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Abstract—We propose an Integrated Sensing and Communica-
tion (ISAC) algorithm that exploits the structure of a hierarchical
codebook of beamforming vectors using a best-arm identification
Multi-Armed Bandit (MAB) approach for initial alignment and
tracking of a Mobile Entity (ME). The algorithm, called Dynamic
Beam Zooming (DBZ), performs beam adjustments that mitigate
the severe outages associated with wireless mmWave systems
and allow for adaptive control of the parameters governing
communications. We analyze the sample complexity of DBZ
and use it to inform how the algorithm adapts to the non-
stationary MAB statistics based on ME motion and Signal-to-
Noise Ratio (SNR). We perform extensive simulations to validate
the approach and demonstrate that DBZ is competitive against
existing Bayesian algorithms, without requiring channel multi-
path or fading knowledge. In particular, DBZ outperforms other
low-complexity algorithms in the low SNR regime. We also
illustrate the efficacy of DBZ in standardized rural and urban
scenarios using NYU Sim.

Index Terms—5G, 6G, millimeter-Wave, MIMO, Beamforming,
Multi-Armed Bandits.

I. INTRODUCTION

Communication in the millimeter-Wave (mmWave) spec-
trum (30 GHz to 300 GHz) is envisioned as a key enabler
of ultra-high-speed data delivery with low latency for next
generation wireless systems [1]. The severe path loss inher-
ently associated with mmWave frequencies, however, creates
unique engineering challenges. First, compensating for the
path loss requires transceivers to combine massive Multiple-
Input Multiple-Output (MIMO) arrays to form highly focused,
narrow beams [2] together with Hybrid Analog-Digital (HAD)
architectures to reduce the otherwise impractical number of
associated Radio Frequency (RF) paths [3]. Second, ensur-
ing persistent and reliable communication between entities
requires efficient beam refinement and management to initiate
alignment and track ME movement over time [4]. Beam align-
ment and tracking can be viewed as sensing tasks, leveraging
approaches in radar [5], that support a communication task.
While the two tasks could be independently addressed, joint
designs within the framework of ISAC offer opportunities
for enabling emerging applications [6] and efficiently utilize
increasingly congested wireless resources and constrained
hardware [7].

A. Related Works
The 5G standard currently only offers basic support for

mmWave beam alignment and tracking in the form of an
exhaustive search for beam directions [8, Section 4]. Conse-
quently, several classes of ISAC algorithms for mmWave beam

alignment and tracking have been investigated, each offering
different complexity-measurement-performance tradeoffs. The
classes are summarized in Table I and discussed next.

TABLE I: Comparison of Algorithms with ISAC Defining
Features.

Reference Alignment Alignment Motion CSI Computational

Complexity Accuracy Adaptive Adaptive Overhead

KF [9] N/A ! ↭ ! Low

RL
[10],
[11]

High ! ↭ ↭ Low

ABP
[12]

High ! ↭ ↭ Low

HPM
[13]

Low ↭ ! ! High

2PHTS
[14]

Low ↭ ! ↭ High

HBA
[15]

Low ! ! ↭ Low

HOSUB
[16]

Fixed ! ! ↭ Low

DL-IA
[17]

Fixed ↭ ! ! High*

DL [18] N/A ! ↭ ! High*

PF [19] N/A ! ↭ ! High

ABT
[20]

Low ↭ ↭ ! High

Present
Work

Med-Low ↭ ↭ ↭ Med-Low

* High computational overhead pending hardware implementation.

A first class of algorithms uses Bayesian decision-making
and leverages hierarchical beamforming codebooks [21]. In
particular, [13] proposes the Hierarchical Posterior Matching
(HPM) algorithm that exploits Channel State Information
(CSI) and measurements to update the posterior probabilities
of the incoming beam direction, choosing increasingly nar-
rower beams as the posteriors identify more precisely the likely
beam direction. The approach of HPM has also been recently
extended to track MEs [22].

A second class of algorithms selects beamformer weights
using a Deep Neural Network (DNN) [17] instead of relying
on a predefined hierarchical codebook. Numerical results show
that the performance of this “codebook-free” approach without
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CSI matches the performance of HPM with full CSI. DNN ap-
proaches, however, may take a significant number of samples
to correctly point a beam. For example, the deep reinforcement
learning algorithm in [23] takes about 105 samples to converge
at runtime.

A third class of algorithms attempts to circumvent the
computational complexity incurred by Bayesian and DNN ap-
proaches using Compressed Sensing (CS) techniques. The idea
is to exploit the sparsity associated with mmWave channels [2]
to quickly identify the direction of incoming signal. To infer
user location, the approach in [24], [25] is to generate random
peaks in multiple beam patterns to quickly identify the optimal
combinations to form beamforming weights.

Particularly relevant to the present work, a fourth class
of algorithms exploits the conceptual analogy between beam
steering and arm play in a Multi-Armed Bandit (MAB) prob-
lem to lower complexity without sacrificing performance. In
brief, every beam direction, which corresponds to a set of
phase shifts applied to array elements, may be viewed as an
arm to pull in a MAB algorithm and the Reference Signal
Received Power (RSRP) acquired with every choice of beam
direction provides a reward that may be exploited by a MAB
exploration strategy. Experimental results in [26] show that
the alignment of two users exhibits an approximate unimodal
structure [27], [28] that can be efficiently exploited. Few
reward structures are perfectly unimodal and the algorithm in
[26], [27] may get stuck in local maxima. To address this, [16]
adapts Optimal Sampling for Unimodal Bandits (OSUB) [27]
for use with a hierarchical codebook; numerical simulations
show a substantial reduction in the number of samples re-
quired, with robustness to multi-path effects but no theoretical
guarantees. The Hierarchical Beam Alignment (HBA) algo-
rithm [15] adapts the X-arm bandit algorithm [29], but only
indirectly exploits the hierarchical structure since pencil beams
acquire reward signals. The Two Phase Heteroscedastic Track-
and-Stop (2PHTS) algorithm [14] uses grouped sums of arms
as “super-arms,” which are broader beams, to create a two-
level hierarchical beamformer and adopts the Track-and-Stop
(TAS) framework of [30], [31]. With respect to track tasks,
MAB algorithms in the regret setting provide a low-overhead
approach, where for instance [10] chooses arms close to the
empirical best to play at each round.

A final class of algorithms uses tools from adaptive control
for Angle of Arrival (AoA) and/or Angle of Departure (AoD)
estimation over time. [9] estimates the fading coefficient along
with the angles using an Extended Kalman Filter (EKF) for
a low computational overhead approach to motion compensa-
tion, but no initial alignment. Beamwidth control over time
ultimately prevents large outages associated with mmWave
channels during instances of misalignment. For instance, [19],
[32] both adapt Particle Filter (PF)s to make dynamic adjust-
ments to the beamwidth over time, at the expense of high
computational overhead.

B. Contributions and Outline
The main contributions of the present work are as follows:
• We present Dynamic Beam Zooming (DBZ), an ISAC

algorithm for mmWave beam alignment and tracking that

offers high alignment accuracy and automatic adapta-
tion to changes in CSI and motion while preserving a
relatively low complexity. In particular, as summarized
in Table I, DBZ strikes competitive performance against
Bayesian methods exploiting full channel knowledge and
ME motion such as [13], [20].

• We show that DBZ is able to operate in the low SNR
regime, avoiding intrinsic numerical issues of competing
approaches [14].1

• We guarantee the accuracy of the initial alignment phase
by showing that DBZ is ω-probably approximately correct
(PAC) and derive a closed-form expression for the sample
complexity. We also use the sample complexity to inform
how the algorithm adapts to the time-varying statistics.

• We provide extensive simulations, including realistic en-
vironments from NYU Sim [33], [34].

The remainder of the document is organized as follows. In
Section II, we introduce the system model used for our ISAC
scenario. In Section III we describe the hierarchical codebooks
used for beam alignment and tracking. In Section IV, we
introduce DBZ, which uses a MAB best arm identification
framework to quickly align and adapts to the ME motion over
time. In Section V, we develop closed-form expressions of the
sample complexity that inform the choice of parameters in the
DBZ algorithm. In Section VI, we present extensive numerical
simulations demonstrating the performance DBZ performance
across a wide range of scenarios.

II. SYSTEM MODEL

A. System Model

At each discrete time step n → N, a Base Station (BS) trans-
mits a Synchronization Signal (SS)/Reference Signal (RS),
s → CQ→1, consisting of Q samples at finer time or frequency
granularity. Each signal consists of time-frequency Resource
Elements (RE)s across multiple Orthogonal Frequency Di-
vision Multiplexing (OFDM) symbols similar to that of the
Synchronization Signal Block (SSB) or CSI-RS used in the
current 5G standard [35, 7.4]. Each transmission, s, has a
cell identification number that is unique to one BS, where
sHs = 1. We use a Uniform Linear Array (ULA) of M
elements to transmit signals over which we apply a HAD
beamforming vector to electronically steer each transmission
of s. The HAD beamforming vectors belong to a beamforming
codebook, F , that consists of analog phase shifts for M
antenna elements with NRF RF chains, FRF → CM→NRF ,
and a digitally applied baseband precoder, FBB → CNRF→NS ,
for each RF chain to feed NS datastreams. We denote the
combined beamforming vector for a single datastream, u, as
f = FRF[FBB]u (fHf = 1), where [FBB]u is the uth column
of FBB. The beamforming pattern for each of the vectors,
f → F , has a unique pointing angle, ε̄ → ! ↫ [εmin, εmax],
with ε̄ evenly spaced across a predefined range ! and with
each pattern having an equivalent beamwidth, εbw, and gain,

12PHTS uses an approximation of the actual channel model. The empirical
mean may become negative in the low-SNR regime, causing numerical issues
in the computation of the relative entropy with the TAS baseline algorithm.
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g. We require steering the beamforming pattern in the angular
direction of the receiving ME, ϑk(n).

B. Channel and Kinematic Models

We assume that the receiving ME forms a single beam,
such that it is always directed at the transmitting BS or omni-
directional.2 We consider only a single subcarrier to allow for
the narrowband channel representation [37, Eq. (7)],

h(n) =
K∑

k=1

ϖk(n)aH(ϑk(n)), (1)

where

a(ϑ) ↫
[
e↑j

M→1
2

2ωd cos(ε)
ϑ · · · ej

M→1
2

2ωd cos(ε)
ϑ

]T
(2)

is the array response for a ULA, j2 ↫ ↑1, and d and ϱ are the
array element spacing and wavelength, respectively. For each
path, ϖk(n) → C represents the complex gain caused by large
and small scale fading.3 We assume ϑ1(n) is the dominant path
in a Line of Sight (LOS) scenario with the receiving ME. The
received signal takes the form

z(n) = h(n)fsT s↓ + vT (n)s↓(n) = h(n)f + v(n) (3)

where v(n) ↓ CN (0, ς2
v
I). The RSRP measurement is

y(n) = |z(n)|2 . (4)

The receiving ME regularly communicates control data or
measurements to the BS advising beamforming vector selec-
tion, similar to the 5G/New Radio (NR) standard [8, Section
6] [38, Section 5.6.1] [39, Section 5].

Between discrete time steps n and n+1, spaced φ seconds
apart, the BS and ME experience relative motion according to
a Discrete White Noise Acceleration (DWNA) motion model
[40, Chapter 6.3.2],

ϑ(n) = ϑ(n ↑ 1) + φ ϑ̇(n ↑ 1) +
φ2

2
u(n ↑ 1), (5)

ϑ̇(n) = ϑ̇(n ↑ 1) + φu(n ↑ 1), (6)

where ϑ̇(n) is the angular velocity and u(n) ↓ N (0, ς2
u
).

Standard deviation of the acceleration, ςu, governs the severity
of the motion between time steps. We simulate the operation of
DBZ with the DWNA model in Section VI for various values
of ςu, governing the severity of the motion.

C. Alignment Problem

The relative motion requires adjustments to the beamform-
ing vector to maintain alignment. We define alignment as the

2While this model abstracts away the joint alignment process at the ME
and BS, it still captures the essence of the problem and has been widely
adopted [13]–[15], [36].

3For each path, ωk,I(n) + jωk,Q(n) = ωk(n) → C, we specify later that
each component amplitude changes over time according to ωk,I(n + 1) =
εωk,I(n) + ϑI(n), where ϑI(n) + jϑQ(n) = ϑ(n) ↑ CN (0, (1 ↓ ε2))
[9] or by the Rician AR-1 channel model in [13].

state in which we choose the beamforming vector, f↓(n) at
time step n, such that4

f↓(n) = argmin
f↔F

↔f ↑ a(ϑ(n))↔. (7)

For a beamforming vector f↓(n) pointed towards the angle ε̄,
we define N a as the maximum number of consecutive time
steps during which ϑ(n) → R = [ε̄ ↑ εbw/2, ε̄ + εbw/2],
where R represents the coverage region of the beamforming
vector. To achieve (7) with a probability of at least 1 ↑ ω, we
employ a MAB best-arm identification strategy, based on [41],
to select a beamforming vector. Following the beamforming
vector selection, we monitor the RSRP measurements over
time, utilizing the same signals used for communication, where
abrupt changes in power serve as indicators of misalignment.

III. HIERARCHICAL CODEBOOK AND STRUCTURE

Our work exploits a HAD hierarchical codebook FH

adapted from [3]. As illustrated in Fig. 1, our construction
is as follows.

• The codebook consists of H levels, each level h →
{1, . . . , H} corresponding to beams with beamwidth
εbw,h;

• Each beam at level h is split into three non-overlapping
narrower beams at level h + 1 so that εbw,h = 3εbw,h+1;

• The gain at each level h is gh = gh↑H+1;
• Each beam at level h is also associated to a broader beam

pointed in the same angle for all h < H .
Mathematically, this means there are exactly I = 3H↑1 |I1|
beamforming vectors at each level h with pointing angles

ε̄h,i = εmin +
εbw,H

2
+ (i ↑ 1)εbw,H , i → {1, . . . , I} . (8)

Each beam identified by (h, i) aggregates a unique set of three
non-overlapping patterns with indices (h+1, j) with j → {i↑
3H↑h, i, i + 3H↑h}. Each beam (h, i) has a corresponding
beam (h↑1, i) with the same pointing angle. This construction

4To ensure that our codebook contains a beamforming vector that points in
the direction ϖ(n) in our simulations, we wrap the angle ϖ(n) to constrain it
to !.

0°

30°

60°

90°

120°

150°

180°

Trisects
into three
narrower
beams

Beam
overlap

Each narrow
beam has

corresponding
broader beams

h = 1

h = 2

h = 3

h = 4

Fig. 1: Example beamforming patterns for the hierarchical
codebook.



4

allows one to quickly “zoom in” from a beam (h, i), narrowing
the beamwidth5 by aggregating the beams in the set

Zh,i ↫
{

{(h + 1, i), (h + 1, i ± 3H↑h)} if h < H,

{(H, i)} if h = H.
(9)

In case of misalignment, the codebook allows one to zoom out
from (h, i), to (h ↑ 1, i) without changing the pointing angle.

A. Codebook Characteristics
We briefly discuss codebook depth, branching factors, and

design methodology in how they impact DBZ alignment ac-
curacy, computational complexity, and robustness in dynamic
environments. DBZ is agnostic to codebook depth (determined
by H). We show in Section V-F that the algorithm parameters
may be calibrated to support codebook designs with different
choices of beamwidths at various depth levels to most effi-
ciently ensure alignment accuracy with an ME. The branching
factor is the main restricting codebook design characteristic
for DBZ. To ensure alignment accuracy when broadening a
beam and zooming out, each broad beam must be divisible
into an odd-numbered quantity of beams to preserve the
pointing angle of the previous narrow beam. We exclusively
use a branching factor of 3 for this work, but DBZ easily
adopts any codebook with an odd-numbered branching factor.
Increased depth and larger branching factors contribute to
higher sample complexity due to the increased total number
of beamforming vectors. However, the increase in depth or
branching factor provides more precise alignment with the
finer resolution of the search space, !. On the other hand,
DBZ benefits from shallower codebooks in the case of highly
sporadic motion to more quickly adapt to the ME position
and maintain alignment accuracy. DBZ may adapt other HAD
codebook construction methodologies outside of [3] without
compromising performance. Additional logic for DBZ allows
easy extension to use adaptive constructed codebooks, as in
[42], to further reduce training overhead for multiple ME.

B. Induced Mean Reward Structure
For any beamforming vector fh,i → FH , |zh,i(n)|2 is

a ς2
v
/2-scaled non-central chi-squared random variable with

two degrees of freedom, and has non-centrality parame-
ter, 2↼h,i(n)/ς2

v
, where ↼h,i(n) = |h(n)fh,i|2. We define

the mean-reward function generated by the RSRP measure-
ments (4) of the channel as

µh,i(n) ↫ E
(
|h(n)fh,i + v(n)|2

)
. (10)

Using the hierarchical codebook results in an induced structure
of the mean rewards, we make two assumptions.

Assumption 1. For each h, at any time step, n, there exists
a unique beamforming vector fh,i↑ such that

µ↓
h
(n) = µh,i

↑
h
(n) = max

i↔{1,...,I}
µh,i(n). (11)

5In our simulations showing initial alignment performance comparison, we
adopt the binary codebook from [3], [13].

We define an ↽-optimal arm as (H, iω) →
{(H, i) : µH,i(n) + ↽ ↬ µ↓

H
(n)}. By definition, (H, i↓)

is ↽-optimal.

Assumption 2. (Unimodality) For all n, if µH,iϖ(n) +
↽ ↬ µ↓

H
(n) then there exist paths ((1, i1), (2, i2), . . . , (H ↑

1, iH↑1), (H, iω)) through the tree graph defining the code-
book where

µH,iϖ(n) > µH↑1,iH→1(n) > · · · > µ2,i2(n) > µ1,i1(n)
(12)

The sparsity and high path loss attenuation associated with
mmWave propagation [43] suggest that Assumptions 1 and
2 hold in most situations. We denote the difference between
mean rewards at a particular level h as

”h,i(n) ↫
{

µ↓
h
(n) ↑ µh,i(n) if i ↗= i↓,

µ↓
h
(n) ↑ maxi ↗=i↑ µh,i(n) if i = i↓.

(13)

Our analysis and discussion in Section IV-E emphasizes that
the spacing between mean rewards, ”h,i(n), significantly
contributes to overall sample complexity. In particular, broader
beams will have smaller values of ”h,i(n), and therefore
higher sample complexity. Section IV-F shows how to con-
figure DBZ such that we play certain levels and optimize the
trade off of sample complexity and number of beamforming
vectors played. From our codebook construction, for any ↽-
optimal arm, there exists a path {(h, ih)} |H

h=1 such that

µH,iϖ(n)

µH↑1,iH→1(n)
=

µH↑1,iH→1(n)

µH↑2,iH→2(n)
= · · · =

µ2,i2(n)

µ1,i1(n)
= g.

(14)

From µH,iϖ(n)+ ↽ ↬ µ↓
H

(n), (14) ensures that µH,iϖ(n)+ ↽ ↬
gµ↓

H↑1(n), from which we obtain µh,ih
(n) + ↽h ↬ µ↓

h
(n),

where ↽h ↫ g↑(H↑h)↽. If the average reward corresponding
to beamforming vector fh,i meets the criteria of µh,i(n) ↬
µ↓
h
(n) + ↽h then it is ↽h-optimal. We relate the relative cost

to spectral efficiency to ↽ in Section V. In our model (5), the
mean rewards are non-stationary, causing the unique maximum
mean-reward, µ↓

H
(n), to change over time. The next section

introduces our algorithm, DBZ, that dynamically adjusts the
beamwidth used for communication by selecting beamforming
vectors under certain zoom-in and zoom-out criteria, based on
MAB best arm identification and power threshold, respectively,
to maintain alignment with the ME.

IV. ALGORITHM: DYNAMIC BEAM ZOOMING

DBZ uses the hierarchical codebook described in Section III
and efficiently exploits the induced dynamic reward struc-
ture. DBZ exploits the representation of each beamforming
vector fh,i as a vertex (h, i) in a tree and uses a best arm
identification MAB framework [41] and power threshold to
dynamically navigate the tree and maintain alignment with the
ME. Informally, the algorithm operates as illustrated in Fig. 2
to show example of traversing the graph vertices for beam
refinement. Vertices with an asterisk indicate the beam used
to communicate and the triangle moving along the bottom
represents an ME. The leafs at the bottom of each tree
represent the narrowest beams.
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• Steps 1 and 2 : to initially align, we identify with
probability 1↑ω the beamforming vector fH,i

↑
H

that most
closely matches the ULA response to ϑ(n) according to
(7) within N a

h
time steps. This is achieved with MAB

algorithms that, at levels h, play beamforming vectors fh,i
viewed as arms in a MAB best-arm identification fixed
confidence setting. The chosen arm, corresponding to a
narrower beam, is used for increasing the rate at which we
communicate data. We then put the chosen arm’s zoom-
in indices Zh,i in (9) in contention to play a subsequent
MAB game, to continue to refine the communication
beamwidth.

• Steps 2 to 3 : DBZ detects beam misalignment by the
RSRP failing to meet a power threshold, and “zooms
out”, adjusting the set of active vertices.

• Step 4 : the broader beam is adjusted to realign.
• Step 5 : the beam is correctly re-adjusted to the narrow-

est width.

Fig. 2: Illustration of beamforming vector selection in DBZ
over time.

A. Baseline Framework

DBZ proceeds mathematically using the Lower-Upper Con-
fidence Bound (LUCB) best-arm identification framework
[41], [44] for each MAB game. LUCB uses empirical statistics
derived from the sample reward values (in this case RSRP) that
represent the estimation and uncertainty on the mean rewards.
Due to the non-stationary rewards from the ME motion, we
only consider a finite set of size ⇀ consisting of the most recent
samples to compute the LUCB statistics. We refer to the finite
set as the sample window [45]. At each time step n, we select a
specific beamforming vector (h, i) whose indices are stored as
S(n) and observe the corresponding reward, y(n). The mean
rewards, µh,i(n) (10), at time step n are estimated by the
empirical mean, using the ⇀ most recent samples according to

µ̂h,i(⇀, n) =
1

Nh,i(⇀, n)

n∑

p=max{1,n↑ε}

y(p)1{S(p) = (h, i)} ,

(15)

where6

Nh,i(⇀, n) =
n∑

p=max{1,n↑ε}

1{S(p) = (h, i)} . (16)

6For the indicator function, 1{S(n) = (h, i)} = 1 when S(n) = (h, i)
and 0 otherwise.

To allow further generalization later on, we let Ih denote the
set of arms in contention at level h, noting that |Ih| = 3 for
all levels except h = 1, and let IH =

∑
h

|Ih|. Pictorially,
each level’s active vertices in Fig. 2 represent arms in Ih. For
constants B, C ↬ 1 to be chosen later, we use a confidence
term, empirical observation variance estimate, and exploration
rate

Dh,i(⇀, n) ↫
√

4B⇁̂2
h,i

(⇀, n)β(⇀, n, ω)

Nh,i(⇀, n)
+

2
↘

2BCβ(⇀, n, ω)

Nh,i(⇀, n) ↑ 1
,

(17)

⇁̂2
h,i

(⇀, n)

=
n∑

p=max{1,n↑ε}

(y(p) ↑ µ̂h,i(⇀, p))21{S(n) = (h, i)}
Nh,i(⇀, n)

,

(18)

β(⇀, n, ω) ↫ log
(
15IH(min {n, ⇀})4/(2ω)

)
, (19)

respectively, in the Upper-Confidence Bound (UCB) and
Lower-Confidence Bound (LCB) terms

Uh,i(⇀, n) = µ̂h,i(⇀, n) + Dh,i(⇀, n), (20)

Lh,i(⇀, n) = µ̂h,i(⇀, n) ↑ Dh,i(⇀, n), (21)

respectively. The terms, (20) and (21), capture the best and
worst performance, respectively, of a beamforming vector, that
we use to define the gap for each arm,

Gh,i(⇀, n) = max
j ↗=i

Uh,j(⇀, n ↑ 1) ↑ Lh,i(⇀, n ↑ 1), (22)

and the indices

γ(n) = argmin
i:(h,i)↔Ih

Gh,i(⇀, n), (23)

u(n) = argmax
i:(h,i)↔Ih,i ↗=ϑ(n)

Uh,i(⇀, n ↑ 1). (24)

We sample a beamforming vector fS(n) with index tuple

S(n) ↫ argmax
(h,i):i↔{ϑ(n),u(n)}

Dh,i(⇀, n ↑ 1), (25)

or all (h, i) → Ih in round-robin fashion to first initialize a
new level. The individual MAB games are independent across
levels, where “zooming in” to the next level is governed by
termination at the current level. Termination and zooming in
at a particular level h occurs when the gap term for γ(n) first
satisfies:

Gh,ϑ(n)(n) = Uh,u(n)(⇀, n ↑ 1) ↑ Lh,ϑ(n)(⇀, n ↑ 1) < ↽h,
(26)

at which point, we choose (h, γ(n)) for communication, and
store it as (h, ic). Intuitively, Lh,ϑ(n)(⇀, n ↑ 1) is the worst
performance of the estimated best beamforming vector and
Uh,u(n)(⇀, n ↑ 1) is the best performance of the runner-up
beamforming vector. We show in our analysis in Section V that
with (26) we make a correct selection beam, i.e., (h, γ(n)) =
(h, i↓), of a beamforming vector at level h with probability
at least 1 ↑ ω. We next show how this LUCB mathematical
framework is used to facilitate DBZ.
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Input: FH , p, ω, ω, ε, A, B, C
Initialize: I → I1, [ε]1:H = ↑↓, h = 1, n = 0

while [p]h ↔= 1:
I → {Zh,i ↗(h, i) ↘ I}
h → h + 1

// Initialize Level //

Sample all fh,i for (h, i) ↘ I ≃ FH twice

n → n + |I|

Find ϑ(n) and u(n) according to (24)(25)

// Zoom In Event //

I → Zh,ω(n)

ic → ϑ(n)
Start comms on (h, ic)

[ε]h+1 → Lh,ω(n)([ω]h, n ↑ 1) + Aωh

h → h + 1

// Zoom Out Event //

I → Zh→2,ic

Start comms on (h ↑ 2, ic)
[ε]h = ↑↓

h → h ↑ 1

Sample using fS(n)

n → n + 1

Gh,ω(n)([ω]h, n) < ωh

any(Uh,ω(n)([ω]h, n) < ε)

Else

Fig. 3: Flowchart of DBZ algorithm.

B. DBZ Algorithm
Fig. 3 shows how the DBZ algorithm proceeds with zoom-

ing in or zooming out using the baseline LUCB MAB
framework. Each level has a different beamwidth, εbw,h,
which implies a different alignment time. We use a vector
of hyperparameters, ω → NH , whose hth element is the
sampling window length used at level h. For now, assume
p = [1, . . . , 1]. DBZ initially samples from a fixed set of
beamforming vectors, I1.7 I1 possesses only the broadest
beam patterns that are non-overlapping and perfectly cover
!. DBZ checks the termination criteria in (26) to determine
zooming in at the western path of the decision diamond in Fig.
3. Once the algorithm terminates at the initial level, h = 1,
we begin to communicate using the chosen beamforming
vector (1, γ(n)), stored as (h, ic). DBZ continues to play
MAB games at subsequent levels, choosing (h, γ(n)) upon
termination at level h, and refines the communication beam
with the subsequent MAB games at h > 1. As shown in
Fig. 2, this operation continues until DBZ terminates with a
narrowest beam at level H . Fig. 3 shows DBZ loops back to
initialize the next level after zooming in. Conversely, following
the southern path of the decision diamond in Fig. 3, we control
“zooming out” to a previous level with a wider beam by

7Note that in Fig. 3 we store I1, or Ih, as I.

establishing a vector of hyperparameters, ε, whose elements
are the threshold RSRP after termination and zooming in at
each level,

[ε]h+1 ↫ Lh,ϑ(n)(⇀, n ↑ 1) + A↽h, (27)

for A ⊜ 1 to be chosen later. If at any time step

Uh,ϑ(n)(⇀, n ↑ 1) < [ε]h↓ , (28)

for any h↘ ⊜ h, DBZ zooms out choosing (h ↑ 1, ic) as the
new communication beam and loops back on the flowchart
re-initializing all arms in Zh↑2,i that are now in contention.8
In the case of zooming out at h = 2, we reset and store I1

as I. The intuition for our choice of of adaptive threshold
in (27) is that we base it on the worst performance of a
previous level’s (h↘ < h) best-performing beamforming vector,
Lh↓,ϑ(n)(⇀, n↑1). If the best performance of the current level’s
best-performing beamforming vector, Uh,ϑ(n)(⇀, n ↑ 1), does
not exceed the threshold, one concludes misalignment and
zooms out. These discrete decision points for beam transitions
allow the transmission of control information between the BS
and ME to adjust the corresponding rate and beamforming
vector [8], [38]. In the case of neither zooming in or out,
we take the eastern path of the decision diamond and sample
beamforming vector corresponding to S(n).

Playing each level reduces the number of arms considered
overall, but naively exploits the hierarchical codebook. Certain
levels of the codebook are more beneficial to play than
others based on the number of beams eliminated per number
of samples required. Consequently, one might benefit from
skipping some levels at the expense of contending more arms
in a best-arm identification MAB game. We characterize the
strategy used to navigate the codebook levels by a pruning
vector of hyperparameters p with elements [p]h → {0, 1}.
Specifically, assume that at level h ↑ 1, the beamforming
vectors corresponding to the vertices in Ih↑1 are used in the
best-arm identification MAB game to take samples as RSRP
measurements. Upon termination, if [p]h = 1, the children
vertices’ beamforming vectors of the arm chosen at level
h ↑ 1 are played in the next level h. If [p]h = 0, we bypass
level h and, pending [p]h+1 = 1, put all descendant arms in
contention (See block prior to level initialization in Fig. 3). If
[p]h+1 = 0, we bypass this level, and so on. As an example,
the size of a set of beamforming vectors after skipping one
level is |I| = 9 for a ternary tree, or |I| = 4 for a binary tree.
Note that [p]H must be set to 1 because we require a choice of
one of the narrowest beamforming patterns. Our simulations
in Section VI show that many of the hyperparameters may be
generically set over a broad range of channel conditions and
maintain performance.

V. ANALYSIS

For initial alignment, DBZ adapts the fixed-confidence best
arm identification framework in [41], in which the algorithm
requires choosing the correct beam with high probability. DBZ
requires accurate estimation of the mean reward values in (10)

8The logical test any(·) (southern path of the decision diamond in Fig. 3)
returns Boolean True if any element in a logic vector returns True.
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for (h, i) → Ih while maintaining alignment. For these two
requirements, we define the events,

Bh ↫
{
≃(h, i) → Ih, ≃n > 2 |Ih| , (29)

|µ̂h,i(⇀, n) ↑ µh,i(n)| < Dh,i(⇀, n)
}
, (30)

and

Ah ↫ {⇐(h, i) → Ih : ϑ(n) → Rh,i} , (31)

for a beamforming vector fh,i whose beampattern is pointed
toward angle ε̄i and has beamwidth εbw,h. As a reminder,
Rh,i = [ε̄h,i ↑ εbw,h/2, ε̄h,i + εbw,h/2] is the coverage region
of the beam pattern corresponding to (h, i). Under events (29)
and (31) ≃h → {1, . . . , H}, we show that DBZ zooms in to
choose an ↽-optimal beamforming vector with probability at
least 1 ↑ ω. In the case the ME is out of alignment, Ac

h
, we

zoom out to mitigate severe outages, which keeps the ME
aligned in the wider beam. We confirm a zoom-out action from
(h, i) to (h↘, i), where h↘ < h, as being correct when the mean
reward of the broader beam µh↓,i(n) > µh,i(n). We first prove
in Section V-A why Bh holds with high probability, ensuring
µh,i(n) is well estimated. In Section V-B, based on our
kinematic motion model (5), we analyze the maximum sample
window lengths that may be chosen at each level, [ω]h, such
that Ah holds (aligned) with high probability. We then show
the correctness of our decision criteria for zooming in (26)
and zooming out (28) to adjust to the dynamically changing
mean reward values in Section V-D. Finally, in Section V-E we
develop a means to calculate the sample complexity required
to zoom in with respect to the spacings of mean rewards (13)
and choice of ↽. We use the sample complexity to select the
hyperparameters corresponding to sample window lengths, ω,
pruning vector, p.

A. Confidence
We first provide two supporting lemmas that lay the foun-

dation for ensuring that DBZ correctly zooms in and zooms
out with high confidence using the mathematical compo-
nents in Section IV-A. We use the lemmas to show µh,i

is well estimated if the event Bh occurs with high prob-
ability during DBZ for all levels. We conclude that with
probability at least 1 ↑ ω, the true mean reward satisfies
µh,i(⇀, n) → [Lh,i(⇀, n), Uh,i(⇀, n)] during execution of DBZ.
We let nh,i → N denote the time steps at which arm (h, i) is
sampled.

Lemma 1. For the sequence of observations,
{y(nh,i) : nh,i ↬ 2}, which follow a ς2

v
/2-scaled non-central

chi-squared distribution,

P(|µ̂h,i(⇀, n) ↑ µh,i(n) > ω|) ⊜ 2 exp

(
↑Nh,i(⇀, n)ω2

4⇁2
h,i

(n)

)
,

(32)

where ⇁2
h,i

(n) = ς4 + 2ς2↼h,i(n) is the variance of y(nh,i),
and ↼h,i(n) = |h(n)fh,i|2.

Proof: Our proof follows the steps from [46, Appendix
E] and [47, Section 2.1.3]. Note that µh,i = ↼h,i + ς2, with

the moment generating function of y(nh,i) and dropping the
time dependence temporarily, we write,

E(exp(ϱ(y(nh,i) ↑ µh,i))) =
exp(↑ϱµh,i)

1 ↑ ς2ϱ
exp

(
ϱ↼h,i

1 ↑ ς2ϱ



(33)
⊜ exp(ς4ϱ2) exp(2↼h,iς

2ϱ2)
(34)

= exp

(
2⇁2

h,i
ϱ2

2

)
, (35)

where (34) holds when |ϱ| < 1/(2ς2). We use (35) with the
Cramer-Chernoff method to derive our concentration bound.
The full steps are available in Appendix ?? of the supplemen-
tary material. In particular, we are interested in the empirical
mean of y(nh,i) over time (15), hence,

P(µ̂h,i(⇀, n) ↑ µh,i(n) ↬ ω) ⊜ exp

(
↑Nh,i(⇀, n)ω2

4⇁2
h,i

(n)

)
.

(36)

A union bound completes our proof.
Lemma 1 enables us to write the concentration expression
using our choice of confidence term (17) and exploration rate
(19) for the next lemma.

Lemma 2. Let {y(nh,i) : nh,i ↬ 2} be the sequence of
independent and identically distributed (i.i.d.) random vari-
ables in Lemma 1, then for any B, C ↬ 1, 0 < ω ⊜
⇁2
h,i

(n)/ς2, exploration rate β(⇀, n, ω) in (19), and confidence
term Dh,i(⇀, n) in (17),

P(|µ̂h,i(⇀, n) ↑ µh,i(n)| ↬ Dh,i(⇀, n)) ⊜ 3 exp(↑β(⇀, n, ω)).
(37)

Proof: We use the one-sided version of (32) from our
result in Lemma 1 with a constant B ↬ 1,

P



µ̂h,i(⇀, n) ↑ µh,i(n) ↬
√

4B⇁2
h,i

(⇀, n)β(⇀, n, ω)

Nh,i(⇀, n)





⊜ exp(↑β(⇀, n, ω)),
(38)

and the result in [48, Theorem 10] with C ↬ 1 to bound the
difference between standard deviation ⇁h,i and its empirical
estimate, ⇁̂h,i(⇀, n), as

P
(

⇁h,i(n) > ⇁̂h,i(⇀, n) +

√
2Cβ(⇀, n, ω)

Nh,i(⇀, n) ↑ 1

)

⊜ exp(↑β(⇀, n, ω)). (39)

By replacing ⇁2
h,i

(n) in (38) with

⇁̂h,i(⇀, n) +

√
2Cβ(⇀, n, ω)

Nh,i(⇀, n) ↑ 1
, (40)

simplifying, and using union bounds, we obtain our result. The
full steps are available in Appendix ?? of the supplementary
material.
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The concentration expressions in (32) and (37) do not
explicitly account for the changing mean reward, µh,i(n),
over time. However, our choice of confidence term (17)
incorporates the empirical variance, which past works have
shown can suffice to adjust for the dynamic rewards [48], [49].

B. Confidence with Alignment Time

Determining the likelihood of event Ah (31) requires a
probabilistic description of the angle, ϑ(n), over time. With
the random variable model and distribution in hand (full
derivation in Appendix ?? of the supplementary material),
we determine the likelihood of ϑ(n) remaining in the region,
Rh,i = [ε̄h,i ↑ εbw,h/2, ε̄h,i + εbw,h/2], under the kinematic
motion described in Section II-B. We express the probability
of alignment after n timesteps as

P
(ε̄h,i ↑ ϑ(n)

 ⊜ εbw,h

2


=

↘
2ςn

εbw,h

↘
▷

(
exp

(
↑

ε2
bw,h

2ς2
n

)
↑ 1

)

+ erf

(
εbw,h↘

2ςn


, (41)

with

ς2
n
↫ φ4

4

(
4n3

3
↑ 4n2 +

11n

3
↑ 1


ς2
u

+ φ2(n ↑ 1)ς2
u
,

(42)

where φ is the time difference, in seconds, between n ↑ 1
and n.9 We use (41) with the bounds on complexity of DBZ,
which we determine in Section V-E, to characterize the limits
of kinematic motion that DBZ is capable of performing. We
must choose sample window lengths, ω, at each level, h, such
that

[ω]h < N a
h
. (43)

Offline numerical methods provide a means to select elements
of ω that meet the criteria of (43). Our following lemma
establishes guarantees on correctness when we choose [ω]h
properly. In the following lemma, we combine Lemma 2 with
our new insights on event Ah to show confidence of correct
beamforming vector selection with a ME.

Lemma 3. With the choice of [ω]h < N a
h

such that P(Ah) ⊜
ω/(2H), under Assumptions 1 and 2, Bh and Ah for all 1 ⊜
h ⊜ H hold with probability 1 ↑ ω.

Our proof shows that P (Bh ⇒ Ah, ≃1 ⊜ h ⊜ H) > 1 ↑ ω
over all time steps, n, and all arms, i.

9We use the error function defined as erf(z) = 2→
ω

∫
z

0 exp(↓t2)dt.

Proof: We apply (37) from Lemma 2 for one level, h,
where each (h, i) has Nh,i(⇀, n) = u ↬ 2 samples taken.
Then, using a union bound over all levels,

P(Bc

1 ⇑ · · · ⇑ Bc

H
) ⊜ P(Bc

1) + · · · + P(Bc

H
) (44)

⊜
≃∑

n=1

H∑

h=1

∑

i:(h,i)↔Ih

n∑

u=1

3 exp(↑β(⇀, n, ω))

(45)

⊜
H∑

h=1

|Ih| ω
2IH

=
ω

2
. (46)

With the appropriate choice of ⇀, we combine (46) with

P(Ac

1 ⇑ · · · ⇑ Ac

H
) ⊜ P(Ac

1) + · · · + P(Ac

H
) (47)

⊜
H∑

h=1

ω

2H
=

ω

2
, (48)

from which we conclude that P (Bh ⇒ Ah, ≃1 ⊜ h ⊜ H) >
1 ↑ ω.

C. Sampling Strategy Performance
DBZ adapts the sampling and termination policy of [41]

in order to zoom in. We adapt [41, Lemma 4, Lemma 2
and Corollary 1] to show that at each level h, (h, u(n)) and
(h, γ(n)) are good choices for sampling, where the policy
is greedy toward the termination criteria (26). DBZ differs
from [41] in the confidence term (17) and exploration rate
(19), which include the empirical variance, ⇁2

h,i
(⇀, n) (18),

and the total number of arms, IH .10 The operation of DBZ
consists in playing independent MAB games at each level h
dictated by the pruning vector p, hence each lemma extends
to all choices of p.

Lemma 4. Let S(n) → {u(n), γ(n)} denote the arm pulled
at time step n. At each time step n ↬ 2,

S(n) = u(n) =⇓ Lh,u(n)(⇀, n) ⊜ Lh,ϑ(n)(⇀, n), (49)
S(n) = γ(n) =⇓ Uh,u(n)(⇀, n) ⊜ Uh,ϑ(n)(⇀, n), (50)

and if S(n) = (h, i) then

Gh,ϑ(n)(n) ⊜ 2Dh,i(⇀, n ↑ 1). (51)

Proof: The proof requires basic handling of each case, as
outlined in [41], applied to a single level h. We provide the
detailed proof in Appendix ?? of the supplementary material.

From Lemma 4, we provide an upper bound on
Gh,ϑ(n)(⇀, n) adapted from [41, Lemma 2]. The upper bound
allows us to derive an expression in the Section V-E to describe
the complexity of the DBZ algorithm.

Lemma 5. On event Bh, if (h, i) → {(h, u(n)), (h, γ(n))} at
time step n ↬ 2, then

Gh,ϑ(n)(⇀, n) ⊜ min {0, 2Dh,i(⇀, n ↑ 1) ↑ ”h,i(n)}
+ 2Dh,i(⇀, n ↑ 1). (52)

10IH =
∑

h
|Ih| is the total quantity of beamforming vectors participating

in MAB games at all levels, and is fixed for any codebook.
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Proof: Similar to Lemma 4, this proof requires book-
keeping to analyze each statement, as outlined in [41], at
level h. We provide the detailed steps in Appendix ?? of the
supplementary material.

D. Zooming In and Zooming Out
Because of the ME motion (5), the unique maximum mean

reward, µ↓
h
(n), and paths within the reward structure change

over time (see Assumptions 1 and 2). Section IV-B describes
the mechanics uses to adapt the beamwidth to compensate for
ME motion, but we must ensure correct decisions to zoom in
or out. The following lemma, adapted from [41, Lemma 1]
ensures an arm, (h, i), will not be mistakenly chosen as an
↽h-optimal arm and zoomed in on, under event Bh.

Lemma 6. If Bh holds, for any (h, i) /→
{(h, i) : µh,i(n) + ↽h ↬ µ↓

h
(n)}, Gh,i(⇀, n) ↬ ↽h for all

n ↬ 2.

Proof:

Gh,i(⇀, n) = max
j ↗=i

Uh,j(⇀, n ↑ 1) ↑ Lh,i(⇀, n ↑ 1) (53)

↬ max
j ↗=i

µh,j(n) ↑ µh,i(n) (54)

= µ↓
h
(n) ↑ µh,i(n) > ↽h, (55)

where (54) is from Bh. (55) comes from the fact that i ↗= i↓

and the definition of an ↽h-optimal arm.
Say DBZ terminates with (h↘, i↘) from a previous level h↘ < h,
and produces threshold [ε]h↓+1 = Lh↓,i↓(⇀, n↑ 1)+A↽h↓ . Let
n and n↘ represent time steps at levels h and h↘, respectively.
Complementing Lemma 6, our next lemma ensures that DBZ
zooms out according to changes in reward structure due to
motion.

Lemma 7. If Bh and Bh↓ hold, with threshold [ε]h↓+1 in (27)
based on termination at level h↘ with (h↘, i↘), and A ⊜ 1,
DBZ zooms out correctly with probability greater than 1 ↑ ω
if ⊋(h, i) → Ih such that µh,i(n) > µh↓,i↓(n↘) + ↽h↓ .

Proof: If DBZ zooms out from level h, we have that
Uh,ϑ(n)(⇀, n ↑ 1) < [ε]h↓+1, and therefore

µh,i(n) ⊜ max
i:(h,i)↔Ih

µh,i(n) (56)

⊜ Uh,ϑ(n)(⇀, n ↑ 1) (57)
< [ε]h↓+1 (58)
= Lh↓,i↓(⇀, n↘ ↑ 1) + A↽h↓ (59)
⊜ µh↓,I(n

↘) + ↽h↓ . (60)

The relationship of (56) to (57) and (59) to (60) come from
event Bh and Bh↓ , respectively, where Lemma 2 shows both
events hold with probability greater than 1 ↑ ω.

Together, Lemmas 6 and 7 show that despite the time-
varying mean rewards, DBZ will correctly zoom in and out
with at least probability 1 ↑ ω under event Bh for all h.

E. Sample Complexity
We now provide an analysis of the sample complexity of

DBZ to zoom in at each level. The sample complexity enables

setting sample window lengths ω large enough to accommo-
date the number of samples to zoom in (26). For zooming in,
DBZ exploits the structure induced by the hierarchical code-
book by reducing the overall total number of arms considered
along a path (see Assumption 2), IH , by order of the logarithm
of the number of beamforming vectors required in traditional
MAB strategies using the narrowest beams [15], [26]. The re-
duction in beamforming vectors considered directly attributes
to an overall reduction in sample complexity. However, the
variance and individual spacing between mean rewards of arms
also play a significant role in determining overall complexity.
Let ”h,i,ω(n) ↫ max {(”h,i(n) + ↽h)/4, ↽h/2}, and

⇔h,ω(n) ↫
∑

i:(h,i)↔Ih

2B⇁2
h,i

(n) + 2
↘

2BC”h,i,ω(n)

”2
h,i,ω

(n)

+


4B2⇁4

h,i
(n) + 2

↘
2CB3/2⇁2

h,i
(n)”h,i,ω(n)

”2
h,i,ω

(n)
.

(61)

The relevance of ⇔h,ω(n) is justified by the following lemma.

Lemma 8. If Bh holds, DBZ ensures that the number of
samples of beamforming vector (h, i) after n total samples
at level h, satisfies

Nh,i(⇀, n) ⊜
2B⇁2

h,i
(n) + 2

↘
2BC”h,i,ω(n)

”2
h,i,ω

(n)
β(⇀, n ↑ 1, ω)

+


4B2⇁4

h,i
(n) + 2

↘
2CB3/2⇁2

h,i
(n)”h,i,ω(n)

”2
h,i,ω

(n)

↖ β(⇀, n ↑ 1, ω) + 2,
(62)

or rounded to the next largest integer, N↓
h,i

(⇀, n) =
↙Nh,i(⇀, n)∝.

Proof: The proof involves writing (52) and replacing with
our expression for Dh,i(⇀, n ↑ 1) in (17), then solving for
Nh,i(⇀, n). The full steps are available in Appendix ?? of the
supplementary material.

F. Configuring DBZ

This section provides DBZ users with a practical methodol-
ogy for selecting a sample window length, ω, pruning vector,
p, and parameter ↽. To set ω and p, we use Lemma 8 that
describes the total number of samples required at each level,
N↓

h,i
(⇀, n), which scales directly with noise variance, ς2

v
. In

order for DBZ to take sufficient samples such that it meets
either the criteria of (26) or (28), we require elements of ω
large enough, such that for a single element ⇀,

⇀ ↬
∑

i:(h,i)↔Ih

N↓
h,i

(⇀, n). (63)

Note that
∑

i:(h,i)↔Ih
Nh,i(⇀, n) = ⇀ if n ↬ ⇀ and n

otherwise. We obtain an estimate of how to set ⇀ by further
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analyzing (62), where the total number of samples required at
each level is

⇀ =
∑

i:(h,i)↔Ih

Nh,i(⇀, n) ⊜ ⇔h,ω(n) log

(
15NH⇀4

2ω


+ 2 |Ih|

(64)

and has the closed form solution to suggest the value,

⇀est =




↑4⇔h,ω(n)W



↑
exp

(
↑ 2|Ih|↑1

4⇔h,ϖ(n)



4⇔h,ω(n)
(

15IH

2ϖ

)1/4








+ 1,

(65)

where W (·) is the Lambert-W function.11 The sample window
length should be chosen such that

[ω]h ↬ ⇀est (66)

In cases of extreme motion with very large ςu and/or es-
pecially low SNR with large ςv , we conclude that DBZ
delivers poor performance. When ⇀est > N a

h
, DBZ cannot

guarantee selection of ↽-optimal beamforming vectors with at
least probability 1 ↑ ω. For practical implementation, a user
should choose ςu in (42) such that it approximates the highest
angular acceleration possible by the ME intended to track.

We perform optimization of the pruning vector, p, in an
offline manner to optimize utilization of the beamforming
codebook. We show in Section V that the choices of p
generalize over a broad range of SNR. Minimizing (65) over
the range of possible path angles provides an assessment of
which pruning vector, p, is optimal. We require the expected
number of samples at level h, Eϱ1(⇀est(ϑ)). “Averaging” over
the range of angles ! eliminates dependence on the angle.
Furthermore, the sparsity of the mmWave channel allows us to
focus on the dominant path, ϑ1 [43]. The vector p↓ minimizes
the average complexity, such that

p↓ = argmin
p

Eϱ1




∑

h:[p]h=1

⇀est,h(ϑ)



, (67)

and we estimate the expected number of samples,

Eϱ1




∑

h:[p]h=1

⇀est,h(ϑ)



, (68)

numerically. Our numerical simulations in the next section
show the samples required for initial alignment with different
choices of p for comparison. We include example code for
computing ω and p in our source code [50].

DBZ uses the parameter ↽ to compensate for cases with
especially small ”h,i(n), when two mean rewards are very
close in value. The case of small ”h,i(n) occurs when ϑ1 ′
ε̄i ± εbw,h/2 or Non-LOS (NLOS) scenarios where there is
no clear dominant path, causing the RSRP (4) of multiple
beamforming vectors to be very similar. As a reminder, the ↽

11The Lambert-W function enables the relation xhϱ ↬ log(yhϱ) ↔↗
ϱ ⊜ ↓ 1

xh

W
(
↓xh

yh

)
, where xh = 1/(4↘h,ε(n)) and yh =

(15IH/(2ς))1/4 exp
(
(2 |Ih| ↓ 1)/(4↘h,ε(n))

)
.

parameter in the termination criteria allows DBZ to terminate
with a sub-optimal arm (H, i), such that µ↓

H
⊜ µH,i + ↽. The

sub-optimal choice impacts the relative spectral efficiency with
respect to ↽ as

◁̃h,i ↫
log2

(
1 + (↼h,i↑(n) ↑ ↽)/ς2

v

)

log2 (1 + ↼h,i↑(n)/ς2
v
)

(69)

for h = H and for all ↽ > 0. We set ↽ such that ◁̃h,i > .95
for all h. In practice, ↼h,i↑(n) corresponds to some maximum
RSRP, while ↽ denotes the penalty allowed with communi-
cation persisting. We note that choosing an ↽-optimal arm is
unique to DBZ compared to existing algorithms [14], [51]
that fall victim to high complexity with small ”h,i(n). With
↽h, we use our scaling of ↽ with respect to the gain at level
h, g↑(H↑h), for each subsequent level of the hierarchical
beamforming codebook FH . We expect ”h,i(n) to be smaller
at lower levels, or overall in NLOS scenarios. By scaling ↽
to ↽h for the corresponding level, h, we ensure that there is
no unnecessarily high penalty to relative spectral efficiency
incurred for our beamforming vector selection at termination.

VI. NUMERICAL SIMULATIONS

Our numerical simulations assess the ISAC performance of
DBZ to quickly align, i.e., choose a beamforming vector at
level H , and adjust the beamforming pattern width over time to
compensate for motion while communicating. Our simulation
source code is available at [50].

A. Methodology for Initial Alignment Simulations
We execute each simulation by first making K uniformly

random selections ϑk → !, each representing the kth path.
We use a unique random number generator seed for each
individual simulation that we denote with index 0. The K-
length vector of angles chosen for simulation 0 is denoted
ϑς with a corresponding vertex (H, i↓

ς
). We use ϑς to then

construct the array response (2). We take samples by applying
beamforming vectors to the channel model observations, as
in (4), that are chosen based on the algorithm policy. Each
simulation terminates after the stopping criteria (26) is met.
We compare the performance of DBZ across several SNR
values with various pruning vectors, p (which we denote by
their decimal values), and directly with HPM from [13] and
2PHTS from [14].12 The HPM algorithm acts a baseline of
performance in utilizing perfect channel knowledge in the
posterior computations to deploy the hierarchical codebook.
Another potential comparison candidate algorithm, HBA, ag-
gressively searches the range of !, sacrificing performance
under lower-SNR conditions to terminate quickly. 2PHTS
adapts the state-of-the-art TAS MAB framework using an
approximation of the stochastic channel model that works for
high SNR. We dynamically determine the number of total
simulations required, L, by utilizing the Wilson score [52]
interval width. Further details of the confidence intervals are

12Note that there is some degradation at high SNR for HPM [13] due to
not perfectly compensating for the multi-path effects. Additionally, we could
only simulate the behavior of 2PHTS in the high-SNR regime because of
numerical issues intrinsic to the algorithm.
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TABLE II: Details on pruning vector values, p.

pdec p h Traversed
0 0000001 7
3 0000111 5, 6, 7
4 0001001 4, 7
7 0001111 4, 5, 6, 7
8 0010001 3, 7
63 1111111 All h

available in Appendix ?? of the supplementary material. Let
Th(0) denote the samples required for level h in simulation
0, the average sample complexity, or number of beamforming
vectors required, is

T̂ (L) =
1

L

L∑

ς=1

∑

h:[p]h=1

Th(0). (70)

For the initial alignment performance, algorithms utilize a
common beamforming codebook with H = 7 levels (128
pointing angles at the finest resolution) organized by a binary
tree graph with M = 128 antenna elements in a ULA. We
design the beamforming architecture to support as few as a
single RF chain in a HAD configuration based on the design in
[3]. The gain parameter is set as g = 10.2 which corresponds to
2 dB of gain per level with the increasingly narrow beams. We
fix Pk = 1 and assume no knowledge of the channel SNR. We
also do not use any knowledge of the channel fading factors,
ϖk(n) (1), in DBZ. Our results show that DBZ is robust to
the time-varying ϖk(n). The sequence p is chosen as decimal
values pdec → {0, 3, 4, 7, 8}, identified with the methodology in
Section V-F to be a good set of p to compare. We summarize
the details of each selection of p in Table II. We use the
convention “<algorithm>pdec”, i.e., DBZ7, to indicate the
algorithm and selection of pruning vector.

B. Results and Discussion

Our initial alignment experiments investigate the overall
complexity (70), which is the key metric for the fixed con-
fidence best arm identification setting. We emphasize that the
ME is NOT mobile during these initial alignment simulations,
as to have a fair comparison with other algorithms. We also
verify that the expected relative spectral efficiency after n
samples and the algorithm chooses a beamforming vector,

◁(n, L) ↫ 1

L

L∑

ς=1

log2

(
1 + ↼h,ic(n)/ς2

v

)

log2 (1 + ↼H,i↑(n)/ς2
v
)
, (71)

is obtained after obtaining samples with chosen ↽. Fig. 4
and 5 provide a comparison of the sample complexity and
resulting relative spectral efficiency for several mmWave beam
alignment algorithms:

• DBZ with several configurations of the pruning vector,
p, along with two values of ↽.

• HPM from [13] utilizing perfect CSI of both the channel
fading coefficient, ϖ1(n), and noise variance, ς2

v
.

• HBA from [15], which bisects the search space according
to the MAB policy in [29].

• Hierarchical Optimal Sampling of Unimodal Bandits
(HOSUB) from [53] that has operates as a fixed-budget
(or fixed number of samples) algorithm using the MAB
framework in [27] to explore the hierarchical codebook
graph. We show the performance with two different
budget constraints, 50 and 100.

As anticipated, HPM provides a baseline for performance in
that it optimally exploits the induced structure by using CSI
to compute the posteriors at each time step. In general, we
anticipate many of the algorithms that compute the explicit
distributions [36], [51] offer similar performance, but with the
price of significant computational overhead to compute the
posteriors. At very low SNR, an exhaustive search (DBZ0)
outperforms any other DBZ variation in Fig. 4. This is ex-
pected, in fact, works such as [14] hinge on the assumption of
exclusively operating in a high-SNR regime. Our results show
that values of SNR roughly between ↑6 to 6 are the target
SNR regimes in which DBZ achieves better complexity than
an exhaustive search. Fig. 5 shows a significant reduction in
relative spectral efficiency at low SNR for HBA and HOSUB,
which both sacrifice some performance for lower complexity,
shown in Fig 4. DBZ lowers its complexity by utilizing larger
values of ↽, however, there is a corresponding loss in relative
spectral efficiency shown in Fig. 5.
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Fig. 4: Comparison of complexity at various SNR.

We provide one last numerical result for initial alignment
at SNR = 20 dB (a high SNR regime) to compare the
performance of DBZ to that of TAS methods in Table III.
We adapt the TAS framework in [54] for identifying an ↽-
optimal arm, and similar to [14], apply TAS over subsequent
levels, h, as shown in Table II. We also use the assumption
in [14], in which the observation is close to a Heteroscedastic
Gaussian to compute the relative entropy in the TAS steps,
and apply our scaling of ↽ as ↽h at each level. As expected,
HPM achieves the best results given the full CSI. A particular
point of interest is that strategies considering fewer arms, IH ,
perform significantly better at high SNR. One concludes that
at high SNR, p should be chosen to minimize IH . While
TAS methods perform better overall, the number of samples
for DBZ63 and DBZ31 are only marginally worse than TAS63
and TAS31. Some of the algorithms in Table I do not have an
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Fig. 5: Comparison of resulting relative spectral efficiency at
various SNR.

TABLE III: Complexity in high SNR regime.

DBZ4 DBZ7 DBZ31 DBZ64 TAS4 TAS7 TAS31 TAS64 HPM
57.0 53.7 30.4 30.8 26.0 26.0 20.0 21.0 8.2

explicit initial alignment component or guarantees on accuracy
in the algorithm, [9], [10], [19]. For the tracking simulations in
the next subsection, we assume [9], [10], [19] incur an O(I)
sample complexity with an exhaustive search of all narrow
beams to initially align. There may be space in future work
to combine initial alignment approaches like DBZ, HPM, or
2PHTS with [9], [19] to enhance algorithm performance.

C. Methodology for Tracking Simulations

We provide a series of numerical simulations to demonstrate
the performance of DBZ under different channel SNR, ςv , and
magnitude of motion, ςu (and more extensively in Appendix
?? of the supplementary material). We fix the interval in which
samples are taken, φ = 1, and execute each simulation by
first choosing ϑk(1) as in our initial alignment simulations,
according to a random number generator seed, 0. We take a
single sample (3) at each time step by applying beamforming
vectors to the channel model observations, as in (4), that
are chosen based on the flowchart in Fig. 3. After each
sample the ME undergoes the kinematic motion transition
in (5). We execute the main algorithm loop for DBZ (After
input and parameter initialization in Fig. 3) until a specified
number of time steps occur, N . We perform L simulations
of N time steps, and calculate the average relative spectral
efficiency at each time step, n, (71). The indices (h, ic) in the
numerator of (71) corresponds to the beam currently being
used for communication. DBZ adapts to the changing ϑ(n)
by broadening (zooming out) and narrowing (zooming in) the
beam used to communicate on the events in lines 21 and
5, respectively. We use a ternary hierarchical codebook with
I1 = 5, with depth H = 4, and each beam splits into 3
narrower beams, creating 135 narrow beams at h = H . We use
p = [1, 1, 1, 1] for all tracking simulations. The degradation of
each algorithm’s performance at later time steps comes from

the ME possibly accelerating to reach faster speeds (5), making
that tracking task more difficult over time.

D. Comparison of Algorithms
We provide a performance comparison across several al-

gorithms for mmWave beam tracking by assessing the time-
average relative spectral efficiency, of (72),

1

N

N∑

n=1

◁(n, L). (72)

In particular, we use the following algorithms for comparison
in simulation:

• The Active Beam Tracking (ABT) algorithm from [20],
[22], which acts as our baseline algorithm by exploiting
full CSI and knowledge of the ME motion to compute the
Bayesian posteriors and select beamforming vectors. We
assess two variations, one in which the fading coefficient,
ϖ1(n), is known and one variation that uses a noisy
estimate of ϖ1(n).

• PF approach from [19], which uses the covariance of the
particles to broaden or narrow the beam by activating
a specified number of antenna elements. To offer a
more fair comparison, we assess the effective beamwidth
produced by the number of elements, and use a level in
our ternary codebook FH that most closely matches the
effective beamwidth.

• MAB approach in [10], which periodically sweeps neigh-
boring “offset” narrow beams in a different type of MAB
application.

• EKF approach in [9], where we use the angle estimations
to select the narrow beamforming vectors.

Our implementation of each algorithm is in the source code
[50]. Each algorithm has different trade-offs with respect to
the characteristics listed in Table I. Fig. 6 and 7 show the
performance of each algorithm in LOS and NLOS scenarios
with different severity of motion, ςu. In our LOS scenario, the
dominant path is 10 dB above the others, where the NLOS
has no clear dominant path. We see that DBZ outperforms all
other algorithms except ABT [20], as expected. The adaptive
beamwidth control for the PF approach, [19], allows for better
performance than the offset sweep in [10] or the Kalman Filter
(KF) in [9]. However, the adaptive beamwidth control for DBZ
exceeds that of the PF. Combination of the PF or KF with DBZ
could yield a potent algorithm for mmWave tracking. In the
next section, we take a closer look at the results of comparing
DBZ with the Bayesian algorithm, ABT from [20]. We show
there are instances where DBZ indeed performs better if ABT
does not have access to exquisite channel information, failing
to be CSI adaptive.

E. Comparison to Bayesian Method
Our first experiment compares DBZ performance with an

extension of HPM to compensate for motion, ABT [20], [22].
We use ABT as a baseline of performance, the Bayesian
framework leverages full channel information to compute the
posteriors on beamforming vectors fH,i after each observation.
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Fig. 6: Comparison of performance between algorithms in
LOS scenario.
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Fig. 7: Comparison of performance between algorithms in
NLOS scenario.

The broader beams posteriors are the sum of the posteriors
for narrower ones. The framework in [22] shows a way to
optimize RS (pilot signals) or data sent based on optimizing
spectral efficiency. However, for this comparison, we fix the
interval in which RS are sent. We calculate the posterior for
the measurement (3), which is corrupted by Additive White
Gaussian Noise (AWGN) under multiplicative fading coeffi-
cient ϖ1(n). We also apply the density for the entity motion,
(see (??) in Appendix ?? of the supplementary material), to
the posterior. Fig. 8 shows our results for DBZ using sample
windows set by the estimated complexity, ⇀est, with a subset of
SNRs compared with the performance of ABT. ABT performs
extremely well when the fading coefficient, ϖ1(n), is used in
the computation of the posterior. In practice, this comes from a
method to make a precise estimate of the coefficient. To assess
performance when the estimation is in slight error, we choose
the fading coefficient as a random variable distributed as
CN (ϖ1(n), (.5)2). We see a slight degradation in performance
with the error in estimation of the fading coefficient. What
may be more interesting however, is the performance disparity
between high and low SNR (SNR= 14 versus SNR= ↑6), in
that one would expect better performance at higher SNR, but
the opposite is shown in Fig. 8. This is due to the imperfect

posterior computed at high SNR creating “overconfidence”
in the selection of narrower beamforming vectors. At lower
SNR, ABT is more discerning (broader distributions) in its
choices to narrow or broaden the beam, hence there is less
emphasis on accurate estimations of ϖ1(n). We see DBZ
is competitive with ABT given no channel knowledge other
than the SNR to compute the sampling window lengths, ω.
DBZ only requires O(|Ih| = 3) Floating-Point Operation
(FLOP)s (O(|I1| = 5) in our case) versus ABT with O(128)
FLOPs (with the codebook used), for each of the algorithm’s
computational cost at each sample. The O(128) in ABT comes
from the need to update each posterior for each beamforming
vector at each sampling iteration with the binary codebook
used therein.13
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Fig. 8: Comparing performance between ABT with full chan-
nel knowledge and DBZ with ⇀ set by estimated complexity.

F. Performance in NYU Sim Model
The question of DBZ performance in the presence of

realistic multi-path environments remains. We use NYU Sim
[33], [34] to generate L = 100 unique spatially consistent
trajectories of a moving entity within !. In using NYU Sim,
we compute the estimated relative spectral efficiency (71)
over each trajectory consisting of N = 60014 time steps and
create an average result for each scenario and track, i.e. UMa:
Linear. We provide the full list of parameters to configure
NYU Sim in Appendix ?? of the supplementary material. DBZ
(and other algorithms alike) struggle to handle drastic large-
scale fading and outage models where there may be variations
of up to ↓ 50 dB of power between each time step. This is
especially true in urban cases (UMa and UMi). We assume
an analog front end that applies an Automatic Gain Control
(AGC) mechanism, which we model here as normalization
of the channel vector (1),

↘
Mh(n)/ |h(n)|. The urban cases

still see swings in receive power that would be indicative
that severe multi-path is present, despite normalization. We

13The relative spectral efficiency metric normalizes any differences in
codebook selection between the two algorithms

14This number of timesteps worked out to be an integer number with the
actual time, in seconds, between time steps n and the length of the track. See
Appendix ?? in the supplementary material.
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see DBZ performs relatively well in all scenarios. In partic-
ular, the rural scenarios, RMa, DBZ matches or exceeds it’s
performance against the DWNA motion model. The severe
multi-path elements in the urban scenarios cause edge cases
of the induced structure described in Section III-B, where
perturbations induced by noise, even small, cause significant
degradation in performance. The consistent spikes and valleys
in spectral efficiency at specific time steps come from using
the same track, which is especially true in the hexagonal track
case.
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Fig. 9: Comparing performance with NYUsim.

VII. CONCLUSION

We presented DBZ, an algorithm with low computational
overhead, that encompasses all defining features of ISAC.
Exploiting the structure induced by the hierarchical codebook,
we adapted the MAB best arm identification framework from
[41] to handle a ME. Our analysis shows the correctness guar-
antees on beamforming vector selection. Additionally, we have
characterized how to set the sample window lengths based on
a DWNA channel model and the complexity expected of the
DBZ algorithm. The beamwidth adjustments over time prevent
severe outages typically associated with mmWave systems. We
show DBZ strikes competitive performance against Bayesian
methods exploiting full channel knowledge and ME motion
[20]. Finally, our simulations with NYU Sim show DBZ’s
efficacy in realistic fading environments over several scenarios.
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