
On Scaling Neuronal Network Simulations Using

Distributed Computing

Vladimir Omelyusik

University of Missouri

vovwm@missouri.edu

Khawar Shehzad

University of Missouri

khawar.shehzad@missouri.edu

Tyler Banks

Univeristy of Missouri

tbanks@mail.missouri.edu

Praveen Rao

University of Missouri

praveen.rao@missouri.edu

Satish S. Nair

University of Missouri

nairs@missouri.edu

Abstract4We investigated the computational capabilities of

FABRIC, a nationwide research infrastructure with nearly 40

sites, for scaling neuroscience simulations. From the hardware

standpoint, single-site characterization showed that FABRIC is a

promising alternative to conventional neuroscience setups,

particularly due to the availability of powerful graphics processing

units (GPUs). While multi-site simulations are affected by network

latency, it becomes less critical for larger networks. From the

software perspective, we found that in the popular CoreNEURON

library, cell distribution strategy (for parallel execution) does not

affect the simulation time for biologically realistic networks, while

other cases can be addressed with a minimum k-cut graph

partitioning algorithm. Overall, scalability experiments revealed

that FABRIC can be used to simulate networks of up to twenty-

five thousand cells, with the limiting issue being GPU memory.

Keywords4FABRIC, GPUs, neuroscience, networks,

simulation, scalability

I. INTRODUCTION

 Advancements in neuroscience research are progressively
more dependent on hardware integration: while previously a
single CPU-based desktop machine was sufficient for
simulating a simplified thousand-cell model, modern realistic
biophysical networks with millions of cells may, for various
reasons, benefit from usage of a distributed computing
environment. For instance, the need to mine rapidly growing
neural databases necessitates distribution of software efficiently
across compute units to increase throughput. Moreover, there is
a need for advanced cyberinfrastructure (CI) to permit diverse
researchers (e.g., biology, medicine, computer science,
engineering) spread across geographical sites to collaborate
effectively on large-scale models of brain regions in real time.

 To address these challenges, we investigated the
computation and communication capabilities of FABRIC [1], a
nationwide research infrastructure and testbed for advancing
science applications focusing on neuroscience network
simulations. FABRIC is composed of nearly 40 sites spread
across USA and Europe. We considered two aspects relevant for
neuroscience research: network size scalability (the largest size
of a network possible to simulate with the given constraints on
a single-site) and simulation time efficiency (ways to increase

the number of simulations per unit time). Our ultimate goal is to
use these findings to construct end-to-end workflows for
interactive collaboration, including allowing users to modify
simulations in real time.

 We first compared a single FABRIC site with the typical
desktop and server setups conventionally used in neuroscience
simulations. We then quantified simulation-specific overheads
due to physical network latencies between sites. Analyzing the
software side, we found that if the compute-optimized
CoreNEURON engine [2] is used as a simulator, the distribution
strategy for parallel execution (e.g., randomly assigning cells to
GPUs versus based on the underlying biological network
structure) does not matter for biologically realistic networks.
Addressing other cases, we tested a graph partitioning
algorithm, which enables faster execution of the simulation
compared to random distribution of cells across the computing
nodes. Finally, we release our code and comprehensive
instructions on GitHub (https://github.com/raopr/neuroscience-
on-FABRIC) to enable others to set up a FABRIC-specific
GPU-based pipeline for efficient biophysical simulations using
the CoreNEURON library.

II. RELATED WORK

High-performance computing (HPC) resources are

traditionally used for computational neuroscience workloads.

The Neuroscience Gateway (NSG) [3] is an exemplar for

engaging computational neuroscientists to leverage HPC

resources (using XSEDE/ACCESS [4]) with a low barrier to

entry. In fact, NSG continues to remain the leading consumer

of ACCESS resources 3 consuming more than 40% more than

the next user. However, the technology landscape is constantly

evolving, creating new opportunities for innovation and

training. The growing popularity of cloud computing for HPC

applications [5], [6], [7] demands new research workflows that

integrate neuroscience with advanced CI beyond traditional

HPC environments. While past neuroscience development

efforts have targeted the use of HPC through middleware the CI

adoption was poor. The heterogeneity of hardware, high-speed

networking, and the ability to customize one9s computing

745979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00105

services/workflows [8], the barrier to entry was high. Hence,

environment in advanced CI resources demands rethinking how

end-to-end neuroscience workflows can be seamlessly

integrated with these resources.

Scaling neural network simulations has been an ongoing

challenge in the neuroscience community. Migliore et al. [9]

investigated the scaling of NEURON network simulations

using Message Passing Interface (MPI) and multiprocessor

systems such as a Beowulf cluster and a supercomputer. They

observed that spike communication overhead was less of a

bottleneck compared to cache memory effects. As the number

of processors was increased, the problem size became small

enough that a supercomputer achieved better speedup. Later

Hines et al. [10] showed how models implemented in

NEURON can be parallelized using MPI for executing on local

resources (e.g., a single computer, a cluster of computers

connected by Ethernet, a multiprocessor computer) as well as

supercomputers.

Recent efforts have explored the use of GPUs for

accelerating neuronal biophysical simulations (e.g., Arbor [11],

CoreNEURON [2]). They focused on simulating large scale

neuronal networks with multiple compartments. There is

growing interest in scaling neuroscience computations beyond

Figure 1. Characterization of FABRIC capabilities for neuroscience simulations | Single-site hardware characterization: A1. Biologically

realistic PING-network with 2 assemblies. A2. Comparison of a single FABRIC site performance (solid lines) with typical desktop and server

setups (dashed lines) for a PING-Assembly network. Crosses indicate the maximum size of network which was possible to simulate. Multi-site

hardware characterization: B1.N-Pairs network with 10 assemblies. B2. Characterization of simulation time overhead due to natural delay

between sites. C. Simulation-specific estimate of natural delay. Software characterization: D1. N-K-Cliques network with 4 cliques of 5 cells.

D2. Characterization of simulation time overhead due to increased network connectivity. E. Comparison of random and by-assembly distribution

based on (extreme) probability of synaptic connections within an assembly (a PING network with 2 assemblies, 1250 cells each).

A1.

B1. C.

D1. E.

A2.

B2.

D2.

×
×

×

×

746

traditional HPC environments, including using distributed

computing.

III. METHODS

A. FABRIC

Created in 2019, FABRIC is a nationwide research testbed
with high speed optical links interconnect 30 geographically
distributed sites on FABRIC via different Layer 2 and Layer
networking service. FABRIC has Internet2 connectivity to
public clouds such as Amazon Web Services (AWS) and
Microsoft Azure. A FABRIC node, which contains a rack of
compute, storage, and networking devices, is equipped with
cutting-edge processors, large amounts of RAM, non-volatile
memory express (NVMe) drives, GPUs, field-programmable
gate arrays (FPGAs), and 100/200 Gbps SmartNICs.
Experimenters on FABRIC can choose virtual machine (VM) or
container configurations for provisioning resources.

B. NEURON and CoreNEURON

NEURON is a simulator for conductance-based single cell

and network models developed by Duke, Yale, and the Blue

Brain Project. The simulator provides API for defining the

cell9s morphology and biophysical properties as well as

synaptic models for inter-cellular connectivity, which are

available both in its own HOC scripting language and Python.

CoreNEURON, an extension of NEURON, targets

computational efficiency and optimized memory usage. It also

allows simulations to be run on GPU architectures [2]. Different

from NEURON, which can be installed via the pip package

installer, CoreNEURON requires manual compilation for

specific hardware.

CoreNEURON supports MPI-based CPU and GPU

parallelization by having the user specify the number of

processes to spawn and manually assign each cell to its process.

GPU support is enabled via an on/off switch, and our

preliminary experiments revealed that by default all available

GPU units are used when the switch is on. Thus, process

assignment to GPU units is controlled externally by modifying

the list of units visible to the process.

Additionally, we found that synaptic communication

between cells assigned to different processes (i.e., exchange of

spike event information) during the simulation time is

performed internally via memory-efficient connections called

InputPresyns which do not have to act as threshold detectors

[2]. Since these connections are managed by the simulator, their

existence leads to non-intuitive results when comparing

different distribution strategies for cells to enable

parallelization.

C. Cells and networks

Cells. In our experiments, we used one-compartmental
spiking cells consisting of the soma with three ion channels
(leak, Na, K) and several synaptic channels. Voltage dynamics
was modeled using the Hodgkin-Huxley formalism,

C × dV/dt = Ileak + INa + IK + 3ISyn 3 IInj,

where IX represent current types [9]. The cells were of two types,
excitatory and inhibitory, with exponential synapses.

PING-Assembly. The network consists of N cell assemblies
of K cells, 80% of which are excitatory and 20% are inhibitory,
following biophysical connectivity principles. The connectivity
between assemblies was set to 10%. Within-assembly
connectivity was set probabilistically following Borgers [12] (no
excitatory-to-excitatory connections, other connections had
probability of 0.5), so that the network produced biologically
realistic oscillations in the gamma range (30-40 Hz).

N-Pairs. The network consists of N cell assemblies of 2
RTM cells connected via a single excitatory synapse. The cell
and synaptic parameters were set to the same values as for the
PING-Assembly network, but current injection of 10 nA was
applied to only one of the cells.

N-K-Cliques. The network consists of N cell assemblies of
K RTM cells, fully connected with excitatory synapses. The cell
and synaptic parameters were set to the same values as for the
PING-Assembly network, but current injection of 10 nA was
applied to only one of each assembly9s cells.

D. Distribution strategies

CoreNEURON requires the cells to be initialized directly on
their respective processes rather than letting a master process to
create and distribute the cells. Consequently, we started all our
experiments by generating a list of global cell indexes (GIDs)
from 0 to NK31, which represented a network of N assemblies
each having K cells, and then imposed true connectivity
according to the network9s type. For convenience, we assumed
that assemblies contained cells with consecutive GIDs (e.g., the
first assembly could have GIDs from 0 to X, the second one
could have GIDs from X+1 to 2X, etc.) We then spawned N
processes and utilized three strategies to distribute the indexes
and initialize the cells. (Note that cell distribution is independent
of the underlying connectivity structure.)

Random distribution was done by shuffling the GID list, and
splitting the shuffled indexes equally between processes. By-
assembly distribution preserved the true assembly structure, i.e.,
the GID list was split into N equal parts without shuffling, each
of which was assigned to its own process. By-partitioning
distribution was done by running a partitioning algorithm on the
graph representation of the network and distributing the cells
according to the results of partitioning.

IV. RESULTS

A. Single-site setup for efficient neuroscience simulations

A FABRIC site can be accessed by initializing a virtual

machine and allocating a specified number of computing

resources (the number of CPU cores and GPUs, memory size).

Moreover, several virtual machines can be initialized on the

same site and connected via an L2 bridge. We first analyzed the

trends in simulation time when using a single site setup and

compared them with a typical server setup commonly used for

neuroscience simulations.

In these experiments, we simulated a biologically realistic

PING-Assembly network, which is comprised of N cell

assemblies of K cells, 80% of which are excitatory and 20% are

inhibitory, as cited in Methods. Connectivity within each

assembly followed biologically realistic principles.

747

Additionally, 10% of cells in each assembly were connected to

random cells in other assemblies via excitatory synaptic links

(Fig. 1-A1). We verified that the network produced oscillations

in the gamma-band (around 30-40 Hz; [12]).

We simulated networks with varying numbers of assemblies

and cells per assembly using the following hardware setups: a

desktop (Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11

GHz) and our laboratory server (Intel(R) Xeon(R) Gold 6252

CPU @ 2.10GHz) typically used for neuroscience simulations,

a FABRIC CPU node at Florida International University and

University of Michigan / FIU, a FABRIC node at Georgia Tech

/ GATECH having 2 A30 GPU units, and a FABRIC node at

University of Maryland / MAX, having four RTX6000 units (2

VMs, each having 2 GPU units). The cells were distributed

randomly across units, and simulation time reported by

CoreNEURON was used as the total execution time. (We

ignored the time taken to distribute the cells.) Server and

desktop simulations were done with the usage of the Brain

Modeling Toolkit (BMTK) [13] for additional memory

optimization.

Comparing the runtimes for simulations with the same

number of assemblies, we observed that FABRIC is a viable

alternative to conventional simulation setups, on average being

36% faster in CPU runs and 500% faster in GPU runs (Fig. 1-

A2). Moreover, despite potential communication latencies

between GPU units and VMs, simulation time decreased

linearly with the increase in the number of GPU units, making

it feasible to run larger-scale simulations (25K cells) in a

reasonable amount of time.

B. Multi-site simulations and impact of network latency

Large-scale networks can often be simulated only on

multiple sites due to two major reasons. First, each FABRIC site

has a limited number of physical GPU units. Second, our initial

experiments revealed that a virtual machine on a site can have at

most 2 GPU units attached, as an attempt to allocate more units

fails the node creation request. However, a 2-GPU VM takes a

significantly longer time to allocate compared to a 1-GPU VM,

so practically it is more convenient to initialize several 1-GPU

VMs on multiple sites rather than a multi-GPU machine on one

site. Consequently, we analyzed the simulation time overhead

due to the physical distance between sites (referred to as

<natural= delay) when using the target distribution strategies.

In these experiments, we used the N-Pairs network (Fig. 1-

B1), consisting of identical independent assemblies of two cells,

one of which (the <sender=) receives a constant current injection

stimulus, generates an action potential, and sends a spike event

to the other cell (the <receiver=) via an excitatory synaptic

connection. The network9s parameters were adjusted to values

that ensured that the receiver also generated an action potential

on receiving the spike event (see Methods). We simulated the

network while varying the number of pairs (625, 1250, 2500,

5000, 1000) on a single site with 2 GPU units (University of

Maryland / MAX, RTX6000) and two sites each having 1 GPU

unit (Florida International University / FIU and University of

Michigan / MICH, RTX6000 on both) connected via an L2

bridge (L2STS, SharedNIC). We first compared the simulation

time reported by CoreNEURON for the target distribution

strategies, random assignment of senders and receivers across

GPU units, and assigning half of all assemblies to each GPU

(random vs by-assembly distribution, see Methods). We found

that by-assembly distribution is marginally faster on the single

site and 3-4 times faster in the multi-site setup (Fig. 1-B2 left

and right respectively).

The unique structure of the N-Pairs network allowed us to

quantify the simulation-specific upper bound of the natural

delay. To do that, we assigned all senders and all receivers to

different GPU units, emulating the worst possible case of the

random distribution, and computed the ratio of simulation time

on 2 sites to simulation time on 1 site. The delay estimate

appeared to be size-dependent and decreasing with the number

of cells, with the mean value of around 6.5 times (Fig. 1-C).

C. Impact of overall number of synaptic connections on

simulation time

CoreNEURON relies on MPI for CPU- and GPU-based
parallelization: the user specifies the number of processes to
spawn and assigns cells to each process manually. Since spike
information between processes is passed via memory-efficient
connections (see Methods for details), the overall connectivity
effect is non-trivial. We first analyzed how the number of
assemblies affects simulation time under the fixed network size
and connectivity rules.

Here we used the N-K-Cliques network, which consists of N
independent assemblies of K cells (Fig. 1-D1). Each cell within
an assembly is connected to all other cells via excitatory synaptic
paths, i.e., there are two connections between each pair of cells,
and only one cell in the assembly receives a current injection
stimulus. Consequently, a N-2-Cliques network is equivalent to
the N-pairs network from above given the addition of the
receiver-to-sender connection, and the decrease in the number
of cliques results in the increase of the overall network
connectivity. We fixed the network size at 5000 cells and varied
the number of cliques N (2500, 1250, 250, 100, 50, 10, 2),
setting K to 5000/N and simulating the network in the same
setup as the N-Pairs one from above. We found that the
difference in simulation time between random and by-assembly
distribution grows as the network connectivity increases. This
effect was observed in both single- and multi-site setups (Fig. 1-
D2, left and right, respectively), adding to the <natural= delay in
the latter case. Thus, we observed that, under the same
connectivity, simulating a high number of smaller assemblies is
faster than simulating a small number of bigger assemblies. This
led us to the conclusion that the number of synaptic connections
(smaller in the former and higher in the latter case) might be one
of the crucial factors that affects the simulation time.

D. Distribution strategy and its impact on simulation time for

biologically realistic connectivity within assemblies

Since biologically realistic networks are not characterized by

full connectivity, we considered how connectivity rules affect

simulation time. In our first experiment (Florida International

University / FIU and University of Michigan / MICH, 1

RTX6000), we simulated a PING-Assembly network with 2

assemblies of 1250 cells while varying the probability of

748

synaptic connections within each assembly from 0.6 to 1. We

did not observe conclusive trends of one strategy being faster

than the other but noted a higher difference at the full

connectivity level. We then simulated (Georgia Tech /

GATECH, 2 A30 GPUs) a PING-Assembly network with 2

assemblies and biologically realistic connectivity (see Methods)

while varying the number of cells per assembly (500, 1000,

2500, 5000, 10000). We observed no statistically significant

difference between simulation time under target distribution

strategies as the network size increased (the difference of 3-7%,

p-value of two-sample t-test was 0.99). In contrast, for

completion purposes, we simulated an unrealistic fully

connected PING-Assembly network with the same

configuration and found insignificant (two-sample t-test, p-

value of 0.84) yet increasing percent difference between random

and by-assembly distribution strategies (1% at 500 cells, 12% at

1250 cells, 26% at 2500 cells). Since the different distribution

strategies we tested did not have a significant effect on

simulation time, we hypothesize that CoreNEURON9s memory

optimization algorithm can efficiently handle the biologically

realistic cases.

To address the cases when the distribution strategy matters,

we tested how a minimum k-cut partitioning algorithm detected

clusters of densely connected cells. Here, a biophysical network

is viewed as a weighted undirected graph with vertices

represented by cells and edges by synaptic connections; the

weights can be set to 1 or proportional to the absolute values of

corresponding synaptic weights. The partitioning is done by

minimizing the standard objective function.

In our experiments, we used networkx [14] and METIS [15]

Python libraries to perform partitioning of the PING-Assembly

network. We set the number of assemblies to 2 (each of 5000

cells) and simulated a network with random and by-partitioning

distribution on a single FABRIC site. We first tested the ideal

case when the number of assemblies is known (k = 2), for which

by-partitioning strategy was faster than random (4054 vs 5115

sec). For the cases when the number of assemblies is not known,

a smaller number of partitions resulted in faster simulation time.

E. Interactive simulation control for collaboration

On-going work targets constructing workflow templates for

efficient neuroscience collaboration using FABRIC9s high-

speed connectivity. Examples include online simulation control

of experimental setups and integration of database searches

during ongoing simulations.

F. A guide to use FABRIC for neuroscience simulations

To make FABRIC accessible to a larger group of

neuroscience users, we created comprehensive instructions to

guide users on site setup, library installation, CoreNEURON

compilation, communication via SLURM, etc.

(https://github.com/raopr/neuroscience-on-FABRIC).

V. CONCLUSION

Our experiments point out that FABRIC provides a

promising alternative to conventional neuroscience setups for

simulating biologically realistic networks. From the hardware

standpoint, availability of GPU units allows dramatic reduction

of simulation time for larger networks. While multi-site

configurations are characterized by inherent delays, its effect

decreases as the network size grows.

We also found that the CoreNEURON simulator has a

memory optimization strategy that obviates the need for cell-

partitioning approaches. We found that cases where distribution

strategy matters, and the underlying assembly structure is not

known, a min-cut graph partitioning algorithm performs better.

ACKNOWLEDGMENT

We thank the CoreNEURON and FABRIC teams for their

assistance. Praveen Rao would like to acknowledge the partial

support of NSF Grant No. 2201583.

REFERENCES

[1] P. Ruth, I. Baldin, K. Thareja, T. Lehman, X. Yang, and E. Kissel,

<FABRIC network service model,= in 2022 IFIP Networking

Conference (IFIP Networking), IEEE, 2022, pp. 136.
[2] P. Kumbhar et al., <CoreNEURON: an optimized compute engine

for the NEURON simulator,= Front Neuroinform, vol. 13, p. 63,

2019.
[3] S. Sivagnanam, K. Yoshimoto, N. T. Carnevale, and A.

Majumdar, <The neuroscience gateway: enabling large scale

modeling and data processing in neuroscience,= in Proceedings of
the Practice and Experience on Advanced Research Computing,

2018, pp. 137.

[4] J. Towns et al., <XSEDE: accelerating scientific discovery,=
Comput Sci Eng, vol. 16, no. 5, pp. 62374, 2014.

[5] <8Azure high-performance computing,9 /azure.microsoft.com/en-

us/solutions/high-performance-computing.=
[6] <8High Performance Computing Solutions,9

/cloud.google.com/solutions/hpc.=

[7] <High Performance Computing - AWS /aws.amazon.com/hpc/.=
[8] P. Calyam and S. S. Nair, <Science Gateway Development to aid

Cyber and Software Automation for Neuroscience Researchers
and Educators,= in 13th Gateway Computing Environments

Conference (Gateways), 2018.

[9] M. Migliore, C. Cannia, W. W. Lytton, H. Markram, and M. L.
Hines, <Parallel network simulations with NEURON,= J Comput

Neurosci, vol. 21, pp. 1193129, 2006.

[10] M. L. Hines and N. T. Carnevale, <Translating network models to
parallel hardware in NEURON,= J Neurosci Methods, vol. 169,

no. 2, p. 425, 2008.

[11] N. Abi Akar et al., <Arbor4a morphologically-detailed neural
network simulation library for contemporary high-performance

computing architectures,= in 2019 27th euromicro international

conference on parallel, distributed and network-based processing
(PDP), IEEE, 2019, pp. 2743282.

[12] C. Börgers, An Introduction to Modeling Neuronal Dynamics, vol.

66. Cham: Springer International Publishing, 2017. doi:
10.1007/978-3-319-51171-9.

[13] K. Dai et al., <Brain Modeling ToolKit: An open source software

suite for multiscale modeling of brain circuits,= PLoS Comput
Biol, vol. 16, no. 11, p. e1008386, Nov. 2020, doi:

10.1371/journal.pcbi.1008386.

[14] A. Hagberg, P. J. Swart, and D. A. Schult, <Exploring network
structure, dynamics, and function using NetworkX,= Los Alamos

National Laboratory (LANL), Los Alamos, NM (United States),

2008.
[15] G. Karypis and V. Kumar, <METIS: A software package for

partitioning unstructured graphs, partitioning meshes, and

computing fill-reducing orderings of sparse matrices,= 1997.

749

