six warp and six weft yarns, and a 6-by-6 binary value matrix can represent each pattern.
Such unit cell is periodically repeated in a homogeneous weave pattern to create large woven fabric, as

shown in Figure 3.
1.0
o 1.0
0.6

02

6 0.0

0.0

Fig. 3: Woven composite model with highlighting a corresponding 6x6 repeating unit cell (RUC).

Previously, researchers have studied woven composites and depicted them in a physical manner.
Ishikawa and Chou [60] proposed a "mosaic model" to analyze the mechanical performance of woven
composites using analytical approaches. They used a geometrical factor n, to describe the number
of warps interlaced with a single weft yarn. They also showed that weave patterns with smaller n,
displayed inferior properties due to a higher number of undulations. Further, the bridging model was
also proposed to highlight the effect of higher n, on the mechanical performance of woven composites. It
was shown that weaves with higher n, values will contain straight yarns in the vicinity of the undulated
region. This "quasi-crossply" area would have higher local moduli values and serve as a bridge between
the neighboring undulated regions, resulting in higher in-plane moduli for the entire weave structure.
We have provided a detailed description of the effect of physical factors on the mechanical performance
of woven composites in Section Supplementary Section A. This work will use these parameters to justify

the optimized weave patterns obtained from the GLCM optimization module.

4.2. Weave Material Representation

Since the material sequence for single-material woven composites will not serve as input to the
neural network, only bi-material woven composites need the proper representation of their material
sequences. As mentioned in Section 4.1, the woven composite is formed with six warp and six weft yarns,
so the material sequence can be represented as two 6-by-1 binary vectors: the first vector represents

warp materials, and the second vector represents weft materials.
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4.3. In-plane Modulus from FEA

From the outputs of 9000 single-material and 9000 bi-material woven composite models, we obtain
the distributions of different in-plane modulus (Fy, Ea, G12). Here we define the Identity Sum (IS) of a
woven composite to be: IS =>""1) 2?11 L{w,,=1], where W is the weave pattern matrix, n; =ns =6
as the pattern matrix is 6-by-6. IS of a model represents the total number of ‘1’ regions within the
matrix. Figure 5 and Figure 6 show the distribution of different in-plane modulus with respect to
identity sum for single material and bi-material woven composites. Comparing these two figures, we
discover that: (1) single-material and bi-material woven composites have similar distribution for tensile
moduli, £y and Fs; (2) in-plane shear modulus G2 distribution for single-material woven composites

is more concentrated compared to bi-material woven composites.
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Fig. 5: In-plane moduli distributions for 9000 single material woven composites
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Fig. 6: In-plane moduli distributions for 9000 bi-material woven composites

4.4. Many-To-One Mapping

From Figure 5 and Figure 6, we can also observe that woven composites with the same IS could
have a completely different in-plane modulus. Moreover, our FEA outputs show that different woven
composite patterns could have similar in-plane moduli values. For example, as shown in Supplementary

Section B - Figure B.3, although the patterns look entirely different, both single material woven
10
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composite models have the same modulus in the vertical direction E;. Such a conclusion can also be
validated by histogram plots counting numbers of models having the same in-plane modulus component
FE,, E5, or Gy for both single material and bi-material woven composite models. Details of the
histogram plots and descriptions are shown in Supplementary Section B. This many-to-one mapping
poses challenges while predicting weave patterns for a given target in-plane modulus (BDP problems),

which is later addressed within the deep neural network frameworks.

4.5. Mechanical Properties of Plain Weave Composites Compared to Other Patterns

Among different patterns typically used in woven composites, plain weave, alternating ’0’ and ’1’
in its pattern, is the most fundamental weave design in different areas, including aerospace, fashion,
and furnishing. However, this does not imply that a plain weave will result in the best mechanical
properties. As shown in Figure 7, we can see that there are various patterns having better modulus in
both E; and Fs directions compared to plain weave (orange dot). The behavior can be attributed to
the plain weave’s lowest value of n, for the plain weave, which is discussed in Section Supplementary
Section A. The value of ny = 2 leads to a maximum number of undulations in both the horizontal and
vertical directions, resulting in inferior mechanical properties in both directions. Therefore, it is crucial

to explore weave patterns that will result in superior mechanical properties than plain weave.

o 10 Single Material Woven Composite Modulus Single Material Woven Composite Modulus
L]
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Fig. 7: (a) 6-by-6 representation of the plain weave pattern (b) mechanical properties of plain weave versus all 9000
patterns for single material woven composites (the yellow dot denotes the mechanical properties of plain weave and blue
dot denotes the mechanical properties of other weave patterns considered) (c) single material woven composites modulus
clustering based on different ratios, which is defined in Equation 1.

A ratio is defined as shown in Equation 1, where Ny and Ny represent the number of 1s and 0Os in

the pattern. dyeqve is the dimension of weave, which is 6X6 in this study.

(1)

)
dweave dweave

le NOs :|

ratio = max [

The numbers of models with a ratio higher than 70% and 80% are much smaller compared to the
total samples. Such class imbalance can influence the neural network’s prediction accuracy for models

with a high ratio, which is discussed further in Section 6.6.

4.6. Loss Functions Considered
This paper considers two types of commonly used loss functions: Mean Squared Error (MSE) and
Binary Cross-Entropy (BCE). MSE measures how close the predicted value is to the true value. This

paper uses MSE for in-plane modulus-related predictions, defined as Equation 2.

n 3
MSE(y,§) = % DD (v = 9i) (2)
i=1 j—1

Where n is the total sample size, ‘3’ means the size of the in-plane modulus vector, y;; is the

predicted value of i*" data sample, and j** in-plane modulus. i; is the corresponding true value.
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MSE can be widely used for different prediction tasks. However, it could be a wrong choice for
binary classification problems as MSE generally assumes data with normal distribution, while binary
classification can be viewed as a Bernoulli distribution. Moreover, the MSE function is non-convex for
binary classification problems using activation functions like the Sigmoid function. Thus, we will use
BCE defined as Equation 3 for predicting binary woven pattern matrix or binary material sequence

vector.

_ 1 -\~ - _
BCE(y,y) = e Z Zyz’jl()g(yij) + (1 = 3ij)log(1 — yi5) (3)
i=1 j=1

Similar to the definition of MSE, n is the total sample size, and m is the target size. For example,
m = 36 when predicting the 6-by-6 weave pattern and m = 12 when predicting the 6-by-2 weave
material sequence. y;; is the predicted value at 4§t component in it model and i; is the corresponding

true value.

5. Deep Neural Network Frameworks

This section will show the detailed deep neural network frameworks we propose to solve the FDP
and BDP problems. As briefly mentioned in Section 1, we utilize DCNN to solve the FDP problem,

and we propose our PCNN to solve the BDPa and BDPb problems.

5.1. Forward Direction Prediction: Deep Convolutional Neural Network

For the FDP problem, we developed a Deep Convolutional Neural Network (DCNN), with the
overall framework shown in Figure 8. Initially, weave patterns and material sequences are fed into
DCNN as inputs. Then, we will use Convolutional layers with ReLLU as the activation function for
the weave pattern to extract high-level features from the pattern. At the same time, the material
assignment vector will be expanded by fully connected layers. Then, extracted features from the weave
pattern and material sequence are concatenated into a new feature vector and further used to predict

the in-plane modulus through fully connected layers with the ReLU activation function.

5.2. Backward Direction Prediction: Physics-Constrained Network Framework

As mentioned in Section 1, the BDP problem is decoupled into two problems: BDPa and BDPb. We
have shown there exists a many-to-one mapping, which makes BDP problems much more challenging
to handle than FDP problems. This paper proposes two PCNNs for BDPa and BDPb, respectively.
Although the two frameworks are slightly different due to different input data, both frameworks are
developed based on Physics-constrained using the trained DCNN from the FDP problem to constrain
the prediction. To mitigate potential overfitting, we incorporate standard techniques such as dropout,
batch normalization, and early stopping in our proposed framework. However, our tests do not show
significant improvements with dropout and batch normalization, and only marginal gains are observed
with early stopping. Consequently, these techniques were not included in the final framework. It is
worth noting that the effectiveness of these methods may vary depending on the specific characteristics

of different training datasets.
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Fig. 8: Deep Convolutional Neural Network (DCNN) for FDP: pink blocks are the inputs to the neural network; orange
blocks are convolutional layers with ReLU activation function, and brown blocks are batch-normalization layers following
Convolutional layers; the blue block is the Flatten layer that reshapes the input into a vector; gray blocks are Fully
Connected layers with ReLU activation function; white blocks are the outputs of the framework. The green ball represents
the Concatenation layer. The modules inside the red dashed block are only activated when the material sequence serves
as the input for the bi-material woven composites. The neural network training is based on a stochastic gradient descent
algorithm and minimizes the mean squared error, with a fixed learning rate of 0.001. A comprehensive implementation
can be found in the GitHub link provided in the Data Availability section.

5.2.1. Predicting weave pattern from in-plane modulus and material sequence (BDPa)

For single-material woven composites, the BDPa problem is to predict the weave pattern directly
from the given in-plane modulus. In contrast, the problem is extended for bi-material woven composites
to predict woven patterns from given in-plane modulus and material sequence. The whole framework
to solve the BDPa problem is shown in Figure 9. In-plane modulus and material sequence in pink
blocks are the inputs to the framework. The two inputs are expanded through several fully connected
layers, concatenated into one vector, and brought into the Deconvolutional layers with LeakyReLU.
The deconvolutional layers will expand the feature vector into its original physical space of 6-by-6.
Since each weave pattern is a binary matrix, the last Deconvolutional layer uses the Sigmoid activation
function. To embed our existing knowledge into the prediction and enhance the prediction accuracy,
we add the trained DCNN from Section 5.1 after the predicted weave pattern and further evaluate the
prediction’s accuracy in terms of in-plane modulus, as shown in the light green block. Such a trained
DCNN acts as the regularization term to constrain the neural network prediction, which
is why the framework is called ’Physics-Constrained’. To improve the prediction accuracy,
we control the weights of modulus-related loss three times larger than the weights of pattern-related

loss. For the loss function, the pattern-related loss is calculated based on BCE, and the corresponding

modulus-related loss is calculated based on MSE.

5.2.2. Predicting weave material sequence from in-plane modulus and pattern (BDPb)

Compared to the BDPa problem, the BDPb problem focuses on predicting weave material sequence
from in-plane modulus and pattern. This framework concentrates only on bi-material woven composites
as single-material woven composites have a constant material vector, as shown in Figure 10. Weave
in-plane modulus and pattern serve as inputs to the framework, where the in-plane modulus is passed
into several fully connected layers with the ReLU activation function. In contrast, the pattern is passed

into several convolutional layers with ReLLU activation function followed by batch normalization. The
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Fig. 9: Physics-constrained Neural Network framework for BDPa problem: pink blocks are inputs to the framework; gray
blocks are fully connected layers; orange blocks are Deconvolutional layers with LeakyReLU activation function, and
brown blocks are batch-normalization layers following the convolutional layers; white blocks are outputs of the framework;
the red ball is the rounding layer that rounds the predicted probability vector into binary values to get the binary material
vector; the dark green ball is the concatenation layer that concatenates extracted features from in-plane modulus and
material assignment; Light green block refers to the previously trained DCNN framework. The modules inside the red
dashed block and the green dashed arrow are only activated when material assignment serves as the bi-material woven
composites input. The neural network training is based on the Adams optimization algorithm and minimizes the mean
squared error, with a fixed learning rate of 0.001. A comprehensive implementation can be found in the GitHub link
provided in the Data Availability section.

extracted high-level features from the in-plane modulus and pattern are concatenated into a vector
and passed into several fully connected layers with the ReLLU activation function. Since the material
sequence is a binary vector, the last fully connected layer has the sigmoid activation function. Similar
to BDPa, to enhance prediction accuracy, we constrain the prediction by adding trained DCNN from
Section 5.1 after the prediction layer. Similar to the BDPa problem, the weights of modulus-related loss
are also three times larger than the weights of the material sequence-related loss. For the loss function,

the material sequence-related loss is calculated based on BCE, and the corresponding modulus-related

loss is calculated based on MSE.
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Fig. 10: Physics-constrained Neural Network framework for BDPb problem: pick blocks are inputs to the framework;
gray blocks are fully connected layers with ReLU as activation function; the yellow block is the fully connected layer with
Sigmoid activation function; orange blocks are convolutional layers with ReLU activation function, and brown blocks are
batch-normalization layers following the convolutional layers; white blocks are outputs of the framework; the red ball is
the rounding layer that rounds the predicted probability vector into binary values to get the binary material vector; the
dark green ball is the concatenation layer that concatenates high-level features from in-plane modulus and pattern; light
green block refers to the previously trained DCNN framework. Similar to BDPa PCNN, the neural network training is
based on the Adams optimization algorithm and minimizes the mean squared error, with a fixed learning rate of 0.001. A
comprehensive implementation can be found in the GitHub link provided in the Data Availability section.
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6. Results and Discussion: Task 1 - Relating Woven Composite Architecture and In-Plane

Moduli

6.1. QOuverview of Baseline Models Considered

In this research, we use 9000 single-material and 9000 bi-material woven composite models, re-
spectively, to analyze the performance of the proposed Machine Learning frameworks. The data are
randomly split into a 60% training set, 20% cross-validation set, and 20% testing set. To control the
random split method for comparison, we control the random split seed such that different Machine
Learning algorithms are evaluated based on the same data set.

To evaluate the Machine Learning framework’s performance for the FDP problem, we directly
assess the in-plane modulus prediction in terms of mean absolute percentage error (MAPE) defined in

Equation 4.
1<~ A — F,
MAPE = — _ 4
P (®)

Ay is the actual value, F} is the predicted value, and n is the total sample size. On the other
hand, since BDP problems are more complex than FDP problems, we will evaluate the prediction
error based on MAPE and compare our PCNN performance with other popular baseline models.
There are three baseline models considered in this paper: (1) Woven-Decoder, which utilizes the
Autoencoder structure[49]. Autoencoder framework has been widely used for image-based prediction,
like predicting the stress contours|[27, 31, 61]. The detailed framework of the Woven-Decoder is shown in
Section Supplementary Section C.1. (2) Woven-GAN, which is developed based on the GAN framework.
Here we represent the generator using the Woven-Decoder structure while adding the discriminator
after the output to classify the output into a binary value. Such binary values will tell if the generator’s
result is realistic. The GAN-based framework has been used to predict the checkerboard pattern of
bi-material composites or to predict the stress distribution contours of different shapes of cantilever
beams under certain loading conditions[41, 62]. The GAN and Woven-GAN setup details are shown in
Section Supplementary Section C.2. (3) Woven-GA, developed based on Genetic Algorithm[63]. The
genetic algorithm is a search heuristic from the theory of natural evolution. It generates new generations
through crossover and mutations based on a user-defined fitness function by starting from randomly
chosen first generations. A genetic algorithm has been used to determine the complex geometry from
targeted mechanical properties, like finding the bi-material composite model designs with the highest
strength([33]. The Woven-GA structure and parameter setup details are shown in Section Supplementary
Section C.3. Although BDPa and BDPDb problems have different prediction targets, both problems
target finding the best pair of patterns and material sequences to match the target modulus. So both
BDPa and BDPb are evaluated based on the MAPE between the target in-plane modulus and the

predicted architecture’s in-plane modulus.

6.2. Forward Direction Predictions using DCNN

As mentioned in Section 6.1, the performance of the single-material woven composites is evaluated
based on the MAPE values. Since FDP problem aims to predict the in-plane modulus, the MAPE is
calculated based on F4, Es, and G113, respectively. We will validate the neural network’s performance
on single-material and bi-material woven composites separately.

Table 3 shows the prediction results of the single-material and bi-material woven composites. We

see that for single material woven composites, our proposed DCNN’s prediction error for E; and Fo

15



442

443

444

445

446

447

448

449

450

452

453

454

455

456

457

458

459

460

462

463

464

465

466

467

468

469

470

471

472

are below 2%. The prediction error for Gis is low as shear modulus does not vary much for single
material woven composites, as shown in Figure 5. For bi-material woven composites, as each in-plane
modulus is more distributed for different models, the prediction error of our proposed DCNN will
increase marginally. Our proposed DCNN could achieve prediction error at around 4% for F; and Fs
and below 2% for G12. Since woven composites in-plane modulus ranges from around 15GPa ~ 45G Pa,
the average error is around 0.1 ~ 0.2G Pa. These results indicate that our proposed DCNN effectively
represents the relationship between woven architecture and its in-plane modulus.
Table 3: FDP prediction error rate
Error Rate E; Es G2

Single-Material Woven 1.86% 1.89% 0.25%
Bi-Material Woven 3.81% 3.88% 0.20%

6.3. Backward Direction Predictions using PCNN

As discussed, the BDP problem is split into two sub-problems: BDPa and BDPb. To evaluate the
performance of our proposed PCNN, we consider the prediction error of BDPa and BDPb problems for

single material and bi-material woven composites separately with different baseline algorithms.

Single material woven composites prediction results. For single-material woven composites, we compare
our proposed Machine Learning framework with three baseline models described in Section 6.1. To
compare the prediction between different Machine Learning frameworks, we compare the prediction

accuracy and duration, as shown in Table 4. From the results, we show that:

1. Woven-GA gives the highest prediction accuracy for all models. However, since it is a heuristic
searching algorithm, it will take more than one hour for each prediction, and such searching needs
to be repeated every time we use it. Also, the performance of heuristic searching largely depends

on the data sample. Thus Woven-GA is a costly method and will not be considered.

2. For the rest of the deep neural network-based models, as the models are learned through training-
predicting, it takes much less time for each prediction. Compared to Woven-Decoder and
Woven-GAN, our PCNN has significantly reduced the prediction error to around 2% for E; and

FE5 giving the best overall prediction compared to all baseline models.

Table 4: BDPa prediction error rate for single material woven composite

Error Rate E, E> G2 Prediction Time
Woven-Decoder 7.87% 7.26% 0.33% 0.2sec
Woven-GAN 4.34% 5.27% 0.31% 0.3sec
PCNN 2.38% 1.72% 0.31% 0.3sec

Bi-material woven composites prediction results. Since BDP problems for bi-material woven composites
consist of three inputs, prediction with Woven-GA will be even more expensive and will not be
considered. Table 5 shows the prediction results for the BDPa problem, comparing our proposed model
and the other two baseline models. Figure 12 shows images of the predicted woven patterns for a given

in-plane modulus and material sequence. Based on the analysis results, we notice that:

1. Compared to baseline models, PCNN significantly reduces the error rate of F; and E5 predictions
from around 10% to 3.6%, and the error rate of G5 also decreases to around 1.3%. Thus, PCNN

outperforms the baseline models considered.

16



473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

2. For the predicted pattern, we can find that PCNN gives the closest prediction to the original weave
pattern. Furthermore, we show a detailed quantitative explanation of why PCNN is superior to

other models in Section 8.1.2 using our proposed GLCM-based feature (in Section 7) analysis.

Table 5: BDPa prediction error rate for bi-material woven composite

Error Rate B Es G12 Prediction Time
Woven-Decoder  9.31%  9.45%  5.01% 0.2sec
Woven-GAN 10.83% 11.71% 10.62% 0.3sec
PCNN 3.60% 3.71% 1.34% 0.3sec
(a) (b) (c)

Fig. 11: Predicted bi-material weave pattern for BDPa problem: (a) original weave pattern (b) predicted weave pattern
from Woven-Decoder (c) predicted weave pattern from Woven-GAN (d) predicted weave pattern from PCNN

We next evaluate the performance of different models for BDPb problems. Table 6 shows the
prediction result for the BDPb problem, comparing our proposed and baseline models. From these
results, we observe that compared to baseline models, Woven-Decoder and Woven-GAN, our proposed
PCNN could vastly reduce the prediction error from above 10% to around 5% for all three in-plane
moduli. Consequently, we can conclude that for both BDPa and BDPb problems, our proposed PCNN

can significantly improve the prediction accuracy for all three in-plane moduli.

Table 6: BDPDb prediction error rate for bi-material woven composites

Error Rate Eq Es Gio Prediction Time
Woven-Decoder 11.74% 11.73% 11.50% 0.2sec
Woven-GAN 15.28% 12.35% 26.99% 0.3sec
PCNN 553%  5.65%  4.10% 0.3sec

Weave pattern modification by bound relazation of modulus (for manufacturing purpose). When pre-
dicting the weave pattern in the BDPa problem, we do not add constraints to the predicted pattern.
However, during manufacturing, it is usually challenging to weave patterns with continuous yarns or
fiber bundles running along the warp and weft directions without an area of interlacing. Solving this
issue requires using pre-preg tapes made from "pre-impregnated" fibers and a partially cured polymer
matrix. Alternatively, stitching of fibers is needed to maintain the structural integrity of the fabric
during manufacturing. Since this process can be time-consuming and expensive, finding weave patterns
that do not have continuous yarns (that is, with interlaced region) is essential. To solve this problem,
we propose to find weave patterns by modifying the target modulus within specific ranges, which we
call Modulus Bound Relaxation.
The expression of Modulus Bound Relaxation can be represented as Equation 5.
Moew =

old + R x B (5)

Where M4 is the target modulus vector containing E7, Es, G2, and M, is the updated new
modulus vector. R € [—1,1]973 is a 3-by-1 vector, with each component randomly generated between -1
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and 1. B is a range of scaling factor of R, the upper and lower bound of B can be specified by the user.
R x B determines the maximum relaxation we want for the target modulus vector. We linearly increase
the value of B from its lower bound to its upper bound to increase the relaxation until we find a weave
pattern without continuous yarn. With this method, we can find a surrogate weave pattern with a
modulus vector slightly different than our target, but with no continuous yarn issue — an example of

how the Modulus Bound Relaxation algorithm works is shown in Supplementary Section G.

6.4. PCNN Performance with Small Dataset

This section tests how PCNN performs when the dataset is small. Specifically, we analyze the
performance of PCNN when we select 3000 and 6000 bi-material woven composite samples each from
the 9000 dataset. Table 7 and Table 8 show the prediction error for 3000 and 6000 samples. We observe
consistent results compared to the previous analysis using 9000 samples from the results. Thus we
conclude that for both BDPa and BDPb problems, PCNN provides better and more stable prediction

accuracy than the two baseline models.

Table 7: Prediction error rate with 3000 bi-material woven composite samples

Error Rate Fq FEs G1a Prediction Time
BDPa Woven-Decoder 10.61% 11.97% 10.30% 0.2sec
Problem Woven-GAN 8.67%  6.27%  6.8T% 0.3sec
PCNN 4.23% 4.28% 3.63% 0.3sec
BDPb Woven-Decoder  8.73%  8.84%  10.93% 0.2sec
Problem Woven-GAN 11.53% 12.55% 11.65% 0.3sec
PCNN 4.69% 3.70% 1.53% 0.3sec

Furthermore, Table 8 shows the prediction error of BDPa and BDPb problems under the 6000
sample. From the result, we can validate that for both BDPa and BDPb problems, PCNN has much

better prediction accuracy compared to the two baseline models.

Table 8: Prediction error rate with 6000 bi-material woven composite samples

Error Rate Fq FE> G12 Prediction Time
BDPa Woven-Decoder 11.61% 12.20% 12.33% 0.2sec
Problem Woven-GAN 6.48%  6.91%  6.14% 0.3sec
PCNN 3.81% 3.93% 3.18% 0.3sec
BDPb Woven-Decoder  9.24%  9.43%  10.99% 0.2sec
Problem Woven-GAN 12.20% 11.56% 10.24% 0.3sec
PCNN 4.10% 4.20% 1.49% 0.3sec

6.5. Backward Direction Prediction with Heuristic Algorithm

After comparing the prediction performance with Deep Learning methods, we further explore the
effectiveness of heuristic searching for the inverse design problem. We consider both the single material
and bi-material woven composite predictions and summarize the prediction accuracy of Woven-GA in
Table 9. We see that the Genetic Algorithm has a high prediction accuracy with less than 1% error
rate. However, there are several drawbacks of a heuristic searching algorithm: the prediction time of
a Genetic Algorithm is much longer (greater than 11 mins) compared to neural network frameworks,
which is, on average, 0.3 sec. Moreover, the Woven-GA incorporates randomness during the operation,
which could lead to potential run failures, especially when the loss function is complex like when a
neural network is embedded inside. Thus in this study, for the sake of efficient prediction, we explored

the deep learning-based frameworks more in detail.
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Table 9: BDP Woven-GA prediction error rate
Error Rate Eq Es Gia Prediction Time
Single-Material Woven 0.02% 0.02% 0.59%  1lmins 57secs
Bi-Material Woven 0.45% 0.42% 0.63%  14mins 25secs

6.6. Discussion on the Applications and Limitations of PCNN

Previous results have shown the potential of the PCNN framework compared to Deep Learning-based
baseline models. Although PCNN is applied to woven composites in this study, the framework can be
generalized into different fields of studies involving inverse designs like structural design given certain
design criteria, especially when the input space (design criteria) is much smaller than the output space
(model). Predicting from a smaller space to a larger space can be challenging due to the potential
overfitting and the highly nonlinear mapping between inputs and outputs. To address this difficulty,
PCNN adds a regularization term by embedding the physical relationship between the woven composite
model and its corresponding modulus into a quadratic function. This method has shown tremendous
improvement in the prediction accuracy.

On the other hand, as a Deep Learning-based approach, PCNN also has its limitations compared to

heuristic searching algorithms:

1. Although much faster prediction time, the prediction accuracy of PCNN can be lower compared
to heuristic searching algorithms as discussed above. In real life applications, PCNN is superior
in providing excellent time efficiency as well as relatively high prediction accuracy. PCNN can
be widely used to predict a large number of designs. On the other hand, the heuristic searching

algorithm is superior when accuracy is important and time efficiency is not a concern.

2. The training effectiveness of PCNN depends on the quality and variance of the training data. In
this study, we notice that PCNN has a high prediction accuracy when predicting weaves with
a ratio lower than 70%, attributed to the ample training data available. However, the PCNN

prediction accuracy will decrease when the weave exceeds 70% radio (as shown in Figure 7(c)).

7. Results and Discussion: Task 2 - Feature-based Statistical Representation

In the previous sections, we proposed DCNN and PCNN to establish the bridge between woven
architectures and the corresponding modulus. Our proposed Deep Learning frameworks deliver better
predictions for FDP, BDPa, and BDPb problems than baseline models. However, the high-level features
extracted by PCNN are challenging to understand and be used for other tasks like optimization. Thus,
we want to know what physically or statistically meaningful features control the woven composites’
in-plane modulus, and how we can use these features for further optimization. To that end, we conduct

the GLCM-based feature analysis.

7.1. Statistical Features from Weave Pattern

Since weave patterns are represented by a checkerboard model, we considered this as a type of
texture with pixel values of ’0’ or ’1’. Texture features describe the spatial distribution of pixels (cells)
that reflect an object’s roughness, smoothness, granularity, and randomness. Texture can also be used to
segment images into regions of interest and classify those regions into regular texture and quasi-regular
texture. Regular texture’s element follows a specific pattern, whereas quasi-regular texture’s element has

an arbitrary shape and is distributed based on intensity. Standard texture feature extraction methods
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include statistical, structural, and spectral methods. This paper utilizes the statistical method and

constructs the Gray Level Co-occurrence Matrices (GLCM). GLCM elements are defined in Equation 6.

n m

Coaway(B5) = DD Ve y)miI(o+Ac,y+Ay)=i] (6)

r=1y=1

where, I is the grey-level image, ¢ and j are pixel values. n,m is the size of image, (x,y) is the
starting position, and (Az, Ay) represent the offset from starting position. As our checkerboard models
are binary matrices in this paper, the GLCM will be a 2-by-2 matrix, where we consider transitions
of 0 0,0 > 1,1 =0, and 1 — 1. Further, we consider four different directions (horizontal,
vertical, and two diagonal directions) during GLCM calculation. The texture features considered are
contrast, correlation, energy, and homogeneity. Definition of each statistical term is summarized in
Supplementary Section D, where we refer to Beyer [53], Haralick [64], and Bevk [65]. Thus, for each

woven composite pattern matrix, we will extract 4 x 4 = 16 features. We can achieve several excellent

a b
properties by extracting statistical features from 2-by-2 GLCM in the form , leading to the
c d

following propositions:

Proposition 1. Weave pattern GLCM statistical features (Contrast, Correlation, Energy, Homogeneity)

correspond to a unique 2-by-2 GLCM.

Proposition 2. Weave pattern GLCM’s Energy (with the help of several other statistical features) tells
the relative relationship between different pattern transitions (0 — 0,0 — 1,1 — 0, and 1 — 1) in the

physical space.

Proposition 3. Weave pattern GLCM’s Contrast and Homogeneity tell the frequencies of homogeneous

transition (0 — 0,1 — 1) and in-homogeneous transition (0 — 1,1 —0).

Proofs of the above propositions can be found in Supplementary Section E.

7.2. Statistical Features from Weave Material Sequence

Statistical features from woven composite material are only considered for bi-material weaves, as
the material sequence for a single material is a uniform constant vector. We split the material vector
into the vector for the weft and the vector for the warp. First, we extract statistical features for each
material vector, including mean, median, and standard deviation from the vector. For each material
vector of a woven composite, we extract six features. Specifically, as material vectors can be constant,
we do not include skewness and kurtosis in this study. Then, to account for the sequence information,
we propose another statistical parameter called Vector Energy (VE): for any vector V, the vector energy
is defined as VE = 25:1 i % V(). Here L denotes the length of the vector, and V' (4) is the value of the

i-th component in V.

7.8. Regression Analysis of Extracted Features

To understand whether each statistical feature is positively or negatively correlated with in-plane
modulus, we use regression analysis to determine the weights of each feature. Specifically, we consider two
different cases: (1) how each feature is correlated with the label of the composite model. We group the
woven composite models into two groups: one group with a better overall modulus (E,;; = E1+E2+G12)

is labeled as ‘1,” and the other group is labeled as ’0’; (2) how each feature is correlated with the
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value of individual in-plane modulus. Here, the better overall modulus is selected based on the highest

quantiles across all datasets under consideration.

7.8.1. Regression analysis on the overall modulus of model
To understand what features contribute to woven composite’s better overall modulus, we utilize
the Ridge regression to predict the overall modulus directly from the target statistical features. The

regression model is defined as Equation 7.

min [ly — Xw|[? + A w| | (7)

where X is the matrix formed by feature vectors. y is vector containing FE,; values. Similarly,

values in vector w tell us how each statistical feature is correlated to the woven composite model’s Ey;.

7.83.2. Weave pattern feature analysis

We first fix the weave material sequence and analyze how the weave pattern features are correlated
with the overall composite modulus FE,;;. From the regression analysis results, we observe that the two
regression models, one each for single and bi-material, have weights with the same signs, as shown in
Table 10. From the results, we conclude that contrast and correlation are negatively correlated with
the woven composite’s overall modulus, while energy and homogeneity are positively correlated. This
trend can be validated by case studies shown later in Sections 8.1.3 and 8.1.4, where we show that
each GLCM feature controls the woven composite’s modulus as indicated by the regression results.
Furthermore, we prove that the GLCM features can be used to optimize weave patterns and guide the
woven composite designs by case studies in Sections 8.1.3 and 8.1.4.

The regression analysis found that the homogeneity is positively correlated, whereas the contrast is
negatively correlated. These results also agree with the analytical models discussed in Supplementary
Section A. If we subtract the value of contrast from homogeneity with a specific multiplication constant,
we obtain the value of homogeneous transitions in weave patterns (0 — 0,1 — 1). Therefore, according
to regression analysis, we can conclude that increasing the number of homogeneous transitions will
result in higher in-plane moduli. This can be attributed to fewer undulations in the weave patterns

with introductions of more homogeneous transitions.

Table 10: Sign of weights for weave pattern features
Contrast Correlation Energy Homogeneity Contrast Correlation Energy Homogeneity

GLCM 1 GLCM 2
Single Material - - + + - - + T
Bi-Material - - | J - - | |
GLCM 3 GLCM 4
Single Material - - t f - - f f
Bi-Material - - + + - - 4 +

7.8.8. Weave material feature analysis

We further consider how the weave material features correlate with its overall modulus FE,;; by
fixing the weave pattern. Here, we consider two fixed weave patterns as shown in Figure 14. Each
weave pattern is combined with 500 randomly distributed binary material vectors for regression analysis.
Similarly, we consider the one proposed regression model that corresponds to the two fixed weave
patterns.

The regression analysis results show that the mean value of the material vector significantly controls

the overall modulus of the woven composites. This implies that the sequence of the material vector is
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much less critical than the number of different materials on the property. This conclusion is validated
through case studies later in Section Supplementary Section H.1 and Supplementary Section H.2 with
different mean values of the material sequence. We have also shown that for the two patterns considered,
we want to increase the ratio between material ‘1’ and material ‘0’ in vertical yarns and decrease it in
horizontal yarns. Therefore, we can optimize the overall modulus for a given weave pattern by varying

the mean value of the material vector followed by the sequence.

8. Results and Discussion: Task 3 - Feature-based Statistical Optimization Case Studies

After proposing the GLCM representation strategy in Section 7, in this section, we demonstrate
how it can be effectively used for optimization by applying it to different weave models. Specifically, we
focus on optimizing the weave pattern given a material sequence and optimizing the material sequence

given a weave pattern.

8.1. Weave Pattern Optimization

In this section, we primarily investigate the effectiveness of our GLCM feature-based optimization
approach for improving weave patterns through several case studies. Firstly, we compare our optimization
strategy with the baseline model GIDN. Then, we utilize the GLCM to gain insights into why our
PCNN produces better predictions and how GLCM features can be effectively employed to optimize

the weave pattern.

8.1.1. Weave pattern optimization compared with baseline model - GIDN

We first compare our GLCM feature-based optimization with a baseline model GIDN[41] mentioned
in Section 1. GIDN consists of a designer and predictor and aims to overcome the issue of local minima
by using random initialization based on a Gaussian distribution. The authors claimed in their paper
that GIDN, with 1000 randomly initialized models, can find the optimal design. To demonstrate that
our GLCM method proposes superior weave models compared to GIDN, we consider GIDN with an
increased number of random initialization samples, namely GIDN-1000, GIDN-2000, GIDN-5000, and
GIDN-10000. To compare the performance of the GLCM model and GIDN, we randomly select a
weave pattern and a material sequence each time and attempt to find the optimal weave model using
GLCM features and different variants of GIDN. We tested for 20 randomly selected test cases, and we
noticed that the GLCM-based method is producing better prediction accuracy when GIDN’s searching
iteration is below 5000, and a comparable optimization performance with GIDN’s searching iteration
reaches 10000. Some example optimizations are summarized in Table 11 and Table 12. The -N’ means
‘normalized’ as all tables demonstrate that the GLCM-based optimization method outperforms the
GIDN models. Since the GLCM-based method can directly transform from GLCM space back to the
original physical space, and the optimization is based on a regression model, it is significantly more
efficient than the searching-based GIDN framework. For example, GIDN-5000 takes around 3-4 minutes
to finish the optimization, and GIDN-10000 takes 7-8 minutes. Besides time efliciency, compared to a
searching algorithm, the GLCM-based method provides a much deeper understanding of the correlations

between weave pattern features and the corresponding mechanical properties, as illustrated in Table 10.
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Table 11: Test Case 1: Optimization for weave model with material sequence [1,0,1,0,1,1,0,0,1,0,0,0]

Original Model

GIDN-1000 GIDN-2000 GIDN-5000 GIDN-10000 GLCM

E1-N 33.73 29.23 25.72 30.69 33.86 39.80
E2-N 21.85 31.85 36.25 33.93 31.84 24.67
G12-N 25.02 25.88 25.85 25.32 26.38 27.40
Sum 80.60 86.96 87.82 89.94 92.09 91.87

Table 12: Test Case 2: Optimization for weave model with material sequence [1,1,0,0,1,1,1,1,0,0,1,1]

Original Model

GIDN-1000 GIDN-2000 GIDN-5000 GIDN-10000 GLCM

E1-N 31.85 24.84 25.41 31.83 33.73 38.23
E2-N 18.99 30.18 30.94 25.33 27.46 22.43
G12-N 22.55 22.31 22.88 23.32 23.59 25.52
Sum 73.39 77.33 79.23 80.48 84.78 86.18

8.1.2. Comparing pattern prediction from different neural network frameworks based on GLCM features

Figure 12 illustrates the predicted patterns generated by different neural network frameworks for a
bi-material woven composite with the same material sequence and in-plane modulus. At first glance,
the PCNN prediction appears closer to the original pattern. However, considering the many-to-one
mapping discussed in Section 4.4, we aim to perform a more analytical comparison of the results.
We employ our proposed GLCM-based feature analysis approach to achieve this by converting these
predicted patterns into GLCMs. Subsequently, we will compare the statistical features of these GLCMs,

as they can effectively represent the in-plane modulus.

0 1 2 3

o 1 2 3

o 10 o 10 o 10
1 1 1

08 08 08
2 2 2

06 06 06
3 3 3

04 04 04
4 4 4

02 02 02
H 5 H
6 00 6 00 6 00

o 1 2 3 a s 6 4 H 6

(a) (c

Fig. 12: Predicted bi-material weave pattern for BDPa problem: (a) original weave pattern (b) predicted weave pattern
from Woven-Decoder (c) predicted weave pattern from Woven-GAN (d) predicted weave pattern from PCNN

We consider GLCM in all four directions: horizontal, vertical, 45° and —45°. The corresponding
GLCM statistical features are summarized in Table 13. From the regression analysis, we know the
weights of the statistical features are at the same level, so we can roughly estimate the closeness of
different feature vectors by the L2-norm of their differences. By calculating the corresponding L2-norm,
we see that: ||F, — Fyl||l2 = 0.629, ||F, — Fy||2 = 0.668 and ||F, — Fp||2 = 0.416, where F, denotes the
feature vector of the original pattern, Fy from the Woven-Decoder, Fj from the Woven-GAN, and F),
from the PCNN. Furthermore, we can notice that the feature vector of PCNN is closer to the original

pattern than in other frameworks.

Table 13: GLCM statistical features of predicted weave patterns

Correlation Contrast Energy Homogeneity Correlation Contrast Energy Homogeneity
GLCM 1 GLCM 2
Original Pattern 0.4333 -0.0476  0.2994 0.7833 0.5333 -0.2000  0.3067 0.7333
Woven-Decoder 0.6333 -0.2681  -0.2683 0.6833 0.5333 -0.0714  0.2533 0.7333
Woven-GAN 0.7000 -0.4016  0.2906 0.6500 0.5333 -0.0714  0.2533 0.7333
PCNN 0.4333 0.1086 0.2683 0.7833 0.6667 -0.3393  0.2800 0.6667
GLCM 3 GLCM 4
Original Pattern 0.4000 0.0809 0.3248 0.8000 0.5600 -0.2868  0.3184 0.7200
Woven-Decoder 0.5200 -0.0400  0.2504 0.7400 0.4400 0.1200 0.2536 0.7800
Woven-GAN 0.4000 0.1987 0.2608 0.8000 0.4800 0.0385 0.2512 0.7600
PCNN 0.4400 0.1143 0.2568 0.7800 0.4800 0.0385 0.2512 0.7600
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8.1.3. Case Study — shifting 1s vector in all 0s matriz horizontally or vertically

Consider a weave pattern with all Os. Then we artificially change each row of the matrix to be 1s.
When all 1s row lies between the top and bottom row of the pattern, the corresponding GLCMs are the
same. When all 1s row lies on top or bottom of the pattern, the GLCM will be different from others.
However, for our woven analysis, we are picking the RUC of the model and using periodic boundary
conditions, which means viewing globally, the GLCM for the woven pattern with all 1’s rows at the
bottom or top will be the same as in other places. Thus, GLCM will be the same no matter where
we put them all 1’s row. Furthermore, we prove from the FEA result that the woven modulus is not
changing for all 1’s rows at different positions. When we further shift all 1s vectors at different columns
of the all Os pattern, where GLCM is also the same, we notice that the modulus is not changing. These
results tell us that when GLCM are close, the two woven models’ modulus will also be close. That is to

say, GLCM controls the features that determine the woven model’s modulus.

8.1.4. Case Study — weave pattern optimization through GLCM
We start by considering a weave pattern predicted by the PCNN-BDPa shown in Figure 13(a),

which meets our desired mechanical properties requirement. The four corresponding GLCMs are:

16 15 32 3 12 13 12 14 @®)
15 14 3 32 13 12 14 10

If we want to optimize the prediction to achieve an even higher modulus, we can modify the GLCM.
From our previous lemmas, we know that we have to achieve higher energy and homogeneity in GLCM.
Thus, we can change the GLCM in a horizontal direction such that some elements in the GLCM are
high and others are very low. Then, we can convert it back to a weave pattern and adjust the pattern
to increase energy in other GLCMs. An example of a modified pattern is shown in Figure 13(b), whose

GLCM are:

24 18 40 0 20 15 20 15 )
18 0 0 20 15 0 15 0

Here, we can easily tell that the second woven pattern has higher energy than the first. By further
evaluation in FEA, we notice that if we use this pattern for a single material woven composite, the
original pattern has modulus: E; = 44.3 GPa, F> = 26.3 GPa, and the modified pattern has modulus
E, = 49.5 GPa, E; = 26.5 GPa. The improvement is more significant when considering bi-material
woven composites, as each modulus’s variations are more significant. Here we will show one case where
we assume the assigned material is an all '1’s vector, and through FEA, we determine that the original
woven pattern has a modulus of F; = 28.4 GPa, F; = 16.5 GPa, G12 = 1.96 GPa and the modified
woven pattern has a modulus F; = 35.2 GPa, Ey = 20.2 GPa, G5 = 2.30 GPa. Thus, GLCM gives us
a way to validate the proposed weave pattern by PCNN and further enhance the modulus if needed.

Analytical validation: To further validate the GLCM optimization, we will compare both models
qualitatively using the weave parameters discussed in Supplementary Section A. Comparing both weave
architectures in Figure 13, we observe that GLCM optimization has removed and reduced the regions of
undulations in warp and weft directions, respectively. In previous research [60, 66], it has been shown

that the regions of undulation result in lower in-plane moduli values. Therefore, the GLCM-optimized
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pattern has higher in-plane moduli than the weave pattern obtained from the PCNN-BDPa.
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Fig. 13: woven composite patterns for Case 3

8.2. Weave Material Optimization

In this section, we further show weave material sequence optimization by conducting case studies
of 2 randomly chosen patterns shown in Figure 14. For each pattern, different choices of mate-

rial vectors are considered. Case studies and results regarding material optimization are shown in

Supplementary Section H.
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Fig. 14: Two weave patterns considered for weave material sequence case studies

8.83. Summary of Regression and Optimization Results

Based on the regression analysis and optimization studies conducted on the weave pattern and

material sequence, we conclude that:

1. When optimizing the weave pattern with a fixed material sequence, the relationship between the
weave pattern and overall in-plane modulus can be effectively described using GLCM features.
The regression analysis reveals that energy and homogeneity positively correlate with the overall
modulus, while contrast and correlation exhibit a negative correlation. This conclusion holds for

all checkerboard-type models and can be utilized to optimize the weave pattern.

2. Compared to the GIDN framework with different random samples, our proposed GLCM-based
optimization approach outperforms GIDNs by achieving optimal designs and requiring less time,

as it does not rely on random searching.

3. When considering a fixed weave pattern, the relationship between the weave material sequence
and overall in-plane modulus can be described by examining the mean of the material sequence
vector in the physical space. It is important to note that this conclusion is specific to patterns in

Figurel4 and two materials considered in the study.
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8.4. Discover Optimal Woven Composite Architecture at Initial Design Stage

We have shown that PCNN can predict weave patterns or material sequences with high accuracy,
and feature-based optimization can enhance the overall modulus of woven composite models. The
proposed optimization strategy can be combined with PCNN to determine the optimal woven composite
architecture even at the initial design stage. For example, to design a woven composite model, we
assume there are two materials to choose from for each yarn. We can use any weave pattern to find the
woven composite architecture with the highest overall modulus. To determine the optimal design, we

can follow the steps below:

1. Determine the optimal material sequence through the feature-based optimization strategy, then

follow the procedure described in Section 7.2 and Section 7.3.

2. Pick the maximum in-plane modulus (E;, Es, G12) within a reasonable range, choose the material

sequence vector determined in Step 1, then use PCNN to predict the weave pattern.

3. After obtaining the weave pattern, further utilize a feature-based optimization strategy to optimize

the weave pattern to achieve the optimal woven composite designs.

9. Conclusions

The objective of this paper is twofold: 1) The first is to establish a bridge between woven architectures
(patterns and material sequences) and the corresponding in-plane modulus by developing deep neural
networks. We classify the prediction into the typical design process (FDP) and inverse design process
(BDPa and BDPb). The FDP problem is solved by a Deep Convolutional Neural Network (DCNN).
For the much more complex BDP problems, we proposed the Physics-constrained Neural Network
(PCNN) to predict the woven composite architecture from the in-plane modulus. We have shown that
our proposed DCNN delivers relatively accurate predictions. More importantly, PCNN can make sound
predictions for BDP problems and vastly outperforms the baseline models we considered. 2) The second
is to propose a feature-based optimization strategy to find optimal woven composite architecture. We
proposed a GLCM feature-based optimization strategy for weave patterns and statistical feature-based
optimization for weave material sequences. We further showed that the feature-based optimization
strategy can accurately and conveniently optimize the woven composite architecture. Finally, we
showed how to find the optimal woven composite architecture by combining PCNN with our proposed
feature-based optimization strategy.

To our knowledge, this is the first attempt toward a bi-directional design process for woven fabrics and
textiles with deep neural networks. That is, predicting mechanical properties from weave architectures
(pattern and material sequence) and vice-versa. We primarily focused on woven composites in this
paper. However, this approach can be applied to generic woven fabrics and textiles.

To solve the complex backward prediction (BDP) problems, we proposed our Physics-constrained
Neural Network (PCNN) to bridge the woven composite’s modulus and architecture. We have shown
that our proposed neural network vastly increases the prediction accuracy compared to several well-
established baseline models.

We further proposed feature-based optimization to optimize the woven composite architecture.
We proposed a Gray Level Co-occurrence Matrix-based optimization strategy for weave pattern

optimization and a statistical feature-based optimization strategy for weave material sequence. The
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feature-based optimization strategy can be combined with PCNN to determine the optimal woven
composite architecture even at the initial design stage.

Although our proposed framework has been trained and validated using synthetic data, it is designed
to enhance the design process for woven composites in practical applications. By providing faster and
more accurate design capabilities, the framework offers significant benefits to industries that utilize
woven composites. Specifically, it enhances efficiency by accelerating the design process and reduces

costs by minimizing the need for costly trial-and-error experimental testing.

10. Future Work

This paper presents a deep neural network-based framework designed to enhance the design and
prediction capabilities for woven composites. While the results are promising, several potential future
directions could further enrich this work: 1) application to real-world problems: the dataset used
in this study is synthetically generated using Finite Element Analysis software. However, in real-world
applications, the data often contain noise, variability and uncertainty. Future research should focus on
extending the current framework to handle real-world woven composites, where incorporating methods
to account for stochastic variability and noise becomes essential, such as Monte Carlo simulations
or Bayesian methods. 2) extending to 3D woven composite and other types of materials: al-
though this study specifically targets 2D woven composites, the proposed PCNN framework has the
potential to be adapted for inverse design of 3D woven composites and other composite materials.
Each material type may present unique challenges and characteristics, requiring tailored adjustments
to the neural network architecture and training process. Future work could explore these adap-
tations, expanding the framework’s applicability to 3D woven composites and a broader range of
materials, including those with different fiber orientations, matrix compositions, or hybrid structures.
3) texture feature-based algorithm for woven composites: This study highlights the significant
influence of texture features on the mechanical properties of woven composites. Future research
could delve deeper into this aspect by developing texture feature-based algorithms or neural networks.
Such algorithms could improve prediction accuracy or reduce the amount of training data required,
making the framework more efficient and accessible. Exploring advanced techniques like texture feature
extraction using deep learning, multi-scale feature analysis, or combining texture features with other
material characteristics could lead to more refined models that better capture the complex behaviors of

woven composites.
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Supplementary Document

Supplementary Section A. Ezplaining the weave parameters

Supplementary Section A.1. ng and Crimp ratio

Woven fabrics comprise sets of warp and weft threads that are interlaced together in different ways to
achieve various architectures. Earlier, the weave patterns consisted of uniform interlacing of these yarns
in perpendicular directions, and these patterns could be classified using the repeat of the interlaced
regions. A geometrical parameter, n, defines the number of warp yarns that are interlaced with one
single weft yarn. In Figure A.1(i), we have shown traditional weave patterns with their respective n,
values. As we can observe, a plain weave has the lowest n, value of 2, whereas the 8-harness (8-H)
satin has an n, value of 8. Another geometrical factor, crimp ratio (6,), reflects the undulation of the
yarns at the interlaced region as shown in Figure A.1(ii). For 2D woven structures, the crimp ratio
is defined for warp and weft directions. For a woven fabric, the crimp ratio increases with a decrease
in ng value and vice-versa. For example, the crimp ratio of a plain weave will be higher than that of
a satin weave. Osada et al. [66] compared the failure of composites with plain weave and 5-H satin
weave, and they reported that the crimp ratio had a significant impact on the material properties. It
was shown that the plain weave had a crimp ratio of 0.164 whereas the value was 0.023 for the satin
weave. They also proposed that the initial slope and the strength of the satin weave composite were
higher than the plain weave composite, with a delayed knee-point formation. Ishikawa and Chou [60]
also exploited these geometrical parameters to propose an analytical model to predict the properties of
woven composites. The model developed showed that the elastic moduli of composites reduce with the

existence of the undulated regions in the warp and weft directions, respectively.

n, =2 n, =3 n, =4 n, =8
m 1 i ﬂ Eﬂ H

Plain Twill 4-H Satin 8-H Satin

Weave Weave Weave Weave
z
f g —1(d
- N Crimp ratio: 8(x) = tan™! (%) IWeft
. Resin rich area
X

Fig. A.1: (i) Examples of ng values for Plain, Twill, 4-H Satin, and 8-H Satin weave patterns and (ii) Section AA’ of the
plain weave to illustrate crimp ratio (6(z)) at the interlaced region.

Supplementary Section A.2. Bridging effect

Ishikawa and Chou [60] also proposed a "bridging" model to predict the mechanical properties
of satin composites (ngy > 4). In this model, the surrounding region around the crimp region was
considered to obtain the properties. In Figure A.2, we have shown a comparison between plain weave
and 8-H satin weaves. In plain weave, we can observe that the surrounding regions also consist of the
undulated region which will result in lower in-plane moduli. On the other hand, for 8-H satin weave,
the surrounding region consists of straight yarns with no undulated region. Therefore, the surrounding
region has higher local in-plane moduli compared to the undulated region. These straight yarns in

surrounding regions act as a load-carrying bridge between neighboring interlaced regions.
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Fig. A.2: Illustration of bridging concept for Plain and 8-H weave patterns. The red box depicts the area of undulation,
while the yellow box depicts the surrounding region.

Although the previous research is restricted to the mechanical properties of uniform weave archi-
tectures, it has been shown that geometrical parameters of a weave architecture play a vital role in
determining the mechanical behavior of woven composites. In this work, we will utilize these geometric

parameters to evaluate the predictions made using the Machine Learning framework.

Supplementary Section B. Woven composite models having same in-plane modulus
Different woven composite models could have the same in-plane modulus as discussed earlier. This
can be easily visualized through histogram plots, as shown in Figure B.4 and Figure B.5. For every

single material and bi-material woven composite model, we use 9000 models for verification purposes.
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Fig. B.3: Single material weave patterns having the same modulus in Ej.

Histogram of in-plane modulus E1 (GPa)
2500

2000

1500

1000

500

o

30 35 a0
In-plane modulus E1

(a)

Fig. B.4: In-plane modulus

2r5-|0i05tc)gr.:-1m of in-plane modulus E1 (GPa)

2000

1500

1000

500

o
25 30 35 40

In-plane modulus E1

(a)

Histogram of in-plane modulus E2 (GPa)

2500

N
=]
<]
=]

1500

1000

Num of Counts

w
S
5]

30 35 40 a5
In-plane modulus E2

(b)

Histogram of in-plane modulus G;, (GPa)
2500

2000

1500

1000

Num of Counts

v
=
=3

0

3.04 3.06 3.08 3.10 312

In-plane modulus G12

(c)

3.14

distribution for 9000 models of single material woven composite

Histogram of in-plane modulus E2 (GPa)
2500

N
S
S
e

1000

500

Num of Counts

25 30 35 40
In-plane modulus E2

(b)

Histogram of in-plane modulus G;, (GPa)

2000

1500

1000

Num of Counts

o]
=]
<]

0
18

2.0

22 24 26 28
In-plane modulus G12

(c)

3.0

Fig. B.5: In-plane modulus distribution for 9000 models of bi-material woven composite
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Supplementary Section C. Machine Learning Baseline Models

Supplementary Section C.1. Convolutional-based Encoder-Decoder Network model (Woven-Decoder)
The Convolutional-based Encoder-Decoder Network is an encoder-decoder neural network that

consists of an encoder neural network and a decoder neural network in which one or both are convolutional

neural networks. For this paper, the woven-decoder extracts high-level features from two inputs and

predicts the results in output physical space. A brief framework overview is shown in Figure C.6.

Dense RelU

!

Material Dense RelU

Sequence

HH A

[ Deconvolutional ReLU ]

Concatenation [ Deconvolutional RelLU ] Predicted

l Weave Pattern

Deconvolutional
Dense ReLU Sigmoid

Dense RelU

Dense RelU

In-plane
Modulus

Dense RelU

Fig. C.6: Woven-Decoder overall framework for BDPa problem: modules inside green dashed line is the generator and
modules inside red dashed line is the discriminator. The "Deconvolutional’ blocks are deconvolutional layers with ReLU
or Sigmoid as the activation function and ’Convolutional’ blocks are Convolutional layers with ReLU as the activation
function.
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I"\ /I“
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Fig. C.7: Woven-Decoder overall framework for BDPb problem: modules inside green dashed line is the generator and
modules inside red dashed line is the discriminator. The ’Convolutional’ blocks are Convolutional layers with ReLU as
activation function. The Dense layers are connected with either ReLU or Sigmoid activation function.

Supplementary Section C.2. Generative Adversarial Network model (Woven-GAN)
Generative Adversarial Network (GAN) is a class of machine learning framework. GAN consists
of a generator and a discriminator. GAN’s discriminator tells how much input is realistic, while the

generator is used to generate the output that can fool the discriminator. GAN’s core idea is ’indirect’
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o training by adding a discriminator model after the prediction, such that the generator can produce
w2 a prediction close to the true value. A brief framework overview for the BDPa problem is shown in

w3 Figure C.8, and the framework overview for the BDPb problem is shown in Figure C.9.
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Fig. C.8: Woven-GAN overall framework for BDPa problem: modules inside the green dashed lines are the generator,
and modules inside the red dashed line are the discriminator. Each 'Deconvolutional’ block consists of Deconvolutional
layers with ReLU, and each ’Convolutional’ block consists of Convolutional layers with ReLU. The ’logits’ module will
output the probabilities that our predicted material vector is 'realistic’.

Convolutional RelLU

Weave Convolutional ReLU Real Material Sequence
Pattern Horizontal
Vertical

Dense RelU
l Predicted Dense RelU /[ Dense

1

1

1

1

1 . .

Material : l Sigmoid

Dense RelU :

1

1

1

1

1

Sequence
Dense RelLU

Dense Sigmoid

[ Dense RelU ]

Dense RelU

In-plane
Modulus \ Dense RelU

Dense RelU

N

Fig. C.9: Woven-GAN overall framework for BDPb problem: modules inside the green dashed line are the generator, and
modules inside the red dashed line are the discriminator. Each ’Convolutional’ block consists of Convolutional layers with
ReLU. The ’logits’ module will output the probabilities that our predicted material vector is 'realistic’.

o Supplementary Section C.3. Genetic Algorithm (Woven-GA)

1015 The Genetic Algorithm starts from several randomly generated samples as the first generation and
e calculates their corresponding values based on the defined objective function, called the fitness function.
w7 The crossover module with a predefined rate is performed to determine whether to perform crossover or
s directly pass the parent into the next generation. Once crossover is performed, the mutation is further
o used to make the population more diverse to avoid local optima. Such diversity allows the Algorithm
w0 to approach global optima faster. This crossover-mutation process will continue as more generations
wn  are generated until the termination criteria are met; either we already find the global optima or reach
022 the maximum number of generations. The brief flowchart of the Genetic Algorithm can be summarized

023 In Figure C.10.
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To find out the woven composite architecture with desired in-plane modulus with GA, we define the

objective function as Equation 10, where DCNN is the trained neural network from the FDP problem.

Puovens Myoven are the woven pattern and material assignment. Here one of them is given, and the

other is the prediction. For example, for BDPa, M,,,ypen Will be given, and Pyopen Will be the predicted

woven pattern.

Supplementary Section D. Texture feature equations

m.

= ||Etarget - Epredict”% = HEtm“get - DCNN(Pwovena Mwoven)”% (10)
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Fig. C.10: Genetic algorithm overall framework.
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This section provides detailed definitions of each statistical feature from GLCM, denoted by matrix

Contrast = ZZ(Z — 7)°m(i, 7)

Correlation =

> 2oy mis 7)) — paty

00y

Energy = Z Z[m(@j)]g

Homogeneity = Z Z 13_1(2’1)]'
v
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Supplementary Section E. Proofs of Propositions in Section 7.1

Proof of Proposition 1. We can express the four statistical features of the target GLCM as in

Equation 15.
contrast =b+c

d— Mg [y
Og0y

correlation =
(15)
energy = a’ + >+ +d?

, b ¢
homogeneity = a + 5 + 3 +d

Where the more generic expression of the statistical features can be found in Supplementary Section
D. In Equation 15, there are four independent equations for four elements in GLCM, meaning the four

statistical features can uniquely determine the GLCM.

Proof of Proposition 2. For the same 2-by-2 GLCM as in proof 1, it is evident that a+b+c+d = Cy,
where Cy is a constant depending on the size of the physical space matriz. Then we can prove that
energy tells us the number of transitions in the original space.

We can first consider extreme cases where maximum and minimum energy happens. We can quickly
show that mazimum energy occurs when one of (a,b,c,d) is non-zero, and all others are zeros, while
the minimum energy happens when a = b= c=d (these proofs are shown in Supplementary Section F).
So when we have higher energy, one or two types of transition in physical space must be much larger
than the others. Furthermore, when we have small energy, frequencies of different types of transitions
will be more evenly balanced.

In addition to our understanding of energy, using other statistical features could further help
determine the specific dominated transitions in GLCM. For example, in the largest energy case, a
contrast equal to zero tells us a or d is not equal to zero; a correlation smaller than zero tells us d = 0.

Homogeneity square equals to energy tells as b=c =0 but aord # 0.

Proof of Proposition 3. From Proposition 1, contrast (= b+ c) is determined by the sum of off-
diagonal terms, while homogeneity (= a+d + %) is determined by the sum of diagonal and discounted
off-diagonal terms. Thus, combining contrast and homogeneity will tell us the sum of diagonal (a+d =

Homogeneity - Contrast / 2) and off-diagonal terms (b+ ¢ = Contrast).

Supplementary Section F. Proofs for Sub-Conclusions used in Proposition 2

a b
In the proofs of Claim 2, we mentioned that GLCM is defined as . High energy indicates
c d

that one or two values in GLCM are much higher than others, and low energy indicates more balanced

values.

Proof. Finding the highest energy can be described as argmazgp c.aF(a,b, ¢, d), where E(a,b,c,d) =

a? + bv% + ¢ + d?, subject to a + b+ c+ d = k. Then rewrite energy expression as E(a,b,c,d) =

212 2 2 P : oy OB _
a®+b°+c*+ (k—a—b—c)°. Then by considering the energy as a function of ¢ and by finding 5> =0

o)

and noticing ;CQ“ =4 > 0, the maximum value will happen at ¢ = kor0. If c=k, then a=b=d =0,

conclusion proved. If ¢ = 0, we can find a + b = k£ and thus d = 0. Then by calculating W =0 and

2
noticing %ag =4> 0, we know a = 0Qork.

Finding the lowest energy can be described as argmingp .4 E(a, b, c,d), where E(a,b,c,d) = a® +
b2 + c® + d?, subject to a + b+ ¢ + d = Cy. Like the above proof, we first rewrite energy express as
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E(a,b,c,d) = a®> +b*> + ¢* + (k — a — b — ¢)?. Then by noticing ‘9261; =4 > 0, we want to solve ¢ by

0
%—f = 0 and find ¢ = d. Then we can further rewrite energy expression as E(a,b) = a® +b? 4+ 2(£=2=2)2,
Then by noticing %if > 0 we can find b = ¢, thus we must have a = b =c =d.
Conclusion proved.
O

Supplementary Section G. FExample of Modulus Bound Relaxation algorithm

This section shows how the Modulus Relaxation algorithm modifies the weave pattern predicted
for user-defined target moduli values. Figure G.11(a) is the original predicted weave pattern from
PCNN, and Figure G.11(b) is the modified weave pattern, which does not have a continuous yarn

problem. The original weave pattern was predicted for a target in-plane moduli of Fy = 26.0GPa, E> =

1111 00
26.0GPa, G2 = 2.30G Pa with a material vector, . The predicted weave pattern

01 1 010
has in-plane moduli of F; = 25.6GPa, Ey = 25.3GPa,G12 = 2.25GPa. On the other hand, the

modified weave pattern having the same material vector has in-plane moduli of F; = 25.5G Pa, Fy =
25.0GPa, G2 = 2.26GPa, which is close to the modulus of the original predicted weave pattern. The
minor reduction in the in-plane moduli for the weave pattern in Figure G.11(b) can be attributed to

more undulations between the warp and weft thread.
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Fig. G.11: Weave pattern modification from the Modification Module: (a) original weave pattern predicted from PCNN
(b) modified weave pattern from Modification Module

Supplementary Section H. Weave material sequence optimization case study

Supplementary Section H.1. Case Study — weave material sequence sensitivity study

First, we consider two 1-by-6 material vectors, where the first material vector represents horizontal
yarn materials and the second represents vertical yarn materials. We consider two scenarios: (1) The
ratio between the two materials in each vector is 1 : 1. (2) the ratio between the two materials in each
material vector is 3 : 1 and 1 : 3, respectively. Then, we randomly choose several woven patterns, for
example, as shown in Figure 14. Regardless of our material vector sequence, the woven composite’s
in-plane modulus will be nearly the same if the ratio between the two materials is the same for horizontal
and vertical yarns. This validates our conclusion that only the material vector’s mean or sum controls

the corresponding in-plane modulus.

Supplementary Section H.2. Case Study — weave material sequence optimization for specific weave
patterns with different material ratios
Owverall material ratio 1:1. Assume initially, we either have a material vector M, or is proposed by

PCNN as:
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The first row represents the horizontal yarn materials, and the second represents the vertical yarn

materials. Such material assignment gives us the corresponding modulus E; = 40.18 GPa, Ey = 23.39

GPa, G152 = 2.702 GPa. Now, we want to enhance the corresponding overall modulus of the woven

pattern. Here, we introduce two material vectors; one completely follows our conclusion from the

regression-based analysis in Section 7.3.3 (say M.), and the other reverses our conclusion (say M.,.).

The corresponding material vectors can be expressed as:

Overall material ratio 1:3. Here, our material vector is:

1 1 0

1 1 0

1

1

0
1

1

1

(18)

This material assignment gives us a modulus of E; = 40.18 GPa, Fy = 23.39 GPa, G15 = 2.702

GPa. To enhance the corresponding overall modulus of the woven pattern, we introduce two material

vectors as above:

0 0011

1 11

11

1
1

and M, =

11
11

1

10 0 0

1 11

Owverall material ratio 3:1. For this case study, we have a material vector:

The corresponding modulus are F; = 40.18 GPa, Fs

My =

10 01 00

0 001060

introduce the two material vectors M, and M, as:

0 000 0O

0 0 O

1 1

1

and M, =

(20)

23.39 GPa, and G5 = 2.702 GPa. We

11

1000

0 000 0O

(21)

Results. From Table 14, the sequence M., which follows our optimization strategy, consistently achieves

superior overall modulus over M, and M,.. While, M,., which contradicts our optimization strategy,

nearly always achieves the lowest modulus. Thus, using the GLCM based optimization strategy, we can

conclude that having more material 1 in the vertical yarn and material 0 in horizontal yarn is beneficial

for the patterns shown in Figure 1. This can be extended to other patterns considered by a user.

Table 14: Weave material sequence based optimization

Material Ratio Ratio 1:1 Ratio 1:3 Ratio 3:1
Modulus EI-N E2-N GI2-N Sum EI-N E2-N GI2-N Sum EI-N E2-N GI2-N Sum
M, (GPa) 32.65 20.76 23.93 7734 31.15 1795 21.61 70.72 36.80 23.32 27.11 87.23
Pattern 1 M, (GPa) 36.33 20.03 25.04 81.40 32.23 17.81 21.98 72.01 38.70 22.57 27.60 88.86
M, (GPa) 31.35 21.50 23.87  76.72 29.39 18.89 21.50 69.78 36.33 24.02 27.32 87.67
M, (GPa) 27.94 2451 23.83 76.27 2651 20.81 21.23 68.55 31.92 2720 26.93 86.04
Pattern 2 M, (GPa) 31.67 23.04 24.51 79.23 27.69 20.51 21.46 69.56 34.05 26.12 27.19 87.35
M, (GPa) 26.47 25.67 23.87 76.01 24.76 2242 21.34 68.52 31.49 2840 27.38 87.28
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