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Abstract

Variant calling is a fundamental task that involves identifying vari-

ants in an individual’s genome compared to the reference genome.

Knowing these variants is critical for assessing an individual’s risk

for diseases such as cancer and developing new treatments. Due

to the large size of human genome sequences, processing and an-

alyzing them requires significant compute and storage resources.

Cluster computing is an attractive solution for processing a large

workload of human genomes. In this paper, we present a scalable

tool for democratizing variant calling on human genome sequences

using testbeds that are available for academic research at no charge.

Our tool can (a) execute two types of variant calling pipelines in

a commodity cluster with CPUs and graphics processing units

(GPUs); (b) enable improved cluster utilization and faster execu-

tion via asynchronous computations, minimal synchronization, and

mutual exclusion when employing GPUs; and (c) execute variant

calling pipelines of multiple users concurrently. Using publicly

available human genome sequences, users can interactively expe-

rience the unique features of our tool, which has a low barrier to

entry for large-scale variant calling.
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1 Introduction

With technological advances in whole genome sequencing (WGS)

and lower sequencing cost, it is now feasible to employ WGS for

clinical practice and large-scale genomic studies [14, 28]. This year

the Sequence Read Archive (SRA) alone had 91 petabases of human

genome data [24] indicating a rapid increase in the use of WGS in

recent years. By analyzing an individual’s genome, medical profes-

sionals can determine his/her risk for complex diseases (e.g., cancer)

and develop effective treatment protocols.

Although the price of WGS has dropped over the years (e.g.,

$100 per genome [33]), the cost and efficiency of processing and

analyzing human genome sequences has continued to pose new

challenges [7]. This is because a whole genome sequence of an in-

dividual can consume gigabytes of storage space due to millions of

reads. These reads are short (overlapping) fragments of the deoxyri-

bonucleic acid (DNA) in the genome produced by a sequencer [18].

Variant calling is a fundamental task that involves identify-

ing variants in an individual’s genome compared to a reference

genome [23]. There are different types of variants such as single

nucleotide polymorphisms (SNPs), short insertions/deletions (in-

dels), and structural variants [16]. For a single DNA sample, the

pipeline involves several stages, namely, reading the large sequence

data files, aligning the reads against a reference genome, additional

pre-processing steps to mitigate sequencing errors, and executing

a variant caller to produce raw variants [21]. When tumor and

normal DNA samples are to be compared, the aligned reads for

normal and tumor samples are analyzed to identify variants [21].

In general, the pipelines are compute and I/O intensive in nature.
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There is continued interest in accelerating variant calling pipelines

by leveraging parallel/distributed computing techniques and hard-

ware accelerators. A few open source projects [20, 25, 26] have

employed big data frameworks (e.g., Apache Hadoop [38], Apache

Spark [42]) for variant calling on human genomes. Companies such

as Google, NVIDIA, Illumina, and Sentieon are developing faster

and more accurate solutions for human genome sequence analy-

sis [17, 27, 37, 41]. In essence, there continues to be keen interest

in accelerating human genome sequence analysis and reducing the

overall processing cost. The availability of academic/experimental

testbeds such as CloudLab [13] and FABRIC [4] provides a com-

pelling opportunity for researchers and educators to conduct large-

scale human genome analysis at no charge. To the best of our knowl-

edge, none has explored this opportunity for genome analysis.

Motivated by the aforementioned reasons, we present a scalable

tool that democratizes variant calling on human genome sequences. It

is designed to enable efficient genome data processing for biomedi-

cal informatics applications. Users can execute two standard variant

calling pipelines via our web-based tool at no charge. Our tool syn-

ergistically combines the heterogeneous resources on experimental

testbeds while hiding their intricacies and complexity of setting up

bioinformatics tools for users. Without loss of generality, our tool

uses CloudLab and FABRIC testbeds that enable cluster computing.

It supports concurrent requests from multiple users to execute the

pipelines on different set of genome sequences. To deal with con-

current requests, our tool creates a single workload of genomes for

the same variant calling pipeline to enable higher cluster utilization

and more efficient execution of the pipeline.

At the heart of our tool, are two scalable techniques that we

developed for accelerating variant calling pipelines using a com-

modity cluster on a large workload of genome sequences (i.e.,

AVAH [31, 32], AVAH★ [10]). AVAH’s novel design exploits asyn-

chronous computations for executing different pipeline stages and

has minimal synchronization leading to improved cluster utilization

and faster execution of variant calling pipelines. On the other hand,

AVAH★ builds atop AVAH and is designed to effectively utilize a

GPU-enabled cluster. It enables a pipeline stage to run on GPUs

and/or CPUs based on their availability. It has a mutual exclusion

scheme for correctly utilizing the GPUs in the cluster. AVAH and

AVAH★ enable good utilization of CPUs and GPUs in the clus-

ter [10, 32]. New cluster resources can be dynamically added to our

tool to scale with increasing number of users and their requests.

To the best of our knowledge, no similar tool exists today with

the aforementioned capabilities providing a low barrier to entry for

large-scale variant calling on human genomesśat no charge.

2 Background and Motivation

In this section, we present an overview of two standard variant

calling pipelines and motivation for our tool.

Accelerating Variant Calling Using Cluster Computing/Hardware Ac-

celerators. Early approaches used Apache Hadoop [1] and Apache

Spark [2, 9, 43] to accelerate only the alignment stage. Others uti-

lized field-programmable gate arrays (FPGAs) to accelerate align-

ment [3, 8]. Halvade [12] used MapReduce [11] to parallelize the

variant calling pipeline of GATK, which is a widely adopted soft-

ware for variant discovery. Later, GATK4 [20] was released that

used Apache Spark for multithreading and parallelization for accel-

erating the variant calling pipeline. Nothaft et. al. [25, 26] created

ADAM/Cannoli to handle large genomic datasets using Apache

Spark/ApacheHadoop and parallelized the alignment process/variant

calling by reusing existing tools. NVIDIA developed Parabricks to

accelerate GATK pipelines using GPUs [27]. Google developed

DeepVariant [41] that used deep learning for variant calling and

operated directly on aligned reads. Recently, Illumina developed

DRAGEN to accelerate the variant calling pipeline using FPGAs [37].

More recently, Sentieon developed highly optimized software-based

algorithms for variant calling pipelines using CPUs and also a vari-

ant caller based on machine learning [17]. Recently, FPGAs were

used to accelerate variant calling on viral genomes [40]. A more re-

cent approach used smart network interface cards to enable secure

variant calling on encrypted genome sequences/intermediate files

to mitigate data breaches [30].

Germline and Somatic Variant Calling Pipelines. We consider two

standard pipelines, namely, germline variant calling and somatic

variant calling [21] for DNA sequencing. Figure 1(a) shows an exam-

ple of a germline variant calling pipeline for a single DNA sample

using GATK4. It involves four stages, namely, (i) reading files in the

FASTQ format [39] containing raw unmapped reads and converting

to the BAM format [35] containing unaligned reads, (ii) aligning

reads with a reference genome [22] to produce mapped reads and

marking duplicates, (iii) sorting the aligned reads and applying base

quality score recalibration (BQSR) to correct sequencing errors, (iv)

invoking HaplotypeCaller [20] to produce raw germline variants

in the VCF format [36] (i.e., a text file).

Figure 1: (a) Germline variant calling (b) Somatic variant calling

Figure1(b) shows an example of a somatic variant calling pipeline

for tumor and normal samples. Tumor samples are expected to

contain variants that could have caused the tumor. The FASTQ files

of a tumor sample and normal sample are processed as before for

the first three stages. Mutect2 [6] is finally invoked to produce the

raw somatic variants.

Motivation. Prior work focused mainly on accelerating the variant

calling pipeline on a single gold-standard high coverage human

genome sequence [12, 20, 25, 27, 37, 41]. However, our work aims to

accelerate the variant calling pipeline on a large workload of human

genome sequences (e.g., provided by a hospital) using a commodity

cluster. By improving the utilization of cluster resources (i.e., CPUs

and GPUs) during the execution of the pipeline, we aim for faster ex-

ecution of the pipeline on the input workload [10, 32]. Furthermore,
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we aim to enable users to leverage the cluster computing resources

available on academic testbeds [4, 13]śat no chargeśrather than

paying a high price to commercial cloud providers.

3 Our Tool

In this section, we describe our tool and its key components for de-

mocratizing variant calling on human genomes. Our tool builds atop

our previous work designed to accelerate variant calling pipelines

using commodity clusters, namely, AVAH [32] and AVAH★ [10].

While AVAH is designed to leverage only the CPUs of a cluster,

AVAH★ is designed for a GPU-enabled cluster. Input genome se-

quences are read from the Hadoop Distributed File System (HDFS)

of a cluster, and the output VCF files are written to HDFS. Figure 2

shows the overall architecture of our tool and its key components.

Figure 2: Overall architecture of our tool

AVAH. To overcome the poor cluster utilization of ADAM/Cannoli

during variant calling [25], AVAHwas proposed for efficient variant

calling on a large workload of human genome sequences. AVAH

improved the cluster utilization via the concept of futures, which en-

ables non-blocking operations. It distributed the task of executing a

variant calling pipeline on input sequences across the cluster nodes.

It exploited task parallelism and data parallelism for different stages

in the pipeline. In AVAH, each stage of a variant calling pipeline

(on a sequence) is modeled as an atomic task. Tasks are executed

as asynchronous computations using futures. Tasks representing

the same pipeline stage managed by a Apache Spark executor (on a

worker node of the cluster) are executed in a sliding window man-

ner on small groups of sequences. This results in improved cluster

utilization. (Each task/stage on a sequence is executed in a data

parallel manner by re-using Spark-based APIs of ADAM/Cannoli or

GATK4.) AVAH uses chaining of Spark’s map operations on Spark’s

resilient distributed dataset (RDD) partitions (containing IDs of

genome sequences) with only a single collect call at the end of

the last stage of the pipeline introducing minimal synchronization.

It was 3X-4.7X faster than ADAM/Cannoli for processing 98 low

coverage human genome sequences using a 16-node cluster [32].

AVAH★. With availability of GPUs in today’s cluster computing en-

vironments, AVAH★ was proposed for further accelerating variant

calling using a GPU-enabled commodity cluster. AVAH★ builds atop

AVAH’s asynchronous computation model, map chaining, and min-

imal synchronization. However, it makes each asynchronous task

GPU-aware and has two salient features: First, it enables a pipeline

stage to execute either on a single cluster node’s GPUs/CPUs or

across multiple nodes using their CPUs. Second, it uses a mutual

exclusion strategy for executing a pipeline stage of a sequence

on the GPUs of a single node. As a result, the stages of other se-

quences in the same RDD partition can either wait for the GPUs

to become available or proceed to use CPUs. Without mutual ex-

clusion, pipeline stages would fail due to limited memory on the

GPUs. AVAH★ also achieved high utilization of the cluster CPUs

and GPUs. On a 8-node cluster (with a total of 8 GPUs), AVAH★ was

3.6X-5X faster than AVAH, which used only CPUs, for processing

the aforementioned sequences.

For germline variant calling, each stage for a DNA sample (shown

in Figure 1(a)) is modeled and executed by one asynchronous task

in AVAH/AVAH★. However, for somatic variant calling, each stage

for a tumor and its normal sample (shown in Figure 1(b)) is together

modeled and executed by one asynchronous task in AVAH/AVAH★.

Cluster Manager (CM). CM tracks the different clusters allocated

on FABRIC [4] and CloudLab [13] for executing variant calling. On

FABRIC, a cluster is comprised of virtual machines (VMs); however,

on CloudLab, a cluster has baremetal servers. A cluster may or may

not have any GPUs based on available resources. Note that the

availability of GPUs is higher on FABRIC compared to CloudLab.

New clusters can be added dynamically when required. Hence, our

tool can scale with increasing demand from users.

Pipeline Manager (PM). PM is responsible for launching the appro-

priate pipeline (i.e., germline, somatic) on a selected cluster. If the

user does not specify the cluster, PM selects an underutilized cluster

that has the least number of sequences queued for processing. PM

runs AVAH/AVAH★ continuously on each cluster. A set of genome

sequences from different users are batched and processed. After

completion of the current batch, the next batch is processed. This

is because AVAH/AVAH★ are designed to achieve high cluster uti-

lization on a workload of genome sequences rather than a single

sequence at a time.

Data Manager (DM). DM can retrieve sequences from cloud storage

and copy them to HDFS of a cluster. It can also download sequences

from SRA [24] and the European Nucleotide Archive [15]. Cloud

storage is also used to store the output VCF files of AVAH/AVAH★

so that a user can download his/her files, view them, and generate a

phylogenetic tree (PT) [29] to understand the relationship between

different sequences.

Cluster Usage Metrics Collection/Visualization. Prometheus1, an

open source monitoring system, is used to collect metrics related to

1 https://prometheus.io/
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CPU/GPU/memory usage, disk I/O, and network throughput. The

metrics are visualized using Grafana2. Hence, a user can contin-

uously observe the load on different clusters before choosing the

one for variant calling.

4 Demonstration Scenarios

Both AVAH and AVAH★ were implemented in Scala (2.12.8) using

Apache Spark (2.4.7) and Apache Hadoop (2.7.6). GATK4 (4.1.8.0)

was used for CPU-based implementation of the variant calling

pipelines. NVIDIA Parabricks (4.0.0) was used for the GPU-based

implementation of GATK4. The user interface (UI) was implemented

using Django (4.2.2), JavaScript, CSS, and HTML. Prometheus (2.47)

and Grafana (10.1) were used for real-time monitoring of the cluster

resources. For viewing the VCF files in the UI, IGV’s JavaScript

implementation [34] was used. For PT construction, we used Google

Drive as a shared cloud storage for input genome sequences and

VCF files produced by the variant calling pipelines.

The following four scenarios will be demonstrated using pub-

licly available de-identified human genome sequences. (Hence, data

security is not a major concern for the demo.)

Scenario 1. In this scenario, we will demonstrate how a user can exe-

cute variant calling pipelines using our tool. The user will first select

germline variant calling. After this, the user will select the input

genome sequences to process from the 1000 Genomes Project [19].

(A list of accession IDs of sequences can also be provided by the

user.) The user can then select a specific cluster after observing the

load of the different clusters and their hardware configurations. For

example, some clusters may have GPUs for faster execution. Finally,

the variant calling pipeline is submitted to the selected cluster. A

screenshot is shown in Figure 3(a). The UI is updated so that the

user can observe the stages that have completed for a sequence. The

user is notified via the UI once the output VCF files are available on

cloud storage. The VCF files can be downloaded or viewed using

IGV. Furthermore, a PT can be constructed on the VCF files. Some

partial screenshots are shown in Figure 3(b).

Scenario 2. In this scenario, we will demonstrate how our tool han-

dles concurrent requests from multiple users. Multiple requests will

be submitted concurrently to execute the same germline variant call-

ing pipeline (but on different sequences) on the same cluster. These

requests will be queued in the selected cluster. During the next

round of execution of AVAH (or AVAH★), the queued sequences

will be executed together as a batch as AVAH (or AVAH★) is de-

signed to maximize cluster utilization on a workload of sequences.

Each user will be notified as soon as the desired output VCF files

are available on cloud storage. Our goal is to reduce the total wait

time for the users while maximizing the usage of cluster resources.

Scenario 3. In this scenario, we will demonstrate our tool’s ability

to automatically select a cluster for the user. The user can select the

germline variant calling pipeline and genome sequences. Our tool

will observe the load on the different clusters (based on metrics

collected by Prometheus) and the number of sequences queued for

processing on each cluster. It will automatically select an appropri-

ate cluster for the user’s request to maximize the overall utilization

of the testbeds’ resources. This feature is useful when the user has

2 https://grafana.com/

no preference on the hardware configurations allowing our tool to

optimize the execution of concurrent requests.

(a) The UI for selecting input parameters to execute a pipeline

(b) The UI showing processing stages and the constructed PT

Figure 3: Screenshots of our tool

Scenario 4. In this scenario, we will demonstrate our tool’s ability

to perform somatic variant calling. The user can select from a

list of publicly available tumor/normal samples from the Texas

Cancer Research Biobank [5] and the chromosome of interest (e.g.,

Chromosome 1). After choosing a cluster, the selected samples will

be processed using AVAH/AVAH★ according to the pipeline shown

in Figure 1(b). The user will be notified via the UI once the output

VCF files are available on cloud storage.

5 Conclusion

We presented a tool for democratizing variant calling on human

genomes using commodity clusters in two experimental testbeds.

It provides a low barrier to entry for large-scale variant calling

on human genome sequence using testbeds available for academic

research at no charge. The project code is available at https://github.

com/MU-Data-Science/GAF.

Acknowledgments. This work was supported by the National Sci-
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