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Abstract: We construct infinite energy harmonic maps from a quasi-compact Kähler surface with a Poincaré-
type metric into an NPC space. This is the first step in the construction of pluriharmonic maps from quasiprojec-
tive varieties into symmetric spaces of non-compact type, Euclidean and hyperbolic buildings and Teichmüller
space.
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1 Introduction
In this paper, we prove the existence of harmonic maps of possibly infinite energy from quasi-compact Kähler
surfaces with a Poincare-type metric to NPC spaces. Infinite energy harmonic maps between manifolds previ-
ously appeared in the work of Lohkamp and Wolf. Lohkamp [1] proved the existence of a harmonic map in a
given homotopy class of maps between two non-compact manifolds, provided that a certain simplicity condition
near infinity of the domain is satisfied. Wolf [2] studied harmonic maps of infinite energy when the domain is a
nodal Riemann surface and applied it to describe degenerations of surfaces in the Riemann moduli space (see
also [3]). A few years later, Jost and Zuo (cf. [4], [5]) sketched a proof of the existence of infinite energy maps
from non-compact Kähler manifolds. The purpose of this paper is to provide a complete proof of the existence
of harmonic maps from quasi-compact Kähler surfaces to a certain class of NPC targets. This is the first step in
the construction of pluriharmonic maps from quasiprojective varieties into symmetric spaces of non-compact
type, Euclidean and hyperbolic buildings and Teichmüller space which will be dealt in our upcoming paper, (cf.
[6]).

Theorem 1. Let M, X̃ and a 𝜌:𝜋1(M)→ Isom(X̃) be as follows:
– M = M̄∖Σ where Σ is a normal crossing divisor is a quasi-compact Kähler manifold of dimension 2 with

universal cover M̃
– X̃ is an NPC space
– 𝜌 is proper (cf. Definition 2.7).
– 𝜌(𝜋1(M)) satisfies Property (⋆) defined in Section 2.4.

Then there exists a Poincaré-type Kähler metric g (cf. Section 3.4) and 𝜌-equivariant harmonic map ũ: M̃ → X̃.
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Many interesting examples satisfy Property (⋆). These include homomorphisms into semisimple algebraic
groups defined over ℝ, ℂ or p-adic fields. See Remark 2.9.

Remark 1.1. We will also prove logarithmic energy estimates near infinity (cf. Theorem 6.6 and Theorem 6.7).
This means that, for any transverse holomorphic disk to the divisor, the energy density behaves ∼ 1

|z|2 .

Themain idea of the proof of Theorem 1 is to construct a prototypemapwhich almostminimizes energy near
infinity. This map is used to construct a Dirichlet solution defined on a compact subset of the domain. Because
of the energy control, the sequence of harmonic maps corresponding to a compact exhaustion converges to an
infinite energy harmonicmap defined on thewhole surface. This idea goes back to Lohkamp [1]. In our situation,
the normal bundle of the divisor Σmay be non-trivial and the divisor may consist of more than one irreducible
component. In otherwords, a quasi-compact Kähler surfaceM = M̄∖Σ does not necessarily satisfy the simplicity
condition of Lohkamp.

In [4], Jost and Zuo sketched a construction of harmonic maps from quasi-projective manifolds. The point
of this paper is to provide the details of this argument for a quasi-compact Kähler surface. We felt that a careful
presentation of this argument is necessary because all the constructions in our future papers (e.g. [6]) depend
on this result.

In a remarkable paper, Mochizuki [7] proved the existence of pluriharmonic metrics on flat vector bundles
over quasi-projective manifolds of any dimension. These metrics correspond to pluriharmonic maps into the
symmetric space GL(r,ℂ)∕U(r) by the Donaldson-Corlette theorem (cf. [8], [9]). In the forthcoming papers, we
will generalize Mochizuki’s result when the target is a symmetric space of non-compact type, a Euclidean or a
hyperbolic building and Teichmüller space. Indeed, we will first prove that the harmonic map of Theorem 1 is
actually pluriharmonic in these special cases. This is derivedby adoptingMochizuki’s version of the Siu-Sampson
Bochner formula (cf. [10], [11]). We then prove the existence of a pluriharmonic map from a quasi-projective
manifold of any dimension by an induction argument.

One of ourmain applications of the existence of pluriharmonicmaps is the construction of logarithmic sym-
metric differential forms over quasi-projectmanifolds. Using this, we prove a logarithmic version of a conjecture
by Esnault in the linear case [6].

We provide an outline of the paper below.
In Section 3, we discuss neighborhoods of the divisor and a Poincaré-type metric g (cf. Definition 3.4) due

to Cornalba and Griffiths [12]. This is a complete metric which puts the divisor at infinity.
In Section 4,we construct a prototype section𝑣:M → M̃×𝜌X̃ with controlled growth near infinity. The crucial

tool is the Dirichlet solution on the punctured disk (cf. [10], [11] or Theorem 2.16). This enables us to construct a
fiber-wise harmonicmap on the normal bundle of the divisor. Thismap defined near the divisor is then extended
to all ofM.

In Section 5, we give precise estimates for energy growth of the prototype section near the divisor at infinity.
These are important because they imply the estimates for the harmonic section.

In Section 6, we use the prototype section 𝑣:M → M̃×𝜌X̃ in order to construct a harmonic section u:M →
M̃×𝜌X̃. We end with some energy estimates of the harmonic section.

In Section 7, we sketch a proof in the case of higher dimensional quasi-compact Kähler manifolds. Note that
in our upcoming papers, we will only use the two-dimensional case and this is why we gave the details only for
Kähler surface domains.

2 Preliminaries

2.1 NPC spaces
We refer to [13] for more details.
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Definition 2.1. A curve c: [a, b]→ X̃ into a metric space is called a geodesic if length(c([𝛼, 𝛽])) = d(c(𝛼), c(𝛽)) for
any subinterval [𝛼, 𝛽] ⊂ [a, b]. (Note that a identically constant map from an interval is a geodesic.) A metric
space X̃ is a geodesic space if there exists a geodesic connecting every pair of points in X̃.

Definition 2.2. An NPC space X̃ is a complete geodesic space that satisfies the following condition: For any three
points P,R,Q ∈ X̃ and an arclength parameterized geodesic c: [0, l]→ X̃ with c(0) = Q and c(l) = R,

d2(P,Qt) ≤ (1− t)d2(P,Q)+ td2(P,R)− t(1− t)d2(Q,R)

where Qt = c(tl).

Notation 2.3. It follows immediately fromDefinition 2.2 that, given P,Q ∈ X̃ and t ∈ [0, 1], there exists a unique
point with distance from P equal to td(P,Q) and the distance from Q equal to (1− t)d(P,Q). We denote this
point by

(1− t)P + tQ.

Definition 2.4. Let X̃ be an NPC space. We say that two geodesics rays c, c′: [0,∞)→ X̃ are equivalent if there
exists a constant K such that d(c(t), c′(t)) ≤ K for all t ∈ [0,∞). Denote the equivalence class of a geodesic ray c
by [c]. The set 𝜕X̃ of boundary points of X̃ is the set of equivalence classes of non-constant geodesic rays. Note
that an isometric action on X̃ induces an action on 𝜕X̃.

2.2 Maps into NPC spaces
In this paper, we consider harmonic maps into NPC spaces. Important examples are when the target space X̃ is
a smooth Riemannian manifold of non-positive sectional curvature. In this case, the energy of a smooth map
f :Ω→ X̃ is

E f = ∫
Ω

|d f |2dvolg

where (Ω, g) is a Riemannian domain and dvolg is the volume form ofΩ.
In the case when the target is an arbitrary NPC space, we use the following definition of energy due to

Korevaar-Schoen. We refer to [14] for more details.
Let (Ω, g) be a bounded Lipschitz Riemannian domain. Let Ω𝜖 be the set of points in Ω at a distance least

𝜖 from 𝜕Ω. Let B𝜖(x) be a geodesic ball centered at x and S𝜖(x) = 𝜕B𝜖(x). We say f : Ω→ X is an L2-map (or that
f ∈ L2(Ω,X)) if

∫
Ω

d2( f , P)dvolg < ∞.

For f ∈ L2(Ω,X), define

e𝜖 :Ω→ R, e𝜖(x) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

∫
y∈S𝜖 (x)

d2( f (x), f (y))
𝜖2

d𝜎x,𝜖
𝜖 x ∈ Ω𝜖

0 otherwise

where 𝜎x,𝜖 is the induced measure on S𝜖(x). We define a family of functionals

E f
𝜖 : Cc(X)→ R, E f

𝜖 (𝜑) = ∫
Ω

𝜑e𝜖dvolg .

We say f has finite energy (or that f ∈ W 1,2(Ω,X)) if

E f := sup
𝜑∈Cc(Ω),0≤𝜑≤1

lim sup
𝜖→0

E f
𝜖 (𝜑) < ∞.
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It is shown in [14] that if f has finite energy, the measures e𝜖(x)dvolg converge weakly to a measure which is
absolutely continuous with respect to the Lebesgue measure. Therefore, there exists a function e(x), which we
call the energy density, so that e𝜖(x)dvolg ⇀ e(x)dvolg . In analogy to the case of smooth targets, wewrite |∇ f |2(x)
in place of e(x). In particular, the (Korevaar-Schoen) energy of f inΩ is

E f [Ω] = ∫
Ω

|∇ f |2dvolg.

Definition 2.5. We say a continuous map u:Ω→ X̃ from a Lipschitz domainΩ is harmonic if it is locally energy
minimizing;more precisely, at each p ∈ Ω, there exists a neighborhoodΩ of p so that all continuous comparison
maps which agree with u outside of this neighborhood have no less energy.

For V ∈ ΓΩwhereΓΩ is the set of Lipschitz vector fields onΩ, | f∗(V)|2 is similarly defined. The real valued
L1 function | f∗(V)|2 generalizes the norm squared on the directional derivative of f . The generalization of the
pull-back metric is the continuous, symmetric, bilinear, non-negative and tensorial operator

𝜋 f (V ,W) = ΓΩ × ΓΩ→ L1(Ω,R)

where
𝜋 f (V ,W) = 1

2 | f∗(V +W)|2 − 1
2 | f∗(V −W)|2.

We refer to [14] for more details.
Let (x1, . . . , xn) be local coordinates of (Ω, g) and g = (gij), g−1 = (gij) be the local metric expressions. Then

energy density function of f can be written (cf. [14, (2.3vi)])

|∇ f |2 = gi j𝜋 f

(
𝜕
𝜕xi ,

𝜕
𝜕x j

)

Next assume (Ω, g) is a 2-dimensional Hermitian domain and let (z1 = x1 + ix2, z2 = x3 + ix4) be local complex
coordinates. We extend 𝜋 f linearly cover ℂ and denote

𝜕 f
𝜕zi ⋅

𝜕 f
𝜕z̄ j = 𝜋 f

(
𝜕
𝜕zi ,

𝜕
𝜕z̄ j

)

and
||||
𝜕 f
𝜕zi

||||
2
= 𝜋 f

(
𝜕
𝜕zi ,

𝜕
𝜕z̄i

)
.

Thus,
1
4 |∇ f |2 = gij̄ 𝜕 f𝜕zi ⋅

𝜕 f
𝜕z̄ j .

2.3 Isometries of an NPC space
Throughout this paper, we denote the group of isometries of an NPC space X̃ by Isom(X̃). Isometries of an NPC
space are classified as follows.

Definition 2.6. For I ∈ Isom(X̃), let
ΔI := inf

P∈X̃
d(I(P), P)

denote its translation length and define

Min(I) :={P ∈ X̃: d(I(P), P) = ΔI}.

The isometry I is elliptic if ΔI = 0 and Min(I) ≠ ∅. It is hyperbolic if ΔI > 0 and Min(I) ≠ ∅. If I is elliptic or
hyperbolic, then we say I is semisimple. Otherwise, I is said to be parabolic.
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Definition 2.7. Let Γ be a finitely generated group, Λ be a finite set of generators of Γ, X̃ be an NPC space and
𝜌:Γ→ Isom(X̃) be a homomorphism. Define 𝛿: X̃ → [0,∞) to be the function

𝛿(P) = max{d(𝜌(𝜆)P, P):𝜆 ∈ Λ}.

We say 𝜌 is proper if the sublevel sets of the function 𝛿 are bounded in X̃; i.e. given c > 0, there exists P0 ∈ X
and R0 > 0 such that

{P ∈ X̃: 𝛿(P) ≤ c} ⊂ BR0 (P0).

Remark 2.8. If X̃ is locally compact and 𝜌 does not fix a point at infinity, then 𝜌 is proper by [15, Theorem 2.2.1].

2.4 Property (⋆)
Given a homomorphism 𝜌:𝜋1(M)→ Isom(X̃), we say 𝜌(𝜋1(M)) satisfies Property (⋆) if following holds:
– Every I ∈ 𝜌(𝜋1(M)) has exponential decay to its translation length. In other words, either

(i) I is semisimple, or
(ii) I is parabolic, fixes 𝜉 ∈ 𝜕X̃ and there exists a geodesic ray c: [0,∞)→ X̃ and a, b > 0 such that

d2(I(c(t)), c(t)) ≤ Δ2
I + be−at.

– For any commuting pair of isometries I1, I2 ∈ 𝜌(𝜋1(M)), either
(i) I1, I2 do not fix a common point of 𝜕X̃, or
(ii) I1, I2 fix a commonpoint 𝜉 ∈ 𝜕X̃ and there exist an arclength parameterized geodesic ray c: [0,∞)→ X̃

in the equivalence class 𝜉 and a, b > 0 such that

d2(Ii(c(t)), c(t)) ≤ Δ2
Ii + be−at, i = 1, 2.

Remark 2.9. Let G be a semisimple algebraic group defined over ℝ or ℂ acting on a symmetric space G∕K of
non-compact type or let G be a semisimple algebraic group defined over some non-archimedean local field K
acting on a Bruhat-Tits building without a Euclidean factor. If 𝜌:𝜋1(M)→ G is a homomorphism, then 𝜌(𝜋1(M))
satisfies Property (⋆).

Lemma 2.10. Let C be a closed convex set in X̃ and 𝜋: X̃ → C a closest point projection map; i.e. 𝜋(x) is the unique
point of C such that d(x,𝜋(x)) = miny∈Cd(x, y). If I ∈ Isom(X̃) is such that I(C) = C, then I ⚬𝜋(x) = 𝜋 ⚬ I(x).

Proof. Since I ⚬𝜋(x), I−1 ⚬𝜋 ⚬ I(x) ∈ C, the definition of 𝜋 implies

d(I(x),𝜋 ⚬ I(x)) ≤ d(I(x), I ⚬𝜋(x)) = d(x,𝜋(x))

≤ d(x, I−1 ⚬𝜋 ⚬ I(x)) = d(I(x),𝜋 ⚬ I(x)).

Thus, d(I(x),𝜋 ⚬ I(x)) = d(I(x), I ⚬𝜋(x)) which implies 𝜋 ⚬ I(x) = I ⚬𝜋(x). □

Lemma 2.11. Let 𝛾 1 and 𝛾2 be generators of the abelian group 2𝜋ℤ × 2𝜋ℤ acting on ℝ ×ℝ by translations
𝛾 1 ⋅ (x, y) = (x + 2𝜋, y) and 𝛾2 ⋅ (x, y) = (x, y+ 2𝜋) respectively. For a commuting pair of isometries I1 and I2, let
⟨I1, I2⟩ ⊂ Isom(X̃) be the subgroup generated by I1, I2 and 𝜌: 2𝜋ℤ × 2𝜋ℤ ≃ 𝜋1(𝕊1) × 𝜋1(𝕊1)→ ⟨I1, I2⟩ be the homo-
morphism defined by 𝛾 1 ↦ I1, 𝛾2 ↦ I2. If I1, I2 satisfy either (i) or (ii) of the second bullet point of Property (⋆), then
there exist constants a, b > 0 and a 𝜌-equivariant map

h̃: [0,∞) ×ℝ ×ℝ→ X̃

such that
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|||||
𝜕h̃
𝜕t

|||||

2
≤ 1,

|||||
𝜕h̃
𝜕x

|||||

2
≤ Δ2

I1
4𝜋2 + be−at,

|||||
𝜕h̃
𝜕y

|||||
≤ Δ2

I2
4𝜋2 + be−at.

Proof. Assume that (i) of the second bullet point holds. Then by [15, Theorem 2.2.1 and Corollary 1.5.3), there
exists a totally geodesic 𝜌-equivariant map f̃ :ℝ ×ℝ→ X̃. In particular, c(t) := f̃ (t, y) maps to a point or is a con-
stant speed reparameterization of a geodesic. Since I1 ⚬ c(t) = I1 ⚬ f̃ (t, y) = f̃ (t + 2𝜋, y) = c(t + 2𝜋), the isometry
I1 fixes c(t). If c(t) maps to a point, then I1 is an elliptic isometry fixing that point. If c(t) is a geodesic line, then
I1 is a hyperbolic isometry fixing C := c(ℝ). Since I1 commutes with the closest point projection map 𝜋: X̃ → C
by Lemma 2.10, d(I1(x), x) ≥ d(𝜋 ⚬ I1(x),𝜋(x)) ≥ d(I1 ⚬𝜋(x),𝜋(x)) for all x ∈ X̃. Thus, ΔI1 = ΔI1|C which implies
d(f̃ (t, y), f̃ (t + 2𝜋, y)) = d(c(t), c(t + 2𝜋)) = ΔI1 . Similarly, d(f̃ (x, t), f̃ (x, t + 2𝜋)) = ΔI2 . Thus,

|||||
𝜕 f̃
𝜕x

|||||

2
=

Δ2
I1

4𝜋2 ,
|||||
𝜕 f̃
𝜕y

|||||
=

Δ2
I2

4𝜋2 .

Thus, the map h̃(t, x, y) = f̃ (x, y) satisfies the desired inequalities.
Next, assume that (ii) of the second bullet point holds. Define

h̃: [0,∞) ×ℝ ×ℝ→ X̃

as follows: Fix t ∈ [0,∞). For 𝜃 ∈ [0, 2𝜋), let 𝜃 ↦ h̃(t, 𝜃, 0) be a geodesic from c(t) to I1 ⚬ c(t) and 𝜃 ↦ h̃(t, 𝜃, 2𝜋)
be a geodesic from I2(c(t)) to I1 ⚬ I2(c(t)) = I2 ⚬ I1(c(t)). Next, let 𝜃 ↦ h̃(t, x, 𝜃) be a geodesic from h̃(t, x, 0) to
h̃(t, x, 2𝜋). Finally, 𝜌-equivariantly extend to define this map on t ×ℝ ×ℝ. The NPC condition implies the asser-
tion. □

2.5 Equivariant maps and sections of the associated flat X̃-bundle
Following Donaldson [8], we will replace equivariant maps with sections of an associated fiber bundle. Assume
we have the following:
– a complete Riemannian manifold (M, g) with universal coveringΠ: M̃ →M
– an NPC space X̃
– an action of 𝜋1(M) on M̃ by deck transformations
– a homomorphism 𝜌:𝜋1(M)→ Isom(X̃)

Definition 2.12. A map f̃ : M̃ → X̃ is said to be 𝜌-equivariant if

f̃ (𝛾 p) = 𝜌(𝛾)f̃ (p), ∀𝛾 ∈ 𝜋1(M), p ∈ M̃.

Remark 2.13. Assume 𝜌:𝜋1(M)→ Isom(X̃) is proper (cf. Definition 2.7). If there exists a finite energy
𝜌-equivariant map f : M̃ → X̃, then there exists a Lipschitz harmonic map u: M̃ → X̃ (cf. [15, Theorem 2.1.3,
Remark 2.1.5]). In this paper, we are trying to establish the existence of a harmonic map without assuming that
there exists a finite energy map to start with.

The quotient under the action of 𝜋1(M) of the product M̃ × X̃ is the twisted product

M̃×𝜌X̃.

In other words, M̃×𝜌X̃ is the set of orbits [(p, x)] of a point (p, x) ∈ M̃ × X̃ under the action of 𝛾 ∈ 𝜋1(M) via the
deck transformation on the first component and the isometry 𝜌(𝛾) on the second component. The fiber bundle

M̃×𝜌X̃ →M

is called the flat X̃-bundle overM defined by 𝜌.
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There is a one-to-one correspondence between sections of this fibration and 𝜌-equivariant maps

f̃ : M̃ → X̃ ⟷ f :M → M̃×𝜌X̃

satisfying the relationship
[(p̃, f̃ (p̃))] ↔ f (p) where Π(p̃) = p.

Since the energy density function |∇f̃ |2 of f̃ is a 𝜌-invariant function, we can define

|∇ f |2(p) := |∇f̃ |2(p̃).

We can similarly define the pullback inner product and directional energy density functions of f by using the
corresponding notions for f̃ given in Section 2.2. For U ⊂ M, the energy of a section f is

E f [U] = ∫
U

|∇ f |2dvolg. (2.1)

Furthermore, for sections f1, f2, we define

d( f1(p), f2(p)) := d(f̃ 1(p̃), f̃ 2(p̃)) (2.2)

where f̃ 1, f̃ 2 are the associated 𝜌-equivariant maps to sections f1, f2 respectively.

2.6 Harmonic maps from punctured Riemann surfaces
In this paper, many of the constructions will depend on harmonic maps for punctured Riemann surfaces. Below,
we summarize the results of the paper [10], [11].

Let ̄ be a compact Riemann surface and  = ̄∖{p1,… , pn} a punctured surface. We fix a conformal
disk 𝔻 j ⊂ ̄ centered at each puncture pj such that 𝔻i ∩ 𝔻 j = ∅ for i ≠ j. Furthermore, let 𝔻 j∗ = 𝔻 j∖{0}.

Fix P0 ∈ X̃ and a fundamental domain F of ̃. Let f0 be the section of the fiber bundle ̃×𝜌X̃ → such
that, for any p ∈  ∩ Π(F), f0(p) = [(p̃, P0)] where p̃ = Π−1(p) ∩ F. (Note thatΠ(F) is of full measure in.)

For a given section f :→×𝜌X̃, define

𝛿 j:𝔻 j∗ → [0,∞), 𝛿 j(z) = ess inf
{z∈𝔻 j∗}

d( f (z), f0(z)). (2.3)

Recall that d( f (z), f0(z)) is defined by (2.2).

Definition 2.14. We say a section f :→ ̃×𝜌X̃ (or its associated equivariant map) has sub-logarithmic growth
if for any j = 1, . . . , n and any 𝜖 > 0

lim
|z|→0

𝛿 j(z)+ 𝜖 log |z| = −∞ in 𝔻 j∗.

By the triangle inequality, this definition is independent of the choice of P0 ∈ X̃. We say that f has logarithmic
energy growth if near the punctures it satisfies

n∑
j=1

Δ2
I j

2𝜋 log 1r ≤ E f [r] ≤
n∑
j=1

Δ2
I j

2𝜋 log 1r + C (2.4)

wherer = ∖⋃n
j=1𝔻

j
r and E f [r] is the energy of f inr.

Definition 2.15. For a homomorphism 𝜌: 2𝜋ℤ ≃ 𝜋1(𝕊1)→ X̃, let ℝ×𝜌X̃ → 𝕊1 be the flat X̃-fiber bundle defined
by 𝜌 (cf. Subsection 2.5). Define E𝜌 to be the infimum of the energies of sections 𝕊1 → ℝ×𝜌X̃ (cf. (2.1)). IfΔI is the
translation length of the isometry I := 𝜌([𝕊1]), then E𝜌 = Δ2

I
2𝜋 .

We record our result in [6], [7].
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Theorem 2.16. (Existence and Uniqueness of the Dirichlet solution on 𝔻∗). Assume the following:
– 𝜌: 2𝜋ℤ ≃ 𝜋1(𝕊1) ≃ 𝜋1(𝔻̄∗)→ Isom(X̃) is a homomorphism
– k: 𝔻̄∗ → ̃̄𝔻∗×𝜌X̃ is a locally Lipschitz section
– I := 𝜌([𝕊1]) has exponential decay to its translation length of Property (⋆)

Then there exists a harmonic section

u: 𝔻̄∗ → ̃̄𝔻∗×𝜌X̃ with u|𝕊1 = k|𝕊1 .

Furthermore, there exists a constant C > 0 that depends only on E𝜌 of Definition 2.15, a, b from Property (⋆) and
the section k satisfying the following properties:
(i) E𝜌 log 1

r ≤ Eu[𝔻r,1] ≤ E𝜌 log 1
r + C, 0 < r ≤ 1

(ii) |||
𝜕u
𝜕r
|||
2 ≤ C

r2(− log r) and
(
|||
𝜕u
𝜕𝜃
|||
2
− E𝜌

2𝜋

)
≤ C

− log r in 𝔻
∗
1
2

(iii) u has sub-logarithmic growth.

Moreover, u is the only harmonic section satisfying u|𝜕𝔻 = k|𝜕𝔻 and property (iii).

3 The Poincaré-type metric and its estimates

3.1 Neighborhoods near the divisor
This subsection closely follows [7]. We let M̄ be a Kähler surface and Σ be a divisor with normal crossings such
that

M = M̄∖Σ.
Furthermore, let

Σ =
L⋃
j=1

Σ j

where {Σ j} is the set of irreducible components of Σ. Let 𝜎 j be the canonical section of (Σ j) with zero set Σ j.
We denote by 𝔻 the unit disk in the complex plane and let

𝔻r :={z ∈ 𝔻: |z| < r} and 𝔻r1,r2 :={z ∈ 𝔻: r1 < |z| < r2}.

For clarity, we will also denote the unit disk by 𝔻z to indicate that 𝔻 is being parameterized by the complex
variable z = rei𝜃 . We use analogous notation 𝔻z,r, 𝔻z,r1,r2 . We also use the notation 𝕊1

𝜃 to denote the circle 𝕊1

parameterized by the real variable 𝜃 and identify 𝕊1
𝜃 as the boundary of 𝔻z via the map 𝜃 ↦ ei𝜃 .

To study a neighborhood of the juncture, let P ∈ Σi ∩ Σ j for some i, j ∈ {1, . . . , L}with i ≠ j, and let VP be a
neighborhood of P containing no other crossings. Choose holomorphic trivializations ei (resp. ej) of (Σi) (resp.(Σ j)) on VP and define z1 (resp. z2) by setting

𝜎i = z1ei,
(
resp. 𝜎 j = z2e j

)
. (3.1)

For each j = 1, . . . , L, let hj be a Hermitian metric on (Σ j) such that |e j|h j
= 1 in VP for any crossing P. Let h be

a Hermitian metric on M̄, not necessarily Kähler, such that the following holds:
(i) The metric h is the Euclidean metric in a neighborhood VP of every crossing P, i.e.

h|VP = dz1dz̄1 + dz2dz̄2. (3.2)

By rescaling 𝜎1 and 𝜎2 if necessary, we can assume without the loss of generality that

𝔻̄z1 × 𝔻̄z2 ⊂ VP. (3.3)
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(ii) The metric h induces the orthogonal decomposition TM̄|Σ j
= TΣ j ⊕ NΣ j and under the natural isomor-

phism
NΣ j ≃ (Σ j)|Σ j

, (3.4)

the restriction of h to NΣ j is same as hj.

For r ∈ (0, 1], we set

 j,r = {𝜈 ∈ NΣ j: |𝜈|h j
< r},

∗
j,r = {𝜈 ∈ NΣ j: 0 < |𝜈|h j

< r},

̄ j,r = {𝜈 ∈ NΣ j: |𝜈|h j
≤ r}

̄∗
j,r = {𝜈 ∈⊂ NΣ j: 0 < |𝜈|h j

≤ r},

r =
L⋃
j=1

 j,r, ∗
r =

L⋃
j=1

∗
j,r, ̄r =

L⋃
j=1

̄ j,r, ̄∗
r =

L⋃
j=1

∗
j,r

r1,r2 = r2∖̄r1 for 0 < r1 < r2 ≤ 1. (3.5)

There exists r > 0 such that the restriction of the exponential map

exp:NΣ j ⊂ TM̄|Σ j
→ M̄

defines diffeomorphism of j,r to a neighborhood ofΣ j in M̄. By rescaling 𝜎 j if necessary, wemay assume r > 1.
In particular, we identify (3.5) for sufficiently small r > 0 as an open subset ofM via the exponential map; i.e.

r1,r2 :=
⋃
j
{exp 𝜈: 𝜈 ∈ NΣ j, r1 < |𝜈|h j

< r2} ⊂ M. (3.6)

Denote
̄ j := ̄ j,1 ⊂ NΣ j.

The restriction of NΣ j → Σ j to ̄ j defines a disk bundle

𝜋 j: ̄ j → Σ j. (3.7)

We also identity ̄ j as a subset of M̄; i.e.
̄ j ≃ exp(̄ j) ⊂ M̄. (3.8)

We denote by JM̄ the holomorphic structure on ̄ j defined by pulling back the complex structure on M̄ via the
exponential map.

We now consider a finite collection of sets near the divisor of the following two types:
– A set of type (A) admits a local unitary trivialization

𝜋−1
j (Ω) ≃ Ω× 𝔻̄z2 , (3.9)

of 𝜋 j: ̄ j → Σ j whereΩ ⊂ Σ j is a contractible open subset ofΣ j containing no crossings. Wewill use coordi-
nates (z1, z2) where z1 is a holomorphic local coordinate inΩ and z2 is the standard coordinate of 𝔻̄. Although
the coordinates (z1, z2) are holomorphic with respect to the product complex structure Jprod ofΩ× 𝔻̄z2 , they
are not holomorphic with respect to the complex structure JM̄ . However, by construction, we have that

JM̄ = Jprod on T(z1,0)
(
Ω× 𝔻̄z2

)
.
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– A set of type (B) is as in (3.3); i.e.
𝔻̄z1 × 𝔻̄z2 ⊂ VP (3.10)

where VP be an open set containing a single crossing P ∈ Σi ∩ Σ j (i ≠ j). By the property (i) of the hermitian
metric h, (z1, z2) are holomorphic coordinates with respect to JM̄ . Furthermore, with the identification 𝔻̄z1 ≃
𝔻̄z1 × {0} ⊂ Σ1 (resp. 𝔻̄z2 ≃ {0} × 𝔻̄z2 ⊂ Σ2),

𝜋−1
j
(
𝔻̄z1

)
≃ 𝔻̄z1 × 𝔻̄z2 (resp. 𝜋−1

i
(
𝔻̄z2

)
≃ 𝔻̄z1 × 𝔻̄z2 ) (3.11)

is a local unitary trivialization of 𝜋 j: ̄ j → Σ j (resp. 𝜋i: ̄i → Σi).

Definition 3.1. We will refer to the coordinates (z1, z2) discussed in (A) above as the standard product coordi-
nates on a setΩ× 𝔻̄z2 of type (A).

Definition 3.2. We will refer to the coordinates (z1, z2) discussed in (B) above as the standard product coordi-
nates and the holomorphic coordinates on a set 𝔻̄∗

z1 × 𝔻̄∗
z2 of type (B).

Remark 3.3. Holomorphic coordinates in a set of type (A) are defined later (cf. Definition 3.6).

3.2 Poincaré-type metric
Recall the Poincaré metric

gpoin = Re
(

dz⊕ dz̄
|z|2(log |z|2)2

)
on 𝔻∗. (3.12)

Using the canonical section 𝜎 j ∈ (Σ j) and the Hermitian metric hj on (Σ j) given in Section 3.1, we define the
Poincare-type metric onM as follows:

Definition 3.4. Let 𝜔̄ be the Kähler form on M̄. Scale the metric hj such that |𝜎 j|h j
< 1 and define

𝜔 = 𝜔̄−
√
−1
2

L∑
l=1
𝜕𝜕̄ log

(
log |𝜎 j|−2h j

)
. (3.13)

By scaling 𝜔̄ if necessary, we can assume that𝜔 defines a positive form. We denote by g the Kähler metric onM
induced by the Kähler form 𝜔.

Definition 3.5. Fix j and define on M̄∖⋃i≠ jΣi the Kähler form

𝜔+
√
−1
2 𝜕𝜕̄ log log |𝜎 j|−2h j

= 𝜔̄−
√
−1
2

∑
i≠ j
𝜕𝜕̄ log log |𝜎i|−2hi . (3.14)

Define gΣ j
to be the restriction toΣ j∖

⋃
i≠ j Σi of the Kählermetric associated to this Kähler form. This is a smooth

metric on Σ j away from the crossings.

Below we derive some estimates for the metric g in a set of type (A) and of type (B) (See (3.9) and (3.10) for
definitions of a set of type (A) and (B)). These are an expanded form of the estimates derived by Mochizuki [7].

3.3 Metric estimates in set of type (A)
Let 𝜋−1

j (Ω) ≃ Ω× 𝔻̄ be a set of type (A) with the standard product coordinates (z1, z2). (Recall thatΩ ⊂ Σ j does
not intersect Σi for i ≠ j.) We will write

z1 = x + iy and z2 = rei𝜃 .



G. Daskalopoulos and C. Mese: Infinite energy harmonic maps from quasi-compact Kähler surfaces — 113

Fix a local trivialization e of (Σ j), holomorphic with respect to the complex structure JM̄ . Define

b:Ω× 𝔻̄→ [0,∞), b = |e|−2h j
. (3.15)

With 𝜎 j the canonical section of (Σ j) as before, define a function 𝜁 onΩ× 𝔻̄ by

𝜎 j = 𝜁e. (3.16)

Thus, 𝜁 is holomorphic with respect to JM̄ .

Definition 3.6. We refer to
(z1, 𝜁 )

as the holomorphic coordinates (with respect to JM̄ ) on a setΩ× 𝔻̄ of type (A).

Since z2 = 0 = 𝜁 onΩ × {0} and z2 ≠ 0, 𝜁 ≠ 0 onΩ× 𝔻̄∗,

d log z2 − d log 𝜁 = dz2
z2 − d𝜁

𝜁 = O(1)(dz1 + dz̄1 + dz2 + dz̄2).

Taking real and imaginary parts,
dr
r − ds

s = O(1)(dz1 + dz̄1 + dz2 + dz̄2)

d𝜃 − d𝜂 = O(1)(dz1 + dz̄1 + dz2 + dz̄2). (3.17)

Let
a:Ω× 𝔻̄→ ℂ∗

be a smooth function bounded above and bounded away from 0 satisfying

ad𝜁 |Ω×{0} = dz2|||( p,0), ∀z1 ∈ Ω. (3.18)

Thus,
ad𝜁 = dz2(1+ O(r)) = dz2

z2 z
2(1+ O(r)) =

(
d𝜁
𝜁 + O(1)

)
z2(1+ O(r)).

Plugging in 𝜕
𝜕𝜁 in the above equation, we obtain

a = z2
𝜁 (1+ O(r)). (3.19)

From this, we immediately obtain

|a𝜁 | = r(1+ O(r))

log |a𝜁 |2 = log r2 + log(1+ O(r)) = log r2 + O(r).

This implies

log |𝜎 j|−2h j
= log b|𝜁 |−2 = log b− log r2 + log |a|2 + O(r) = − log r2 + A+ O(r)

where
A(z1) = log b(z1, 0)+ log |a(z1, 0)|2.

The function a depends on the choice of e and 𝜎 whereas the function b depends on the choice of e and hj.
Thus, by scaling 𝜎 if necessary, we can assure that b satisfies the following two conditions:

− log |𝜁 |2 + log b > 0 on Ω× 𝔻̄ (3.20)
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log b+ log |a|2 > 0 on Ω× {0}. (3.21)
We compute

−
√
−1
2 𝜕𝜕̄ log log |𝜎 j|−2h j

=
√
−1
2

⎛
⎜
⎜
⎜⎝

𝜕 log |𝜎 j|2h j
∧ 𝜕̄ log |𝜎 j|2h j(

log |𝜎 j|2h j

)2 −
𝜕𝜕̄ log |𝜎 j|2h j

log |𝜎 j|2h j

⎞
⎟
⎟
⎟⎠

=
√
−1
2

⎛
⎜
⎜
⎜⎝

(𝜕 log 𝜁 + 𝜕 log b) ∧ (𝜕̄ log 𝜁 + 𝜕̄ log b)(
log |𝜎 j|2h j

)2 − 𝜕𝜕̄ log b
log |𝜎 j|2h j

⎞
⎟
⎟
⎟⎠
.

=
√
−1
2

⎛
⎜
⎜
⎜⎝

𝜕 log 𝜁 ∧ 𝜕̄ log 𝜁(
log |𝜎 j|2h j

)2 + 𝜕 log 𝜁 ∧ 𝜕̄ log b(
log |𝜎 j|2h j

)2

+ 𝜕 log b ∧ 𝜕̄ log 𝜁(
log |𝜎 j|2h j

)2 + 𝜕 log b ∧ 𝜕̄ log b(
log |𝜎 j|2h j

)2 − 𝜕𝜕̄ log b
log |𝜎 j|2h j

⎞
⎟
⎟
⎟⎠
. (3.22)

Note that because of (3.18) and since b is a smooth function bounded away from 0, we have

𝜕 log 𝜁 ∧ 𝜕̄ log 𝜁(
log |𝜎 j|2h j

)2 = dz2 ∧ dz̄2
r2(− log r2 + A)2 + Error1 + Error2

𝜕 log 𝜁 ∧ 𝜕̄ log b(
log |𝜎 j|2h j

)2 , 𝜕 log b ∧ 𝜕̄ log 𝜁(
log |𝜎 j|2h j

)2 = Error1 + Error2

𝜕 log b ∧ 𝜕̄ log b(
log |𝜎 j|2h j

)2 , 𝜕𝜕̄ log b
log |𝜎 j|2h j

= Error2. (3.23)

where Error1 is a form of the type

O
(

1
r(− log r2 + A)2

)
dz1 ∧ dz̄2 or O

(
1

r(− log r2 + A)2
)
dz2 ∧ dz̄1

and Error2 is a form of the type

O
(

1
(− log r2 + A)2

)
dz1 ∧ dz̄1 or O

(
1

(− log r2 + A)2
)
dz2 ∧ dz̄2.

In coordinate z1 of Ω ⊂ Σ j, let the local expression of the metric gΣ j
given by Definition 3.5 be 𝜆 dz1dz̄1.

Then it follows from the above estimates that in the coordinates (z1, z2) of Ω× 𝔻̄ and with r = |z2|, the metric
expression of g is

(
g11̄ g12̄
g21̄ g22̄

)
=

⎛
⎜
⎜
⎜
⎜⎝

𝜆+ O
(

1
(− log r2 + A)2

)
O
(

1
r(− log r2 + A)2

)

O
(

1
r(− log r2 + A)2

)
1

r2(− log r2 + A)2 + O
(

1
(− log r2 + A)2

)
⎞
⎟
⎟
⎟
⎟⎠

. (3.24)

Furthermore, the local expression for the inverse g−1 is
(
g11̄ g12̄

g21̄ g22̄

)
=

⎛
⎜
⎜⎝

1
𝜆 + O

(
r2
)

O(r)
O(r) r2(− log r2 + A)2 + O(r2)

⎞
⎟
⎟⎠
. (3.25)
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The product metric P onΩ× 𝔻̄ is defined by taking the dominant terms of g. More precisely, let
(
P11̄ P12̄
P21̄ P22̄

)
=

⎛
⎜
⎜⎝

𝜆 0

0 1
r2(− log r2 + A)2

⎞
⎟
⎟⎠
. (3.26)

The inverse P−1 (
P11̄ P12̄

P21̄ P22̄

)
=

⎛
⎜
⎜⎝

1
𝜆 0

0 r2(− log r2 + A)2
⎞
⎟
⎟⎠
.

Thus,

g−1 − P−1 =
(
O
(
r2
)

O(r)
O(r) O

(
r2
)
)
. (3.27)

Comparing the local expression of g and P, we obtain

dvolg = dvolP
(
1+ O

(
1

(− log r2 + A)2
))

. (3.28)

A straightforward computation gives

dvolP = dvolgΣ j
∧ dz2 ∧ dz̄2
−2ir2(− log r2 + A)2

P11̄dvolP = g11̄Σ j
dvolgΣ j

∧ dz2 ∧ dz̄2
−2ir2(− log r2 + A)2

P22̄dvolP = dvolgΣ j
∧ dz2 ∧ dz̄2

−2i . (3.29)

The metric P (and hence the metric g) is of finite volume over Ω× 𝔻∗ since gΣ j
is a smooth metric on Ω ⊂ Σ j

and

VolP(Ω× 𝔻∗) = Area(Ω) ⋅ 2𝜋 lim
𝜖→0

1

∫
𝜖

rdr
r2(− log r2 + A)2

= −Area(Ω) ⋅ 2𝜋 lim
𝜖→0

1

∫
𝜖

d(− log r2 + A)
2(− log r2 + A)2

= −Area(Ω) ⋅ 𝜋 lim
𝜖→0

1
− log r2 + A

||||
1

𝜖
< ∞.

Moreover, since
2𝜋AreagΣ j

(Ω) log r2r1
= ∫

Ω×𝔻r1 ,r2

dvolgΣ j
∧ dr ∧ d𝜃

r = ∫
Ω×𝔻r1 ,r2

P𝜃𝜃dvolP,

there exists a constant C > 0 such that
||||||||

1
2𝜋 ∫

Ω×𝔻r1 ,r2

g𝜃𝜃dvolg − Area(Ω) log r2r1

||||||||
≤ C, 0 < r1 < r2 < 1. (3.30)

Lemma 3.7. The Poincaré type metric g defined by Definition 3.4 satisfies the following: There exists c > 0 such
that, on the setΩ× 𝔻∗

1
4
away from the crossings with holomorphic coordinates (z1, 𝜁 = rei𝜃),

1
c dvolg ≤ 𝜌d𝜌 ∧ d𝜙 ∧ rdr ∧ d𝜃

r2(− log r2)2 ≤ c dvolg
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Proof. This is immediate from the fact that the metric gΣ j
given by Definition 3.5 is smooth combined

with (3.28). □

Remark 3.8. The key feature of the metric P is the following: Define Q to be the product metric

Q = gΣi
⊕ Re

(
dz2dz̄2
−2i

)
= gΣi

⊕ (dr2 + r2d𝜃2) on Ω× 𝔻∗.

Then
P22̄dvolP = Q22̄dvolQ.

This is important in Section 5 below where we estimate the energy of 𝑣. In particular, we have

∫
Ω×𝔻

P22̄
||||
𝜕𝑣
𝜕z2

||||
2
dvolP = ∫

Ω×𝔻

Q22̄||||
𝜕𝑣
𝜕z2

||||
2
dvolQ

= ∫
Ω

⎛
⎜
⎜
⎜⎝

∫
{z2}×𝔻

||||
𝜕𝑣
𝜕z2

||||
2 dz2 ∧ dz̄2

−2i

⎞
⎟
⎟
⎟⎠
dvolgΣ j

.

Note that the inside integral on the right hand side above is exactly the energy of the harmonic map 𝑣|{z1}×𝔻
from the disk.

3.4 Metric estimates in a set of type (B)
First recall that a type (B) set of Section 3.1 is a set 𝔻̄z1 × 𝔻̄z2 with

𝔻̄z1 ⊂ Σ j, 𝔻̄z2 ⊂ Σi and (0, 0) ∈ Σ j ∩ Σi

such that the standard product coordinates (z1, z2) are also holomorphic coordinates with respect to complex
structure JM̄ . Since |𝜎i|hi = |z1| and |𝜎 j|h j

= |z2|,

−
√
−1
2

(
𝜕𝜕̄ log log |𝜎i|−2hi + 𝜕𝜕̄ log log |𝜎 j|−2h j

)
= 𝜕 log z1 ∧ 𝜕̄ log z̄1

(− log |z1|2)2

+ 𝜕 log z2 ∧ 𝜕̄ log z̄2
(− log |z2|2)2 .

In the coordinates (z1, z2) and with 𝜌 = |z1| and r = |z2|, the local expression of the metric P associated to the
above Kähler form is

(
P11̄ P12̄
P21̄ P22̄

)
=

⎛
⎜
⎜
⎜⎝

1
𝜌2(log 𝜌2)2 0

0 1
r2(log r2)2

⎞
⎟
⎟
⎟⎠

(3.31)

and the inverse P−1 is given by
(
P11̄ P12̄

P21̄ P22̄

)
=

(
𝜌2(log 𝜌2)2 0

0 r2(log r2)2

)
.

With ⋄ = O(𝜌2(log 𝜌2)2) and□ = O(r2(log r2)2), the local expression of the metric g and its inverse g−1 is

(
g11̄ g12̄
g21̄ g22̄

)
=

⎛
⎜
⎜
⎜⎝

1
𝜌2(log 𝜌2)2 + O(1) O(1)

O(1) 1
r2(log r2)2 + O(1)

⎞
⎟
⎟
⎟⎠

(3.32)
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(
g11̄ g12̄

g21̄ g22̄

)
=

(
𝜌2(log 𝜌2)2(1+ ⋄+□) ⋄□

⋄□ r2(log r2)2(1+ ⋄+□)

)
. (3.33)

Thus,

g−1 − P−1 =
(
𝜌2(log 𝜌2)2(⋄+□) ⋄□

⋄□ r2(log r2)2(⋄+□)

)
(3.34)

dvolg = dvolP
(
1+ O

(
𝜌2(log r2)2

)
+ O

(
r2(log r2)2

))
. (3.35)

A straightforward computation gives

dvolP =
dz1 ∧ dz̄1

−2i𝜌2(log 𝜌2)2 ∧
dz2 ∧ dz̄2

−2ir2(log r2)2

P11̄dvolP =
dz1 ∧ dz̄1

−2i ∧ dz2 ∧ dz̄2
−2ir2(log r2)2

P22̄dvolP =
dz1 ∧ dz̄1

−2i𝜌2(log 𝜌2)2 ∧
dz2 ∧ dz̄2

−2i . (3.36)

Similarly to (3.30), we also obtain for subsets 𝔻r1,r2 ×Ω,Ω× 𝔻r1,r2 of 𝔻̄z1 × 𝔻̄z2

||||||||

1
2𝜋 ∫

𝔻r1 ,r2×Ω

g𝜙𝜙dvolg − AreagΣi (Ω) log
r2
r1

||||||||
≤ C,

||||||||

1
2𝜋 ∫

Ω×𝔻r1 ,r2

g𝜃𝜃dvolg − AreagΣ j
(Ω) log r2r1

||||||||
≤ C. (3.37)

Lemma 3.9. The Poincaré type metric g of Definition 3.4 satisfies the following: There exists c > 0 such that in
neighborhood 𝔻̄∗

1
4
× 𝔻̄∗

1
4
near a crossing with holomorphic coordinates (z1 = 𝜌ei𝜙, z2 = rei𝜃),

1
c dvolg ≤ 𝜌d𝜌 ∧ d𝜙

𝜌2(− log 𝜌2)2 ∧
rdr ∧ d𝜃

r2(− log r2)2 ≤ c dvolg.

Proof. This is immediate from (3.36). □

4 The prototype section
The goal of this section is to construct a prototype section with logarithmic energy growth near the divisor. The
key is the fiber-wise harmonic sections on the normal bundle of the divisor Σ, the existence of which follows
from the Dirichlet problem on the punctured disk (cf. Theorem 2.16).

Recall the sets of type (A) and of type (B) described in (3.9) and (3.10) respectively. In Section 4.1 and
Section 4.2, we construct a local prototype section in a set of type (A) and (B) respectively. In Section 4.3, we
glue these sections together to define a prototype section near the divisor and extend it to all ofM. In summary,
we construct a locally Lipschitz global section

𝑣:M → M̃×𝜌X̃

of logarithmic energy growth near the divisor.
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4.1 In a neighborhood away from the junctures
The goal of this subsection is to construct a local prototype section in a set of type (A) and derive some energy
estimates. We start with the following:
– Ω× 𝔻̄ is a set of type (A) withΩ ⊂ Σ j
– (z1, z2) are the standard product coordinates ofΩ× 𝔻̄ (cf. (3.1))
– r, 𝜃 are parameters defined by z2 = rei𝜃
– 𝕊1

𝜃 is the boundary 𝜕𝔻̄z2 of 𝔻̄z2
– ℝ𝜃 → 𝕊1 is the universal cover
– ̃̄𝔻∗ → 𝔻̄∗ is the universal cover
–

[
𝕊1
𝜃
]
is the element of 𝜋1

(
𝕊1
𝜃
)
≃ 𝜋1(Ω× 𝔻̄∗) associated to the loop 𝕊1

𝜃 ≃ {z1} × 𝕊1
𝜃

– 𝜌′:𝜋1(Ω× 𝔻̄∗)→ Isom(X̃) is a homomorphism
– (Ω× ̃̄𝔻∗)×𝜌′ X̃ →Ω× 𝔻̄∗ is a fiber bundle
– k:Ω× 𝔻̄∗ → (Ω× ̃̄𝔻∗)×𝜌′ X̃ is a locally Lipschitz section
– ℝ𝜃×𝜌′ X̃ → 𝕊1

𝜃 is a fiber bundle
– E j is the infimum of the energies of sections 𝕊1

𝜃 → ℝ𝜃×𝜌′ X̃.

4.1.1 Construction of a prototype section in a set of type (A)

We define
𝑣:Ω× 𝔻̄∗ → (Ω× ̃̄𝔻∗)×𝜌′ X̃ (4.1)

by setting 𝑣 to be the fiber-wise harmonic section with boundary values given by k|Ω×𝕊1 . More precisely, we
apply Theorem 2.16 as follows: For each z1 ∈ Ω, the restriction

𝑣z1 := 𝑣|{z1}×𝔻̄∗ : 𝔻̄∗ ≈ {z1} × 𝔻̄∗ → ̃̄𝔻∗×𝜌′ X̃

is the unique harmonic section with logarithmic energy growth and boundary values

𝑣z1 ||𝕊1≈{z1}×𝕊1 = k|𝕊1≈{z1}×𝕊1 .

4.1.2 Derivative estimates in a set of type (A)

Lemma 4.1. (Derivative estimates in set of type (A)). There exists a constant C such that

||||
𝜕𝑣
𝜕z1

(
z10, z20

)|||| ≤ C, ∀
(
z10, z20

)
∈ Ω × 𝔻̄∗

∫
{z10}×𝔻r,r0

||||
𝜕𝑣
𝜕z2

||||
2 dz2 ∧ dz̄2

−2i ≤ C + E j log
r0
r , ∀z10 ∈ Ω

where 0 < r < r0 ≤ 1
4 and z

2 = rei𝜃 .

Proof. Denote the Lipschitz constant of k onΩ× 𝕊1 by L. Let z10, z1 ∈ Ω. Since 𝑣z10 and 𝑣z1 are harmonic sections,
the function z ↦ d2(𝑣z10 (z), 𝑣z1 (z)) is subharmonic in 𝔻∗ (cf. [14, Remark 2.4.3]).

By Theorem 2.16 (iii) and the triangle inequality,

lim
z→0

d2(𝑣z10 (z), 𝑣z1 (z))+ 𝜖 log |z| = −∞, ∀𝜖 > 0.
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Thus, d2
(
𝑣z10 , 𝑣z1

)
extends to subharmonic function on 𝔻 (cf. [10], [11], Lemma 3.2). The maximum principle

implies that for any z20 = r0ei𝜃0 ,

d2(𝑣z10
(
r0ei𝜃0

)
, 𝑣z1

(
r0ei𝜃0

)
) ≤ sup

𝜃∈𝕊1
d2(k

(
z10, ei𝜃

)
, k(z1, ei𝜃))

≤ L2|z10 − z1|2. (4.2)

In other words, for every fixed z20 = r0ei𝜃0 , the map z1 ↦ 𝑣z1
(
z20
)
is Lipschitz which immediately implies the first

estimate. The second estimate follows from Theorem 2.16. □

4.2 In a neighborhood of the juncture
The goal of this subsection is to construct a local prototype section in a set of type (B) and derive some derivative
estimates. We start with the following:
– 𝔻̄z1 × 𝔻̄z2 is a set of type (B) with 𝔻z1 ⊂ Σ j and 𝔻z2 ⊂ Σi
– (z1, z2) are the standard product (and holomorphic) coordinates
– 𝜌, 𝜙, r, 𝜃 are the parameters defined by z1 = 𝜌ei𝜙 and z2 = rei𝜃
– 𝕊1

𝜙 is the boundary of 𝔻̄z1 and 𝕊1
𝜃 is the boundary of 𝔻̄z2

– ℝ𝜙 → 𝕊1
𝜙 and ℝ𝜃 → 𝕊1

𝜃 are the universal covers
– ̃̄𝔻∗

z1 → 𝔻̄∗
z1 and

̃̄𝔻∗
z2 → 𝔻̄∗

z2 are the universal covers
– 𝕊1

𝜙 × 𝕊1
𝜃 is the boundary of 𝔻̄z1 × 𝔻̄z2

– ℝ𝜙 ×ℝ𝜃 → 𝕊1
𝜙 × 𝕊1

𝜃 is the universal covering map
–

[
𝕊1
𝜙

]
is the element of 𝜋1

(
𝔻̄∗
z1
)
≃ 𝜋1

(
𝕊1
𝜙

)
generated by 𝕊1

𝜙 and
[
𝕊1
𝜃
]
is the element of 𝜋1

(
𝔻̄∗
z2
)
≃ 𝜋1

(
𝕊1
𝜃
)

generated by 𝕊1
𝜃

–
[
𝕊1
𝜙

]
and

[
𝕊1
𝜃
]
also are the elements of 𝜋1

(
𝔻̄∗
z1 × 𝔻̄∗

z2
)
generated by 𝕊1

𝜙 ≃ 𝕊1
𝜙 × {z2} and 𝕊1

𝜃 ≃ {z1} × 𝕊1
𝜃

respectively
– 𝜋1

(
𝔻̄∗
z1
)
≃ 𝜋1

(
𝕊1
𝜙

)
and 𝜋1

(
𝔻̄∗
z2
)
≃ 𝜋1

(
𝕊1
𝜃
)
are identified as a subgroup of 𝜋1

(
𝔻̄∗
z1 × 𝔻̄∗

z2
)
by the above

identification
– 𝜌′:𝜋1

(
𝔻̄∗
z1 × 𝔻̄∗

z2
)
→ Isom(X̃) is a homomorphism and 𝜌′k = 𝜌′|𝜋1

(
𝔻̄∗
zk

) for k = 1, 2

–
(
̃̄𝔻∗
z1 ×

̃̄𝔻∗
z2
)
×𝜌′ X̃ → 𝔻̄∗

z1 × 𝔻̄∗
z2 and

̃̄𝔻∗
zk×𝜌′k X̃ → 𝔻̄∗

zk for k = 1, 2 are fiber bundles
– ℝ𝜙×𝜌′1 X̃ → 𝕊1

𝜙 and ℝ𝜃×𝜌′2 X̃ → 𝕊1
𝜃 are fiber bundles

– Ei is the infimum of the energies of sections 𝕊1
𝜙 → ℝ𝜙×𝜌′1 X̃

– E j is the infimum of the energies of sections 𝕊1
𝜃 → ℝ𝜃×𝜌′2 X̃

– k: 𝔻̄∗
z1 × 𝔻̄∗

z2 →
(
̃̄𝔻∗
z1 ×

̃̄𝔻∗
z2
)
×𝜌′ X̃ is a locally Lipschitz section

– k̃:̃̄𝔻∗
𝑤1 × ̃̄𝔻∗

𝑤2 → X̃ is the corresponding 𝜌′-equivariant map
– 𝜅 is the restriction of k̃ to ℝ𝜙 ×ℝ𝜃 .

4.2.1 Construction of a prototype section in a set of type (B)

We construct the local section
𝑣: 𝔻̄∗

z1 × 𝔻̄∗
z2 →

(
̃̄𝔻∗
z1 ×

̃̄𝔻∗
z2
)
×𝜌′ X̃.

In what follows, we will assume that Ei, E j > 0 for simplicity. The case when Ei or E j is equal 0 can be dealt with
in the same way.
– By Property (⋆) and Lemma 2.11, for each t ∈ [0,∞), there exist constants a, b > 0 (by modifying the con-

stants a, b from Lemma 2.11) and a section

ht:𝕊1
𝜙 × 𝕊1

𝜃 → (ℝ𝜙 ×ℝ𝜃)×𝜌′ X̃
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satisfying
||||
𝜕ht
𝜕t

||||
2 ≤ 1,

||||
𝜕ht
𝜕𝜙

||||
2 ≤ Ei

2𝜋 + be−at,
||||
𝜕ht
𝜕𝜃

||||
2 ≤ E j

2𝜋 + be−at. (4.3)

– Define the diagonal set

D =
{
(𝜌ei𝜙, 𝜌ei𝜃) ∈ 𝔻̄∗

z1 × 𝔻̄∗
z2 : 𝜌 ∈ (0, 1], 𝜙, 𝜃 ∈ 𝕊1

}
.

– Define 𝑣D:D→ X as follows: Fix (𝜃,𝜙) ∈ 𝕊1 × 𝕊1.
– For 𝜌 ∈ (0, 12 ], let

𝑣D(𝜌ei𝜙, 𝜌ei𝜃) = h
3(− log 𝜌)

1
3
(𝜙, 𝜃).

– For 𝜌 ∈ [ 12 , 1], let the curve

𝜌↦ 𝛾𝜌(𝜙, 𝜃) for 𝜌 ∈
[ 1
2 , 1

]

be the geodesic between h
3(log 2)

1
3
(𝜙, 𝜃) and 𝜅(𝜙, 𝜃). Define

𝑣D(𝜌ei𝜙, 𝜌ei𝜃) = 𝛾𝜌(𝜙, 𝜃)

where we use 𝛾𝜌 to also denote the section 𝛾𝜌:𝕊1
𝜙 × 𝕊1

𝜃 → (ℝ𝜙 ×ℝ𝜃)×𝜌′ X̃. (Note that 𝜌′ is a representation
and 𝜌 is a real number here.)

– Let
Z1 :=

{
(z1, z2) ∈ 𝔻̄∗

z1 × 𝔻̄∗
z2 : |z

1| ≥ |z2|
}

and
𝜑1: 𝔻̄∗

𝑤1 × 𝔻̄∗
𝑤2 → Z1 ⊂ 𝔻̄∗

z1 × 𝔻̄∗
z2

be a homeomorphism defined by (see Figure 1)

(z1, z2) = 𝜑1(𝑤1,𝑤2), z1 = 𝑤1, z2 = |𝑤1|𝑤2.

– Define
𝑣1: 𝔻̄∗

𝑤1 × 𝔻̄∗
𝑤2 →

(
̃̄𝔻∗
𝑤1 × ̃̄𝔻∗

𝑤2

)
×𝜌′ X̃

by setting 𝑣1 to be the fiber-wise harmonic section with boundary values given by 𝑣D ⚬𝜑1||𝔻̄∗
𝑤1
×𝕊1

𝜃
. More

precisely, we apply Theorem 2.16 as follows: For each𝑤1 ∈ 𝔻̄∗
𝑤1 , the restriction

𝑣1,𝑤1 :=𝑣1|||{𝑤1}×𝔻̄∗
𝑤2

is the unique harmonic section with boundary values

𝑣1,𝑤1
|||𝕊1≈{𝑤1}×𝕊1

𝜃
= 𝑣D ⚬𝜑1||𝕊1≈{𝑤1}×𝕊1

𝜃
.

Figure 1: The map 𝜑1.
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– Similarly, let
Z2 :=

{
(z1, z2) ∈ 𝔻̄∗

z1 × 𝔻̄∗
z2 : |z

1| ≤ |z2|
}

and
𝜑2: 𝔻̄∗

𝑤1 × 𝔻̄∗
𝑤2 → Z2 ⊂ 𝔻̄∗

z1 × 𝔻̄∗
z2

be the homeomorphism defined by

(z1, z2) = 𝜑2(𝑤1,𝑤2), z1 = |𝑤2|𝑤1, z2 = 𝑤2.

We define
𝑣2: 𝔻̄∗

𝑤1 × 𝔻̄∗
𝑤2 →

(
̃̄𝔻∗
𝑤1 × ̃̄𝔻∗

𝑤2

)
×𝜌′ X̃

by setting 𝑣2 to be the fiber-wise harmonic section with boundary values given by 𝑣D ⚬𝜑2||𝕊1
𝜙×𝔻̄

∗
𝑤2
.

– Let
𝑣: 𝔻̄∗

z1 × 𝔻̄∗
z2 →

(
̃̄𝔻∗
z1 ×

̃̄𝔻∗
z2
)
×𝜌′ X̃

be the section defined by

𝑣 =
⎧
⎪
⎨
⎪⎩

𝑣1 ⚬𝜑−1
1 on Z1,

𝑣2 ⚬𝜑−1
2 on Z2.

Note that 𝑣 is well defined since Z1 ∩ Z2 = D and

𝑣1 ⚬𝜑−1
1
|||D = 𝑣D = 𝑣2 ⚬𝜑

−1
2
|||D.

4.2.2 Derivative estimates in a set of type (B)

On Z1, since z1 = 𝑤1 and z2 = |𝑤1|𝑤2, we have

𝑤1 = z1 = 𝜌ei𝜙, z2 = 𝜌ei𝜃 , 𝑤2 = z2
|z1| =

r
𝜌e

i𝜃 . (4.4)

By (4.3),
||||||

𝜕h
3(− log 𝜌)

1
3

𝜕𝜌 (𝜃,𝜙)
||||||

2

=
||||
𝜕ht
𝜕t (𝜃,𝜙)

||||
2||||
𝜕t
𝜕𝜌 (𝜃,𝜙)

||||
2 ≤ 1

𝜌2(− log 𝜌) 43
.

Thus, noting that𝑤1 = z1 = 𝜌ei𝜙,

||||
𝜕(𝑣D ⚬𝜑1)

𝜕𝜌
||||
2 ≤ 1

𝜌2(− log 𝜌) 43
on 𝔻∗

𝑤1, 12
× {|𝑤2| = 1}.

Furthermore, (4.3) implies

||||
𝜕(𝑣D ⚬𝜑1)

𝜕𝜙
||||
2 ≤ Ei

2𝜋 + be−a(− log 𝜌) ≤ Ei
2𝜋 + b𝜌a on 𝔻∗

𝑤1, 12
× {|𝑤2| = 1}.

Since 𝑣1 is a fiber-wise harmonic section, an argument analogous to the proof of first inequality of Lemma 4.1
(i.e. apply the maximum principle for subharmonic functions d(u

(
𝜌1ei𝜙

)
, u
(
𝜌2ei𝜙

)
) and d(u

(
𝜌ei𝜙1

)
, u
(
𝜌ei𝜙2

)
))

implies
||||
𝜕𝑣1
𝜕𝜌

||||
2 ≤ 1

𝜌2(− log 𝜌) 43
and

||||
𝜕𝑣1
𝜕𝜙

||||
2 ≤ Ei

2𝜋 + b𝜌a in 𝔻∗
𝑤1, 12

× 𝔻∗
𝑤2 .

Thus,
||||
𝜕𝑣1
𝜕𝑤1

||||
2 ≤ 1

𝜌2(− log 𝜌) 43
+ Ei
2𝜋𝜌2 + b𝜌a−2 in 𝔻∗

𝑤1, 12
× 𝔻∗

𝑤1 . (4.5)
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Since 𝜅 is a Lipschitz map, 𝑣D ⚬𝜑1 is a Lipschitz section for 𝜌 ≥ 1
2 . Thus,

||||
𝜕𝑣1
𝜕𝑤1

||||
2 ≤ C in 𝔻∗

𝑤1, 12 ,1
× 𝔻∗

𝑤2 . (4.6)

Furthermore, using the harmonicity of 𝑣1 restricted to the slice
{
𝑤1

0
}
× 𝔻̄∗

𝑤2 , we have by Theorem 2.16 that

E j log
r0
r ≤ ∫

{𝑤1
0}×𝔻r,r0

||||
𝜕𝑣1
𝜕𝑤2

||||
2 d𝑤2 ∧ d𝑤̄2

−2i ≤ C + E j log
r0
r (4.7)

for 0 < r < r0 ≤ 1
4 .

Lemma 4.2. (Derivative estimates in a set of type (B) away from the juncture).
ForΩ :=𝔻 1

4 ,1
, there exists a constant C such that the following estimates hold:

||||
𝜕𝑣
𝜕z1

(
z10, z20

)|||| ≤ C, ∀
(
z10, z20

)
∈ Ω × 𝔻∗

E j log
r0
r ≤ ∫

{z10}×𝔻r,r0

||||
𝜕𝑣
𝜕z2

||||
2 dz2 ∧ dz̄2

−2i ≤ C + E j log
r0
r

where 0 < r < r0 ≤ 1
4 , z

1
0 ∈ Ω and z2 = rei𝜃 .

Proof. Since 𝔻 1
4 ,1

× 𝔻∗
1
4
⊂ Z1, the estimates follow by applying the change of variables (4.4) to estimates (4.5),

(4.6), (4.7) and noting that 𝜌 > 1
4 inΩ. □

Lemma 4.3. (Derivative estimates in a set of type (B) near the juncture).
For 𝑣 restricted to 𝔻∗

1
4
× 𝔻∗

1
4
, there exists a constant C such that the following estimates hold:

E j log
r0
r ≤ ∫

{z10}×𝔻r,r0

||||
𝜕𝑣
𝜕z2

||||
2 dz2 ∧ dz̄2

−2i ≤ C + E j log
r0
r ,

Ei log
r0
r ≤ ∫

𝔻r,r0×{z20}

||||
𝜕𝑣
𝜕z1

||||
2 dz1 ∧ dz̄1

−2i ≤ C + Ei log
r0
r

for z10, z20 ∈ 𝔻∗
1
4
and 0 < r < r0 ≤ 1

4 .

Proof. We only prove the first estimate, the second being similar. First, note that the lower bound follows from
the definition of E j. Next, we estimate the upper bound. For z10 ∈ 𝔻∗

1
4
, we have the inclusion

{
z10
}
× 𝔻r,r0 ⊂ Z1

whenever r0 ≤ |z10|. Thus, the change of variables𝑤2 ↦ z2 = |𝑤1|𝑤2 in (4.7) yields

∫
{z10}×𝔻r,r0

||||
𝜕𝑣
𝜕z2

||||
2 dz2 ∧ dz̄2

−2i ≤ C + E j log
r0
r

for z10 ∈ 𝔻∗
1
4
and 0 < r < r0 ≤ |z10|.
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If r < |z10| < r0, we break up the integral into two integrals since the estimate for |||
𝜕𝑣
𝜕z2

|||
2
is different in Z2

than in Z1. Indeed, by an analogous argument to the proof of (4.5), we have

||||
𝜕𝑣2
𝜕𝑤2

||||
2 ≤ 1

r2(− log r) 43
+ E j
2𝜋r2 + ra−2

After a change of variables z1 = |𝑤2|𝑤1, z2 = 𝑤2,

||||
𝜕𝑣
𝜕z2

||||
2 ≤ 1

r2(− log r) 43
+ E j
2𝜋r2 + ra−2 in Z2. (4.8)

Thus, we have

∫
{z10}×𝔻r,r0

||||
𝜕𝑣
𝜕z2

||||
2 dz2 ∧ dz̄2

−2i ≤
2𝜋

∫
0

⎛
⎜
⎜
⎜⎝

|z10|

∫
r

||||
𝜕𝑣
𝜕z2

||||
2
rdr +

r0

∫
|z10|

||||
𝜕𝑣
𝜕z2

||||
2
rdr

⎞
⎟
⎟
⎟⎠
d𝜃

≤
(
C + E j log

|z10|
r

)
+

2𝜋

∫
0

r0

∫
|z10|

(
1

r2(− log r) 43
+ E j
2𝜋r2 + ra−2

)
rdrd𝜃

≤ C + E j log
r0
r .

Finally, if |z10| < r < r0, we only use the estimate (4.8). We omit the details. □

4.3 Gluing the maps
Given the homomorphism𝜌:𝜋1(M)→ Isom(X̃) of Theorem 1,wewill construct a prototype section𝑣:M → M̃×𝜌X̃.

Let P = {0} × {0} ∈ Σ j ∩ Σi and U = 𝔻̄z1 × 𝔻̄z2 be a set of type (B) with

𝔻̄z1 ≃ 𝔻̄z1 × {0} ⊂ Σ j and 𝔻̄z2 ≃ {0} × 𝔻̄z2 ⊂ Σi.

The identification of the product space 𝔻̄z1 × 𝔻̄z2 as a subset ofM is simultaneously induced by the local trivial-
izations of the disk bundles 𝜋 j: ̄ j → Σ j and 𝜋i: ̄i → Σi via

𝜋−1
j
(
𝔻̄z1

)
≃ 𝔻̄z1 × 𝔻̄z2 and 𝜋−1

i
(
𝔻̄z2

)
≃ 𝔻̄z1 × 𝔻̄z2

(cf. (3.11)).
Recall the following items associated with the set U :=𝔻z1 × 𝔻z2 .

–
[
𝕊1
𝜃k

]
is the element of 𝜋1

(
𝔻̄∗
zk
)
generated by 𝕊1

𝜃k for k = 1, 2

–
[
𝕊1
𝜃1

]
and

[
𝕊1
𝜃2

]
also are the elements of 𝜋1

(
𝔻̄∗
z1 × 𝔻̄∗

z2
)
generated by 𝕊1

𝜃1 ≃ 𝕊1
𝜃1 × {z2} and 𝕊1

𝜃1 ≃ {z1} × 𝕊1
𝜃2

respectively
– 𝜋1

(
𝔻̄∗
zk
)
is identified with its image in 𝜋1

(
𝔻̄∗
z1 × 𝔻̄∗

z2
)
for k = 1, 2 as a subgroup

– 𝜌′:𝜋1
(
𝔻̄∗
z1 × 𝔻̄∗

z1
)
→ Isom(X̃) is defined as 𝜌⚬ 𝜄∗ where 𝜄∗ is the induced map by the inclusion and 𝜌′k =

𝜌′|𝜋1
(
𝔻̄∗
zk

) for k = 1, 2

–
(
̃̄𝔻∗
z1 ×

̃̄𝔻∗
z2
)
×𝜌′ X̃ → 𝔻̄∗

z1 × 𝔻̄∗
z2 and

̃̄𝔻∗
zk×𝜌′k X̃ → 𝔻̄∗

zk for k = 1, 2 are fiber bundles.

Next, let V = Ω× 𝔻̄z2 be a set of type (A) with

Ω ≃ Ω× {0} ⊂ Σ j.
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The identification V ≃ Ω × 𝔻̄∗
z2 is induced by the local trivialization

𝜋−1
j (Ω) ≃ Ω × 𝔻̄z2

of the bundle 𝜋 j: ̄ j → Σ j (cf. (3.9)). If U ∩ V ≠ ∅ (and hence Ω∩ 𝔻̄z1 ≠ ∅), then the transition function of the
disk bundle 𝜋 j: ̄ j → Σ j defines a smooth map

𝜏 :Ω∩ 𝔻̄z1 → U(1).

By [14, Proposition 2.6.1], there exists a locally Lipschitz section k:M → M̃×𝜌X̃ of the fiber bundle M̃×𝜌X̃ →

M. Let kU be the lift to
(
̃̄𝔻∗
z1 ×

̃̄𝔻∗
z2
)
×𝜌′ X̃ of the restriction of k to U∗ := 𝔻̄∗

z1 × 𝔻̄∗
z2 and let

𝑣U :U∗ := 𝔻̄∗
z1 × 𝔻̄∗

z2 →
(
̃̄𝔻∗
z1 ×

̃̄𝔻∗
z2
)
×𝜌′ X̃

be the local prototype section defined in Section 4.2. The composition of 𝑣U and the quotient map M̃×𝜌′ X̃ →
M̃×𝜌X̃ defines a section of M̃×𝜌X̃ → U which we call again 𝑣U .

Also let kV be the lift to
(
Ω× ̃̄𝔻∗

z2
)
×𝜌′2 X̃ of the restriction of k to V∗ = Ω× 𝔻̄∗

z2 and let

𝑣V :V∗ :=Ω× 𝔻̄∗
z2 →

(
Ω× 𝔻∗

z2
)
×𝜌′2 X̃

be the local prototype section defined in Section 4.1.1. The composition of 𝑣V and the quotient map M̃×𝜌′2 X̃ →

M̃×𝜌X̃ defines a section of M̃×𝜌X̃ → V which we call again 𝑣V .
We claim that we can glue these local sections together to define 𝑣 in U ∪ V . To do so, we have to show the

following.

Lemma 4.4. If U and V are sets of type (B) and (A) respectively, then the sections 𝑣U and 𝑣V agree on U∗ ∩ V∗.

Proof. For p ∈ 𝔻̄z1 ∩Ω, let 𝑣U,p, kU,p be the restrictions of 𝑣U , kU respectively to {p} × 𝔻̄∗
z2 and 𝑣V ,p, kV ,p be the

restrictions of 𝑣V , kV respectively to {p} × 𝔻̄∗
z2 . We claim that the harmonic sections 𝑣U,p and 𝑣V ,p are related

by the transition relation
𝑣U, p = 𝑣V , p ⚬ 𝜏(p).

Indeed, since multiplication by 𝜏(p) ∈ U(1) is a conformal map, 𝑣V ,p ⚬ 𝜏(p) is harmonic on 𝔻̄∗ with bound-
ary values kU, p = kV , p ⚬ 𝜏(p)|||𝜕𝔻≃{ p}×𝕊1

𝜃
. The assertion follows from the uniqueness of harmonic maps (cf.

Theorem 2.16). □

Similar construction holds for two sets of type (A).

Lemma 4.5. If U and V are both of type (A) and U ∩ V ≠ ∅, then 𝑣U and 𝑣V agree on U∗ ∩ V∗.

Proof. Apply the same argument as Lemma 4.4. □

Let be a finite open cover of ̄ by sets of type (A) and of type (B). LetA ⊂  be the collection of sets of
type (A) andB ⊂  be the collections of sets of type (B). Without the loss of generality, we can assumeB is a
collection of disjoint sets. Set

𝑣 =

⎧
⎪
⎪
⎨
⎪
⎪⎩

𝑣U in U ∩∗
1
4
where U ∈ B

𝑣V in
(
V ∩∗

1
4

)
∖
⋃
U∈B

U where V ∈ A
(4.9)

and extend to the rest ofM as a well-defined, locally Lipschitz global section of M̃×𝜌X̃ →M.
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Definition 4.6. The map
𝑣:M → M̃×𝜌X̃ (4.10)

constructed above is called the prototype section. The corresponding 𝜌-equivariant map 𝑣̃: M̃ → X̃ is called the
prototype map.

5 Energy estimates of the prototype section
The goal of this section is to obtain the energy estimates of the prototype section

𝑣:M → M̃×𝜌X̃

of Definition 4.6 with respect to the Poincaré-type metric g given by Definition 3.4. Throughout this section, we
use C to denote constants that are independent of the distance to the divisor. (Note that C may change from line
to line.)

We consider the following three types of sets intersecting the divisor Σ ⊂ M̄:
(i) Ω× 𝔻̄ 1

4
⊂ Ω× 𝔻̄, a subset in a set of type (A)

(ii) Ω× 𝔻̄ 1
4
:=𝔻 1

4 ,1
× 𝔻̄ 1

4
⊂ 𝔻̄ × 𝔻̄, a subset in a set of type (B) away from the crossing (cf. Figure 2)

(iii) 𝔻̄ 1
4
× 𝔻̄ 1

4
⊂ 𝔻̄ × 𝔻̄, a subset in a set of type (B) at the crossing (cf. Figure 2)

A neighborhood of Σ can be covered by a finite collection of sets of the above type. In order to estimate the
energy of 𝑣, we will compute its energy in each such set.

5.1 Energy in a set of type (A)
In this subsection we will use the following notation in addition to the one used in Section 4.1.
– Ω× 𝔻r1,r2 is the subset ofΩ× 𝔻̄ with 0 < r1 < |z2| < r2 < 1

4 .
– gΣ j

is the smooth metric onΩ as defined in Definition 3.5
– AreagΣ j

is the area with respect to gΣ j
– P is the product metric onΩ× 𝔻̄∗ defined by (3.26).

Note that
r1,r2 ∩ (Ω× 𝔻̄) = Ω× 𝔻r1,r2 (cf. (3.6)).

The strategy for estimating the energy of the prototype section 𝑣 inΩ× 𝔻̄will be to first compute the energy
of 𝑣 with respect to the product metric P (cf. (3.26)). Since the metrics P and g are close (cf. (3.27)), this will give
us the estimate of the energy of 𝑣 with respect to g.

Figure 2: Subsets of a set of type (B).
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Lemma 5.1. For a subsetΩ× 𝔻̄ of a set of type (A), there exists a constant C > 0 such that the energy with respect
to the metric P of the prototype section 𝑣 satisfies

0 ≤ PE𝑣[Ω× 𝔻r1,r2 ]− E jAreagΣ j
(Ω) log r2r1

≤ C, 0 < r1 < r2 ≤ 1
4 .

Proof. By (3.29),

PE𝑣[Ω× 𝔻r1,r2 ] = ∫
Ω×𝔻r1 ,r2

P11̄
||||
𝜕𝑣
𝜕z1

||||
2
+ P22̄

||||
𝜕𝑣
𝜕z2

||||
2
dvolP

= ∫
Ω×𝔻r1 ,r2

P11̄
||||
𝜕𝑣
𝜕z1

||||
2
dvolP + ∫

Ω

⎛
⎜
⎜
⎜⎝
∫
𝔻r1 ,r2

||||
𝜕𝑣
𝜕z2

||||
2 dz2 ∧ dz̄2

−2i

⎞
⎟
⎟
⎟⎠
dvolgΣ j

,

hence the inequality on the right follows from Lemma 4.1 (cf. Remark 3.8).
By the definition of E j,

E jAreagΣ j
(Ω) log r2r1

= ∫
Ω

r2

∫
r1

E j
dr
r dvolgΣ j

≤ ∫
Ω

⎛
⎜
⎜
⎜⎝
∫
𝔻r1 ,r2

||||
𝜕𝑣
𝜕𝜃

||||
2 dr ∧ d𝜃

r

⎞
⎟
⎟
⎟⎠
dvolgΣ j

≤ ∫
Ω×𝔻r1 ,r2

P11̄
||||
𝜕𝑣
𝜕z1

||||
2
+ P22̄

||||
𝜕𝑣
𝜕z2

||||
2
dvolP

= PE𝑣[Ω× 𝔻r1,r2 ],

which proves the inequality on the left. □

Lemma 5.2. For a subset Ω× 𝔻̄ of a set type (A), there exists a constant C > 0 such that the prototype section 𝑣
satisfies

||||
gE𝑣[Ω× 𝔻r1,r2 ]− E jAreagΣ j

(Ω) log r2r1
|||| ≤ C, 0 < r1 < r2 ≤ 1

4 .

Proof. By Lemma 5.1, it suffices to show that the difference of the energy of 𝑣with respect to g and with respect
to P is bounded; i.e. |||

gE𝑣[Ω× 𝔻r1,r2 ]−
PE𝑣[Ω× 𝔻r1,r2 ]

||| ≤ C.

We obtain the above estimate with the help of Lemma 5.15 found in the Appendix to this chapter. Therefore we
need to first show that the assumption (5.3) of Lemma 5.15 is satisfied; in other words, we need an estimate of
the integral of 1

r2
|||
𝜕𝑣
𝜕𝜃
|||
2
. Below, we will derive the estimate (5.3) by bounding the z1-energy and r-energy of 𝑣 and

then subtracting those from the full energy estimate of Lemma 5.1.
First, to bound the z1-energy of 𝑣, we use estimate |||

𝜕𝑣
𝜕z1

|||
2 ≤ C of (4.1) to see that

∫
Ω×𝔻r1 ,r2

||||
𝜕𝑣
𝜕z1

||||
2
dvolgΣ j

∧ dz2 ∧ dz̄2
−2ir2(log r2 + A)2 ≤ C.

Second, from [6, 7, Proof of Lemma 3.4], we have
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∫
Ω×𝔻r1 ,r2

||||
𝜕𝑣
𝜕r

||||
2
dvolgΣ j

∧ dz2 ∧ dz̄2
−2i ≤ C.

Thus, Lemma 5.1 and the identities for P11̄dvolP and P22̄dvolP given by (3.29) imply the following integral estimate
on 1

r2
|||
𝜕𝑣
𝜕𝜃
|||
2
:

∫
Ω×𝔻r1 ,r2

1
r2
||||
𝜕𝑣
𝜕𝜃

||||
2
dvolgΣ j

∧ dz2 ∧ dz̄2
−2i − E jAreagΣ j

(Ω) log r2r1
≤ C.

We set r2 = 1
4 and let r1 → 0 above to obtain

∫
Ω×𝔻 1

4

(||||
𝜕𝑣
𝜕𝜃

||||
2
− E j

)
dvolgΣ j

∧ dr ∧ d𝜃
r ≤ C.

Noting that gΣ j
is a smooth metric, the assumption (5.3) of Lemma 5.15 is satisfied. Consequently (noting that A

appears in the metric expression of P is a bounded function),

∫
Ω×𝔻 1

4

||||
𝜕𝑣
𝜕𝜃

||||
2
dvolgΣ j

∧ dr ∧ d𝜃
r(log r2 + A)2 ≤ C′ (5.1)

where the constant C′ depends only on C.
We use the above estimate to compute the difference between gE𝑣[Ω× 𝔻r1,r2 ] and

PE𝑣[Ω× 𝔻r1,r2 ]. The
trickiest to bound include the following two terms for which we use the estimate (5.1):

∙
||||
∫Ω×𝔻 1

4
P𝜃𝜃|||

𝜕𝑣
𝜕𝜃
|||
2
(dvolg − dvolP)

||||
To bound this term, note that since by (3.28)

dvolP − dvolg = O
(

1
(− log r2 + A)2

)
dvolP = O(1)dvolgΣ j

∧ dz2 ∧ dz̄2
−2ir2(− log r2 + A)4

and
P22̄ = r2(log r2 + A)2.

and thus
P22̄(dvolP − dvolg) = O(1)dvolgΣ j

∧ dz2 ∧ dz̄2
−2i(− log r2 + A)2 .

Thus,
P𝜃𝜃

(
dvolP − dvolg

)
= dvolgΣ j

∧ dz2 ∧ dz̄2
−2ir2(− log r2 + A)2 = dvolgΣ j

∧ dr ∧ d𝜃
r(− log r2 + A)2

which in turn implies
|||||||||
∫

Ω×𝔻 1
4

P𝜃𝜃
||||
𝜕𝑣
𝜕𝜃

||||
2
(dvolg − dvolP)

|||||||||

≤ C ∫
Ω×𝔻 1

4

||||
𝜕𝑣
𝜕𝜃

||||
2
dvolgΣ j

∧ dr ∧ d𝜃
r(− log r2 + A)2

≤ CC′.

∙
||||
∫Ω×𝔻 1

4

(
g𝜃𝜃 − P𝜃𝜃

)|||
𝜕𝑣
𝜕𝜃
|||
2
dvolP

||||
To bound this term, note that since g22̄ − P22̄ = O(r2), we have

g𝜃𝜃 − P𝜃𝜃 = O(1) and dvolP = dvolgΣ j
∧ dz2 ∧ dz̄2
−2ir2(log r2 + A)2
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by (3.29). Combining the above, we obtain

(
g𝜃𝜃 − P𝜃𝜃

)
dvolP = O(1)dvolgΣ j

∧ dr ∧ d𝜃
r(− log r2 + A)2 .

Thus |||||||||
∫

Ω×𝔻 1
4

(
g𝜃𝜃 − P𝜃𝜃

)||||
𝜕𝑣
𝜕𝜃

||||
2
dvolP

|||||||||

≤ C ∫
Ω×𝔻 1

4

||||
𝜕𝑣
𝜕𝜃

||||
2
dvolgΣ j

∧ dr ∧ d𝜃
r(− log r2 + A)2 ≤ CC′.

The other terms of |||
gE𝑣[Ω× 𝔻r1,r2 ]−

PE𝑣[Ω× 𝔻r1,r2 ]
||| are also bounded by similar computations. We omit the

details. □

Lemma 5.3. For a subset Ω× 𝔻̄ of a set type (A), there exists a constant C > 0 such that the prototype section 𝑣
satisfies

gE𝑣[Ω× 𝔻r1,r2 ] ≤ gE f [Ω× 𝔻r1,r2 ]+ C, 0 < r1 < r2 ≤ 1
4

for any locally Lipschitz section f :Ω× 𝔻r1,r2 → M̃×𝜌X̃.

Proof. Since E j is the infimum of the energies of sections 𝕊1
𝜃 → ℝ𝜃×𝜌′2 X̃,

E jAreagΣ j
(Ω) log r2r1

≤
2𝜋

∫
0

||||
𝜕 f
𝜕𝜃

||||
2
d𝜃∫

Ω

dvolgΣ j

r2

∫
r1

dr
r

= ∫
Ω×𝔻r1 ,r2

||||
𝜕 f
𝜕𝜃

||||
2
dvolgΣ j

∧ dr ∧ d𝜃
r

≤ ∫
Ω×𝔻r1 ,r2

P11̄
||||
𝜕 f
𝜕z1

||||
2
+ P22̄

||||
𝜕 f
𝜕z2

||||
2
dvolP

=P E f [Ω× 𝔻r1,r2 ]. (5.2)

Thus, the desired estimate with g replaced by P follows from combining the above estimate with Lemma 5.1.
Thus, we are left to show that |||

gE f [Ω× 𝔻r1,r2 ]−
PE f [Ω× 𝔻r1,r2 ]

||| ≤ C.

To do so, note that if the inequality

∫
Ω×𝔻̄ 1

4

(||||
𝜕 f
𝜕𝜃

||||
2
− E j
2𝜋

)
dvolgΣ j

∧ dr ∧ d𝜃
r < ∞

does not hold, thenwe are done since the desired estimate holds by Lemma 5.2. Hence, we can assume the above
inequality and apply Lemma 5.15 to conclude

∫
Ω×𝔻 1

4

||||
𝜕 f
𝜕𝜃

||||
2
dvolgΣ j

∧ dr ∧ d𝜃
r(log r2 + A)2 ≤ C′

where the constant C′ depends only on C. The rest of the proof is exactly as in the proof of Lemma 5.1. □
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5.2 Energy in a set of type (B) away from the crossing
In this subsection we will use the following notation in addition to the one used in Section 4.2.
– Ω :=𝔻 1

4 ,1– Ω× 𝔻r1,r2 is the subset ofΩ× 𝔻̄ = 𝔻 1
4 ,1

× 𝔻̄ with 0 < r1 < |z2| < r2 < 1
4 .

– gΣ j
is the smooth metric onΩ as in Definition 3.5

– AreagΣ j
is the area with respect to gΣ j

– P is the product metric on 𝔻̄ × 𝔻̄ defined by (3.31).

SinceΩ :=𝔻 1
4 ,1
⊂ 𝔻, the points ofΩ× 𝔻r1,r2 are uniformly away from the crossing. In particular, since

1
4 < 𝜌 in Ω× 𝔻r1,r2 ,

the metric expressions of g in a set of type (A) and of type (B) (cf. (3.24) and (3.32) respectively) show that g
restricted to Ω× 𝔻r1,r2 in set type (B) has the same asymptotic behavior as r→ 0 as g in a set of type (A). Thus,
the procedure for obtaining energy estimates of 𝑣will be analogous to that in the previous subsection. Note that

r1,r2 ∩ (Ω× 𝔻̄)) = Ω× 𝔻r1,r2 for 0 < r1 < r2 <
1
4 (cf. (3.6)).

Lemma 5.4. For a subsetΩ× 𝔻r1,r2 of a set of type (B) (withΩ = 𝔻 1
4 ,1
), there exists a constant C > 0 such that the

prototype section 𝑣 satisfies

PE𝑣[Ω× 𝔻r1,r2 ] ≤ E jAreagΣ j
(Ω) log r2r1

+ C, 0 < r1 < r2 ≤ 1
4 .

Proof. Follow the proof of Lemma 5.1 but by replacing (3.29) by (3.36) and Lemma 4.1 by Lemma 4.2. (Note that
1
4 < 𝜌, i.e. 𝜌 is bounded away from 0, so the expressions in (3.29) and (3.36) are comparable.) □

Lemma 5.5. For a subsetΩ× 𝔻r1,r2 of a set of type (B) (withΩ = 𝔻 1
4 ,1
), there exists a constant C > 0 such that the

prototype section 𝑣 satisfies
||||
gE𝑣[Ω× 𝔻r1,r2 ]− E jAreagΣ j

(Ω) log r2r1
|||| ≤ C, 0 < r1 < r2 ≤ 1

4 .

Proof. Follow the proof of Lemma 5.2 using Lemma 5.4 instead of Lemma 5.1. □

Lemma 5.6. For a subset Ω× 𝔻r1,r2 of a set of type (B) (with Ω = 𝔻 1
4 ,1
), there exists a constant C > 0 such that

the prototype section 𝑣 satisfies

gE𝑣[Ω× 𝔻r1,r2 ] ≤ gE f [Ω× 𝔻r1,r2 ]+ C, 0 < r1 < r2 ≤ 1
4

for any locally Lipschitz section f :Ω× 𝔻r1,r2 → M̃×𝜌X̃.

Proof. Follow the proof of Lemma 5.3 using Lemma 5.5 instead of Lemma 5.2. □

5.3 Energy in a set of type (B) at the crossing
In this subsection we will use the following notation in addition the one used in Section 4.2.
– 𝔻r1,r2 × 𝔻r1,r2 is the subset of 𝔻̄ × 𝔻̄ with 0 < r1 < |zk| < r2 < 1

4 for k = 1, 2.
– gΣ j

, gΣi
are as in Definition 3.5

– AreagΣ j
and AreagΣi are the areas with respect to gΣi

– P is the product metric on 𝔻̄ × 𝔻̄ defined by (3.31).
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The goal is to estimate the energy of 𝑣 in the set

Ur1,r2 =
(
𝔻r1, 14

× 𝔻r1, 14

)
∖
(
𝔻r2, 14

× 𝔻r2, 14

)
,

pictured in Figure 3. The procedure for doing so involves an extra step compared to the procedure in the previous
two subsections. Namely, we will first derive an expression for the energy with respect to the product metric P
in the box𝔻r, 14

× 𝔻r, 14
pictured in Figure 4 (cf. Lemma 5.9 below). Then we take the difference of the energy with

respect to P contained in 𝔻r1, 14
× 𝔻r1, 14

and in 𝔻r2, 14
× 𝔻r2, 14

to bound the energy in Ur1,r2 (cf. Lemma 5.10 below).
Finally, since the difference between the metric g and P is small, we obtain a bound for the energy with respect
to g in Ur1,r2 (cf. Lemma 5.11 below).

Definition 5.7. We define PΣi
, PΣ j

to be the restriction of P (cf. (3.31)) to Σi, Σ j respectively.

Remark 5.8. Note that AreaPΣi
(
𝔻r,r′

)
= AreaPΣ j

(
𝔻r,r′

)
for 0 < r < r′ ≤ 1

4 by the symmetry of P.

Lemma 5.9. In a subset 𝔻̄ 1
4
× 𝔻̄ 1

4
of a set 𝔻∗ × 𝔻∗ of type (B), the prototype section 𝑣 satisfies

||||
PE𝑣

[
𝔻r, 14

× 𝔻r, 14

]
−
(
E jAreaPΣ j

(
𝔻r, 14

)
log 1

4r + EiAreaPΣi
(
𝔻r, 14

)
log 1

4r
)|||| ≤ C

for 0 < r < 1
4 .

Proof. By Lemma 4.3,
Ei log

r0
r ≤ ∫

𝔻r,r0×{z20}

||||
𝜕𝑣
𝜕z1

||||
2 dz1 ∧ dz̄1

−2i ≤ C + Ei log
r0
r

Figure 3: The region Ur1 ,r2 .

Figure 4: The region 𝔻r, 14
× 𝔻r, 14

.
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for z20 ∈ 𝔻∗
1
4
and 0 < r < r0. By (3.36),

∫
𝔻r, 14

×𝔻r, 14

P11̄
||||
𝜕𝑣
𝜕z1

||||
2
dvolP = ∫

𝔻r, 14

⎛
⎜
⎜
⎜⎝
∫
𝔻r, 14

||||
𝜕𝑣
𝜕z1

||||
2 dz1 ∧ dz̄1

−2i

⎞
⎟
⎟
⎟⎠

dz2 ∧ dz̄2
−2ir2(log r2)2 .

Combining the above, we obtain

EiAreaPΣi
(
𝔻r, 14

)
log 1

4r ≤ ∫
𝔻r, 14

×𝔻r, 14

P11̄
||||
𝜕𝑣
𝜕z1

||||
2
dvolP

≤ EiAreaPΣi
(
𝔻r, 14

)
log 1

4r + C

and similarly

E jAreaPΣ j

(
𝔻r, 14

)
log 1

4r ≤ ∫
𝔻r, 14

×𝔻r, 14

P22̄
||||
𝜕𝑣
𝜕z2

||||
2
dvolP

≤ E jAreaPΣi
(
𝔻r, 14

)
log 1

4r + C.
□

Lemma 5.10. In a subset 𝔻̄ 1
4
× 𝔻̄ 1

4
of a set of type (B), there exists a constant C > 0 such that in any subset (cf.

(3.6))
Ur1,r2 = r1,r2 ∩

(
𝔻̄ 1

4
× 𝔻̄ 1

4

)
, 0 < r1 < r2 ≤ 1

4 ,

the prototype section 𝑣 satisfies

0 ≤ PE𝑣[Ur1,r2 ]− E jAreaPΣ j

(
𝔻∗

1
4

)
log r2r1

− EiAreaPΣi

(
𝔻∗

1
4

)
log r2r1

≤ C.

Proof. By a straightforward computation,

AreaPΣ j

(
𝔻r1, 14

)
log 1

4r1
− AreaPΣ j

(
𝔻r2, 14

)
log 1

4r2

= AreaPΣ j

(
𝔻r1, 14

)
log 1

4r1
− AreaPΣ j

(
𝔻r1, 14

)
log 1

4r2
+ AreaPΣ j

(
𝔻r1, 14

)
log 1

4r2
− AreaPΣ j

(
𝔻r2, 14

)
log 1

4r2

= AreaPΣ j

(
𝔻r1, 14

)
log r2r1

+
(
AreaPΣ j

(𝔻r1,r2 )
)
log 1

4r2
.

The second term is bounded by

0 ≤ (
AreaPΣ j

(𝔻r1,r2 )
)
log 1

4r2
=

⎛
⎜
⎜⎝

r2

∫
r1

dr
r(log r2)2

⎞
⎟
⎟⎠
log 1

4r2

=
(

1
log r2

− 1
log r1

)
log 4r2 ≤ 1.

Thus, combining the above equality and the inequality and then multiplying by E j, we obtain

E jAreaPΣ j

(
𝔻r1, 14

)
log 1

4r1
− E jAreaPΣ j

(
𝔻r2, 14

)
log 1

4r2
≤ E j

(
AreaPΣ j

(
𝔻∗

1
4

)
log r2r1

+ 1
)
.
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Similarly,

EiAreaPΣi
(
𝔻r1, 14

)
log 1

4r1
− EiAreaPΣi

(
𝔻r2, 14

)
log 1

4r2
≤ Ei

(
AreaPΣi

(
𝔻∗

1
4

)
log r2r1

+ 1
)
.

Furthermore, Lemma 5.9 implies

PE𝑣[Ur1,r2 ] =
PE𝑣

[
𝔻r1, 14

× 𝔻r1, 14

]
− PE𝑣

[
𝔻r2, 14

× 𝔻r2, 14

]

≤ E jAreaPΣ j

(
𝔻r1, 14

)
log 1

4r1
+ EiAreaPΣ j

(
𝔻r1, 14

)
log 1

4r1

− E jAreaPΣi
(
𝔻r2, 14

)
log 1

4r2
− EiAreaPΣi

(
𝔻r2, 14

)
log 1

4r2
+ C.

Thus, the desired estimate follows from the fact that AreaPΣi (𝔻r, 14
) = AreaPΣ j

(𝔻r, 14
) (cf. Remark 5.8). □

Lemma 5.11. In a subset 𝔻̄ 1
4
× 𝔻̄ 1

4
of a set 𝔻̄∗ × 𝔻̄∗ of type (B), there exists a constant C > 0 such that in any subset

(cf. (3.6))
Ur1,r2 = r1,r2 ∩

(
𝔻̄ 1

4
× 𝔻̄ 1

4

)
, 0 < r1 < r2 ≤ 1

4 ,

the prototype section 𝑣 satisfies
|||||
gE𝑣[Ur1,r2 ]− E jAreagΣ j

(
𝔻∗

1
4

)
log r2r1

− EiAreagΣi

(
𝔻∗

1
4

)
log r2r1

|||||
≤ C.

Proof. Follows from the metric estimate (3.34) and Lemma 5.10. □

Lemma 5.12. In a subset 𝔻̄ 1
4
× 𝔻̄ 1

4
of a set 𝔻̄∗ × 𝔻̄∗ of type (B), there exists a constant C > 0 such that in any

subset (cf. (3.6))
Ur1,r2 = r1,r2 ∩

(
𝔻̄ 1

4
× 𝔻̄ 1

4

)
, 0 < r1 < r2 ≤ 1

4 ,

the prototype section 𝑣 satisfies
gE𝑣[Ur1,r2 ] ≤ gE f [Ur1,r2 ]+ C

for any locally Lipschitz section f :Ur1,r2 → M̃×𝜌X̃.

Proof. Follow the proof of Lemma 5.3 using Lemma 5.11 instead of Lemma 5.2. □

5.4 Energy estimates for the prototype section near the divisor
Combining the results of the previous three subsections, we obtain the following estimate in an open set r1,r2
(cf. (3.6)) near the divisor.

Proposition 5.13. There exists a constant C > 0 such that the prototype section 𝑣 of Definition 4.6 satisfies
||||||
gE𝑣[r1,r2 ]−

L∑
j=1

E jAreagΣ j
(Σ j) log

r2
r1

||||||
< C, 0 < r1 < r2 ≤ 1

4 .

Proof. Since we can cover a neighborhood of Σ by a finite collection of sets of type (A) and type (B), the estimate
follows from Lemma 5.2, Lemma 5.5 and Lemma 5.11. □

Proposition 5.14. The section 𝑣 is almost minimizing in M in the following sense: There exists a constant C > 0
such that
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gE𝑣[r1,r2 ] ≤ gE f [r1,r2 ]+ C, 0 < r1 < r2 ≤ 1
4

for any section f :M → M̃×𝜌X̃.

Proof. Since we can cover a neighborhood ofΣ by a finite collection of sets of type (A) and type (B), the estimate,
the estimate follows from Lemma 5.3, Lemma 5.6 and Lemma 5.12. □

5.5 Appendix
We conclude this chapter with the following calculus result which was used in the derivation of the energy
estimates.

Lemma 5.15. LetΩ× 𝔻∗
1
4
be a subset ofΩ× 𝔻̄ of type (A) orΩ× 𝔻̄∗:= 𝔻 1

4 ,1
× 𝔻̄ of type (B)1with standard product

coordinates (z1, z2 = rei𝜃). If a locally Lipschitz map f defined onΩ× 𝔻∗
1
4
satisfies

∫
Ω×𝔻̄∗

1
4

(||||
𝜕 f
𝜕𝜃

||||
2
− c

)
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

r2 ≤ C (5.3)

where

∫
{z1}×𝜕𝔻r

||||
𝜕 f
𝜕𝜃

||||
2
d𝜃 ≥ c ≥ 0,

then

∫
Ω×𝔻̄∗

1
4

||||
𝜕 f
𝜕𝜃

||||
2
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

r2(− log r2)2 ≤ C′

where C′ is a constant depending only on C and c.

Proof. We start with the following claim: For any function 𝜓 : [0, 14 ]→ ℝ satisfying 𝜓 (r) ≥ c,
1
4

∫
0

𝜓 (r) dr
r(log r2)2 ≤ c log 2+

1
4

∫
0

(
𝜓 (r)− c

)dr
r . (5.4)

To prove (5.4), first note that 2−i−1 ≤ r ≤ 2−i implies
1

(log r2)2 ≤ 1
(log 2−2i)2 =

1
4(log 2)2

1
i2 .

Furthermore, by the assumption that 𝜓 (r) ≥ c ≥ 0,

2−i

∫
2−i−1

𝜓 (r)drr = c
2−i

∫
2−i−1

dr
r +

2−i

∫
2−i−1

(
𝜓 (r)− c

)dr
r ≤ c log 2+

1
4

∫
0

(
𝜓 (r)− c

)dr
r .

The above two inequalities imply
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1
4

∫
0

𝜓 (r)
r(log r2)2 dr =

∞∑
i=2

2−i

∫
2−i−1

𝜓 (r)
r(log r2)2 dr

≤ 1
4(log 2)2

∞∑
i=2

1
i2

2−i

∫
2−i−1

𝜓 (r)drr

= 1
4(log 2)2

∞∑
i=2

1
i2 ⋅

⎛
⎜
⎜
⎜⎝
c log 2+

1
4

∫
0

(
𝜓 (r)− c

)dr
r

⎞
⎟
⎟
⎟⎠

≤ c log 2+

1
4

∫
0

(
𝜓 (r)− c

)dr
r

which proves (5.4).
Let

𝜓 (r) := ∫
{z1}×𝜕𝔻r

||||
𝜕 f
𝜕𝜃

||||
2
d𝜃.

Since 𝜓 (r) ≥ c, we have by (5.4) that
1
4

∫
0

⎛
⎜
⎜
⎜⎝

∫
{z1}×𝜕𝔻r

||||
𝜕 f
𝜕𝜃

||||
2
d𝜃

⎞
⎟
⎟
⎟⎠

dr
r(log r2)2 ≤ c log 2+

1
4

∫
0

⎛
⎜
⎜
⎜⎝

∫
{z1}×𝜕𝔻r

||||
𝜕 f
𝜕𝜃

||||
2
d𝜃 − c

⎞
⎟
⎟
⎟⎠

dr
r

for a.e. z1 ∈ Ω. Thus,

∫
Ω×𝔻z2 , 14

||||
𝜕 f
𝜕𝜃

||||
2 dz1 ∧ dz̄1

−2i ∧ rdr ∧ d𝜃
r2(log r2)2

= ∫
Ω

1
4

∫
0

⎛
⎜
⎜
⎜⎝

∫
{z1}×𝜕𝔻r

||||
𝜕 f
𝜕𝜃

||||
2
d𝜃

⎞
⎟
⎟
⎟⎠

dr
r(log r2)2 ∧

dz1 ∧ dz̄1
−2i

≤ ∫
Ω

⎛
⎜
⎜
⎜
⎜⎝

c log 2+

1
4

∫
0

⎛
⎜
⎜
⎜
⎜⎝

∫
{z1}×𝔻z2 , 14

||||
𝜕 f
𝜕𝜃

||||
2
d𝜃 − c

⎞
⎟
⎟
⎟
⎟⎠

dr
r

⎞
⎟
⎟
⎟
⎟⎠

dz1 ∧ dz̄1
−2i

= c log 2 ⋅ ∫
Ω

dz1 ∧ dz̄1
−2i + ∫

Ω×𝔻̄ 1
4

(||||
𝜕 f
𝜕𝜃

||||
2
− c

)
dz1 ∧ dz̄1

−2i ∧ dr ∧ d𝜃
r .

□

6 Harmonic maps of possibly infinite energy
The goal of this section is to prove Theorem 1, the existence of a harmonic map of logarithmic energy growth.
In Section 6.1, we show the existence of a harmonic map with the help of the prototype map. In Section 6.2, we
record the energy growth estimates for this map.
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Throughout this section, we use C to denote constants that are independent of the parameter r. Note that C
may change from line to line.

6.1 Proof of existence, Theorem 1

Proof. For r ∈ (0, 14 ], letMr = M∖r (see Figure 5).
Next, let 𝑣:M → M̃×𝜌X̃ be the prototype section of Definition 4.6 and let

ur:Mr → M̃×𝜌X̃

be the energy minimizer among all sections that agree with 𝑣 on 𝜕Mr for each r ∈ (0, r1]. The existence of such
a section ur follows from the proof of [14, Theorem 2.7.2].

Since
gEur [r,r1 ]+

gEur [Mr1 ] =
gEur [Mr]

≤ gE𝑣[Mr] (since ur is minimizing in Mr)

= gE𝑣[r,r1 ]+
gE𝑣[Mr1 ]

≤ gEur [r,r1 ]+ C + gE𝑣[Mr1 ] (by Proposition 5.14),

we have that
gEur [Mr1 ] ≤ gE𝑣[Mr1 ]+ C. (6.1)

The right hand side of the inequality (6.1) is independent of the parameter r; i.e. once we fix r1 ∈ (0, 14 ], the
quantity gEur [Mr1 ] is uniformly bounded for all r ∈ (0, r1]. This implies a uniform Lipschitz bound, say L, of ur
for r ∈ (0, r1] inM2r1 (cf. [14, Theorem 2.4.6]).

Let ũr and 𝑣̃ be the 𝜌-equivariant maps corresponding to sections ur and 𝑣. Thus,

d(ũr(𝜆(p)), ũr(p)) ≤ LdM̃ (𝜆(p), p), p ∈ M2r1 , 𝜆 ∈ Λ, r ∈ (0, r1]

whereΛ is the finite set of generators used in the definition of proper, Definition 2.7. If we let

c = Lmax{dM̃ (𝜆(p), p):𝜆 ∈ Λ, p ∈ M2r1},

then by equivariance
d(𝜌(𝜆)ũr(p), ũr(p))

) ≤ c, p ∈ M2r1 , 𝜆 ∈ Λ, r ∈ (0, r1].
In other words, 𝛿(ũr(p)) ≤ L for all p ∈ M2r1 and r ∈ (0, r1]. By the properness of 𝜌, there exists P0 ∈ X̃ and
R0 > 0 such that

{ũr(p): p ∈ M2r1 , r ∈ (0, r1]} ⊂ BR0 (P0).
Thus, following the proof of [15, Theorem 2.1.3], taking a compact exhaustion and applying the usual diagonal-
ization argument, there exists a subsequence of ũr that converges locally uniformly to a 𝜌-equivariant harmonic
map ũ: M̃ → X̃. Let u:M → M̃×𝜌X̃ be the corresponding harmonic section. □

Figure 5: The region Mr ⊂ M.
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6.2 Energy estimates for the harmonic section

Lemma 6.1. For the harmonic section u:M → M̃×𝜌X̃ of Theorem 1 and the prototype section of Definition 4.6, we
have

gEu[Mr1 ] ≤ gE𝑣[Mr1 ]+ C, ∀r1 ∈ (0, 14 ].

Proof. Follows from (6.1) and the lower semicontinuity of energy (cf. [14, Lemma 1.6.1]). □

Lemma 6.2. If 𝑣:M → M̃×𝜌X̃ is the prototype section of Definition 4.6 and u:M → M̃×𝜌X̃ is the harmonic section
of Theorem 1, there exists a constant C > 0 such that

|||
gEu[r1,r2 ]−

gE𝑣[r1,r2 ]
||| ≤ C, 0 < r1 < r2 ≤ 1

4 .

Proof. From the fact thatr1, 14
⊂ r1, 14

∪M 1
4
= Mr1 , Lemma 6.1, and the lower semicontinuity of energy (cf. [14,

Theorem 1.6.1]), we obtain

gEu
[r1, 14

] ≤ gEu[Mr1 ] ≤ gE𝑣[Mr1 ]+ C = gE𝑣
[r1, 14

]
+ gE𝑣

[
M 1

4

]
+ C.

Proposition 5.14 implies
gE𝑣

[r1, 14

] ≤ gEu
[r1, 14

]
+ C.

Combining the above two inequalities we obtain
||||
gEu

[r1, 14

]
− gE𝑣

[r1, 14

]|||| ≤ gE𝑣
[
M 1

4

]
+ C

and similarly
||||
gEu

[r2, 14

]
− gE𝑣

[r2, 14

]|||| ≤ gE𝑣
[
M 1

4

]
+ C.

The desired estimate follows from the above two inequalities. □

Lemma 6.3. If u:M → M̃×𝜌X̃ is the harmonic section of Theorem 1, then there exists C > 0 such that

||||||
gEu[r1,r2 ]−

L∑
j=1

E jAreagΣ j
(Σ j) log

r2
r1

||||||
≤ C, 0 < r1 < r2 ≤ 1

4 .

Proof. The estimate follows from Proposition 5.13 and Lemma 6.2. □

Lemma 6.4. If u:M → M̃×𝜌X̃ is the harmonic section of Theorem 1, then we have the following estimates in the
subsetΩ× 𝔻∗

1
4
of a setΩ× 𝔻̄ of type (A) or the subsetΩ× 𝔻̄∗:= 𝔻 1

4 ,1
× 𝔻̄∗ of a set 𝔻̄ × 𝔻̄ of type (B):

∫
Ω×𝔻̄∗

1
4

||||
𝜕u
𝜕z1

||||
2
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

r2(− log r2)2 < ∞

∫
Ω×𝔻̄∗

1
4

(||||
𝜕u
𝜕z2

||||
2
− E j
8𝜋r2

)
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 < ∞

∫
Ω×𝔻̄∗

1
4

||||
𝜕u
𝜕r

||||
2
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 < ∞
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∫
Ω×𝔻̄∗

1
4

(||||
𝜕u
𝜕𝜃

||||
2
− E j
2𝜋

)
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

r2 < ∞

∫
Ω×𝔻̄∗

1
4

||||
𝜕u
𝜕𝜃

||||
2
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

r2(− log r2)2 < ∞

∫
Ω×𝔻̄∗

1
4

||||
𝜕u
𝜕z2

||||
2
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

(− log r2)2 < ∞

where (z1, z2 = rei𝜃) are the standard product coordinates onΩ× 𝔻̄.

Proof. All the estimates except for the last two follow immediately from Lemma 6.3. The last two follow from
the other estimates and Lemma 5.15. □

Recall that the standard product coordinates (z1, z2) on a setΩ× 𝔻̄ of type (A) are not necessarily the holo-
morphic coordinates (z1, 𝜁 ) of Definition 3.6. We will now reframe the statements of Lemma 6.4 in terms of the
holomorphic coordinates on the set of type (A). We first need some estimates that compares 𝜁 to z2.

Lemma 6.5. If (z1, z2 = rei𝜃) and (z1, 𝜁 = sei𝜂) are the standard product coordinates and holomorphic coordinates
respectively on a setΩ× 𝔻̄ of type (A), then

r = as+ O(r2)
𝜕z2
𝜕𝜁 = a(1+ O(r)) 𝜕z̄2

𝜕𝜁 = O(r)

𝜕r
𝜕s = |𝛼|(1+ O(r)) 𝜕𝜃

𝜕s = O(1)

𝜕r
𝜕𝜂 = O(r2) 𝜕𝜃

𝜕𝜂 = O(1)

where a is a smooth function both bounded above and bounded away from 0 (cf. (3.18) and (3.19)).

Proof. Since
z2 = a𝜁 + O(r2)

by (3.19), the first estimate follows immediately. Furthermore, differentiating the above with respect to 𝜁 , we
obtain the next two estimates. The last four estimates are obtained by evaluating the differential forms of (3.17)
on the vector fields 𝜕

𝜕s ,
𝜕
𝜕𝜂 and using the fact that |

𝜕
𝜕s | = O(1), | 𝜕𝜕𝜂 | = O(r2). □

Theorem 6.6. If u:M → M̃×𝜌X̃ is the harmonic section of Theorem 1, then we have the following estimates in the
setΩ× 𝔻∗

1
4
away from a crossing (i.e. a subset of a setΩ× 𝔻̄ of type (A) or a subsetΩ× 𝔻̄∗:= 𝔻 1

4 ,1
× 𝔻̄∗ of a set

𝔻̄ × 𝔻̄ of type (B)),

∫
Ω×𝔻̄∗

1
4

||||
𝜕u
𝜕z1

||||
2
dz1 ∧ dz̄1 ∧ d𝜁 ∧ d𝜁

s2(− log s2)2 < ∞

∫
Ω×𝔻̄∗

1
4

(||||
𝜕u
𝜕𝜁

||||
2
− E j
8𝜋s2

)
dz1 ∧ dz̄1 ∧ d𝜁 ∧ d𝜁 < ∞
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∫
Ω×𝔻̄∗

1
4

||||
𝜕u
𝜕𝜁

||||
2
dz1 ∧ dz̄1 ∧ d𝜁 ∧ d𝜁

(− log s2)2 < ∞

∫
Ω×𝔻̄∗

1
4

||||
𝜕u
𝜕s

||||
2
dz1 ∧ dz̄1 ∧ d𝜁 ∧ d𝜁 < ∞

∫
Ω×𝔻̄∗

1
4

(||||
𝜕u
𝜕𝜂

||||
2
− E j
2𝜋

)
dz1 ∧ dz̄1 ∧ d𝜁 ∧ d𝜁

s2 < ∞

∫
Ω×𝔻̄∗

1
4

||||
𝜕u
𝜕𝜂

||||
2
dz1 ∧ dz̄1 ∧ d𝜁 ∧ d𝜁

s2(− log s2)2 < ∞

where (z1, 𝜁 = sei𝜂) are the holomorphic coordinates onΩ× 𝔻̄ (cf. Definition 3.6).

Proof. By Lemma 6.5, we have

s2(log s2)2 = r2(log r2)O(1),
1
s2 =

|a|
r2 (1+ O(r)),

𝜕u
𝜕𝜁 = 𝜕u

𝜕z2
𝜕z2
𝜕𝜁 + 𝜕u

𝜕z̄2
𝜕z̄2
𝜕𝜁 = 𝜕u

𝜕z2 a(1+ O(r))+ 𝜕u
𝜕z̄2O(r),

𝜕u
𝜕𝜂 = 𝜕u

𝜕r
𝜕r
𝜕𝜂 + 𝜕u

𝜕𝜃
𝜕𝜃
𝜕𝜂 = 𝜕u

𝜕r O(r
2)+ 𝜕u

𝜕𝜃O(1).

Thus,

||||
𝜕u
𝜕𝜁

||||
2
− E j
8𝜋s2 = |a|2

(||||
𝜕u
𝜕z2

||||
2
− E j
8𝜋r2

)
(1+ O(r))

||||
𝜕u
𝜕𝜂

||||
2
=

||||
𝜕u
𝜕𝜃

||||
2
O(1)+

||||
𝜕u
𝜕r

||||
2
O(r2).

Thus, the second, third and fourth estimates now follow from Lemma 6.4. The first estimate is a restatement of
the first estimate of Lemma 6.4. □

Theorem 6.7. If u:M → M̃×𝜌X̃ is the harmonic section of Theorem 1, then we have the following estimates in the
set 𝔻̄∗

1
4
× 𝔻̄∗

1
4
at a crossing (i.e. a subset of a set 𝔻̄ × 𝔻̄ of type (B)),

∫
𝔻̄∗

1
4
×𝔻̄∗

1
4

(||||
𝜕u
𝜕z1

||||
2
− Ei
8𝜋𝜌2

)
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

r2(− log r2)2 < ∞

∫
𝔻̄∗

1
4
×𝔻̄∗

1
4

(||||
𝜕u
𝜕z2

||||
2
− E j
8𝜋r2

)
dz1 ∧ dz̄1
𝜌2(− log 𝜌2)2 ∧ dz2 ∧ dz̄2 < ∞

∫
𝔻̄∗

1
4
×𝔻̄∗

1
4

||||
𝜕u
𝜕𝜌

||||
2
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

r2(− log r2)2 < ∞
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∫
𝔻̄∗

1
4
×𝔻̄∗

1
4

||||
𝜕u
𝜕r

||||
2 dz1 ∧ dz̄1
𝜌2(− log 𝜌2)2 ∧ dz2 ∧ dz̄2 < ∞

∫
𝔻̄∗

1
4
×𝔻̄∗

1
4

(||||
𝜕u
𝜕𝜙

||||
2
− E j
2𝜋

)
dz1 ∧ dz̄1
𝜌2 ∧ dz2 ∧ dz̄2

r2(− log r2)2 < ∞

∫
𝔻̄∗

1
4
×𝔻̄∗

1
4

(||||
𝜕u
𝜕𝜃

||||
2
− Ei
2𝜋

)
dz1 ∧ dz̄1
𝜌2(− log 𝜌2)2 ∧

dz2 ∧ dz̄2
r2 < ∞

where (z1 = 𝜌ei𝜙, z2 = rei𝜃) are the holomorphic coordinates on 𝔻̄ × 𝔻̄ (cf. Definition 3.2).

Proof. The standard product coordinates of a set of type (B) are also the holomorphic coordinates. Thus, these
estimates follow immediately from Lemma 5.9 and (3.35). □

7 Generalization to higher dimensions
The construction of harmonic maps from quasi-compact Kähler surfaces generalizes to quasi-compact Kähler
manifolds of arbitrary dimension. Indeed, let M = M̄∖Σ be a n-dimensional quasi-compact Kähler manifold
whereΣ is a normal crossing divisor. Then, every point x in an irreducible componentΣ j ofΣhas aneighborhood
U which can bewritten in holomorphic coordinates asU = 𝔻n−k × 𝔻∗k.Aneighborhood𝔻n−1 × 𝔻∗ (resp.𝔻n−2 ×
𝔻∗2) is analogous to a neighborhood of type (A) (resp. type (B)) defined above. Thus, the prototypemap is defined
analogously in those neighborhoods. We can also define the prototype map in other neighborhoods using an
inductive argument. Once the prototype map is constructed, the existence of harmonic maps follows as in the
two-dimensional case.

In our upcoming papers, we will only use the two-dimensional case.More precisely, we combine Theorem 1
with an inductive argument due to Mochizuki (cf. [7]) to deduce the existence of pluriharmonic maps in any
dimension in the quasi-projective case. This is why we gave the details only for Kähler surface domains.
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