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Abstract—We investigated the computational capabilities of
FABRIC, a nationwide research infrastructure with nearly 40
sites, for scaling neuroscience simulations. From the hardware
standpoint, single-site characterization showed that FABRIC is a
promising alternative to conventional neuroscience setups,
particularly due to the availability of powerful graphics processing
units (GPUs). While multi-site simulations are affected by network
latency, it becomes less critical for larger networks. From the
software perspective, we found that in the popular CoreNEURON
library, cell distribution strategy (for parallel execution) does not
affect the simulation time for biologically realistic networks, while
other cases can be addressed with a minimum k-cut graph
partitioning algorithm. Overall, scalability experiments revealed
that FABRIC can be used to simulate networks of up to twenty-
five thousand cells, with the limiting issue being GPU memory.
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simulation, scalability

[. INTRODUCTION

Advancements in neuroscience research are progressively
more dependent on hardware integration: while previously a
single CPU-based desktop machine was sufficient for
simulating a simplified thousand-cell model, modern realistic
biophysical networks with millions of cells may, for various
reasons, benefit from usage of a distributed computing
environment. For instance, the need to mine rapidly growing
neural databases necessitates distribution of software efficiently
across compute units to increase throughput. Moreover, there is
a need for advanced cyberinfrastructure (CI) to permit diverse
researchers (e.g., biology, medicine, computer science,
engineering) spread across geographical sites to collaborate
effectively on large-scale models of brain regions in real time.

To address these challenges, we investigated the
computation and communication capabilities of FABRIC [1], a
nationwide research infrastructure and testbed for advancing
science applications focusing on neuroscience network
simulations. FABRIC is composed of nearly 40 sites spread
across USA and Europe. We considered two aspects relevant for
neuroscience research: network size scalability (the largest size
of a network possible to simulate with the given constraints on
a single-site) and simulation time efficiency (ways to increase
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the number of simulations per unit time). Our ultimate goal is to
use these findings to construct end-to-end workflows for
interactive collaboration, including allowing users to modify
simulations in real time.

We first compared a single FABRIC site with the typical
desktop and server setups conventionally used in neuroscience
simulations. We then quantified simulation-specific overheads
due to physical network latencies between sites. Analyzing the
software side, we found that if the compute-optimized
CoreNEURON engine [2] is used as a simulator, the distribution
strategy for parallel execution (e.g., randomly assigning cells to
GPUs versus based on the underlying biological network
structure) does not matter for biologically realistic networks.
Addressing other cases, we tested a graph partitioning
algorithm, which enables faster execution of the simulation
compared to random distribution of cells across the computing
nodes. Finally, we release our code and comprehensive
instructions on GitHub (https://github.com/raopr/neuroscience-
on-FABRIC) to enable others to set up a FABRIC-specific
GPU-based pipeline for efficient biophysical simulations using
the CoreNEURON library.

II. RELATED WORK

High-performance computing (HPC) resources are
traditionally used for computational neuroscience workloads.
The Neuroscience Gateway (NSG) [3] is an exemplar for
engaging computational neuroscientists to leverage HPC
resources (using XSEDE/ACCESS [4]) with a low barrier to
entry. In fact, NSG continues to remain the leading consumer
of ACCESS resources — consuming more than 40% more than
the next user. However, the technology landscape is constantly
evolving, creating new opportunities for innovation and
training. The growing popularity of cloud computing for HPC
applications [5], [6], [7] demands new research workflows that
integrate neuroscience with advanced CI beyond traditional
HPC environments. While past neuroscience development
efforts have targeted the use of HPC through middleware the CI
adoption was poor. The heterogeneity of hardware, high-speed
networking, and the ability to customize one’s computing



A1,

>
N

PING-Assembly

Single-node setups for the PING-Assembly network

5. -0
= e
o 4.5
=) T
g e
= 4.0 - /
9]
£
= 354 7 =, — Server, 2 CPU cores, 2A
N R A gl Desktop, 2 CPU cores, 2A
2 3.01 —— 2 CPU cores, 2A
E 25 2 A30 units, 2A
o —— 1RTXunit, 4A
%‘2_0, —— 2 RTX units, 4A
- —— 4 RTX units, 4A
0 5000 10000 15000 20000 25000
Total number of cells in the network
N-Pairs N 1 Node, 2 GPUs _ 2 Nodes, 2 GPUs 57 s Natural delay
Y45 w P — -7
E
‘o N £ g 270
f ‘2 ‘z 200 —— Random E '
1 £40 2 —— Assembly S6s
1 © —— Random © g
j 2 —— Assembly g 100 ——e £ 60
W 35 ] =
—e o 0 5000 10000 0 5000 10000 E 0 2000 4000 6000 8000 10000
Number of pairs Number of pairs Number of pairs
_ Connectivity analysis
N-K-Cliques - 1 Node, 2 GPUs 2 Nodes, 2 GPUs % Random
3 40001 —— Random 3 40001 — Random £ 500/ — Assembly
@ £ —— Assembly £ —— Assembly T
C c S
@ % § 2000 § 2000 B
= = 5
k| 5 £ 400
€ € v
7 0 a0 0.6 0.7 0.8 0.9 1.0

s

0 1000 2000

Cells per clique

0

1000 2000
Cells per clique

Assembly connectivity

Figure 1. Characterization of FABRIC capabilities for neuroscience simulations | Single-site hardware characterization: Al. Biologically
realistic PING-network with 2 assemblies. A2. Comparison of a single FABRIC site performance (solid lines) with typical desktop and server
setups (dashed lines) for a PING-Assembly network. Crosses indicate the maximum size of network which was possible to simulate. Multi-site
hardware characterization: B1.N-Pairs network with 10 assemblies. B2. Characterization of simulation time overhead due to natural delay
between sites. C. Simulation-specific estimate of natural delay. Software characterization: D1. N-K-Cliques network with 4 cliques of 5 cells.
D2. Characterization of simulation time overhead due to increased network connectivity. E. Comparison of random and by-assembly distribution
based on (extreme) probability of synaptic connections within an assembly (a PING network with 2 assemblies, 1250 cells each).

services/workflows [8], the barrier to entry was high. Hence,
environment in advanced CI resources demands rethinking how
end-to-end neuroscience workflows can be seamlessly
integrated with these resources.

Scaling neural network simulations has been an ongoing
challenge in the neuroscience community. Migliore et al. [9]
investigated the scaling of NEURON network simulations
using Message Passing Interface (MPI) and multiprocessor
systems such as a Beowulf cluster and a supercomputer. They
observed that spike communication overhead was less of a
bottleneck compared to cache memory effects. As the number
of processors was increased, the problem size became small
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enough that a supercomputer achieved better speedup. Later
Hines et al. [10] showed how models implemented in
NEURON can be parallelized using MPI for executing on local
resources (e.g., a single computer, a cluster of computers
connected by Ethernet, a multiprocessor computer) as well as
supercomputers.

Recent efforts have explored the use of GPUs for
accelerating neuronal biophysical simulations (e.g., Arbor [11],
CoreNEURON [2]). They focused on simulating large scale
neuronal networks with multiple compartments. There is
growing interest in scaling neuroscience computations beyond



traditional HPC environments, including using distributed
computing.

[II. METHODS

A. FABRIC

Created in 2019, FABRIC is a nationwide research testbed
with high speed optical links interconnect 30 geographically
distributed sites on FABRIC via different Layer 2 and Layer
networking service. FABRIC has Internet2 connectivity to
public clouds such as Amazon Web Services (AWS) and
Microsoft Azure. A FABRIC node, which contains a rack of
compute, storage, and networking devices, is equipped with
cutting-edge processors, large amounts of RAM, non-volatile
memory express (NVMe) drives, GPUs, field-programmable
gate arrays (FPGAs), and 100/200 Gbps SmartNICs.
Experimenters on FABRIC can choose virtual machine (VM) or
container configurations for provisioning resources.

B. NEURON and CoreNEURON

NEURON is a simulator for conductance-based single cell
and network models developed by Duke, Yale, and the Blue
Brain Project. The simulator provides API for defining the
cell’s morphology and biophysical properties as well as
synaptic models for inter-cellular connectivity, which are
available both in its own HOC scripting language and Python.
CoreNEURON, an extension of NEURON, targets
computational efficiency and optimized memory usage. It also
allows simulations to be run on GPU architectures [2]. Different
from NEURON, which can be installed via the pip package
installer, CoreNEURON requires manual compilation for
specific hardware.

CoreNEURON supports MPI-based CPU and GPU
parallelization by having the user specify the number of
processes to spawn and manually assign each cell to its process.
GPU support is enabled via an on/off switch, and our
preliminary experiments revealed that by default all available
GPU units are used when the switch is on. Thus, process
assignment to GPU units is controlled externally by modifying
the list of units visible to the process.

Additionally, we found that synaptic communication
between cells assigned to different processes (i.e., exchange of
spike event information) during the simulation time is
performed internally via memory-efficient connections called
InputPresyns which do not have to act as threshold detectors
[2]. Since these connections are managed by the simulator, their
existence leads to non-intuitive results when comparing
different distribution strategies for cells to enable
parallelization.

C. Cells and networks

Cells. In our experiments, we used one-compartmental
spiking cells consisting of the soma with three ion channels
(leak, Na, K) and several synaptic channels. Voltage dynamics
was modeled using the Hodgkin-Huxley formalism,

C x dV/dt = lieak + Ina + Ik + Xlsyn — Imj,

where Iy represent current types [9]. The cells were of two types,
excitatory and inhibitory, with exponential synapses.
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PING-Assembly. The network consists of N cell assemblies
of K cells, 80% of which are excitatory and 20% are inhibitory,
following biophysical connectivity principles. The connectivity
between assemblies was set to 10%. Within-assembly
connectivity was set probabilistically following Borgers [12] (no
excitatory-to-excitatory connections, other connections had
probability of 0.5), so that the network produced biologically
realistic oscillations in the gamma range (30-40 Hz).

N-Pairs. The network consists of N cell assemblies of 2
RTM cells connected via a single excitatory synapse. The cell
and synaptic parameters were set to the same values as for the
PING-Assembly network, but current injection of 10 nA was
applied to only one of the cells.

N-K-Cliques. The network consists of N cell assemblies of
K RTM cells, fully connected with excitatory synapses. The cell
and synaptic parameters were set to the same values as for the
PING-Assembly network, but current injection of 10 nA was
applied to only one of each assembly’s cells.

D. Distribution strategies

CoreNEURON requires the cells to be initialized directly on
their respective processes rather than letting a master process to
create and distribute the cells. Consequently, we started all our
experiments by generating a list of global cell indexes (GIDs)
from 0 to NK—1, which represented a network of N assemblies
each having K cells, and then imposed true connectivity
according to the network’s type. For convenience, we assumed
that assemblies contained cells with consecutive GIDs (e.g., the
first assembly could have GIDs from 0 to X, the second one
could have GIDs from X+1 to 2X, etc.) We then spawned N
processes and utilized three strategies to distribute the indexes
and initialize the cells. (Note that cell distribution is independent
of the underlying connectivity structure.)

Random distribution was done by shuffling the GID list, and
splitting the shuffled indexes equally between processes. By-
assembly distribution preserved the true assembly structure, i.e.,
the GID list was split into N equal parts without shuffling, each
of which was assigned to its own process. By-partitioning
distribution was done by running a partitioning algorithm on the
graph representation of the network and distributing the cells
according to the results of partitioning.

IV. RESULTS

A. Single-site setup for efficient neuroscience simulations

A FABRIC site can be accessed by initializing a virtual
machine and allocating a specified number of computing
resources (the number of CPU cores and GPUs, memory size).
Moreover, several virtual machines can be initialized on the
same site and connected via an L2 bridge. We first analyzed the
trends in simulation time when using a single site setup and
compared them with a typical server setup commonly used for
neuroscience simulations.

In these experiments, we simulated a biologically realistic
PING-Assembly network, which is comprised of N cell
assemblies of K cells, 80% of which are excitatory and 20% are
inhibitory, as cited in Methods. Connectivity within each
assembly  followed biologically realistic  principles.



Additionally, 10% of cells in each assembly were connected to
random cells in other assemblies via excitatory synaptic links
(Fig. 1-A1l). We verified that the network produced oscillations
in the gamma-band (around 30-40 Hz; [12]).

We simulated networks with varying numbers of assemblies
and cells per assembly using the following hardware setups: a
desktop (Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11
GHz) and our laboratory server (Intel(R) Xeon(R) Gold 6252
CPU @ 2.10GHz) typically used for neuroscience simulations,
a FABRIC CPU node at Florida International University and
University of Michigan / FIU, a FABRIC node at Georgia Tech
/ GATECH having 2 A30 GPU units, and a FABRIC node at
University of Maryland / MAX, having four RTX6000 units (2
VMs, each having 2 GPU units). The cells were distributed
randomly across units, and simulation time reported by
CoreNEURON was used as the total execution time. (We
ignored the time taken to distribute the cells.) Server and
desktop simulations were done with the usage of the Brain
Modeling Toolkit (BMTK) [13] for additional memory
optimization.

Comparing the runtimes for simulations with the same
number of assemblies, we observed that FABRIC is a viable
alternative to conventional simulation setups, on average being
36% faster in CPU runs and 500% faster in GPU runs (Fig. 1-
A2). Moreover, despite potential communication latencies
between GPU units and VMs, simulation time decreased
linearly with the increase in the number of GPU units, making
it feasible to run larger-scale simulations (25K cells) in a
reasonable amount of time.

B. Multi-site simulations and impact of network latency

Large-scale networks can often be simulated only on
multiple sites due to two major reasons. First, each FABRIC site
has a limited number of physical GPU units. Second, our initial
experiments revealed that a virtual machine on a site can have at
most 2 GPU units attached, as an attempt to allocate more units
fails the node creation request. However, a 2-GPU VM takes a
significantly longer time to allocate compared to a 1-GPU VM,
so practically it is more convenient to initialize several 1-GPU
VMs on multiple sites rather than a multi-GPU machine on one
site. Consequently, we analyzed the simulation time overhead
due to the physical distance between sites (referred to as
“natural” delay) when using the target distribution strategies.

In these experiments, we used the N-Pairs network (Fig. 1-
B1), consisting of identical independent assemblies of two cells,
one of which (the “sender”) receives a constant current injection
stimulus, generates an action potential, and sends a spike event
to the other cell (the “receiver”) via an excitatory synaptic
connection. The network’s parameters were adjusted to values
that ensured that the receiver also generated an action potential
on receiving the spike event (see Methods). We simulated the
network while varying the number of pairs (625, 1250, 2500,
5000, 1000) on a single site with 2 GPU units (University of
Maryland / MAX, RTX6000) and two sites each having 1 GPU
unit (Florida International University / FIU and University of
Michigan / MICH, RTX6000 on both) connected via an L2
bridge (L2STS, SharedNIC). We first compared the simulation
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time reported by CoreNEURON for the target distribution
strategies, random assignment of senders and receivers across
GPU units, and assigning half of all assemblies to each GPU
(random vs by-assembly distribution, see Methods). We found
that by-assembly distribution is marginally faster on the single
site and 3-4 times faster in the multi-site setup (Fig. 1-B2 left
and right respectively).

The unique structure of the N-Pairs network allowed us to
quantify the simulation-specific upper bound of the natural
delay. To do that, we assigned all senders and all receivers to
different GPU units, emulating the worst possible case of the
random distribution, and computed the ratio of simulation time
on 2 sites to simulation time on 1 site. The delay estimate
appeared to be size-dependent and decreasing with the number
of cells, with the mean value of around 6.5 times (Fig. 1-C).

C. Impact of overall number of synaptic connections on
simulation time

CoreNEURON relies on MPI for CPU- and GPU-based
parallelization: the user specifies the number of processes to
spawn and assigns cells to each process manually. Since spike
information between processes is passed via memory-efficient
connections (see Methods for details), the overall connectivity
effect is non-trivial. We first analyzed how the number of
assemblies affects simulation time under the fixed network size
and connectivity rules.

Here we used the N-K-Cliques network, which consists of N
independent assemblies of K cells (Fig. 1-D1). Each cell within
an assembly is connected to all other cells via excitatory synaptic
paths, i.e., there are two connections between each pair of cells,
and only one cell in the assembly receives a current injection
stimulus. Consequently, a N-2-Cliques network is equivalent to
the N-pairs network from above given the addition of the
receiver-to-sender connection, and the decrease in the number
of cliques results in the increase of the overall network
connectivity. We fixed the network size at 5000 cells and varied
the number of cliques N (2500, 1250, 250, 100, 50, 10, 2),
setting K to 5000/N and simulating the network in the same
setup as the N-Pairs one from above. We found that the
difference in simulation time between random and by-assembly
distribution grows as the network connectivity increases. This
effect was observed in both single- and multi-site setups (Fig. 1-
D2, left and right, respectively), adding to the “natural” delay in
the latter case. Thus, we observed that, under the same
connectivity, simulating a high number of smaller assemblies is
faster than simulating a small number of bigger assemblies. This
led us to the conclusion that the number of synaptic connections
(smaller in the former and higher in the latter case) might be one
of the crucial factors that affects the simulation time.

D. Distribution strategy and its impact on simulation time for
biologically realistic connectivity within assemblies

Since biologically realistic networks are not characterized by
full connectivity, we considered how connectivity rules affect
simulation time. In our first experiment (Florida International
University / FIU and University of Michigan / MICH, 1
RTX6000), we simulated a PING-Assembly network with 2
assemblies of 1250 cells while varying the probability of



synaptic connections within each assembly from 0.6 to 1. We
did not observe conclusive trends of one strategy being faster
than the other but noted a higher difference at the full
connectivity level. We then simulated (Georgia Tech /
GATECH, 2 A30 GPUs) a PING-Assembly network with 2
assemblies and biologically realistic connectivity (see Methods)
while varying the number of cells per assembly (500, 1000,
2500, 5000, 10000). We observed no statistically significant
difference between simulation time under target distribution
strategies as the network size increased (the difference of 3-7%,
p-value of two-sample t-test was 0.99). In contrast, for
completion purposes, we simulated an unrealistic fully
connected PING-Assembly network with the same
configuration and found insignificant (two-sample t-test, p-
value of 0.84) yet increasing percent difference between random
and by-assembly distribution strategies (1% at 500 cells, 12% at
1250 cells, 26% at 2500 cells). Since the different distribution
strategies we tested did not have a significant effect on
simulation time, we hypothesize that CoreNEURON’s memory
optimization algorithm can efficiently handle the biologically
realistic cases.

To address the cases when the distribution strategy matters,
we tested how a minimum k-cut partitioning algorithm detected
clusters of densely connected cells. Here, a biophysical network
is viewed as a weighted undirected graph with vertices
represented by cells and edges by synaptic connections; the
weights can be set to 1 or proportional to the absolute values of
corresponding synaptic weights. The partitioning is done by
minimizing the standard objective function.

In our experiments, we used networkx [14] and METIS [15]
Python libraries to perform partitioning of the PING-Assembly
network. We set the number of assemblies to 2 (each of 5000
cells) and simulated a network with random and by-partitioning
distribution on a single FABRIC site. We first tested the ideal
case when the number of assemblies is known (k = 2), for which
by-partitioning strategy was faster than random (4054 vs 5115
sec). For the cases when the number of assemblies is not known,
a smaller number of partitions resulted in faster simulation time.

E. Interactive simulation control for collaboration

On-going work targets constructing workflow templates for
efficient neuroscience collaboration using FABRIC’s high-
speed connectivity. Examples include online simulation control
of experimental setups and integration of database searches
during ongoing simulations.

F. A guide to use FABRIC for neuroscience simulations

To make FABRIC accessible to a larger group of
neuroscience users, we created comprehensive instructions to
guide users on site setup, library installation, CoreNEURON
compilation, communication via SLURM, etc.
(https://github.com/raopr/neuroscience-on-FABRIC).

V. CONCLUSION

Our experiments point out that FABRIC provides a
promising alternative to conventional neuroscience setups for
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simulating biologically realistic networks. From the hardware
standpoint, availability of GPU units allows dramatic reduction
of simulation time for larger networks. While multi-site
configurations are characterized by inherent delays, its effect
decreases as the network size grows.

We also found that the CoreNEURON simulator has a
memory optimization strategy that obviates the need for cell-
partitioning approaches. We found that cases where distribution
strategy matters, and the underlying assembly structure is not
known, a min-cut graph partitioning algorithm performs better.
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