A Path Metric Based Construction of
Polarization-Adjusted Convolutional Codes

Tyler Kann!, Shrinivas Kudekar, Matthieu Bloch!
1 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
tkann3 @ gatech.edu, kudekar@gmail.com, matthieu.bloch@ece.gatech.edu

Abstract—We propose an approach to understand and exploit
Polarization-Adjusted Convolutional (PAC) Codes that is directly
tied to decoders with memory, specifically Successive Cancellation
List (SCL) decoding. The crux of our approach is to use a
modified Density Evolution Gaussian Approximation (DEGA) to
account for errors in the decoding path and more accurately
track the path metrics (PMs) likely to incur decoding errors.
Our approach not only explains the benefits provided by the use
of the rate one precoding, but also provides new insight into
why certain information sets perform better under PAC than
polar. We leverage the approach to design new information sets,
and in particular, we design a (128,42, L = 8) code that offers
half a dB gain over the state-of-the-art at a Frame Error Rate
(FER) of 1072 and outperforms the Reed-Muller (RM) set with
L = 32. We also draw connections between our approach and
works studying the minimum weight of PAC codes.

I. INTRODUCTION

As engineering pushes towards the realization of 5G New
Radio and 6G, many challenges arise. One of these is the
need for communications with improved reliability and less
latency, notably the need for the Ultra-Reliable Low-Latency
Communication (URLLC) requirement. These strict require-
ments demand new and improved error-control coding for
extremely short blocklengths, typically N < 256 [1]. Promis-
ing coding schemes that have shown strong performance
include extended Bose-Chaudhuri-Hocquengham (eBCH) [2];
RM codes [3]; polar codes [4] and Polarization-Adjusted
Convolutional (PAC) codes [5]-[7], especially when used in
combination with decoding techniques such as Successive
Cancellation List (SCL) decoding [7], [8]; Ordered-Statistics
Decoding (OSD) [9]-[11]; or Guessing Random Additive
Noise Decoding (GRAND) [12].

While several papers have exploited the benefits of PAC
codes for large improvements at short blocklengths, there
have been few attempts to develop a principled explanation
for the boost in performance PAC provides over traditional
polar coding. Existing attempts have focused on cutoff metrics
[13], a joint source-coding perspective [14], and primarily on
the impact the precoder has on the weight spectrum of the
code [15], [16]. However, none of the current methods in the
literature explain why the benefit of PAC is tied directly to
the decoder, or more explicitly, why PAC benefits are not
realizable under Successive Cancellation Decoding (SCD) but

This works was supported in part by the National Science Foundation (NSF)
under grant 2148400 as part of the Resilient & Intelligent NextG Systems
(RINGS) program.

are attained under SCL, Fano, or any other decoder that tracks
multiple paths. In this work, we attempt to explain PAC in a
way that is explicitly tied to how the aforementioned decoders
track PMs. Understanding how PAC codes change the PM may
explain why they perform so well for these decoders and may
also pave the way to create improved information sets and
convolutional precoders.

The remainder of the paper is organized as follows. We
review necessary notation and concepts regarding polar codes,
DEGA, and PAC in Section II. We then introduce conditional
DEGA, our main tool to understand the behavior of PAC
codes in Section III, and our proposed PM based information
set construction in Section IV. A full algorithm and resulting
frozen sets are available upon request, but for brevity Section
IV merely highlights the salient features of our approach. We
conclude by presenting numerical results in Section V.

II. POLARIZATION-ADJUSTED CONVOLUTIONAL CODES
A. Polar Codes

A polar code for channel coding is characterized by its
blocklength N £ 2" n € N, the number of information bits
K, and an information set .A C [1; N| that specifies where to
place information bits. Specifically, a vector of K information
bits m is encoded into a length N vector « such that u 4 £ m
and u 4 = 0, the all-zero vector. The sets A and A€ are called
the information and frozen set, respectively. Upon setting G

= [} (1)1(, the base polarization matrix, and G®" as the
nth order Kronecker product of G, a codeword z is created

through the operation z £ uG®", a process known as the
polar transform. The structure of the matrix G®™ allows for
an encoding complexity of O(N log N). The codeword z is
then sent over the channel to a receiver that observes a noisy
version ¥, e.g., y; = x; + ny,n; ~ N(0,0?) if the channel is
an Additive White Gaussian Noise (AWGN) channel.

The standard decoding algorithm for polar codes is the
Successive Cancellation (SC) decoder, by which bits from the
information set A are successively decoded based on their
Log-Likelihood Ratio (LLR), A, given the past decoded bits
according to the maximum-likelihood rule.

P(y,d0:i—1]a=1)

0 if A0 = In PWioial@i=0) ¢
e { e , (D)

1 else.
Vie A @) =0,)

where dg.;—1 = {09, 4Y,...,4) ;} denotes the vector of past
decisions. The LLRs can be efficiently computed recursively,
resulting in a decoding complexity of O(N log N). The LLRs
can also be viewed as decisions made at the output of indi-
vidual bit channels, corresponding to channels with input bit
u; and output (y, Gig.;—1). The choice of the set A, called rate
profiling, plays a crucial role in determining the performance
of polar codes, and several criteria have been proposed based
on the capacity of the bit channels [17] or the RM profile [18],
which consists in enumerating the Hamming weight of RM
codewords and selecting those with highest weight, essentially
giving rise to the Reed-Muller codes.

B. Successive Cancellation List Decoding

Given that each decision in the SC decoder relies on previ-
ously decoded bits, one bad decision can propagate and make
future bits erroneous. SCL decoding [19] attempts to avoid
this problem and can be implemented relatively efficiently. In
SCL, the decoding process is viewed as following branches
of a tree, simultaneously tracking up to L branches. The tree
splits at every non-frozen bit 4, creating two branches: 4; = 0
and 4; = 1. For every path in the set £ of currently tracked
paths, the PM is computed as the accumulation of Branch
Metrics (BMs). Each BM is the penalty based on the decision
for both frozen and information bits, according to:

0 if 1 —2a%[l] = sign(A\Y[1])
BMiL] = {IAO[0 i1 2a00] = —sign(0[])

When |L]| is greater than L, the list is pruned back to only L
paths, keeping those with the lowest path metrics.

In list decoding, there are two possible error events that
result in a decoding failure. The first error event occurs when
the paths are pruned from 2L to L, and the correct path
is deleted in this process. The second error occurs at the
end, when the correct path is one of the L remaining, but
not the path with the lowest PM. We refer to these errors
as path loss errors and selection errors, respectively. We are
primarily considering the selection error. The selection error
occurs when there is at least one path with a smaller PM than
the correct path. With a slight abuse in terminology, we refer
to both path and metric of the incorrect path with the smallest
PM as the Most Misleading Path Metric (MMPM). This is the
path that determines if there is a selection error, which happens
if and only if the MMPM is less than the correct PM. Thus
our guiding principle is to increase the value of the MMPM
and consequently reduce the number of selection errors.

C. Density Evolution Gaussian Approximation

Ultimately, one of the hardest challenges of both polar and
PAC codes is creating the information set .4 that minimizes
the block error probability.

This boils down to choosing information bits that are
deemed the most reliable according to the chosen metric of
channel reliability. One method of estimating the reliabilities

of polarized channels is using DEGA, based on [20] and
applied to polar codes in [21], [22]. In essence, the received
LLRs are treated as Gaussian distributions, parameterized as
N(U%, U%), where 0% is the noise variance of the channel.
We aim to calculate the posterior distributions at the output.
With an abuse of notation, we also denote L as the distribution
of the LLRs, and reserve A for the realizations. Since the distri-
bution is symmetric, meaning the variance is twice the mean,
only one parameter must be accounted for. The distributions
then go through the polarization, and we calculate:!

2i—1 A27— AD27—
LGV (a3) = tanh(L), (N 011, 877 2)/2)

x 2tanh ™ (tanh(L{), (1%, 472 @ 03, %) /2) (5)
21 ADj— 7 A2f—
LR) = Lo (0N a3
~21—1 7 ~ 24 ~2i
+ (=)™ LG, A e at) ©)

Given that we are transmitting and correctly decoding the
all zero codeword, all repetition nodes, i.e. (6), correspond to
addition of LLRs. Compared to complex Low Density Parity
Check codes, polar codes form, by design, a perfect tree with
no cycles and exactly two inputs in the density evolution.
This makes the posteriors not only easier to calculate but also
accurate, which is used to predict the decoding performance.

D. PAC Codes

While polar codes are asymptotically optimal [4], they
are not immediately competitive in the short to medium
length regime. This is because the polarization process, by
which channels eventually become either completely noisy
or noiseless, happens relatively slowly, and smaller codes
contain channels that do not yet fall in either of these cat-
egories. To improve the performance in the short to medium
length regime, Arikan introduced Polarization-Adjusted Con-
volutional (PAC) codes in [5], which can essentially be viewed
as polar codes with dynamically frozen bits [22], [23]. The
surprising revelation of PAC codes is that precoding the polar
code with an outer rate one convolutional code offers dramatic
improvements in performance with no rate penalty.

PAC codes still ultimately polarize u to get the final code-
word, except u is the now output of the convolution of v, the
new information vector. The information set .4 now determines
the placement of information bits, so that v4 contains the
information bits and v 4. = 0. A detailed explanation of PAC
codes can be found in [24]. Decoding operates on u;, except
u; is now determined from the convolved 0y.;.

III. CoNDITIONAL DEGA

DEGA, as described in Section II-C, considers the all-
zero codeword being transmitted, and the reliability of each
bit is based on the assumption that all prior bits have been
decoded correctly. This assumption is sufficient for SCD, in
which one cannot afford to make any error. However, the

'We keep the DEGA density equations unmodified from [21], meaning the
subscript and superscript are different from than the rest of the paper.

improved performance of decoders that track multiple paths
(Fano, Stack, SCL, etc.) motivates us to investigate what
happens to posteriors conditioned on an error made earlier.
If a decoding error is made, an erroneous 1 now exists in the
all-zero codeword.

Let us see how this erroneous 1 affects the propagation of
LLRs when computing the posterior LLR for a future bit. Note
that we have degree two repetition nodes and parity-check
nodes in the decoding tree. As a result of polarization, many
future repetition nodes (at all layers) will now be updated as

2 i i i
Lgv)(yfv,uf = LEV)/Z(y%/%rhu?,e %)

— L 7 A @ adl %), ()

We are now subtracting the two positive mean inputs. Up
until this point, because of the structure of the problem,
both L), (4% 2, 125 2) and L),/ 352 6 a2 ?)
are identical densities. This means that the new distribution
resulting from (7) will be of the form N(0,4u), where 2y is
the variance of the distribution of LS\Z[)/Q (y{v/ 2 11%2; 2 @ﬂff; %).
Because of the tree structure of repetition nodes and check
nodes in polar codes, the expectations of all future LLRs
shrinks after the first error, with many becoming zero. An
example of this occurrence is illustrated in Fig 1. We acknowl-
edge that [25] identified a similar phenomenon, but did not
leverage it or explicitly show what happened to future LLRs.

Calculating the propagation of conditional DEGA on a
check node becomes harder than traditional DEGA because the
distributions are no longer symmetric and one needs to account
for a variance that is now vastly different from the smaller
mean. In this work, we calculate the output mean and variance
through check nodes empirically via monte carlo. Since the
distributions are no longer symmetric, posteriors may have an
extremely small, if not zero, mean but large variance. Even
though the distributions are no longer symmetric, we assume
that all inputs and outputs of the check nodes and repetition
nodes are Gaussian. If the conditional posterior of bit 2 comes
from a Gaussian distribution N (11, 0?), the expected BM can
then be calculated with one of the two integrals

00+°O ANV (1, 0%)
J= oo NNV (1, %)

depending on the the optimal decision for u (i.e. the sign of
). Note that for frozen bits, only the top case is allowed.
Since the PM is simply a sum of all branch metrics, it can be
estimated as

E[BM,] — { ®)

E[PM] = NZ_: E[BM,]. ©)

1=

—

For information bits, since the decoder makes decisions based
on the posterior LLR and BM, the greedy choice causes no
notable increase in the PM. This means that majority of the
E[PM] comes from the frozen bits with a large E[BM], which
are ones with a small conditional mean but large variance, or

~0
Ug =

A
N
. N
1 N

(a) The received LLRs are on the “right” and the posterior LLRs
are computed on the “left”. In traditional DEGA, the distributions are
symmetric and shrink towards zero when going through a check node
and move towards +o0o when going through a repetition node. Because
of the distribution symmetry, as the distributions move towards zero,
the variance also shrinks to zero. We assume here that the first bit
is erroneously decoded to 1. This causes subtraction on the repetition
node, and the resulting distribution of the posterior for bit 1 has zero
mean.

il g i g LA
(=

U &

1 am
/i/‘ﬁj

(b) Because of the erroneous 1, the second layer polarizes to (1,0).
This causes subtraction amongst the received LLRs. The distribution of
the posterior on bit 2 is zero mean but not zero variance; the posterior
of bit 3 is distributed by N'(2u, 8u), since the inputs to the repetition
node are N (2u, 4p) & N(0,4p).

@
&

/_I_\DL
I

L
J

— =

Fig. 1: Illustration of conditional DEGA for an error in N = 4.

ones with a large conditional mean and a forced decision of
1 via PAC.

As illustrated in Fig 1, in a scenario where all bits up to ¢
have been decoded but an error was made on the ith bit, DEGA
becomes inaccurate in estimating the posteriors of the future
bits. Thus, computing the conditional DEGA distributions of
future bits is essential for estimating the PM of this error path.

A. Relation between Conditional DEGA and Code Weight

As seen in Fig 1, some of the conditional posteriors now
have zero mean. Greedy decisions on these bits do not alter
the expected PM. Additionally, the decisions on such bits do
not alter the magnitude of the future expected LLRs, although
they may change the sign. In other words, neither decision is
viewed as incorrect from the perspective of the decoder. These
bits are problematic since they have equal probability to be 1
or 0. This means they can interfere with the precoding, either
by creating even parity and not altering a frozen bit decision,
or by swapping the sign of a frozen bit that will be altered
by PAC. Both scenarios limit the potential increase in PM
incurred by PAC and create paths that have less than expected
PMs.

We compare the finding of zero mean posteriors to [15], in
which Rowshan et al. define the set

Ki2{jeli+1,N—-1]: w(g;) > w(g +g;)=w(g)},
(10)

where w(.) is the Hamming weight, and g; is row j in the
G®" matrix. In words, K; is the subset of all row vectors of
G®™ whose weight, when linearly combined with g;, does not
affect the resulting Hamming weight. Rowshan et al. use these
sets to help with min-weight codewords enumeration. One can
also define the set

Ki2{jeli+1,N—1]: w(g;) < w(g: +g;)=w(g)}

Y

Empirically, ;UK seem to correspond to all the bit positions
that have a zero mean conditional posterior given an error
on 7. In other words, deciding ; incorrectly once an error
has been made on %, affects neither the resulting PM nor
codeword weight. This suggests strong connections between
our work on conditional DEGA and [15]. This does not mean,
however, that two codewords with the same weight have the
same PM; the PM should therefore offer more information.
Additionally, the PM is directly tied to list decoding, whereas
other metrics, including weight are not. Yet, it can be shown
that the benefits of PAC are not achieved with SCD, thus we
believe that while similar, the PM is a more accurate metric to
look at. Regardless, since weight appears to be a closely tied
proxy to PM, we do believe the work in [15] could be used
as a valuable tool to creating sets aligning with our design.

B. Relation of PAC and Conditional DEGA

The decoding of PAC codes can be viewed as normal
decoding of polar codes except each bit u; is now decided as a
function involving v; and some subset of vg.;_1. The choice of
subset of vg.;_1 comes from the choice of the generator. In this
way, PAC codes contain dynamically frozen bits. Thus, if there
is an error in deciding an information bit, that error propagates
through the generator. For well-designed information sets and
generator connections, the PAC decoder alters the decision
of some frozen bits with non-zero conditional posterior, thus
increasing the PM of the incorrect path. Note that while one
is able to alter the decision of information bits, given that we
will always have the choice of both {0, 1}, the SCL decoder
merely favors the choice whose branch metric did not increase.
Therefore, we believe that ultimately this ability of PAC being
to alter the decision of frozen bits is the underlying reason of
its success, and additionally why it is dependent on decoders
that can track multiple paths.

IV. CREATION OF A PM BASED INFORMATION SET

We now propose an algorithm to create information sets
more suitable to exploit the benefits of PAC and SCL using
conditional DEGA as our primary tool. As previously stated,
DEGA works best for SCD, since one operates under the
assumption that everything has been decoded correctly, and
no mistakes are allowed. Since multiple mistakes are allowed

under SCL, we propose a set that does not have the largest
DEGA score, but rather has the largest potential MMPM under
PAC. To do this, we compute the PM caused by an error made
on bit ¢ (not just the BM as with DEGA), which involves all the
conditional DEGA based BMs as in (9) along with additional
penalties that can be forced on by the convolutional precoder.
Our goal is to find the information set A with the largest
MMPM. Thus our optimization of the information set is a
max min problem, specifically:

argmax(MMPM), MMPM £ min(PM;,) (12)

Ac (g) icA

where PM; is the PM from an error on an information bit
1 € A and other additional penalties incurred from PAC. This
is a hard combinatorial optimization problem and we introduce
several heuristics to find a good information set, chief amongst
them being the use of conditonal DEGA to compute the PM.
Note that in Fig 1, an error was made on bit 1, and now bits 2
and 3 have zero posterior. Incorrectly decoding bits 2 or 3 does
not alter the PM of this error path. However, it may be the case
that making an error on just 2 or 3 results in a larger PM than
errors on both {1,2} or {2, 3}, because these bits may have a
larger unconditional DEGA mean, meaning the resulting PM
may be higher. This indicates that the largest PM possible
from PAC is not obtained by forcing an error on all frozen bits
with non-zero conditional posterior. This means that finding
the set that maximizes the PM would require searching over
2K possibilities, where K is the number of conditionally non-
zero frozen bits given an error on ¢. To drastically simplify the
search space, we only look at the frozen bit with the largest
conditional mean LLR, reducing the search space down to one
option. Additionally, we also occasionally look at limiting the
search of the best frozen bit to only frozen bits between [z, j],
where j is m (a design parameter) information bits in the
future, in an attempt to adhere more strictly to the list size
constraint.

The following is a brief explanation of how we search for
good information sets. In essence we attempt to find a local
optimum of the optimization problem. We first make our set
A of size K based on traditional DEGA. We also calculate
the next e best bits to store as our F' C F, which are bits
currently not in A but are viable candidates. The goal is now
to find suitable replacements for the bits in the A from F’.
A larger € searches more of the N — K remaining bits, but
causes longer run time. A large number of the N — K have
small posteriors, making them unviable and thus do not need
to be considered, so a small € is sufficient. We then calculate
PM; Vi € A using the description above with a desired m.
The bit with the lowest PM is removed from .4 and added to
F’, as it has the worst PM, meaning it is highly likely to cause
an error under SCL PAC. We then calculate PM; Vj € F’, ina
process exactly the same as the information bits. The largest of
these we deem as the best suitable replacement, and move the
index from F’ to .A. Because sets lose potentially important
frozen bits, this change does not guarantee an increase in the

minimum PM. Because of this, we track the minimum PM of
each A we create.

The algorithm we use to compute the PM using the condi-
tional DEGA has the underlying assumption that the frozen bit
we want to make erroneous as a result of the error on % does
indeed get altered to the ideal decision, i.e., we are operating
under the assumption of a perfect, time and length varying,
sparse matrix as our convolutional precoder. We do not use
these generator matrices in our numerical experiments, and
use instead a fixed time-invariant one. Empirically, we have
observed that a random generator matrix performs well enough
in selecting key frozen bits, and does decent in avoiding the
problem caused by zero-mean information bits documented
in Section III-A. However, we believe that finding these
aforementioned perfect generator connection matrices may
further improve the performance, but is a hard optimization
problem that remains open.

When we are in a loop, meaning that we create a set .4 that
we have already visited, we perturb the set with a swap finding
process as follows. We look at all 7 € F’, and try to see if
the PM; with an additional, PAC-forced error on information
bit ¢ is larger than PM;. If this is the case, we move j into
A and 4 into F’. This potentially raises the average PM, as
well as enlarges our overall search space. If swaps were made
in this step, and the resulting A is new, we go back to the
first phase of the algorithm, initated with this A. Once we are
unable to discover a new A in any stage, we return the A*
with the largest minimum PM. Our simulations use the fact
that we are transmitting the all zero codeword, which remains
the all zero codeword even after convolution. However, the
sets we construct are used for general transmissions of random
messages.

A summary of the algorithm can be provided upon request.
Despite the large simplifications and heuristics we implement,
leveraging our principled approach to an SCL and PM based
construction allows us to design extremely high performing
sets. The results described in Section V support the benefits
of our approach to analyze PAC codes, and we believe that
with an improved approach to the optimization problem, near
optimal sets could be obtained. We also believe that our design
philosophy may be able to generate information sets for larger
blocklengths where methods based on minimum weight words
could be found lacking.

V. NUMERICAL RESULTS

To demonstrate the advantage of a PM based construction,
we show the construction of a few sets of varying size, rate,
and list size. In all our simulations, our message u is generated
from a Bern(%) source, v is created with the polynomial P =
[1,0,1,1,0,1,1], « is created via the modulation scheme 1 —
2v and y is the received vector under an AWGN channel. The
polynomial found in the Weighted Sum (WS) [13] paper was
used for the WS simulations. For these cases, our information
set outperforms other, highly competitive sets. For (128,42),
we obtain up to half of a dB gain against [13] for list sizes
32 and 8. The exact results are shown in Figs 2-3.

Frame Error Rate vs SNR, (64,32,1.=32)

1071 5
1 2'53.7,7-
o 10724 S
3 E
~]
S 1 ~
IE 1073 4 — -
?E) E = S —F
E 1 -+- PAC+ Tog
104 o4 - A- List Search
3 ~%PM-SNR=4 m=N
7 —— Dispersion Bound

2 22

T T T T T
24 26 28 3 3.2
Ey
NR —
S A

T T T T
34 36 38 4

Fig. 2: PAC performance for N = (64,32) code with L =
32. Created with construction SNR of 4 and unbounded m.
Compared with RM, PAC+, and List Search.

FER vs SNR, (128,42)

1071 3
2 1072 5
~ E
: 10
&5 107" 5= ..@.. Weighted Sum, L = 8
2] RM - SNR = 4, L=32
E 107* 4= % PM-SNR=2, m=3,L=38
1 -@- Weighted Sum, L = 32
10-5 1 -%-PM-SNR=2,m=51L=32
g —— Dispersion Bound
B T T T T T
1 1.5 2 2.5 3 3.5
Ej
SNR —
No

Fig. 3: PAC performance for N = (128,42) code with
varying L. Created with construction SNR of 2 and m =5, 3.
Compared with RM and Weighted Sum.

For (128,42,L = 8), we can see that our set, which is
designed based off SCL, is far more robust against a changed
list size than the high performance WS set, providing value for
decoders with memory or latency requirements. In fact, our set
offers half of a dB in improvement over the WS with L = §,
and the RM set with L = 32. Our algorithm is very sensitive to
the choice of both the design SNR and m, the parameter that
limits how far out (in terms of information bits) our desired
frozen bit can be, with small changes producing different sets
that vary highly in performance.

The polynomial we use for our generator is common in
the literature, and we believe that most random polynomials
are similar and sufficient. However, exploiting gains at higher
rates or blocklengths may require the creation of the matching
generator. Improving the algorithm to completely address path
loss and selection errors, as well as creating the matching
generator, is the subject of ongoing work.

[1]

[2]

[3]

[5]
[6]

[7]

[8]

[9]

(10]

(1]

[12]

REFERENCES

C. Yue, V. Miloslavskaya, M. Shirvanimoghaddam, B. Vucetic, and
Y. Li, “Efficient decoders for short block length codes in 6G URLLC,”
arXiv preprint https://arxiv.org/pdf/2206.09572.pdf, Dec. 2022.

M. C. Coskun, G. Durisi, T. Jerkovits, G. Liva, W. E. Ryan,
B. Stein, and F. Steiner, “Efficient error-correcting codes in the
short blocklength regime,” CoRR, vol. abs/1812.08562, 2018. [Online].
Available: http://arxiv.org/abs/1812.08562

M. C. Coskun, J. Neu, and H. D. Pfister, “Successive cancellation
inactivation decoding for modified reed-muller and eBCH codes,” in
Proc. of IEEE International Symposium on Information Theory, Los
Angeles, California, USA, Jun. 2020.

E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073,
20009.

E. Arikan, “From sequential decoding to channel polarization and back
again,” Aug. 2019.

M. Rowshan and E. Viterbo, “List viterbi decoding of PAC codes,” [EEE
Transactions on Vehicular Technology, vol. 70, no. 3, pp. 2428-2435,
Mar. 2021.

M. Rowshan, A. Burg, and E. Viterbo, “Polarization-adjusted con-
volutional (PAC) codes: Sequential decoding vs list decoding,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1434-1447,
Feb. 2021.

H. Yao, A. Fazeli, and A. Vardy, “List decoding of arikan’s
PAC codes,” CoRR, vol. abs/2005.13711, 2020. [Online]. Available:
https://arxiv.org/abs/2005.13711

M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes
based on ordered statistics,” IEEE Transactions on Information Theory,
vol. 41, no. 5, pp. 1379-1396, 1995.

C. Yue, M. Shirvanimoghaddam, B. Vucetic, and Y. Li, “Ordered-
Statistics Decoding with Adaptive Gaussian Elimination Reduction for
Short Codes,” Dec. 2022.

J. Cheng and L. Chen, “Bch based u-uv codes and its decoding,”
in 2021 IEEE International Symposium on Information Theory (ISIT),
Jul. 2021, p. 1433-1438. [Online]. Available: https://ieeexplore.icee.
org/abstract/document/9517823

K. R. Dufty, J. Li, and M. Medard, “Capacity-achieving guessing random
additive noise decoding,” IEEE Transactions on Information Theory,
vol. 65, no. 7, pp. 4023-4040, Jul. 2019.

[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

W. Liu, L. Chen, and X. Liu, “A weighted sum based construction of
PAC codes,” IEEE Communications Letters, vol. 27, no. 1, pp. 28-31,
2023.

H. Sun, E. Viterbo, and R. Liu, “Analysis of polarization-adjusted
convolutional codes (PAC): A source-channel coding method,” in 2021
IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, Dec. 2021,
pp. 1-6.

M. Rowshan, S. H. Dau, and E. Viterbo, “On the Formation of Min-
weight Codewords of Polar/PAC Codes and Its Applications,” IEEE
Transactions on Information Theory, pp. 1-1, 2023.

S. Jiang, J. Wang, C. Xia, and X. Li, “Construction of PAC Codes with
List-Search and Path-Splitting Critical Sets,” Apr. 2023.

I. Tal and A. Vardy, “How to construct polar codes,” IEEE Transactions
on Information Theory, vol. 59, no. 10, pp. 6562-6582, Oct. 2013.

B. Li, H. Shen, and D. Tse, “A RM-polar codes,” CoRR, vol.
abs/1407.5483, 2014. [Online]. Available: http://arxiv.org/abs/1407.5483
I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions
on Information Theory, vol. 61, no. 5, pp. 2213-2226, May 2015.
S.-Y. Chung, T. Richardson, and R. Urbanke, “Analysis of sum-product
decoding of low-density parity-check codes using a Gaussian approxima-
tion,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 657—
670, Feb. 2001, conference Name: IEEE Transactions on Information
Theory.

R. Mori and T. Tanaka, “Performance of Polar Codes with the Construc-
tion using Density Evolution,” IEEE Communications Letters, vol. 13,
no. 7, pp. 519-521, Jul. 2009.

P. Trifonov and V. Miloslavskaya, “Polar codes with dynamic frozen
symbols and their decoding by directed search,” in 2013 IEEE Informa-
tion Theory Workshop, Seville, Spain, Sep. 2013.

P. Trifonov, “Randomized polar subcodes with optimized error coef-
ficient,” IEEE Transactions on Communications, vol. 68, no. 11, pp.
6714-6722, Nov. 2020.

M. Rowshan, A. Burg, and E. Viterbo, “Polarization-adjusted convolu-
tional (pac) codes: Sequential decoding vs list decoding,” Feb. 2020.
B. Feng, Y. Yang, J. Jiao, and Q. Zhang, “On Tail-Biting Polarization-
Adjusted Convolutional (TB-PAC) Codes and Small-Sizes List Decod-
ing,” IEEE Communications Letters, vol. 27, no. 2, pp. 433—437, Feb.
2023.

VI. APPENDIX

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

subroutine GetLargestPossiblePM(N, A, i, SNR)

-

S

j:

for

end

CDEGA = CDEGA(N, A, error = 1)

argmax{CDEGA :j >1i,j ¢ A)

eturn j, E[PM]
ubroutine DoAllSwaps(N, A, F', Infopys, SNR)

i€ Ado
Find argmax;(PMs[j] : j € F', u; uses v;)
if PMs[j] > Infops[i] then

A=AUj

F'=F/j

A=A/i

F'=FUi
end

return j, E[PM]

TABLE I: Frozen Sets (Hexadecimal)

(64,32,SNR=4,m=-1)

5137F0777177F

(128,42,SNR=2,m=5)

10003071F0007071F033F1F7F

(128,42,SNR=2,m=3)

10001071700070717071F7FFF

Algorithm 1: PM Based Information Set Constructor

input : N Code Length, K Information Bits, SN R

Design Length, e Search Bits

output: Info Set A

1 Aay =[]

2 PMSA” = H

3 Asta'rt = DEGA(N, K)
4 A - Asta'rt

5 F' = NexteLargestDEGAValues(N,K)
6 while True do

Infopys = H

for i € A do

7
8
9

10
11
12

13

14

15
16

17
18
19
20
21

22
23
24
25
26
27

28
29
30
31

32
33
34
35
36
37

end

PM,; =
GetLargestPossiblePM (N, A, i, SNR)
append(Infopurs, (PM;,i))

WorstinfoBit = argmin(Infopas)// The

bit that causes lowest PM

MinPM =min(Infopyrs) // The Lowest

//

PM

If this A has already been found
before, i.e. a cycle is created,
we need to reroute. If it’s a
new A then we can ignore

if A € Ay then

Ax = argmazpyrs,,, (Aai)// Set Ax as
the Info Set that had the
largest minimum metric

A = DoAllSwaps(N, Ax, Infopprs, SNR)

if A € Ay then

‘ Break

end

// If even this A has already
been found before,
cycle would still be created,
end, otherwise you restart
but with this (A w/ swaps)
the A to look at

append(Aay, A)

append(PM sy, MinP M)

i.e. a

as

else

append(Aay, A)
append(PM sy, MinP M)
A= A/WorstInfoBit// The Info Bit
becomes frozen and vice versa
F' =F UWorstInfoBit
Frozpys =[]
for j € 7' do
PM; =
GetLargestPossiblePM (N, F,j, SNR)
append(Frozpars, (PM;, 7))
end
BestFrozBit = argmax(Frozpas)
A = AU BestFrozBit
F' = F'/BestFrozBit

end

38 end
39 return argmaz(Aay;)

