)]
Check for
Updates

A Scalable Tool for Democratizing Variant Calling on Human
Genomes Using Commodity Clusters

Khawar Shehzad
University of Missouri
Columbia, USA
khawar.shehzad@missouri.edu

Chase Webb
University of Missouri
Columbia, USA
c.webb@missouri.edu

Ajay Kumar
University of Missouri
Columbia, USA
ajay.kumar@missouri.edu

Polycarp Nalela
University of Missouri
Columbia, USA
polycarpnalela@missouri.edu

Matthew Schutz
University of Missouri
Columbia, USA
mjs2w6@missouri.edu

Manas Jyoti Das
Southern Illinois Univ. Edwardsville
Edwardsville, USA
madas@siue.edu

Praveen Rao
University of Missouri
Columbia, USA
praveen.rao@missouri.edu

Abstract

Variant calling is a fundamental task that involves identifying vari-
ants in an individual’s genome compared to the reference genome.
Knowing these variants is critical for assessing an individual’s risk
for diseases such as cancer and developing new treatments. Due
to the large size of human genome sequences, processing and an-
alyzing them requires significant compute and storage resources.
Cluster computing is an attractive solution for processing a large
workload of human genomes. In this paper, we present a scalable
tool for democratizing variant calling on human genome sequences
using testbeds that are available for academic research at no charge.
Our tool can (a) execute two types of variant calling pipelines in
a commodity cluster with CPUs and graphics processing units
(GPUs); (b) enable improved cluster utilization and faster execu-
tion via asynchronous computations, minimal synchronization, and
mutual exclusion when employing GPUs; and (c) execute variant
calling pipelines of multiple users concurrently. Using publicly
available human genome sequences, users can interactively expe-
rience the unique features of our tool, which has a low barrier to
entry for large-scale variant calling.

CCS Concepts
« Computing methodologies; « Applied computing;

Keywords

Variant calling, human genomes, commodity clusters

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °24, October 21-25, 2024, Boise, ID, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0436-9/24/10

https://doi.org/10.1145/3627673.3679221

5275

ACM Reference Format:

Khawar Shehzad, Ajay Kumar, Matthew Schutz, Chase Webb, Polycarp
Nalela, Manas Jyoti Das, and Praveen Rao. 2024. A Scalable Tool for Democ-
ratizing Variant Calling on Human Genomes Using Commodity Clusters.
In Proceedings of the 33rd ACM International Conference on Information and
Knowledge Management (CIKM °24), October 21-25, 2024, Boise, ID, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3627673.3679221

1 Introduction

With technological advances in whole genome sequencing (WGS)
and lower sequencing cost, it is now feasible to employ WGS for
clinical practice and large-scale genomic studies [14, 28]. This year
the Sequence Read Archive (SRA) alone had 91 petabases of human
genome data [24] indicating a rapid increase in the use of WGS in
recent years. By analyzing an individual’s genome, medical profes-
sionals can determine his/her risk for complex diseases (e.g., cancer)
and develop effective treatment protocols.

Although the price of WGS has dropped over the years (e.g.,
$100 per genome [33]), the cost and efficiency of processing and
analyzing human genome sequences has continued to pose new
challenges [7]. This is because a whole genome sequence of an in-
dividual can consume gigabytes of storage space due to millions of
reads. These reads are short (overlapping) fragments of the deoxyri-
bonucleic acid (DNA) in the genome produced by a sequencer [18].

Variant calling is a fundamental task that involves identify-
ing variants in an individual’s genome compared to a reference
genome [23]. There are different types of variants such as single
nucleotide polymorphisms (SNPs), short insertions/deletions (in-
dels), and structural variants [16]. For a single DNA sample, the
pipeline involves several stages, namely, reading the large sequence
data files, aligning the reads against a reference genome, additional
pre-processing steps to mitigate sequencing errors, and executing
a variant caller to produce raw variants [21]. When tumor and
normal DNA samples are to be compared, the aligned reads for
normal and tumor samples are analyzed to identify variants [21].
In general, the pipelines are compute and I/O intensive in nature.

CIKM 24, October 21-25, 2024, Boise, ID, USA

There is continued interest in accelerating variant calling pipelines
by leveraging parallel/distributed computing techniques and hard-
ware accelerators. A few open source projects [20, 25, 26] have
employed big data frameworks (e.g., Apache Hadoop [38], Apache
Spark [42]) for variant calling on human genomes. Companies such
as Google, NVIDIA, Illumina, and Sentieon are developing faster
and more accurate solutions for human genome sequence analy-
sis [17, 27, 37, 41]. In essence, there continues to be keen interest
in accelerating human genome sequence analysis and reducing the
overall processing cost. The availability of academic/experimental
testbeds such as CloudLab [13] and FABRIC [4] provides a com-
pelling opportunity for researchers and educators to conduct large-
scale human genome analysis at no charge. To the best of our knowl-
edge, none has explored this opportunity for genome analysis.

Motivated by the aforementioned reasons, we present a scalable
tool that democratizes variant calling on human genome sequences. It
is designed to enable efficient genome data processing for biomedi-
cal informatics applications. Users can execute two standard variant
calling pipelines via our web-based tool at no charge. Our tool syn-
ergistically combines the heterogeneous resources on experimental
testbeds while hiding their intricacies and complexity of setting up
bioinformatics tools for users. Without loss of generality, our tool
uses CloudLab and FABRIC testbeds that enable cluster computing.
It supports concurrent requests from multiple users to execute the
pipelines on different set of genome sequences. To deal with con-
current requests, our tool creates a single workload of genomes for
the same variant calling pipeline to enable higher cluster utilization
and more efficient execution of the pipeline.

At the heart of our tool, are two scalable techniques that we
developed for accelerating variant calling pipelines using a com-
modity cluster on a large workload of genome sequences (i.e.,
AVAH [31, 32], AVAH* [10]). AVAH’s novel design exploits asyn-
chronous computations for executing different pipeline stages and
has minimal synchronization leading to improved cluster utilization
and faster execution of variant calling pipelines. On the other hand,
AVAH* builds atop AVAH and is designed to effectively utilize a
GPU-enabled cluster. It enables a pipeline stage to run on GPUs
and/or CPUs based on their availability. It has a mutual exclusion
scheme for correctly utilizing the GPUs in the cluster. AVAH and
AVAH* enable good utilization of CPUs and GPUs in the clus-
ter [10, 32]. New cluster resources can be dynamically added to our
tool to scale with increasing number of users and their requests.

To the best of our knowledge, no similar tool exists today with
the aforementioned capabilities providing a low barrier to entry for
large-scale variant calling on human genomes—-at no charge.

2 Background and Motivation

In this section, we present an overview of two standard variant
calling pipelines and motivation for our tool.

Accelerating Variant Calling Using Cluster Computing/Hardware Ac-
celerators. Early approaches used Apache Hadoop [1] and Apache
Spark [2, 9, 43] to accelerate only the alignment stage. Others uti-
lized field-programmable gate arrays (FPGAs) to accelerate align-
ment [3, 8]. Halvade [12] used MapReduce [11] to parallelize the
variant calling pipeline of GATK, which is a widely adopted soft-
ware for variant discovery. Later, GATK4 [20] was released that

5276

Khawar Shehzad et al.

used Apache Spark for multithreading and parallelization for accel-
erating the variant calling pipeline. Nothaft et. al. [25, 26] created
ADAM/Cannoli to handle large genomic datasets using Apache
Spark/Apache Hadoop and parallelized the alignment process/variant
calling by reusing existing tools. NVIDIA developed Parabricks to
accelerate GATK pipelines using GPUs [27]. Google developed
DeepVariant [41] that used deep learning for variant calling and
operated directly on aligned reads. Recently, Illumina developed
DRAGEN to accelerate the variant calling pipeline using FPGAs [37].
More recently, Sentieon developed highly optimized software-based
algorithms for variant calling pipelines using CPUs and also a vari-
ant caller based on machine learning [17]. Recently, FPGAs were
used to accelerate variant calling on viral genomes [40]. A more re-
cent approach used smart network interface cards to enable secure
variant calling on encrypted genome sequences/intermediate files
to mitigate data breaches [30].

Germline and Somatic Variant Calling Pipelines. We consider two
standard pipelines, namely, germline variant calling and somatic
variant calling [21] for DNA sequencing. Figure 1(a) shows an exam-
ple of a germline variant calling pipeline for a single DNA sample
using GATKA4. It involves four stages, namely, (i) reading files in the
FASTQ format [39] containing raw unmapped reads and converting
to the BAM format [35] containing unaligned reads, (ii) aligning
reads with a reference genome [22] to produce mapped reads and
marking duplicates, (iii) sorting the aligned reads and applying base
quality score recalibration (BQSR) to correct sequencing errors, (iv)
invoking HaplotypeCaller [20] to produce raw germline variants
in the VCF format [36] (i.e., a text file).

Paired-end ~ Convert to

Alignment . —
FASTQ —> unaligned — using BWA, > S;gg’g > HanI(I:;type W%F
files BAM mark duplicates aller
(a)
Tumor Convert to Alignment
E:E%EHL unaligned —> using BWA, —> SBOS;E \
files BAM mark duplicates \ m
P —
Normal c T Al t / Mutect2 "~ Ve
aired-end onvert to ignmen 5 /
PASTG > unaligned —» usingBWA, > Sotd /
files BAM mark duplicates
(b)

Figure 1: (a) Germline variant calling (b) Somatic variant calling

Figure1(b) shows an example of a somatic variant calling pipeline
for tumor and normal samples. Tumor samples are expected to
contain variants that could have caused the tumor. The FASTQ files
of a tumor sample and normal sample are processed as before for
the first three stages. Mutect2 [6] is finally invoked to produce the
raw somatic variants.

Motivation. Prior work focused mainly on accelerating the variant
calling pipeline on a single gold-standard high coverage human
genome sequence [12, 20, 25, 27, 37, 41]. However, our work aims to
accelerate the variant calling pipeline on a large workload of human
genome sequences (e.g., provided by a hospital) using a commodity
cluster. By improving the utilization of cluster resources (i.e., CPUs
and GPUs) during the execution of the pipeline, we aim for faster ex-
ecution of the pipeline on the input workload [10, 32]. Furthermore,

A Scalable Tool for Democratizing Variant Calling on Human Genomes Using Commodity Clusters

we aim to enable users to leverage the cluster computing resources
available on academic testbeds [4, 13]-at no charge-rather than
paying a high price to commercial cloud providers.

3 Our Tool

In this section, we describe our tool and its key components for de-
mocratizing variant calling on human genomes. Our tool builds atop
our previous work designed to accelerate variant calling pipelines
using commodity clusters, namely, AVAH [32] and AVAH* [10].
While AVAH is designed to leverage only the CPUs of a cluster,
AVAHY* is designed for a GPU-enabled cluster. Input genome se-
quences are read from the Hadoop Distributed File System (HDFS)
of a cluster, and the output VCF files are written to HDFS. Figure 2
shows the overall architecture of our tool and its key components.

g7 End-users (e.g., biomedical data scientists) anmm
- UM 20 B = a
7 VCF VCF
« —
A,
Cluster Pipeline Data User Interface
Manager Manager Manager Result Collector
Variant Variant
AVAH/ 5 AVAH/ ;
2 || avanx [P(.:a':!"g 2 || avanr [P(?a':!“g
2 ipelines 2 ipelines
Q Q
g | Apache Spark | g | Apache Spark |
o o
| HDFS/YARN | | HDFS/YARN |
I Cluster of Virtual Machines | | Cluster of Bare Metal Servers |
Cloud :
FABRIC Storage CloudLab
] Genome VCF

Sequences VCF Files

Figure 2: Overall architecture of our tool

AVAH. To overcome the poor cluster utilization of ADAM/Cannoli
during variant calling [25], AVAH was proposed for efficient variant
calling on a large workload of human genome sequences. AVAH
improved the cluster utilization via the concept of futures, which en-
ables non-blocking operations. It distributed the task of executing a
variant calling pipeline on input sequences across the cluster nodes.
It exploited task parallelism and data parallelism for different stages
in the pipeline. In AVAH, each stage of a variant calling pipeline
(on a sequence) is modeled as an atomic task. Tasks are executed
as asynchronous computations using futures. Tasks representing
the same pipeline stage managed by a Apache Spark executor (on a
worker node of the cluster) are executed in a sliding window man-
ner on small groups of sequences. This results in improved cluster
utilization. (Each task/stage on a sequence is executed in a data
parallel manner by re-using Spark-based APIs of ADAM/Cannoli or
GATK4.) AVAH uses chaining of Spark’s map operations on Spark’s
resilient distributed dataset (RDD) partitions (containing IDs of

5277

CIKM °24, October 21-25, 2024, Boise, ID, USA

genome sequences) with only a single collect call at the end of
the last stage of the pipeline introducing minimal synchronization.
It was 3X-4.7X faster than ADAM/Cannoli for processing 98 low
coverage human genome sequences using a 16-node cluster [32].

AVAH*. With availability of GPUs in today’s cluster computing en-
vironments, AVAH* was proposed for further accelerating variant
calling using a GPU-enabled commodity cluster. AVAH* builds atop
AVAH’s asynchronous computation model, map chaining, and min-
imal synchronization. However, it makes each asynchronous task
GPU-aware and has two salient features: First, it enables a pipeline
stage to execute either on a single cluster node’s GPUs/CPUs or
across multiple nodes using their CPUs. Second, it uses a mutual
exclusion strategy for executing a pipeline stage of a sequence
on the GPUs of a single node. As a result, the stages of other se-
quences in the same RDD partition can either wait for the GPUs
to become available or proceed to use CPUs. Without mutual ex-
clusion, pipeline stages would fail due to limited memory on the
GPUs. AVAH* also achieved high utilization of the cluster CPUs
and GPUs. On a 8-node cluster (with a total of 8 GPUs), AVAH* was
3.6X-5X faster than AVAH, which used only CPUs, for processing
the aforementioned sequences.

For germline variant calling, each stage for a DNA sample (shown
in Figure 1(a)) is modeled and executed by one asynchronous task
in AVAH/AVAH*. However, for somatic variant calling, each stage
for a tumor and its normal sample (shown in Figure 1(b)) is together
modeled and executed by one asynchronous task in AVAH/AVAH*.

Cluster Manager (CM). CM tracks the different clusters allocated
on FABRIC [4] and CloudLab [13] for executing variant calling. On
FABRIC, a cluster is comprised of virtual machines (VMs); however,
on CloudLab, a cluster has baremetal servers. A cluster may or may
not have any GPUs based on available resources. Note that the
availability of GPUs is higher on FABRIC compared to CloudLab.
New clusters can be added dynamically when required. Hence, our
tool can scale with increasing demand from users.

Pipeline Manager (PM). PM is responsible for launching the appro-
priate pipeline (i.e., germline, somatic) on a selected cluster. If the
user does not specify the cluster, PM selects an underutilized cluster
that has the least number of sequences queued for processing. PM
runs AVAH/AVAH* continuously on each cluster. A set of genome
sequences from different users are batched and processed. After
completion of the current batch, the next batch is processed. This
is because AVAH/AVAH™ are designed to achieve high cluster uti-
lization on a workload of genome sequences rather than a single
sequence at a time.

Data Manager (DM). DM can retrieve sequences from cloud storage
and copy them to HDFS of a cluster. It can also download sequences
from SRA [24] and the European Nucleotide Archive [15]. Cloud
storage is also used to store the output VCF files of AVAH/AVAH*
so that a user can download his/her files, view them, and generate a
phylogenetic tree (PT) [29] to understand the relationship between
different sequences.

Cluster Usage Metrics Collection/Visualization. Prometheus!, an
open source monitoring system, is used to collect metrics related to

! https://prometheus.io/

CIKM 24, October 21-25, 2024, Boise, ID, USA

CPU/GPU/memory usage, disk I/O, and network throughput. The
metrics are visualized using Grafana®. Hence, a user can contin-
uously observe the load on different clusters before choosing the
one for variant calling.

4 Demonstration Scenarios

Both AVAH and AVAH* were implemented in Scala (2.12.8) using
Apache Spark (2.4.7) and Apache Hadoop (2.7.6). GATK4 (4.1.8.0)
was used for CPU-based implementation of the variant calling
pipelines. NVIDIA Parabricks (4.0.0) was used for the GPU-based
implementation of GATK4. The user interface (UI) was implemented
using Django (4.2.2), JavaScript, CSS, and HTML. Prometheus (2.47)
and Grafana (10.1) were used for real-time monitoring of the cluster
resources. For viewing the VCF files in the UL IGV’s JavaScript
implementation [34] was used. For PT construction, we used Google
Drive as a shared cloud storage for input genome sequences and
VCF files produced by the variant calling pipelines.

The following four scenarios will be demonstrated using pub-
licly available de-identified human genome sequences. (Hence, data
security is not a major concern for the demo.)

Scenario 1. In this scenario, we will demonstrate how a user can exe-
cute variant calling pipelines using our tool. The user will first select
germline variant calling. After this, the user will select the input
genome sequences to process from the 1000 Genomes Project [19].
(A list of accession IDs of sequences can also be provided by the
user.) The user can then select a specific cluster after observing the
load of the different clusters and their hardware configurations. For
example, some clusters may have GPUs for faster execution. Finally,
the variant calling pipeline is submitted to the selected cluster. A
screenshot is shown in Figure 3(a). The Ul is updated so that the
user can observe the stages that have completed for a sequence. The
user is notified via the UI once the output VCF files are available on
cloud storage. The VCF files can be downloaded or viewed using
IGV. Furthermore, a PT can be constructed on the VCF files. Some
partial screenshots are shown in Figure 3(b).

Scenario 2. In this scenario, we will demonstrate how our tool han-
dles concurrent requests from multiple users. Multiple requests will
be submitted concurrently to execute the same germline variant call-
ing pipeline (but on different sequences) on the same cluster. These
requests will be queued in the selected cluster. During the next
round of execution of AVAH (or AVAHY*), the queued sequences
will be executed together as a batch as AVAH (or AVAHY) is de-
signed to maximize cluster utilization on a workload of sequences.
Each user will be notified as soon as the desired output VCF files
are available on cloud storage. Our goal is to reduce the total wait
time for the users while maximizing the usage of cluster resources.

Scenario 3. In this scenario, we will demonstrate our tool’s ability
to automatically select a cluster for the user. The user can select the
germline variant calling pipeline and genome sequences. Our tool
will observe the load on the different clusters (based on metrics
collected by Prometheus) and the number of sequences queued for
processing on each cluster. It will automatically select an appropri-
ate cluster for the user’s request to maximize the overall utilization
of the testbeds’ resources. This feature is useful when the user has

2 https://grafana.com/

5278

Khawar Shehzad et al.

no preference on the hardware configurations allowing our tool to
optimize the execution of concurrent requests.

[~

Democratizing Variant Calling on
Human Genomes

Users can leverage NSF-funded testbeds at no charge
for biomedical research and education

¥ Cleudab -
FABRIC

2%
£

3. Choose Cluster

1. Choose Pipeline® 2. Select Genome(s)

ERRO16314
ERRO16317

Germline variant calling

Somatic variant calling ERR016338 ERRO16344

ERRO16350 ‘

ERRO18107 | ERRO18198
ERRO18204

ERRO18395 | ERRO18416
ERRO18423

ERRO18429 [ERRO18435
ERRO18436

ERRO18442 | ERRO18448
ERRO18454

View Resource Usage ‘
Auto Select

Next

(a) The UI for selecting input parameters to execute a pipeline

4. Processing Genome. Cluster (1)
ERRO1631769

2 ERROL63178

ERRO163168

4 €RR01631669
[enot63268

ERRO163388

€RR0163208
s 1 £RR01632069
ERRO163278
10 ERRO1634469
ERRO1631469

000000 0.00025 000050 000075 000100 000125 0.00150 0.00175
branch length

(b) The UI showing processing stages and the constructed PT

Figure 3: Screenshots of our tool

Scenario 4. In this scenario, we will demonstrate our tool’s ability
to perform somatic variant calling. The user can select from a
list of publicly available tumor/normal samples from the Texas
Cancer Research Biobank [5] and the chromosome of interest (e.g.,
Chromosome 1). After choosing a cluster, the selected samples will
be processed using AVAH/AVAH* according to the pipeline shown
in Figure 1(b). The user will be notified via the UI once the output
VCF files are available on cloud storage.

5 Conclusion

We presented a tool for democratizing variant calling on human
genomes using commodity clusters in two experimental testbeds.
It provides a low barrier to entry for large-scale variant calling
on human genome sequence using testbeds available for academic
research at no charge. The project code is available at https://github.
com/MU-Data-Science/GAF.

Acknowledgments. This work was supported by the National Sci-
ence Foundation under Grant Nos. 2201583 and 2034247.

A Scalable Tool for Democratizing Variant Calling on Human Genomes Using Commodity Clusters CIKM °24, October 21-25, 2024, Boise, ID, USA

References [20] Broad Institute. 2023. GATK4. https://github.com/broadinstitute/gatk.

[1] José M Abuin, Juan C Pichel, Tomés F Pena, and Jorge Amigo. 2015. BigBWA: Ap- [21] Daniel C. Koboldt. 2020. Best Practices for Variant Calling in Clinical Sequencing.
proaching the Burrows-Wheeler Aligner to Big Data Technologies. Bioinformatics Genom? M"’d’-Ci"‘f 12,1 (2020), 91.)
31, 24 (2015), 4003-4005. [22] Heng Li. 2013. Aligning Sequence Reads, Clone Sequences and Assembly Contigs

[2] José M Abuin, Juan C Pichel, Tomés F Pena, and Jorge Amigo. 2016. SparkBWA: With BWA-MEM. arXiv preprint “erV:1_303~3997 (March 2013).)
Speeding up the Alignment of High-Throughput DNA Sequencing Data. PLoS [23] NCBI. 2013. Genome Reference Consortium Human Build 38. https://www.ncbi.
ONE 11, 5 (2016). nlm.nih.gov/datasets/genome.

[3] Nauman Ahmed, Vlad-Mihai Sima, Ernst Houtgast, Koen Bertels, and Zaid Al-Ars. [24] NCBI. 2024. Sequence Read Archive. https://wwwnc‘bl.nlm.mh.gov/sr.a/. '
2015. Heterogeneous Hardware/Software Acceleration of the BWA-MEM DNA [25] Frank A Nothaft.A2017. tScalable Systems and Algorithms for Genomic Variant
Alignment Algorithm. In 2015 IEEE/ACM International Conference on Computer- Analysis. Ph- D. Dissertation. UQ Ber_keley, ProQuest. .

Aided Design (ICCAD). IEEE, 240-246. [26] Frank Austin Nothaft, Matt Massie, Timothy Danford, Zhao Zhang, Uri Laserson,

[4] Ilya Baldin, Anita Nikolich, James Griffioen, Indermohan Inder S. Monga, Kuang- Carl Yek51glan, Jey Kottala'lm, Arun Ahuja, Jeff Hammerba'cher, Michael D. Lin-
Ching Wang, Tom Lehman, and Paul Ruth. 2019. FABRIC: A National-Scale derman, Michael J. Franklin, Anthony D. Joseph, and David A. Patterson. 2015.

Programmable Experimental Network Infrastructure. IEEE Internet Computing ?;t};g];?;gc]j?/]a;?éjx\l/ftgglg € ?cience [i/Sintg Scal[iblet Alxm)lyzigcls SGystems In Proc. of
_ e onference (Victoria, Australia
23, 6 (2019), 38-47. [27] Kyle A. O’Connell, Zelaikha B. YosuEzal Ross A. Campbell, Collin J. Lobb, Haley T.

Engelken, Laura M. Gorrell, Thad B. Carlson, Josh J. Catana, Dina Mikdadi,

Vivien R. Bonazzi, and Juergen A. Klenk. 2023. Accelerating Genomic Workflows

Using NVIDIA Parabricks. BMC Bioinformatics 24 (2023).

All of Us Research Program Investigators. 2019. The “All of Us" Research Program.

New England Journal of Medicine 381, 7 (2019), 668-676.

Edgardo Ortiz. 2019. vef2phylip v2.0: Convert a VCF Ma-

trix Into Several Matrix Formats for Phylogenetic Analysis.

https://github.com/edgardomortiz/vcf2phylip.

Praveen Rao and Khawar Shehzad. 2024. A Technique for Secure Variant Call-

ing on Human Genome Sequences Using SmartNICs. In Proc. of the 17th IEEE

International Conference on Cloud Computing (CLOUD 2024). 1-8.

Praveen Rao and Arun Zachariah. 2022. Enabling Large-Scale Human Genome

Sequence Analysis on CloudLab. In IEEE INFOCOM 2022 - IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS). 1-2.

Praveen Rao, Arun Zachariah, Deepthi Rao, Peter Tonellato, Wesley Warren, and

Eduardo Simoes. 2021. Accelerating Variant Calling on Human Genomes Using a

Commodity Cluster. In Proc. of 30th ACM International Conference on Information

and Knowledge Management (CIKM). 3388-3392.

Antonio Regalado. 2020. China’s BGI Says It Can Sequence a Genome for Just

$100. MIT Technology Review, February 26 (2020), 2020.

James T Robinson, Helga Thorvaldsdottir, Douglass Turner, and Jill P Mesirov.

2022. igv.js: An Embeddable JavaScript Implementation of the Integrative Ge-

nomics Viewer (IGV). Bioinformatics 39, 1 (12 2022), btac830.

Samtools. 2021. Sequence Alignment/Map Format Specification.

https://samtools.github.io/hts-specs/SAMv1.pdf.

Samtools. 2021. The Variant Call Format (VCF) Version 4.2 Specification. https:

//samtools.github.io/hts-specs/VCFv4.2.pdf.

[37] Konrad Scheffler, Severine Catreux, Taylor O’Connell, Heejoon Jo, Varun Jain,
Theo Heyns, Jeffrey Yuan, Lisa Murray, James Han, and Rami Mehio. 2023. So-
matic Small-Variant Calling Methods in Illumina DRAGEN™ Secondary Analysis.

[5] Lauren B Becnel, Stacey Pereira, Jennifer A Drummond, Marie-Claude Gingras,
Kyle R Covington, Christie L Kovar, Harsha Vardhan Doddapaneni, Jianhong
Hu, Donna Muzny, Amy L McGuire, et al. 2016. An Open Access Pilot freely
Sharing Cancer Genomic Data From Participants in Texas. Scientific Data 3, 1
(2016), 1-10.

[6] David Benjamin, Takuto Sato, Kristian Cibulskis, Gad Getz, Chip Stewart, and
Lee Lichtenstein. 2019. Calling Somatic SNVs and Indels with Mutect2. BioRxiv
(2019), 861054.

[7] Bonnie Berger and Yun William Yu. 2023. Navigating Bottlenecks and Trade-offs
in Genomic Data Analysis. Nature Reviews Genetics 24, 4 (2023), 235-250.

[8] Yu-Ting Chen, Jason Cong, Zhenman Fang, Jie Lei, and Peng Wei. 2016. When
Apache Spark Meets FPGAs: A Case Study for Next-Generation DNA Sequenc-
ing Acceleration. In Proc. of the 8th USENIX Conference on Hot Topics in Cloud
Computing (Denver, CO). 64-70.

[9] Jason Cong, Jie Lei, Sen Li, Myron Peto, P. Spellman, Peng Wei, and Peipei Zhou.
2015. CS-BWAMEM: A Fast and Scalable Read Aligner at the Cloud Scale for
Whole Genome Sequencing. In High Throughput Sequencing Algorithms and
Applications (HITSEQ).

[10] Manas Das, Khawar Shehzad, and Praveen Rao. 2023. Efficient Variant Calling on
Human Genome Sequences Using a GPU-Enabled Commodity Cluster. In Proc. of
32nd ACM International Conference on Information and Knowledge Management
(CIKM). 3843-3848.

[11] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing

on Large Clusters. In Proc. of the 6th OSDI Conference. 137-150.

D. Decap, J. Reumers, C. Herzeel, P. Costanza, and J. Fostier. 2015. Halvade:

Scalable Sequence Analysis with MapReduce. Bioinformatics 31, 15 (2015), 2482—

2488.

[13] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The bioRxiv 2023.03.23.534011 (2023)

Design and Operation of CloudLab. In 2019 USENIX Annual Technical Conference [38] Tom White. .20(')9:Hadoop: The beﬁnitive Guide (1st ed.). O'Reilly Media, Inc.

(Renton, WA). 1-14. [Wikipedi e .
. . . ikipedia. 2000. FASTQ Format. https://en.wikipedia.org/wiki/FASTQ_format.
(14] COVID Human Genetic Effort. 2020. The COVID Human Genetic Effort: Our [Tiancheng Xu, Scott Rixner, and Alan L. Cox. 2023. An FPGA Accelerator for

Mission. https://www.covidhge.com/. . . .
[15] ENA. 2024. European Nucleotide Archive. https://www.ebi.ac.uk/ena. é};;:)r:lse(l\\//gr;a;otzg)a lililzgo ACM Transactions on Reconfigurable Technology and
[16] Ensembl. 2021. Variant Classification. https://m.ensembl.org/info/genome/ Taedong Yun, Helen Li, Pi-Chuan Chang, Michael F Lin, Andrew Carroll, and

‘]])a(::latjlgr;‘/:::;lCRtle(:lrll(/:l;ZS;ﬁg::;o'}:gméhen Zhipan Li, Jinnan Hu, and Rafacl Cory Y McLean. 2021. Accurate, Scalable Cohort Variant Calls Using DeepVariant
Aldana. 2022. DNAscope: High Accuracy Small Variant Calling Using Machine and QLnequ. Bioinformatics 36, 24 (202.1)’ 5582_5589'4
L N bioRuciv 2022.05.20.492556 (2022 [42] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
carnmg. DIofxty o () . . . Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proc. of the 2nd
[18] Sara Goodwin, John D McPherson, and W Richard McCombie. 2016. Coming of USENIX Conference on Hot Topics in Cloud Computing, Boston
Age: Ten Years of Next-Generation Sequencing Technologies. Nature Reviews Linggqi Zhang, Cheng Liu, and Shoubin Dong, 2019. PipeMEM: A Framework to

Genetics 17, 6 (2016), 333-351. _ . .
IGSR. 2015. 1000 Genomes Phase 3 Release. https://www.internationalgenome. Speed Up BWA-MEM in Spark with Low Overhead. Genes 10, 11 (2019).

org/data-portal/data-collection/phase-3.

[28

[29

[30

[31

@
&,

[33

[34

[35

[12

[36

PN
A

'S
=

[17

T~
&

[19

5279

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Our Tool
	4 Demonstration Scenarios
	5 Conclusion
	References

