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Abstract

In the online hypergraph matching problem, hyperedges of size k over a common ground set arrive online in adversarial order. The
goal is to obtain a maximum matching (disjoint set of hyperedges). A naive greedy algorithm for this problem achieves a competitive

ratio of

assigned fractlonally, we give a deterministic online algorithm with competitive ratio

have competitive ratio strictly better than lfn '(’,S)

version of the problem under a free disposal assumption.
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. We show that no (randomized) online algorithm has competitive ratio better than

Lastly, we give a

2D " 1f edges are allowed to be

1-o(1)
In(k)

competitive algorithm for the fractional edge-weighted

and show that no online algorithm can

1-0(1)
Tn(k)

1. Introduction

In the classic problem of online bipartite matching problem,
we have a bipartite graph between resources (offline vertices)
and agents (online vertices). Agents arrive sequentially and
edges incident on an agent are revealed on arrival. Each agent
must be matched to at most one available resource. Matches
are immediate and irrevocable with the goal of maximizing the
size of the overall matching. We evaluate the performance of
an online algorithm using its competitive ratio. The competitive
ratio of an algorithm is the worst case ratio between the expected
cardinality of matchings produced by said algorithm and the
optimal offline solution, which, i.e. the maximum cardinality
matching in hindsight.

Online bipartite matching captures the essence of resource
allocation under sequential and heterogeneous demand [12].
Fundamental its many variations [18], is the assumption that
every agent seeks at most one type of resource. In a variety of
settings, ranging from revenue management in airlines [20, 21]
to combinatorial auctions [13, 14] and ridesharing [19], agents
require a bundle (set) of resources and an allocation that does not
include every resource in the bundle has no value. Inspired by
this, we study a fundamental generalization of online bipartite
matching, namely, online hypergraph matching. A hypergraph is
a generalization of a graph where an edge can join any number
of vertices. The maximum cardinality of an edge, or hyperedge,
is the rank of the hypergraph, i.e. hyperedges of a rank k hyper-
graph have at most k vertices. A matching in a hypergraph is
a set of vertex-disjoint edges. In online hypergraph matching,
edges are revealed sequentially in adversarial order. On arrival

*Corresponding Author, postal address: Donald Bren Hall, Irvine, CA 92697
Email addresses: t .troebst@uci.edu (Thorben Trobst),
rudwani@berkeley.edu (Rajan Udwani)

Preprint submitted to Elsevier

of an edge, we must make an immediate an irrevocable decision
to include the edge in the matching or reject it forever. The
objective is to maximize the size of the matching. In the frac-
tional version of the problem, arriving edges can be fractionally
included in the matching, subject to the constraint that the total
fraction of edges incident on any vertex is at most one.

In case of online bipartite matching, the offline optimum can
be found in polynomial time. In sha? contrast, for a rank k
hypergraph it is NP hard to find a Q(lzg approximation for the
offline hypergraph matching problem [9]. As k increases, the
separation between these problems widens since the hypergraph
matching problem becomes harder to approximate. In this paper,
our goal is to find tight upper and lower bounds for online hyper-
graph matching for large k. We consider both the integral and

fractional version of the online hypergraph matching problem.
In the integral case, it can be shown that a simple greedy
algorithm that always includes an arriving edge in the matching,
if feasible, is % competitive. In fact, no deterministic algorithm
can do better in the worst case. From the hardness of the of-
fline problem, no polynomial time (online) algorithm can have

competitive ratio better than M (unless P=NP).

In the fractional version, we evaluate the competitive ratio
against a fractional relaxation of the offline problem that can be
solved in polynomial time using linear programming. Therefore,
the computational hardness disappears and a result for the online
packing problem [3] gives a Q(@) competitive algorithm for
online hypergraph matching. This exponential gap between
the fractional and integral setting raises the following natural
question:

For some € > 0, is there an ( exponential time) online algo-
rithm with competitive ratio for (integral) online hypergraph
matching?

kls

May 21, 2025



We answer this question in the negative and establish the
following result.

Theorem (Informal). No (randomized and exponential time)
online algorithm can achieve a competitive ratio better than
# for online hypergraph matching.

Unlike the state-of-the-art complexity theoretic upper bound
of @, our result is unconditional and arises from the online
nature of the problem (as opposed to any computational barriers).
For the fractional case, we give new upper and lower bounds,

closing the existing constant factor gap for large k.

Theorem (Informal). There is an efficient algorithm for frac-
. . . . .. . 1-o0(1)
tional online hypergraph matching with competitive ratio —_—.
This is the best possible (asymptotic) competitive ratio for any

online algorithm.

2. Model

There are two reasonable variants of online hypergraph match-
ing: edge arrival and vertex arrival. The edge arrival model is
the one we have discussed so far: we are given a set of offline
vertices and the hyperedges arrive online in adversarial order.
However, a more direct generalization of the online bipartite
matching problem would be vertex arrival: we are given a set
of offline vertices I, online vertices 7', and whenever an online
vertex t arrives (in adversarial order), all hyperedges incident to
t are revealed at once.

Note that edge arrival is strictly harder to deal with than vertex
arrival. Moreover, for large k, edge arrival is also no harder than
vertex arrival since we can replace any edge arrival instance of
rank k with a vertex arrival instance of rank k + 1 by simply
adding one unique vertex for every edge. Since we are interested
in the large k case, we will only consider edge arrival throughout
the remainder of the paper.

In the fractional version, the optimal offline solution in the
edge arrival model is a solution to the following linear program,

Fractional LP: {m}ax Yok Xes
Xe jeeE
st YesiXe <1, Yiel,
Xe >0 Ve e E.

Decision variable x, € [0, 1] in the LP captures the fraction of
edge e included in the matching. The constraint, ) ,5; x, < 1,
enforces the total fraction of edges incident on a resource i € 1
to be at most 1. An online algorithm can include an arbitrary
fraction of each arriving edge, subject to the same constraint as
the LP.

Finally, note that by adding dummy resources we can assume
w.L.o.g., that every edge has exactly k offline vertices. Unless
stated otherwise, in the rest of the paper we consider the edge
arrival model and assume that instances are k-uniform, i.e., every
edge intersects k offline vertices.

2.1. Related Work

Perhaps closest to our setting is the work of Buchbinder and
Naor [3] on online packing. They considered an online pack-
ing problem that generalizes the fractional online hypergraph
matching problem studied here and gave a O(log k) competitive
algorithm. A special case of the online packing problem was
considered earlier in [1], in the context of online routing.

Another closely related line of work is on the problem of net-
work revenue management [20, 21]. This is a stochastic arrival
setting where seats in flights are offline resources allocated to
sequentially arriving customers. A customer with multi-stop
itinerary requires a seat on each flight in the itinerary. Recently,
Ma et al. [16] gave a ﬁ algorithm for network revenue man-
agement.

Another stream of work has focused on hypergraph matching
from the perspective of ridesharing. Pavone et al. [19] intro-
duced a hypergraph matching problem with deadlines to capture
applications in ridesharing. Their model and results are incom-
parable to ours. Lowalekar et al. [15] consider a model inspired
by ridesharing but with a stochastic arrival sequence. Finally,
[13, 14] consider related settings in combinatorial auctions that
correspond to online hypergraph matching with stochastic ar-
rivals.

For the offline hypergraph matching problem, Hazan et al. [9]
showed that unless P=NP, no /Polynomial time algorithm can find
a matching better than O( 10,% ) of the optimum matching. [4, 5]
give approximation algorithms for the problem. To the best of
our knowledge, the state-of-the-art result is a % approximation
due to Cygan [5].

Lastly, we want to mention the recent work of Borst et al.
[2] which appeared after this paper was first announced (but
before it was published). They consider the integral vertex-
arrival variant of the online hypergraph matching and give an
optimal algorithm in the case of k = 3 which turns out to have
a competitive ratio of (e — 1)/(e + 1) ~ 0.4621. In addition,
they give an algorithm which beats the greedy algorithm for
larger k under the assumption that the degree of online vertices
is bounded.

3. Integral Matchings

In the following, fix some k > 2. We will focus on the online
hypergraph matching problem in the edge arrival model. We
start with a result that is folklore in the literature on online
matching [18].

Theorem 1 (Folklore). There is a %—competitive algorithm for
the online hypergraph matching problem. This is the best possi-
ble competitive ratio for deterministic algorithms.

Proof. Consider the online algorithm that includes an arriving
edge e in the matching if it is disjoint with all previously included
edges. Let ey, ..., e, be the set of edges included in an offline
optimum solution and let 7, C I denote the set of offline vertices
that are covered by the edges chosen in the online algorithm. For
each edge e;, at least one of the resources that it intersects must



be included in I,. Thus, |I,] >
picks at least %t’ hyper edges.
To see that this is the best possible competitive ratio, consider
two arrival sequences. In the first sequence, we have a single
arrival. In the second sequence, we augment the first sequence
with k more arrivals such that the optimal offline matching has
size k but the first edge intersects every other edge. A determin-
istic algorithm with non-zero competitive ratio must match the
first arrival. 0

%f k and the online algorithm

In our first result, we show that even a randomized and pos-
sibly exponential time online algorithm cannot achieve a much
better competitive ratio for this problem. To show this, we will
use Yao’s minimax principle, as stated below.

Lemma 2 (Yao’s Principle). Let a be the best competitive ratio
of any randomized algorithm. Let 3 be the competitive ratio of
the best deterministic algorithm against some fixed distribution
of instances. Then a < 5.

Before we get to our main result, we will first give a slightly
weaker result that serves both as a warm up and as a gadget for
the main result.

Theorem 3. For even k, there does not exist a 4% competitive al-

gorithm for the k-uniform online hypergraph matching problem
for any € > Q.

Proof. Using Yao’s principle, we will construct a distribution of
instances with even k where OPT = § but the best deterministic
online algorithm can only achieve an expected matching size of
2.

For any given even value k, the overall (random) instance Gy
will consist of § “red” edges and % “blue” edges constructed
in % phases. In each phase, there will be one red and one blue
edge which look indistinguishable to any online algorithm. The
idea is that if the algorithm ever picks a blue edge, it will be
locked out of future edges, thus limiting the expected matching
size. See Figure 1 for an example of the construction. The
construction of the red and blue edge in each phase proceeds as
follows:

1. Let A be a set of vertices which intersects every previous
blue edge exactly once. Create a new edge e; which con-
sists of A and k — |A| many new vertices that have not been
in any edges yet. Let e; arrive in the instance.

2. Now let A’ be a second set of vertices which intersects
every previous blue edge and e, exactly once. Create a new
edge e, which consists of A’ and k —|A’| many new vertices.
Let e, arrive in the instance.

3. Randomly let one of {e;, e;} be red and the other blue with
equal probability.

Note that the sets A and A’ can always be found because each
edge contains k vertices and we have k/2 phases. The crucial
property of this construction is that each blue edge intersects all
future edges whereas each red edge is disjoint from all future
edges. In particular, the ]5‘ red edges form a maximum size
matching, i.e. OPT = %

Now consider some deterministic online algorithm A. Let
a; be the probability that A matches the red edge in phase i
and let 5; be the probability that A matches the blue edge in
phase i. Clearly, since the red and blue edges are determined
independently and uniformly at random, we must have a; = §3;.
Moreover, since at most one blue edge can be picked, we know
ay + -+ + agp < 1. Thus the expected size of the matching
generated by A is at most
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Figure 1: Shown is gadget G proving that a competitive ratio of % + € is
imposisble for k£ = 10. The numbers indicate in which phase each edge was
added. The lightly shaded areas represent the vertex sets Ay, ..., As which are
useful for the construction of Hy.

Theorem 4. If k is a power of two, then here does not exist a
% competitive algorithm for the online hypergraph matching

problem for any € > 0.

Proof. We will use induction to create a distribution over graphs
H, for powers of two k, with the following properties:

1. There are k red and k blue edges.

2. The edges appear in k phases, each of which consists of one
red and one blue edge where the color is chosen uniformly
and independently at random.

3. Every blue edge intersects all future edges.

4. Every red edge is disjoint from all future edges.

H; is trivial to construct. We will just have a single vertex
which is simultaneously in both a red and blue singleton edge.
Suppose that we can construct Hy,,.

Now in order to construct Hy, we first employ the %‘ phases of
Gy.. After this we can construct § disjoint sets Ay, ..., Ag2 of §
vertices such that each A; intersects all blue edges and none of
the red edges. See again Figure 1. Now, for the remaining k/2
phases, we recursively employ the distribution Hy, as follows.
In phase i + ’5‘, we extend the the two edges from phase i of Hy/»
by the set A; to form sets of size k. This gives us the two edges
of rank k for phase i + ’z‘

Finally, one may check that properties 1 — 4 are satisfied
by induction. Thus, we may conclude the proof similar to the
proof of Theorem 3: the optimum solution picks all £ red edges



whereas any deterministic online algorithm can only get an
expected value of 2 since at most one blue edge can be picked
and red and blue edges in each phase are indistinguishable for
the online algorithm. O

4. Fractional Matchings

Inspired by the Waterfilling (or Balancing) algorithm of [11,
17], designed for online bipartite matching and its variants, we
propose the following online algorithm for fractional hypergraph
matching in the edge arrival model.

Algorithm 1: HyPERGRAPH WATER-FILLING

1 Foreache € E, sety, :=0.
2 for each edge e which arrives do
3 L Increase y, continuously as long as

Yicelk In(k))™! < 1 where x; := 3 repiicy Vy-

The final value of variable y, in the algorithm is the fraction of
edge e that is included in the matching. At any moment, variable
x; in the algorithm captures the total fraction of edges incident
on resource i that have been included in the matching. In other
words, the value of x; is the fraction of i that has already been
“matched" by the algorithm. In order to “preserve" resources
for future edges, Algorithm 1 stops matching an edge when the
value of 3., (k In(k))~! reaches 1. For illustration, consider the
following scenarios at the arrival of edge e incident on resources
{1,2,--- ,k}.

(i) x; = 0 Vi € [k] on arrival of e. Then, the algorithm will match

in(In k) : :
msmanp [raction of the edge before stopping.

@ii) x;, = 0.5 Vi < vklIn(k) and x; = O otherwise. Then, for
sufficiently large values of k, the algorithm does not match any
fraction of edge e.

We would like to note that Algorithm 1 constructs a fractional
matching by augmenting the primal solution y, whereas the
online packing algorithm of [3] augments the dual solution. We
show that Algorithm 1 achieves the best possible competitive
ratio guarantee for large .

Theorem 5. Algorithm I is ll_n ‘(’g)-competitive for the fractional

online hypergraph matching problem.

Proof. Given a hypergraph G with resources / and set of hyper-
edges E, let ALG denote the total revenue of the online algorithm
and let OPT denote the value of the optimal fractional offline
solution. We use a primal-dual approach inspired by [3, 6] to
prove the result. Using weak duality, it suffices to find a feasible
solution of non-negative (r;);; to the following system of linear
inequalities,

Z}is ALG, )

i€l

Sz _1TEE e @)
"2 @) + In(In(k) :

ice

We set the dual variables using the following procedure. In
the beginning, all variables r; are set to 0. When Algorithm 1
is matching edge e in line 3 by some infinitesimal amount dz,
we increase r; by (kIn(k))“~'dt for all i € e. Note that by the
condition in line 3, we know that }};,c r; < ALG at the end of
the algorithm. It remains to show that (2) is satisfied. Fix an
arbitrary edge e € E and consider the following two cases.
Case 1: Let e € E be arbitrary and let x; be the final fill levels
of the vertices i € e. If x; = 1 for any i, we know that

1= 1/kInk) _ 1= 1/Ink)
In(k) + In(In(k)) = In(k) + In(In(k))’

1
n:f‘@mww4m:
0

so the this one vertex is already enough for (2).

Case 2: Otherwise, since all x; < 1 at the end of the algorithm,
we must have that P := Y., (kIn(k))*~! > 1. But in that case,
we can compute:

. i -1
ZMZ}:L(MMW dr

ice ice
_ P—1/In(k)
" In(k) + In(In(k))
which shows the claim and thus the theorem. ]

Next, we show that this bound is tight, i.e. that no online
algorithm can beat the performance of Algorithm 1 for large k.

Theorem 6. For any € > 0 and k large enough, there does

not exist any online algorithm which is lan(f,f) -competitive for the

online hypergraph matching problem.
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Figure 2: Shown is the upper-bounding construction with k = 10,/ = 3,6 = 0.5.

In each step we replace the blue edges with as many red edges of ﬁ times the

size as possible. Then we pick the [ red edges that the algorithm puts the most
weight on, make those the new blue edges and repeat until only singleton edges
are left.

Proof. Let A be some algorithm for the fractional online hy-
pergraph matching problem. We can assume w.l.0.g., that A is
deterministic. This is because if A is randomized, we may create
another algorithm A’ which simply fractionally allocates every
edge e with the expected value of A. Then A’ is a deterministic
algorithm that performs just as well as A.

Fix some large / € N and small 6 > 0. We will now construct
an instance in which some hyperedges may have less than k



vertices. The instance is created according to the following
procedure (see Figure 2).

1. Set m « k and let / disjoint edges of size k arrive. Let U
be the set of all vertices in these / edges.

2. If m = 0, stop. Otherwise, set m « {%J

3. Partition U into as many disjoint edges of size m as possible
and let these arrive.

4. Let ey, ...,e; be the [ of these edges that A matches the
most.

5. Update U < e; U --- U ¢; and go back to step 2.

Now let @ be the competitive ratio of A. Our first observation
is that steps 2-5 execute (1 — o(1))log,,s(k) many times as
k — co. Moreover, in each iteration, we cover / blue edges with

>(1+6)-1

[ Im
3]
red edges. The optimal solution can thus be increased by at
least 6/ — 1 by shifting weight from the blue edges to the red
edges. Overall, this yields OPT > (1 — o(1)) log,,s(k)(6] — 1)
and therefore ALG > a(1 - o(1)) log,, s(k)(6l = 1).

Let E* C E be the set of edges which are picked at various
points in step 4 and let y be the fractional matching constructed
by A. Then because these edges are always the / most covered
edges we know that

y(E*) > min ALG.

ALG >
m=1 Im
&)

1
1+6—7

Lastly, we know that that all edges in E* overlap in [ vertices,

namely the [ vertices that are contained in the final iteration
of the loop. This implies that y(E*) < I. Combining these
inequalities, we thus get

(1+(5—%)l

Y= U= o) log,,, (G- 1)
(1 +&I-DIn(1+6) 1
T (U=o(1)GI-1)  In(k)

Finally, observe that for small ¢, large / and large k, we get

@ < 1*£ ag claimed. O
n(k)

5. Edge-Weights

In this section, we consider the free disposal model for online
weighted matching [7], and generalize Algorithm 1 to online
fractional weighted hypergraph matching with free disposal. In
this model, we are allowed to drop previously matched edges
with no penalty (though of course we do not count such dropped
edges towards our objective function).

Theorem 7. For any € > 0 and k large enough, Algorithm 2

is IL(k) competitive for online fractional weighted hypergraph

matching problem with free disposal.

Algorithm 2: HYPERGRAPH WEIGHTED WATER-FILLING

1 Foreache e E, lety, :=0.
2 Foreachie€ V,let fi(f) = 3 icom,»: Ve forall £ > 0.
3 for each edge e which arrives do

4 | while T, [ (kIn())y " dr < w, do

5 foriEewzthxl—ldo

6 Let e; be a minimum weight edge with i € e;
and y- > 0.

7 Yer < Yer — ds

8 Ve ¢ Yo +ds

Proof. The proof will use a similar primal-dual approach as
Theorem 5 with non-negative dual variables r; for alli € V. Once
again, when Algorithm 2 is matching an edge e by some amount
ds, we increase the dual by (at most) an according amount. Note
that the total increase in the matching is we — X, we: Where
Wer 1= 0if x; < 1.

We increase each r; by fw " (kIn(k))/©~" drds. By definition

of f;, we know that f;(r) = 1 for all 7 < We: and thus

Z f (K In(k)F O dt

—Z f (k (k) O~1 df — Z f (k (k) O~" 4

ice ice

Swe—Zwe;

using the condition in line 4 of the algorithm. This implies that
at the end of the algorithm we have } .y r; < ALG.

Claim: For any e € E, we have
1 —1/1In(k)
Z ri2WwWe——————.
— In(k) + In(In(k))
Proof of Claim: Let f; be the step function defined in Algo-

rithm 2 at the end of the algorithm. Then the total r; collected
by each i € V satisfies

oo fi(h)
= f f (kIn(k))*" dsdr
0 0

_ fw Yiee(k In(k)) O~ — 1/ In(k)

) 1y

Now let P(f) := Y. (k In(k)) =1 then this means that
P(t) —1/1In(k)

Z f In(k) + In(In(k))

ve  P(f) — 1/ In(k)
fo In(k) + In(In(k))

B o Py dt = w,/ In(k)
" In(k) + In(In(k))




Finally, by the condition in line 4 of the algorithm and the fact
that f;(¢) only increases during the algorithm for all #, we know
that fowe P()dt > w, which establishes the claim and thus the
theorem. O

6. Conclusion

In this paper we have given a tight asymptotic bound for
the fractional k-uniform hypergraph matching problem and an
almost tight bound for the integral variant. This leaves room for
some interesting directions for future research:

A major open problem is to beat the % lower bound in the
integral setting. In fact, just recently Gamlath et al. [8] showed
that for k = 2, no algorithm beats %, even if the underlying graph
is bipartite. However, their construction in fact shows this result
for the fractional setting and where we know how to beat % for
large k. It thus remains open whether % + € is achievable for any
k.

In fact, for small k, one may also explicitly distinguish be-
tween edge arrival and vertex arrival models as mentioned in
Section 2 or even the fully-online arrival model of Huang et al.
[10]. To the best of our knowledge, the only result here is the
recent one by Borst et al. [2] who managed to get an optimal
algorithm for the k = 3 case under vertex arrivals.

Finally, we remark that even in the fractional setting, exactly
tight bounds are only known for k = 2 and finding a tight non-
asymptotic result remains open.
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