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Abstract4We investigated the computational capabilities of 

FABRIC, a nationwide research infrastructure with nearly 40 

sites, for scaling neuroscience simulations. From the hardware 

standpoint, single-site characterization showed that FABRIC is a 

promising alternative to conventional neuroscience setups, 

particularly due to the availability of powerful graphics processing 

units (GPUs). While multi-site simulations are affected by network 

latency, it becomes less critical for larger networks. From the 

software perspective, we found that in the popular CoreNEURON 

library, cell distribution strategy (for parallel execution) does not 

affect the simulation time for biologically realistic networks, while 

other cases can be addressed with a minimum k-cut graph 

partitioning algorithm. Overall, scalability experiments revealed 

that FABRIC can be used to simulate networks of up to twenty-

five thousand cells, with the limiting issue being GPU memory.  

Keywords4FABRIC, GPUs, neuroscience, networks, 

simulation, scalability 

 

I. INTRODUCTION 

 Advancements in neuroscience research are progressively 
more dependent on hardware integration: while previously a 
single CPU-based desktop machine was sufficient for 
simulating a simplified thousand-cell model, modern realistic 
biophysical networks with millions of cells may, for various 
reasons, benefit from usage of a distributed computing 
environment. For instance, the need to mine rapidly growing 
neural databases necessitates distribution of software efficiently 
across compute units to increase throughput. Moreover, there is 
a need for advanced cyberinfrastructure (CI) to permit diverse 
researchers (e.g., biology, medicine, computer science, 
engineering) spread across geographical sites to collaborate 
effectively on large-scale models of brain regions in real time. 

 To address these challenges, we investigated the 
computation and communication capabilities of FABRIC [1], a 
nationwide research infrastructure and testbed for advancing 
science applications focusing on neuroscience network 
simulations. FABRIC is composed of nearly 40 sites spread 
across USA and Europe. We considered two aspects relevant for 
neuroscience research: network size scalability (the largest size 
of a network possible to simulate with the given constraints on 
a single-site) and simulation time efficiency (ways to increase 

the number of simulations per unit time). Our ultimate goal is to 
use these findings to construct end-to-end workflows for 
interactive collaboration, including allowing users to modify 
simulations in real time.  

 We first compared a single FABRIC site with the typical 
desktop and server setups conventionally used in neuroscience 
simulations. We then quantified simulation-specific overheads 
due to physical network latencies between sites. Analyzing the 
software side, we found that if the compute-optimized 
CoreNEURON engine [2] is used as a simulator, the distribution 
strategy for parallel execution (e.g., randomly assigning cells to 
GPUs versus based on the underlying biological network 
structure) does not matter for biologically realistic networks. 
Addressing other cases, we tested a graph partitioning 
algorithm, which enables faster execution of the simulation 
compared to random distribution of cells across the computing 
nodes. Finally, we release our code and comprehensive 
instructions on GitHub (https://github.com/raopr/neuroscience-
on-FABRIC) to enable others to set up a FABRIC-specific 
GPU-based pipeline for efficient biophysical simulations using 
the CoreNEURON library. 

 

II. RELATED WORK 

High-performance computing (HPC) resources are 

traditionally used for computational neuroscience workloads. 

The Neuroscience Gateway (NSG) [3] is an exemplar for 

engaging computational neuroscientists to leverage HPC 

resources (using XSEDE/ACCESS [4]) with a low barrier to 

entry. In fact, NSG continues to remain the leading consumer 

of ACCESS resources 3 consuming more than 40% more than 

the next user. However, the technology landscape is constantly 

evolving, creating new opportunities for innovation and 

training. The growing popularity of cloud computing for HPC 

applications [5], [6], [7] demands new research workflows that 

integrate neuroscience with advanced CI beyond traditional 

HPC environments. While past neuroscience development 

efforts have targeted the use of HPC through middleware the CI 

adoption was poor. The heterogeneity of hardware, high-speed 

networking, and the ability to customize one9s computing 
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services/workflows [8], the barrier to entry was high. Hence,  

environment in advanced CI resources demands rethinking how 

end-to-end neuroscience workflows can be seamlessly 

integrated with these resources.  

Scaling neural network simulations has been an ongoing 

challenge in the neuroscience community. Migliore et al. [9] 

investigated the scaling of NEURON network simulations 

using Message Passing Interface (MPI) and multiprocessor 

systems such as a Beowulf cluster and a supercomputer. They 

observed that spike communication overhead was less of a 

bottleneck compared to cache memory effects. As the number 

of processors was increased, the problem size became small 

enough that a supercomputer achieved better speedup. Later 

Hines et al. [10] showed how models implemented in 

NEURON can be parallelized using MPI for executing on local 

resources (e.g., a single computer, a cluster of computers 

connected by Ethernet, a multiprocessor computer) as well as 

supercomputers.   

Recent efforts have explored the use of GPUs for 

accelerating neuronal biophysical simulations (e.g., Arbor [11], 

CoreNEURON [2]). They focused on simulating large scale 

neuronal networks with multiple compartments. There is 

growing interest in scaling neuroscience computations beyond 

Figure 1. Characterization of FABRIC capabilities for neuroscience simulations | Single-site hardware characterization: A1. Biologically 

realistic PING-network with 2 assemblies. A2. Comparison of a single FABRIC site performance (solid lines) with typical desktop and server 

setups (dashed lines) for a PING-Assembly network. Crosses indicate the maximum size of network which was possible to simulate. Multi-site 

hardware characterization: B1.N-Pairs network with 10 assemblies. B2. Characterization of simulation time overhead due to natural delay 

between sites. C. Simulation-specific estimate of natural delay. Software characterization: D1. N-K-Cliques network with 4 cliques of 5 cells. 

D2. Characterization of simulation time overhead due to increased network connectivity. E. Comparison of random and by-assembly distribution 

based on (extreme) probability of synaptic connections within an assembly (a PING network with 2 assemblies, 1250 cells each).  
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traditional HPC environments, including using distributed 

computing. 

III. METHODS 

A. FABRIC 

Created in 2019, FABRIC is a nationwide research testbed 
with high speed optical links interconnect 30 geographically 
distributed sites on FABRIC via different Layer 2 and Layer 
networking service. FABRIC has Internet2 connectivity to 
public clouds such as Amazon Web Services (AWS) and 
Microsoft Azure. A FABRIC node, which contains a rack of 
compute, storage, and networking devices, is equipped with 
cutting-edge processors, large amounts of RAM, non-volatile 
memory express (NVMe) drives, GPUs, field-programmable 
gate arrays (FPGAs), and 100/200 Gbps SmartNICs. 
Experimenters on FABRIC can choose virtual machine (VM) or 
container configurations for provisioning resources. 

B. NEURON and CoreNEURON 

NEURON is a simulator for conductance-based single cell 

and network models developed by Duke, Yale, and the Blue 

Brain Project. The simulator provides API for defining the 

cell9s morphology and biophysical properties as well as 

synaptic models for inter-cellular connectivity, which are 

available both in its own HOC scripting language and Python. 

CoreNEURON, an extension of NEURON, targets 

computational efficiency and optimized memory usage. It also 

allows simulations to be run on GPU architectures [2]. Different 

from NEURON, which can be installed via the pip package 

installer, CoreNEURON requires manual compilation for 

specific hardware. 

CoreNEURON supports MPI-based CPU and GPU 

parallelization by having the user specify the number of 

processes to spawn and manually assign each cell to its process. 

GPU support is enabled via an on/off switch, and our 

preliminary experiments revealed that by default all available 

GPU units are used when the switch is on. Thus, process 

assignment to GPU units is controlled externally by modifying 

the list of units visible to the process. 

Additionally, we found that synaptic communication 

between cells assigned to different processes (i.e., exchange of 

spike event information) during the simulation time is 

performed internally via memory-efficient connections called 

InputPresyns which do not have to act as threshold detectors 

[2]. Since these connections are managed by the simulator, their 

existence leads to non-intuitive results when comparing 

different distribution strategies for cells to enable 

parallelization. 

C. Cells and networks 

Cells. In our experiments, we used one-compartmental 
spiking cells consisting of the soma with three ion channels 
(leak, Na, K) and several synaptic channels. Voltage dynamics 
was modeled using the Hodgkin-Huxley formalism, 

C × dV/dt = Ileak + INa + IK + 3ISyn 3 IInj, 

where IX represent current types [9]. The cells were of two types, 
excitatory and inhibitory, with exponential synapses. 

PING-Assembly. The network consists of N cell assemblies 
of K cells, 80% of which are excitatory and 20% are inhibitory, 
following biophysical connectivity principles. The connectivity 
between assemblies was set to 10%. Within-assembly 
connectivity was set probabilistically following Borgers [12] (no 
excitatory-to-excitatory connections, other connections had 
probability of 0.5), so that the network produced biologically 
realistic oscillations in the gamma range (30-40 Hz).  

N-Pairs. The network consists of N cell assemblies of 2 
RTM cells connected via a single excitatory synapse. The cell 
and synaptic parameters were set to the same values as for the 
PING-Assembly network, but current injection of 10 nA was 
applied to only one of the cells. 

N-K-Cliques. The network consists of N cell assemblies of 
K RTM cells, fully connected with excitatory synapses. The cell 
and synaptic parameters were set to the same values as for the 
PING-Assembly network, but current injection of 10 nA was 
applied to only one of each assembly9s cells. 

D. Distribution strategies 

CoreNEURON requires the cells to be initialized directly on 
their respective processes rather than letting a master process to 
create and distribute the cells. Consequently, we started all our 
experiments by generating a list of global cell indexes (GIDs) 
from 0 to NK31, which represented a network of N assemblies 
each having K cells, and then imposed true connectivity 
according to the network9s type. For convenience, we assumed 
that assemblies contained cells with consecutive GIDs (e.g., the 
first assembly could have GIDs from 0 to X, the second one 
could have GIDs from X+1 to 2X, etc.) We then spawned N 
processes and utilized three strategies to distribute the indexes 
and initialize the cells. (Note that cell distribution is independent 
of the underlying connectivity structure.) 

Random distribution was done by shuffling the GID list, and 
splitting the shuffled indexes equally between processes. By-
assembly distribution preserved the true assembly structure, i.e., 
the GID list was split into N equal parts without shuffling, each 
of which was assigned to its own process. By-partitioning 
distribution was done by running a partitioning algorithm on the 
graph representation of the network and distributing the cells 
according to the results of partitioning. 

 

IV. RESULTS 

A. Single-site setup for efficient neuroscience simulations  

A FABRIC site can be accessed by initializing a virtual 

machine and allocating a specified number of computing 

resources (the number of CPU cores and GPUs, memory size). 

Moreover, several virtual machines can be initialized on the 

same site and connected via an L2 bridge. We first analyzed the 

trends in simulation time when using a single site setup and 

compared them with a typical server setup commonly used for 

neuroscience simulations. 

In these experiments, we simulated a biologically realistic 

PING-Assembly network, which is comprised of N cell 

assemblies of K cells, 80% of which are excitatory and 20% are 

inhibitory, as cited in Methods. Connectivity within each 

assembly followed biologically realistic principles. 
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Additionally, 10% of cells in each assembly were connected to 

random cells in other assemblies via excitatory synaptic links 

(Fig. 1-A1). We verified that the network produced oscillations 

in the gamma-band (around 30-40 Hz; [12]). 

We simulated networks with varying numbers of assemblies 

and cells per assembly using the following hardware setups: a 

desktop (Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz   2.11 

GHz) and our laboratory server (Intel(R) Xeon(R) Gold 6252 

CPU @ 2.10GHz) typically used for neuroscience simulations, 

a FABRIC CPU node at Florida International University and 

University of Michigan / FIU, a FABRIC node at Georgia Tech 

/ GATECH having 2 A30 GPU units, and a FABRIC node at 

University of Maryland / MAX, having four RTX6000 units (2 

VMs, each having 2 GPU units). The cells were distributed 

randomly across units, and simulation time reported by 

CoreNEURON was used as the total execution time. (We 

ignored the time taken to distribute the cells.) Server and 

desktop simulations were done with the usage of the Brain 

Modeling Toolkit (BMTK) [13] for additional memory 

optimization.  

Comparing the runtimes for simulations with the same 

number of assemblies, we observed that FABRIC is a viable 

alternative to conventional simulation setups, on average being 

36% faster in CPU runs and 500% faster in GPU runs (Fig. 1-

A2). Moreover, despite potential communication latencies 

between GPU units and VMs, simulation time decreased 

linearly with the increase in the number of GPU units, making 

it feasible to run larger-scale simulations (25K cells) in a 

reasonable amount of time. 

B. Multi-site simulations and impact of network latency 

Large-scale networks can often be simulated only on 

multiple sites due to two major reasons. First, each FABRIC site 

has a limited number of physical GPU units. Second, our initial 

experiments revealed that a virtual machine on a site can have at 

most 2 GPU units attached, as an attempt to allocate more units 

fails the node creation request. However, a 2-GPU VM takes a 

significantly longer time to allocate compared to a 1-GPU VM, 

so practically it is more convenient to initialize several 1-GPU 

VMs on multiple sites rather than a multi-GPU machine on one 

site. Consequently, we analyzed the simulation time overhead 

due to the physical distance between sites (referred to as 

<natural= delay) when using the target distribution strategies.  

In these experiments, we used the N-Pairs network (Fig. 1-

B1), consisting of identical independent assemblies of two cells, 

one of which (the <sender=) receives a constant current injection 

stimulus, generates an action potential, and sends a spike event 

to the other cell (the <receiver=) via an excitatory synaptic 

connection. The network9s parameters were adjusted to values 

that ensured that the receiver also generated an action potential 

on receiving the spike event (see Methods). We simulated the 

network while varying the number of pairs (625, 1250, 2500, 

5000, 1000) on a single site with 2 GPU units (University of 

Maryland / MAX, RTX6000) and two sites each having 1 GPU 

unit (Florida International University / FIU and University of 

Michigan / MICH, RTX6000 on both) connected via an L2 

bridge (L2STS, SharedNIC). We first compared the simulation 

time reported by CoreNEURON for the target distribution 

strategies, random assignment of senders and receivers across 

GPU units, and assigning half of all assemblies to each GPU 

(random vs by-assembly distribution, see Methods). We found 

that by-assembly distribution is marginally faster on the single 

site and 3-4 times faster in the multi-site setup (Fig. 1-B2 left 

and right respectively). 

The unique structure of the N-Pairs network allowed us to 

quantify the simulation-specific upper bound of the natural 

delay. To do that, we assigned all senders and all receivers to 

different GPU units, emulating the worst possible case of the 

random distribution, and computed the ratio of simulation time 

on 2 sites to simulation time on 1 site. The delay estimate 

appeared to be size-dependent and decreasing with the number 

of cells, with the mean value of around 6.5 times (Fig. 1-C). 

C. Impact of overall number of synaptic connections on 

simulation time 

CoreNEURON relies on MPI for CPU- and GPU-based 
parallelization: the user specifies the number of processes to 
spawn and assigns cells to each process manually. Since spike 
information between processes is passed via memory-efficient 
connections (see Methods for details), the overall connectivity 
effect is non-trivial. We first analyzed how the number of 
assemblies affects simulation time under the fixed network size 
and connectivity rules. 

Here we used the N-K-Cliques network, which consists of N 
independent assemblies of K cells (Fig. 1-D1). Each cell within 
an assembly is connected to all other cells via excitatory synaptic 
paths, i.e., there are two connections between each pair of cells, 
and only one cell in the assembly receives a current injection 
stimulus. Consequently, a N-2-Cliques network is equivalent to 
the N-pairs network from above given the addition of the 
receiver-to-sender connection, and the decrease in the number 
of cliques results in the increase of the overall network 
connectivity. We fixed the network size at 5000 cells and varied 
the number of cliques N (2500, 1250, 250, 100, 50, 10, 2), 
setting K to 5000/N and simulating the network in the same 
setup as the N-Pairs one from above. We found that the 
difference in simulation time between random and by-assembly 
distribution grows as the network connectivity increases. This 
effect was observed in both single- and multi-site setups (Fig. 1-
D2, left and right, respectively), adding to the <natural= delay in 
the latter case. Thus, we observed that, under the same 
connectivity, simulating a high number of smaller assemblies is 
faster than simulating a small number of bigger assemblies. This 
led us to the conclusion that the number of synaptic connections 
(smaller in the former and higher in the latter case) might be one 
of the crucial factors that affects the simulation time.  

D. Distribution strategy and its impact on simulation time for 

biologically realistic connectivity within assemblies 

Since biologically realistic networks are not characterized by 

full connectivity, we considered how connectivity rules affect 

simulation time. In our first experiment (Florida International 

University / FIU and University of Michigan / MICH, 1 

RTX6000), we simulated a PING-Assembly network with 2 

assemblies of 1250 cells while varying the probability of 
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synaptic connections within each assembly from 0.6 to 1. We 

did not observe conclusive trends of one strategy being faster 

than the other but noted a higher difference at the full 

connectivity level. We then simulated (Georgia Tech / 

GATECH, 2 A30 GPUs) a PING-Assembly network with 2 

assemblies and biologically realistic connectivity (see Methods) 

while varying the number of cells per assembly (500, 1000, 

2500, 5000, 10000). We observed no statistically significant 

difference between simulation time under target distribution 

strategies as the network size increased (the difference of 3-7%, 

p-value of two-sample t-test was 0.99). In contrast, for 

completion purposes, we simulated an unrealistic fully 

connected PING-Assembly network with the same 

configuration and found insignificant (two-sample t-test, p-

value of 0.84) yet increasing percent difference between random 

and by-assembly distribution strategies (1% at 500 cells, 12% at 

1250 cells, 26% at 2500 cells). Since the different distribution 

strategies we tested did not have a significant effect on 

simulation time, we hypothesize that CoreNEURON9s memory 

optimization algorithm can efficiently handle the biologically 

realistic cases. 

To address the cases when the distribution strategy matters, 

we tested how a minimum k-cut partitioning algorithm detected 

clusters of densely connected cells. Here, a biophysical network 

is viewed as a weighted undirected graph with vertices 

represented by cells and edges by synaptic connections; the 

weights can be set to 1 or proportional to the absolute values of 

corresponding synaptic weights. The partitioning is done by 

minimizing the standard objective function. 

In our experiments, we used networkx [14] and METIS [15] 

Python libraries to perform partitioning of the PING-Assembly 

network. We set the number of assemblies to 2 (each of 5000 

cells) and simulated a network with random and by-partitioning 

distribution on a single FABRIC site. We first tested the ideal 

case when the number of assemblies is known (k = 2), for which 

by-partitioning strategy was faster than random (4054 vs 5115 

sec). For the cases when the number of assemblies is not known, 

a smaller number of partitions resulted in faster simulation time. 

E. Interactive simulation control for collaboration 

On-going work targets constructing workflow templates for 

efficient neuroscience collaboration using FABRIC9s high-

speed connectivity. Examples include online simulation control 

of experimental setups and integration of database searches 

during ongoing simulations. 

F. A guide to use FABRIC for neuroscience simulations 

To make FABRIC accessible to a larger group of 

neuroscience users, we created comprehensive instructions to 

guide users on site setup, library installation, CoreNEURON 

compilation, communication via SLURM, etc. 

(https://github.com/raopr/neuroscience-on-FABRIC). 
 

V. CONCLUSION 

Our experiments point out that FABRIC provides a 

promising alternative to conventional neuroscience setups for 

simulating biologically realistic networks. From the hardware 

standpoint, availability of GPU units allows dramatic reduction 

of simulation time for larger networks. While multi-site 

configurations are characterized by inherent delays, its effect 

decreases as the network size grows. 

We also found that the CoreNEURON simulator has a 

memory optimization strategy that obviates the need for cell-

partitioning approaches. We found that cases where distribution 

strategy matters, and the underlying assembly structure is not 

known, a min-cut graph partitioning algorithm performs better.  
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