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Abstract: We construct infinite energy harmonic maps from a quasi-compact Kéhler surface with a Poincaré-
type metric into an NPC space. This is the first step in the construction of pluriharmonic maps from quasiprojec-
tive varieties into symmetric spaces of non-compact type, Euclidean and hyperbolic buildings and Teichmiiller
space.
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1 Introduction

In this paper, we prove the existence of harmonic maps of possibly infinite energy from quasi-compact Kéhler
surfaces with a Poincare-type metric to NPC spaces. Infinite energy harmonic maps between manifolds previ-
ously appeared in the work of Lohkamp and Wolf. Lohkamp [1] proved the existence of a harmonic map in a
given homotopy class of maps between two non-compact manifolds, provided that a certain simplicity condition
near infinity of the domain is satisfied. Wolf [2] studied harmonic maps of infinite energy when the domain is a
nodal Riemann surface and applied it to describe degenerations of surfaces in the Riemann moduli space (see
also [3]). A few years later, Jost and Zuo (cf. [4], [5]) sketched a proof of the existence of infinite energy maps
from non-compact Kéhler manifolds. The purpose of this paper is to provide a complete proof of the existence
of harmonic maps from quasi-compact Kéhler surfaces to a certain class of NPC targets. This is the first step in
the construction of pluriharmonic maps from quasiprojective varieties into symmetric spaces of non-compact
type, Euclidean and hyperbolic buildings and Teichmiiller space which will be dealt in our upcoming paper, (cf.

[6D).

Theorem 1. Let M, X and a p: ;(M) — Isom(X) be as follows:

- M= M\X where X is a normal crossing divisor is a quasi-compact Kdhler manifold of dimension 2 with
universal cover M

- Xisan NPC space

—  pis proper (cf. Definition 2.7).

- plz(M)) satisfies Property (%) defined in Section 2.4.

Then there exists a Poincaré-type Kihler metric g (cf. Section 3.4) and p-equivariant harmonic map i: M — X.
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Many interesting examples satisfy Property (x). These include homomorphisms into semisimple algebraic
groups defined over R, C or p-adic fields. See Remark 2.9.

Remark 1.1. We will also prove logarithmic energy estimates near infinity (cf. Theorem 6.6 and Theorem 6.7).
This means that, for any transverse holomorphic disk to the divisor, the energy density behaves ~ #

The main idea of the proof of Theorem 1is to construct a prototype map which almost minimizes energy near
infinity. This map is used to construct a Dirichlet solution defined on a compact subset of the domain. Because
of the energy control, the sequence of harmonic maps corresponding to a compact exhaustion converges to an
infinite energy harmonic map defined on the whole surface. This idea goes back to Lohkamp [1]. In our situation,
the normal bundle of the divisor 2 may be non-trivial and the divisor may consist of more than one irreducible
component. In other words, a quasi-compact Kéhler surface M = i1\ X does not necessarily satisfy the simplicity
condition of Lohkamp.

In [4], Jost and Zuo sketched a construction of harmonic maps from quasi-projective manifolds. The point
of this paper is to provide the details of this argument for a quasi-compact Kéhler surface. We felt that a careful
presentation of this argument is necessary because all the constructions in our future papers (e.g. [6]) depend
on this result.

In a remarkable paper, Mochizuki [7] proved the existence of pluriharmonic metrics on flat vector bundles
over quasi-projective manifolds of any dimension. These metrics correspond to pluriharmonic maps into the
symmetric space GL(r, C)/U(r) by the Donaldson-Corlette theorem (cf. [8], [9]). In the forthcoming papers, we
will generalize Mochizuki’s result when the target is a symmetric space of non-compact type, a Euclidean or a
hyperbolic building and Teichmdiiller space. Indeed, we will first prove that the harmonic map of Theorem 1 is
actually pluriharmonicin these special cases. This is derived by adopting Mochizuki’s version of the Siu-Sampson
Bochner formula (cf. [10], [11]). We then prove the existence of a pluriharmonic map from a quasi-projective
manifold of any dimension by an induction argument.

One of our main applications of the existence of pluriharmonic maps is the construction of logarithmic sym-
metric differential forms over quasi-project manifolds. Using this, we prove alogarithmic version of a conjecture
by Esnault in the linear case [6].

We provide an outline of the paper below.

In Section 3, we discuss neighborhoods of the divisor and a Poincaré-type metric g (cf. Definition 3.4) due
to Cornalba and Griffiths [12]. This is a complete metric which puts the divisor at infinity.

In Section 4, we construct a prototype section v: M — Mx p)? with controlled growth near infinity. The crucial
tool is the Dirichlet solution on the punctured disk (cf. [10], [11] or Theorem 2.16). This enables us to construct a
fiber-wise harmonic map on the normal bundle of the divisor. This map defined near the divisor is then extended
to all of M.

In Section 5, we give precise estimates for energy growth of the prototype section near the divisor at infinity.
These are important because they imply the estimates for the harmonic section.

In Section 6, we use the prototype section v: M — MxX pf( in order to construct a harmonic section u: M —
MX,X. We end with some energy estimates of the harmonic section.

In Section 7, we sketch a proof in the case of higher dimensional quasi-compact Kéhler manifolds. Note that
in our upcoming papers, we will only use the two-dimensional case and this is why we gave the details only for
Kéahler surface domains.

2 Preliminaries

2.1 NPC spaces

We refer to [13] for more details.
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Definition 2.1. A curve c:[a, b] — X into a metric space is called a geodesic if length(c([e, f])) = d(c(a), c(f)) for
any subinterval [a, ] C [a, b]. (Note that a identically constant map from an interval is a geodesic.) A metric
space X is a geodesic space if there exists a geodesic connecting every pair of points in X.

Definition 2.2. An NPC space X is a complete geodesic space that satisfies the following condition: For any three
points P,R,Q € X and an arclength parameterized geodesic c: [0, [] —» X with ¢(0) = Qandc() =R,

d“(P,Q,) < (1 — d*P, Q) + td*(P,R) — t(1 — t)d*(Q, R)

where Q, = c(tD).

Notation 2.3. It follows immediately from Definition 2.2 that, given P, Q € X and t € [0, 1], there exists a unique
point with distance from P equal to td(P, Q) and the distance from Q equal to (1 — t)d(P, Q). We denote this
point by

1—-0P+tQ.

Definition 2.4. Let X be an NPC space. We say that two geodesics rays c, ¢’: [0, 00) — X are equivalent if there
exists a constant K such that d(c(t), ¢(t)) < K for all t € [0, o). Denote the equivalence class of a geodesic ray ¢
by [c]. The set dX of boundary points of X is the set of equivalence classes of non-constant geodesic rays. Note
that an isometric action on X induces an action on 0X.

2.2 Maps into NPC spaces

In this paper, we consider harmonic maps into NPC spaces. Important examples are when the target space X is
a smooth Riemannian manifold of non-positive sectional curvature. In this case, the energy of a smooth map
f Q- Xis
f — 2
E/ = /ldfl dvol,
Q

where (€2, g) is a Riemannian domain and dvol, is the volume form of €2.

In the case when the target is an arbitrary NPC space, we use the following definition of energy due to
Korevaar-Schoen. We refer to [14] for more details.

Let (2, g) be a bounded Lipschitz Riemannian domain. Let Q, be the set of points in Q at a distance least
e from 0Q. Let B, (x) be a geodesic ball centered at x and S,(x) = 0B, (x). We say f: Q — X is an L*>-map (or that
f € LAQ,X)if

/ d*(f, Pdvol, < co.
Q

For f € L*(, X), define

2
/ d*( f()gz, fo) dix.e XEQ,
e Q->R, e(0)= YES. ()

0 otherwise
where o, . is the induced measure on S_(x). We define a family of functionals

El.c.x) >R, E(p) = / e, dvol,.
Q

We say f has finite energy (or that f € W"*(Q, X)) if

Efi= sup lim supEf((p) < oo.
PEC,(Q),0<p<1 €0
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It is shown in [14] that if f has finite energy, the measures e.(x)dvol ¢ converge weakly to a measure which is
absolutely continuous with respect to the Lebesgue measure. Therefore, there exists a function e(x), which we
call the energy density, so that e, (x)dvol, — e(x)dvol,. In analogy to the case of smooth targets, we write |V f 12(x)
in place of e(x). In particular, the (Korevaar-Schoen) energy of f in Q is

E'Q] = /|Vf|2dvolg.
Q

Definition 2.5. We say a continuous map u: Q — X from a Lipschitz domain Q is harmonic if it is locally energy
minimizing; more precisely, at each p € Q, there exists a neighborhood € of p so that all continuous comparison
maps which agree with u outside of this neighborhood have no less energy.

For V € I'Q where ['Q is the set of Lipschitz vector fields on €, |f, (V)|? is similarly defined. The real valued
L! function |f,(V)|? generalizes the norm squared on the directional derivative of f. The generalization of the
pull-back metric is the continuous, symmetric, bilinear, non-negative and tensorial operator

7, (V, W) =TQXTQ - LQ,R)

where 1 1
7 (V, W) = 1LV + W) = S I£(V = WP

We refer to [14] for more details.
Let (x1,...,x™) be local coordinates of (€2, g) and g = (&), g7 = (g9) be the local metric expressions. Then
energy density function of f can be written (cf. [14, (2.3vi)])

2 i 0d 0

Next assume (€, g) is a 2-dimensional Hermitian domain and let (z! = x' + ix?, 22 = x® + ix*) be local complex
coordinates. We extend 7 ; linearly cover C and denote

U 2.2)

0zl 07/ ~ o0zt 07/

2 o 0
— 7\ oz 97 )

Lype=giof . of
4|VfI =857 o7

and
af
0z

Thus,

2.3 Isometries of an NPC space

Throughout this paper, we denote the group of isometries of an NPC space X by Isom(X). Isometries of an NPC
space are classified as follows.

Definition 2.6. For I € Isom(X), let
A= infdd(®),P)
Pex

denote its translation length and define
Min():= {P € X:d(I(P),P) = A,}.

The isometry I is elliptic if A; = 0 and Min(I) # @. It is hyperbolic if A; > 0 and Min(I) # @. If I is elliptic or
hyperbolic, then we say I is semisimple. Otherwise, I is said to be parabolic.
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Definition 2.7. Let I be a finitely generated group, A be a finite set of generators of I', X be an NPC space and
p:I'— Isom(X) be a homomorphism. Define 6:X - [0, o0) to be the function

6(P) = max{d(p(A)P,P): A € A}.

We say p is proper if the sublevel sets of the function & are bounded in X; i.e. given ¢ > 0, there exists P, € X
and R, > 0 such that
{PeX:8(P) < c} C By (Py).

Remark 2.8. If X is locally compact and p does not fix a point at infinity, then p is proper by [15, Theorem 2.2.1].

2.4 Property ()

Given a homomorphism p: 7, (M) — Isom(X), we say p(r,(M)) satisfies Property () if following holds:
- EveryI € p(x,(M)) has exponential decay to its translation length. In other words, either
(1) I1issemisimple, or
(i) Iis parabolic, fixes & € 0X and there exists a geodesic ray c: [0, co) — X and a, b > 0 such that

d2I(c(®), V) < A? + be™ .

- For any commuting pair of isometries I;, I, € p(x,(M)), either
(i) I, 1, do not fix a common point of 0X, or
(i) I,,I,fixacommon point & € dX and there exist an arclength parameterized geodesic ray c: [0, 00) — X
in the equivalence class & and a, b > 0 such that

d (), c®) < A} +be™™, i=1,2

Remark 2.9. Let G be a semisimple algebraic group defined over R or C acting on a symmetric space G/K of
non-compact type or let G be a semisimple algebraic group defined over some non-archimedean local field K
acting on a Bruhat-Tits building without a Euclidean factor. If p: 7;(M) — G is a homomorphism, then p(z,(M))
satisfies Property (x).

Lemma 2.10. Let C be a closed convex set in X and z: X — C a closest point projection map; i.e. () is the unique
point of C such that d(x, (X)) = minecd(x, y). If I € Isom(X) is such that I(C) = C, then I o z(x) = m o I(X).

Proof. Since Ion(x),I tomol(x) € C, the definition of 7 implies
dI(x), w o I(x)) < dUI(x), I o z(x)) = d(x, (X))

<dx, It oz olI(x)) = dU(x), 0 I(X)).

Thus, d(I(x), = o I(x)) = d(I(x), I o z(x)) which implies = 0 I(x) = I o (). O

Lemma 2.11. Let y, and y, be generators of the abelian group 2zxZ X 2nZ acting on R X R by translations
71 06Y) =+ 2rx,y) and v, - (x,y) = (x,y + 27x) respectively. For a commuting pair of isometries I, and I,, let
(I, I,) C Isom(X) be the subgroup generated by I, I, and p:2xZ X 2z 7 =~ m,(S") X m,(S") = (I, I,,) be the homo-
morphism defined by y, — I,,v, — I,. IfI,, I, satisfy either (i) or (ii) of the second bullet point of Property (x), then
there exist constants a,b > 0 and a p-equivariant map

h:[0,00) XRXR = X

such that
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on|’ on|’ A on| _ A
< < 1 —at < 2 —at‘
ot <1 ox| ~ 4rx? +be, ‘6}1‘ = 4r? +be

Proof. Assume that (i) of the second bullet point holds. Then by [15, Theorem 2.2.1 and Corollary 1.5.3), there
exists a totally geodesic p-equivariant map f: R X R — X. In particular, c(t) := f(t, y) maps to a point or is a con-
stant speed reparameterization of a geodesic. Since I, o c(t) = I, o f(t, y) = f(t + 27, y) = c(t + 27), the isometry
I, fixes c(?). If c(t) maps to a point, then I, is an elliptic isometry fixing that point. If c(t) is a geodesic line, then
I, is a hyperbolic isometry fixing C:= c(R). Since I, commutes with the closest point projection map 7:X — C
by~Lemn1a 2.10, d(1,00,x) > d(z o I;(x), #(x)) > d(; o w(X), Zr(x)) f(~)r all x € X. Thus, A; = Ap, which implies
d(f(e, y),f(t + 2z, y)) = d(c(0), c(t + 27)) = A, . Similarly, d(f(x, t), f(x, t + 27)) = Ap . Thus,

2 2 ~ 2
_ Ar | _ Ap
Ag?’  |oy| 4n*

of
ox

Thus, the map h(t, x, y) = f(x, y) satisfies the desired inequalities.
Next, assume that (ii) of the second bullet point holds. Define

R:[0,00) X RXR > X

as follows: Fix t € [0, c0). For 8 € [0,27x), let 8 — A(t,0,0) be a geodesic from c(t) to I, o c(t) and 0 +— h, 0,2r)
be a geodesic from I,(c() to I; o L, (c(t)) = I, o I;(c(t)). Next, let @ — h(t, x, 6) be a geodesic from h(t, x, 0) to
h(t, x, 2z). Finally, p-equivariantly extend to define this map on t X R x R. The NPC condition implies the asser-
tion. O

2.5 Equivariant maps and sections of the associated flat X-bundle

Following Donaldson [8], we will replace equivariant maps with sections of an associated fiber bundle. Assume
we have the following:

- acomplete Riemannian manifold (M, g) with universal covering Il: M — M

- anNPCspace X

- an action of 7;(M) on M by deck transformations

- ahomomorphism p: z,(M) — Isom(X)

Definition 2.12. A map f: M — X is said to be p-equivariant if
forp) = pf(p), Vy € m), p €I

Remark 2.13. Assume p: (M) — Isom(X) is proper (cf. Definition 2.7). If there exists a finite energy
p-equivariant map f: M — X, then there exists a Lipschitz harmonic map w: # — X (cf. [15, Theorem 2.1.3,
Remark 2.1.5]). In this paper, we are trying to establish the existence of a harmonic map without assuming that
there exists a finite energy map to start with.

The quotient under the action of 7,(M) of the product M x X is the twisted product
MX,X.

In other words, Mx X is the set of orbits [(p, x)] of a point (p, x) € M x X under the action of y € (M) via the
deck transformation on the first component and the isometry p(y) on the second component. The fiber bundle

MXpXﬁM

is called the flat X-bundle over M defined by p.
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There is a one-to-one correspondence between sections of this fibration and p-equivariant maps
fM-X — f:M—>]\~4Xp)~(

satisfying the relationship
[@.f®)] < f(p) where I1(%) = p.

Since the energy density function |Vf|? of f is a p-invariant function, we can define
IV fIX(p):=VFI*®).

We can similarly define the pullback inner product and directional energy density functions of f by using the
corresponding notions for f given in Section 2.2. For U C M, the energy of a section f is

E'U) = / |V fI2dvol,. @1
U

Furthermore, for sections f), f,, we define

d(f,(p), f,(p) :=d(F,(B). (D) 2.2)

where f,, f, are the associated p-equivariant maps to sections f;, f, respectively.

2.6 Harmonic maps from punctured Riemann surfaces

In this paper, many of the constructions will depend on harmonic maps for punctured Riemann surfaces. Below,
we summarize the results of the paper [10], [11].

Let R be a compact Riemann surface and R = R\{p', ..., p"} a punctured surface. We fix a conformal
disk D/ C R centered at each puncture p/ such that D' N D/ = @ for i # j. Furthermore, let D/* = D/\ {0}.

Fix P, € X and a fundamental domain F of R. Let f; be the section of the fiber bundle Rx,X — R such
that, for any p € R N II(F), f,(p) = [(p, P,)] where p = IT"*(p) N F. (Note that I1(F) is of full measure in R.)

For a given section f: R — RX pf(, define

8D 5 10,00),  6,(2) = essinfd(f(2), f(2)). 2.3)
{zeD/*}
Recall that d(f(2), f,(2)) is defined by (2.2).

Definition 2.14. We say a section f: R — RX p)? (or its associated equivariant map) has sub-logarithmic growth
ifforanyj=1,...,nandanye > 0

lim 6,(z) + € log |z| = —co in DJ*.
|1z|-0

By the triangle inequality, this definition is independent of the choice of P, € X. We say that f has logarithmic
energy growth if near the punctures it satisfies

n A2‘ 1 n AZ' 1
“Plog= <EMRI<Y “Llog=+¢C 24
;27[ Ogr‘_ [ r]_;br Ogr+ 2.4)

where R, = R\U'J?zlﬂ])i and E/[R,] is the energy of f in R,.

Definition 2.15. For a homomorphism p: 277 =~ 7r1(§1) — X, let Rx p)? — S! be the flat X-fiber bundle defined
by p (cf. Subsection 2.5). Define E,, to be the infimum of the energies of sections St - Rx p)? (cf. 2.D).If A, is the

2
translation length of the isometry I := p([S']), then E p = ZA—;.

We record our result in [6], [7].
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Theorem 2.16. (Existence and Uniqueness of the Dirichlet solution on D*). Assume the following:
- p2nZ ~ m(SY) ~ 7, (D*) > Isom(X) is a homomorphism

- kD* - D*x,X is a locally Lipschitz section

— I:=p([SY)) has exponential decay to its translation length of Property (x)

Then there exists a harmonic section
u:D* — D*x X with ulg = k|g.

Furthermore, there exists a constant C > 0 that depends only on E,, of Definition 2.15, a, b from Property (x) and
the section k satisfying the following properties:
(6))] E, log% sE"[[DrJ] <E, log% +C, 0<rx<i1

2 2
s Jdu c Jdu E, c - *
== PR S— z= p—h < [)
(i) or| — r’(-logn 00 m %

and <
2 —log r
(iii)  u has sub-logarithmic growth.

Moreover, u is the only harmonic section satisfying u|,p, = k|;p and property (iii).
3 The Poincaré-type metric and its estimates

3.1 Neighborhoods near the divisor

This subsection closely follows [7]. We let M be a Kihler surface and X be a divisor with normal crossings such
that

M = M\Z.
Furthermore, let
L
=g
=1

where {;} is the set of irreducible components of . Let o ; be the canonical section of O(X) with zero set X;.
We denote by D the unit disk in the complex plane and let

D,:={ze€D:|z| <r}and D, , :={z € D:r; <|z| <r1,}.

For clarity, we will also denote the unit disk by D, to indicate that D is being parameterized by the complex
variable z = re’. We use analogous notation D, , D, r,- We also use the notation Slo to denote the circle S
parameterized by the real variable 6 and identify Slg as the boundary of D, via the map 6 + €.

To study a neighborhood of the juncture, let P € £; N X, for some i, j € {1,...,L} withi # j,andlet V be a
neighborhood of P containing no other crossings. Choose holomorphic trivializations e; (resp. e;) of O(Z)) (resp.
O(Z)) on V and define z' (resp. z*) by setting

o, =Zz'e;, (resp. o; = Ze;). 3.1

Foreachj=1,...,L, let h; be a Hermitian metric on O(X)) such that |e;| n = 1in V, for any crossing P. Let h be
a Hermitian metric on M, not necessarily Kihler, such that the following holds:
(i) The metric h is the Euclidean metric in a neighborhood V of every crossing P, i.e.

hly, = dz'dz' + dz*dz". (3.2)
By rescaling o, and o, if necessary, we can assume without the loss of generality that

Iﬁ)zl X ﬂj)zz C Vp. 3.3)
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(i) The metric h induces the orthogonal decomposition TM |2]_ =T i @ NZ j and under the natural isomor-
phism
NZj ~ (9(2]'”2]» (3.4)

the restriction of hto NX i issame as h e
Forr € (0, 1], we set
D;,={veENX; |v|hj <r},
Dj, ={vENZ;0<|v|, <r},
D}"r = {V (S NZ]: |V|hj S r}

Dj."r ={veCNZ;0< |V|h,~ <r},

L L L L
D, = U D, Di= U Di, D, = U D,, D= U D,
j=1 j=1 j=1 j=1
D, , =D, \D, for0<r <r,<1 (3.5)

There exists r > 0 such that the restriction of the exponential map
exp: NZ; C TI\7[|2j - M

defines diffeomorphism of D; . to a neighborhood of %; in M. By rescaling ¢ jif necessary, we may assume r > 1.
In particular, we identify (3.5) for sufficiently small r > 0 as an open subset of M via the exponential map; i.e.

Dy ,,:=|Jlexp viveNZ;, r < vl <} C M. (3.6)

j
Denote
The restriction of N Z]- > j to D i defines a disk bundle
w:D;—X. 3.7
We also identity D jasa subset of IM; i.e.
D; ~ exp(D)) C M. (3.8)

We denote by Jj; the holomorphic structure on D ; defined by pulling back the complex structure on M via the
exponential map.

We now consider a finite collection of sets near the divisor of the following two types:
— Aset of type (A) admits a local unitary trivialization

7[1._1(9) ~QxD,, (3.9

of z;: D ; — X;where Q C %; is a contractible open subset of %; containing no crossings. We will use coordi-
nates (z!, z%) where z! is a holomorphic local coordinate in Q and z? is the standard coordinate of D. Although
the coordinates (z!, z2) are holomorphic with respect to the product complex structure Jproa 0F €2 X D,., they
are not holomorphic with respect to the complex structure J;;. However, by construction, we have that

Jit = Joroa 00 T ) (2 X D).
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— Asetoftype (B)isasin (3.3); i.e.
Dzl X Dzz C VP (3.10)

where V, be an open set containing a single crossing P € Z; N X; (i # j). By the property (i) of the hermitian
metric h, (1, z%) are holomorphic coordinates with respect to J;;. Furthermore, with the identification D, =~
D, X {0} C =, (resp. Dy ~ {0} x D, C Xy),

7[]._1([DZ1) ~ [Dzl X szz (resp. ﬂi_l(ﬂj)zz) o~ Dzl X ﬂj)zz) (3.11)

is a local unitary trivialization of z;: D; — X; (resp. 7;: D; — X)).

Definition 3.1. We will refer to the coordinates (z!, z%) discussed in (A) above as the standard product coordi-
nates on a set Q x D,. of type (A).

Definition 3.2. We will refer to the coordinates (z', z?) discussed in (B) above as the standard product coordi-
nates and the holomorphic coordinates on a set D; X D; of type (B).

Remark 3.3. Holomorphic coordinates in a set of type (A) are defined later (cf. Definition 3.6).

3.2 Poincaré-type metric

Recall the Poincaré metric

_ dz & dz "
8poin = Re( Iz%(log |z|2)2> onb”. (812

Using the canonical section 6; € O(X)) and the Hermitian metric h; on O(X)) given in Section 3.1, we define the
Poincare-type metric on M as follows:

Definition 3.4. Let @ be the Kéhler form on M. Scale the metric h ; such that |6j|hj < 1and define

L
®w=0d— @2 0510g<10g|aj|,j}?>. (3.13)
=1

By scaling @ if necessary, we can assume that w defines a positive form. We denote by g the Kdhler metric on M
induced by the Kahler form .

Definition 3.5. Fix j and define on M\|J,, ;Z; the Kéhler form

o+ Y"1d10g loglo,l72 = @ — Y1 Y adlog log| ol (3.14)
2 J'h; 2 = hy
i#]

Define gs, 10 be the restriction to X;\ |, ; 2; of the Kéhler metric associated to this Kahler form. This is a smooth
metric on ; away from the crossings.

Below we derive some estimates for the metric g in a set of type (A) and of type (B) (See (3.9) and (3.10) for
definitions of a set of type (A) and (B)). These are an expanded form of the estimates derived by Mochizuki [7].

3.3 Metric estimates in set of type (A)

Let n}.‘l(Q) ~ Q X Dbe a set of type (A) with the standard product coordinates (z', z%). (Recall that Q C X; does
not intersect X; for i # j.) We will write

7' =x+iy and 2% =re?.
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Fix a local trivialization e of O(Z ), holomorphic with respect to the complex structure /. Define
b:QxD —[0,00), b= el
J
With o | the canonical section of O(Z j) as before, define a function ¢ on Q X D by

0]=Ce

Thus, ¢ is holomorphic with respect to Jj.
Definition 3.6. We refer to
@, 0

as the holomorphic coordinates (with respect to J;;) on a set Q x D of type (A).

Sincez2=0=¢onQ X {0} andz% # 0, # 0 on Q X D*,

2
dlogZ% —d log ¢ = % - %‘: — 0()(dZ! + d7' + dz* + d72).

Taking real and imaginary parts,

g _ % = 0()(dz" + dz! + dz? + dZ?)

df — dy = 0)(dz! + dz* + dz% + dz2).

Let
aQxD-C*

be a smooth function bounded above and bounded away from 0 satisfying

alllgxio) = 42| . V2 €Q.

Thus,
— 4,2 _dz , _(d 2
ad¢ = dz*(1+ 0(r)) = S L (1+0@r) = ra + 0 )z*(1 + O(r)).

Plugging in % in the above equation, we obtain

Z 14+ 0()
a= =01+ o()).
4

From this, we immediately obtain

[al| =r@+ 0))
log |ag|* = logr? + log(1 + O(r) = log r* + O(r).

This implies
log |a]-|,;j2 =log b|¢|7% = log b —log r* +log |a|? + O(r) = —logr* + A + O(r)

where
A(zY) = log b(z',0) + log |a(z!, 0)|.

-_— 113

(3.15)

(3.16)

(317

(3.18)

(319)

The function a depends on the choice of e and o whereas the function b depends on the choice of e and h;.

Thus, by scaling o if necessary, we can assure that b satisfies the following two conditions:

—log|]? +1logb>00on QXD

(3.20)
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log b+ log |al* > 0 on Q X {0}. (3.21)
We compute
Vo1 0 10g|6j|ij A510g|6j|flj 6510g|aj|flj
2 2 T I
<log|al~|ﬁj> 0glojl;,

Va

-

ddlog logo;|;* =
]

(0log & +01log b) A (0logé +dlogh)  ddlog b

i

2 1 120
(loglffjli_) %81l
]
_\/—1|0log £ Aodlogl + 0log { Adlog b
- 2 2 2 12 2
<108|0'1|h].> (10g|6}|h]->
1 ologf a1 01 01
L 0loghAd o§§+0 ogbAd Ogb_lig|gglf _ (3.22)
12 12 ilh;
<1°g|‘71|hj> (loglajlhj) J
Note that because of (3.18) and since b is a smooth function bounded away from 0, we have
5 2 A 72
dlog & A 010% ¢ _ rz(_dfo g/\r zdi_ A7 + Error, + Error,
(1og o1 )
dlog & A 6lo§ b’ 0 log b A alo§§ — Error, + Error,
1 12 1 |2
<0g|61|hj) (0g|6]|hj>
dlogbAdlogh ddlogh _ Error,. (3.23)

2 2
<log|o-j|§l_) IOglailhj
J
where Error; is a form of the type
ol 1 dz' Adz® or O S S dz* A az!
r(—logr? + Ay r(—logr* + Ay
and Error, is a form of the type
O ———— Jdz' AdZ or O —— ) dz2 A dZ
(—logr? + A)? (—logr? + A)?

In coordinate z' of Q C X, let the local expression of the metric g, given by Definition 3.5 be 4 dzldzl.
Then it follows from the above estimates that in the coordinates (z!, z%) of Q x D and with r = |2z?|, the metric
expression of g is

1 1
(gﬁ gﬁ) B /H_O((—logrz +A)2) O(r(—logr2 +A)2> 520
8 8 1 1 +0 1
r(—logr? + A)? r’(—logr? + Ay (—logr? + A)?
Furthermore, the local expression for the inverse g is
TR 1 2
=+0 0]
(gzi gzz> S ¥ - (3.25)
g & o) r’(—logr? + A)* 4+ 0(r%)



DE GRUYTER G. Daskalopoulos and C. Mese: Infinite energy harmonic maps from quasi-compact Kéhler surfaces

The product metric P on Q x D is defined by taking the dominant terms of g. More precisely, let

<P11 P12> _ A (1)
- - 0 — =~
P21 PZZ 1”2(— 10g ,.2 + A)Z
1 3 1
Pll P12 - 0
( 21 2| = A ’
P= P 0 r*(—logr®+A)?

o o(r*) o(r)
£ _( o 0(r2)>'

Comparing the local expression of g and P, we obtain

_ 1
dvol, = dvol, <1 + O<(_ Togr? + A) > >

A straightforward computation gives

The inverse P

Thus,

_ dz2 A dz?
dvol, = dVOngj A —2ir?(—logr* + A)?
) . dz* A dz2
1 _ A
P"dvol, = gzjdvolgzj A —2ir2(— log 12 + A)?
_ dz? A dz?
Pzz 1 = 1 a9
dvo P dvo gz]- A —2i

- 115

(3.26)

(327

(3.28)

(3.29)

The metric P (and hence the metric g) is of finite volume over Q X D* since &, 1s a smooth metric on QCZ;

and

1
kY . rdr
Vol,(Q2 X D*) = Area(QQ) - 27 ll_r})l/ m
€

1

o area(@ 2ot [ AC1ogr +4)
= —Areal@Q)- 27l [ o ogr? + AP

1

= —Area(Q) - 7 lim < 00.
-l
€

0—logrr+ A

Moreover, since

ry, _ dr Adf _ 00
27rAreagzj(Q)logr—i = / dvolgzj/\ = / P?%dvolp,

QXD QXD,

1.y ryry

there exists a constant C > 0 such that

1 r.
o / g%dvol, — Area(Q) logr—j <C, 0<r<r<1l

QXD,

r1.p

(3.30)

Lemma 3.7. The Poincaré type metric g defined by Definition 3.4 satisfies the following: There exists ¢ > 0 such

that, on the set Q X D* away from the crossings with holomorphic coordinates (z*,{ = re'9),
1 y g
4

rdr Ado < cdvol

1
- 1 < -
Cdvog < pdp/\dqb/\rz( log 2P = g
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Proof. This is immediate from the fact that the metric &s, given by Definition 3.5 is smooth combined
with (3.28). O

Remark 3.8. The key feature of the metric P is the following: Define Q to be the product metric
=gz ORe(E ) = g (@ +1°d6") on QX D",

Then i i
P*dvol, = Q*dvol,,
This is important in Section 5 below where we estimate the energy of v. In particular, we have

2

5| ov |2 5| ov
/PZZ @ dVO].P= /QZZ @ dVOlQ
QXD QXD
ov [*dz2 A dz2
= /| ] |5e] 5 o,
Q| {2}xD

Note that the inside integral on the right hand side above is exactly the energy of the harmonic map v p
from the disk.

3.4 Metric estimates in a set of type (B)

First recall that a type (B) set of Section 3.1is a set D1 X D,. with
D, CZ;, Dp CX; and (0,0) € XN,

such that the standard product coordinates (z, z2) are also holomorphic coordinates with respect to complex
structure . Since |o;|,, = |z'| and |ojln, = |Z2],

V=1/,= 3 . A% 5\ _ 0logz! AdlogZ!
_T<aalog log|ai|hi + dolog log|aj|hj ) = Clhgldp

0 log z% A 0 log 7
(_ log |ZZ|2)2

In the coordinates (z', z%) and with p = |z!| and r = |z2|, the local expression of the metric P associated to the

above Kéhler form is .

—_— 0
<Pﬁ Pli) _ | P*Uog p?Y (3.31)
Py Py 1

r’(log r2y?

pi pt _ pz(log pz)z 0
pA op2) 0 rPQogr?)

With ¢ = 0(p?*(log p?)?) and [] = O(r*(log r?)?), the local expression of the metric g and its inverse g~ is

and the inverse P! is given by

1
(gu gu> _| acg e T o0 oW

_ _ 1
81 82 o) log oY

(3.32)
+0Q)
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gﬁ gli _ pPlog p?Y(1+ o + ) o] (3.33)

g g2 - o] r*logr A +o+0 ) ‘

Thus,
2 202
p-(log p*)* (¢ + [ o]

-1 _ P—l — 3.34
8 ( o] r*(log r*)*(o + I:l)) .
dvol, = dvol,(1+ O(pz(log r2)2) n O(rz(log rz)z))_ (3.35)

A straightforward computation gives

dvol, — 4zt Adz! A dz? A dz?
P 2ip*log pP)* T —2ir*(log r2)
1 dz! A dz! dz? A dz?
Pldvol, = i “airf(log 1%
5 dz! A dz! dz? A dz?
P*dvol, = — 2flog 2"~z (3.36)
Similarly to (3.30), we also obtain for subsets D, , X Q, QX D, , of Dy X D,
1 r
- / g dvol, - Area, (@) logr—i <c,
D,mxsz
1 00 _ | <
o / g dvol, Areagzj (©)1og e C. (337
QXDI’lTZ

Lemma 3.9. The Poincaré type metric g of Definition 3.4 satisfies the following: There exists ¢ > 0 such that in

neighborhood D* X D* near a crossing with holomorphic coordinates (z! = pe'?, z> = re'?),
i

1 pdp A dg rdr A d6
=dvol, < < cdvol,.
c vo g = pZ(_ 10g pZ)Z A 1”2(— log r2)2 = cavo 4

Proof. This is immediate from (3.36). O

4 The prototype section

The goal of this section is to construct a prototype section with logarithmic energy growth near the divisor. The
key is the fiber-wise harmonic sections on the normal bundle of the divisor Z, the existence of which follows
from the Dirichlet problem on the punctured disk (cf. Theorem 2.16).

Recall the sets of type (A) and of type (B) described in (3.9) and (3.10) respectively. In Section 4.1 and
Section 4.2, we construct a local prototype section in a set of type (A) and (B) respectively. In Section 4.3, we
glue these sections together to define a prototype section near the divisor and extend it to all of M. In summary,
we construct a locally Lipschitz global section

U:M—»M)(p)?

of logarithmic energy growth near the divisor.
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4.1 Inaneighborhood away from the junctures

The goal of this subsection is to construct a local prototype section in a set of type (A) and derive some energy
estimates. We start with the following:

- QxDisasetoftype (A) withQ C %,

- (2}, 7%) are the standard product coordinates of Q x D (cf. (3.1)

— 1,0 are parameters defined by z> = re'

- S, is the boundary 0D, of D,.

- Ry — S'is the universal cover

- D* - D* is the universal cover

- [Sé] is the element of nl(%) ~ m,(Q x D*) associated to the loop Sle ~ {7} x Sle
- pimx D*) — Isom(X) is a homomorphism

- (Q@xD"x,X - Qx D" is a fiber bundle

- kQXD* - (QXD*)X,X is alocally Lipschitz section

- RyX,X — S} is afiber bundle

- Ej;is the infimum of the energies of sections Slg - RyX p,)? .

4.1.1 Construction of a prototype section in a set of type (A)

We define ~
0:Q X D* = (Q X Ifl)*)xp,)? 4.1

by setting v to be the fiber-wise harmonic section with boundary values given by k|q, <. More precisely, we
apply Theorem 2.16 as follows: For each z! € Q, the restriction

Up =0 pyupe D & {21} X D* > D*X X
is the unique harmonic section with logarithmic energy growth and boundary values
UleS’m{f}xS’ = k|§1z{zl}x§1'

4.1.2 Derivative estimates in a set of type (A)

Lemma 4.1. (Derivative estimates in set of type (A)). There exists a constant C such that

—gZUl( (1),2(2)) <C, V(z}),z(z)) € Q x D*
ov |*dz? A dz2 Ty 1
- — — < . v
/ o7 o _C+E]10gr, Vz, € Q

{z}xo,
where0 <r <ry < i and 7> = re®.
Proof. Denote the Lipschitz constant of k on Q X S! by L. Let z}, z! € Q. Since Uzt and v, are harmonic sections,
the function z — dz(vz(l) (2), v,;(2)) is subharmonic in D* (cf. [14, Remark 2.4.3]).

By Theorem 2.16 (iii) and the triangle inequality,

lim d4(v;(2), 02(2)) + € log |z] = —c0, Ve > 0.
Vind
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Thus, d2<vzé, UZI> extends to subharmonic function on D (cf. [10], [11], Lemma 3.2). The maximum principle
implies that for any z2 = rye'%,

dz(vzé (rgei®), v, (rgei®)) < supd?®(k(zl, e), k(z*, %))
oes!

<L*zy—z'% 4.2)

In other words, for every fixed z3 = rye'%, the map z, ~— v, (z3) is Lipschitz which immediately implies the first
estimate. The second estimate follows from Theorem 2.16. O

4.2 In a neighborhood of the juncture

The goal of this subsection is to construct a local prototype section in a set of type (B) and derive some derivative
estimates. We start with the following:
- D, xD,isasetoftype (B) with D, C X;and D, C X
— (2%, ) are the standard product (and holomorphic) coordinates
- p, ¢, 1,0 are the parameters defined by z! = pe'® and z% = re’?
- S}i) is the boundary of D1 and S}, is the boundary of D>
- Ry— S}ﬁ and R, — S, are the universal covers
- D’ — D, and D¥, - D are the universal covers
- S; XS} is the boundary of D, XDy
- RyXRy— S}ﬁ X S}, is the universal covering map
- [S}ﬁ] is the element of 71'1(@:1) ~ ﬂ1<§}i)) generated by S and [S,] is the element of 7r1<[f]>:2> ~ m(S})
1
generated by S,
- [Sé}] and [S}] also are the elements of 7z1(|]fb’z“1 X I]fD;) generated by S}p ~ S}ﬁ X {z*} and S} ~ {z'} X S},
respectively
- ﬂ'l(l]j);> o~ 7r1<§;)> and ﬂl([f]);) ~ 7;(S}) are identified as a subgroup of 71'1([f]>;‘1 X ﬂj);) by the above
identification
- o ﬂl(ﬂj)*l X D*Z) — Isom(X) is a homomorphism and p;( =p'| ;.. \fork=1,2
~ ,-Z\., Zz ~ 21 ([Dzk)
- (D; X [f]);)x X — D* x D% and D%, x PLX — D7, for k = 1,2 are fiber bundles
- RyX X S}, and RyX X — S are fiber bundles
- E;is the infimum of the energies of sections S}p - RyX p{X
- E;is the infimum of the energies of sections S; - RyX p;f(
- kD xD%— ([ﬁ); X D%, )x X is alocally Lipschitz section
- k I]fD*L‘U1 X I]fD*L‘U2 — X is the corresponding p’-equivariant map
- K is the restriction of k to R X Ry.

4.2.1 Construction of a prototype section in a set of type (B)

We construct the local section .

v: 0%, x B, - (D; X D;)xp/x.
In what follows, we will assume that E;, E; > 0 for simplicity. The case when E; or E; is equal 0 can be dealt with
in the same way.

— By Property (%) and Lemma 2.11, for each t € [0, o0), there exist constants a, b > 0 (by modifying the con-
stants a, b from Lemma 2.11) and a section

hi Sy X Sy = Ry X Ro)X X
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satisfying

2 2 E.

< L +bpe™
2r

on,
ot
— Define the diagonal set

2
<1 oh,

<L |9

b at e 4
+ be™™, 90

Si
2

D ={(pe, pe’) € By x DLip € 011, p.0 €S},

- Define v,: D — X as follows: Fix (9, ¢) € S' x Sl
— TForp e (0,2],let

ig 0y —
op(pe?.pe) = h (.6,

- TForpe [%, 1], let the curve
p=v,,0) forpe [%1]

be the geodesic between h3(log 2} (¢, 0) and x (¢, 9). Define

UD(pei¢’ peiG) = yp(d)» 0)

DE GRUYTER

4.3

where we use y , to also denote the section y,: S}ﬁ X Sz = Ry X Rp)X p,X . (Note that p’ is a representation

and p is a real number here.)
- Let
7= {(zl,zz) € b, x 0%:|2'] 2 |2 }

and
@D, X DY, - Z; C DY, X DY,

be a homeomorphism defined by (see Figure 1)
(24,25 = !, w?), z'=uw', 722 = |w'w

— Define
. ¥ S% % )% Y
v B, x D", (le X ID*wz>><p,X

by setting v, to be the fiber-wise harmonic section with boundary values given by v, o @,

precisely, we apply Theorem 2.16 as follows: For each w! € D* , the restriction
w

ULt == Ul| (1!} xDB*
wy

is the unique harmonic section with boundary values

Ug,ut =Upo (p1|§1z{wl}x§§'

S'z{w'}xs),

Iw 2]

w] 11 Figure 1: The map ¢,.

= . More
||Dw1 xS},
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—  Similarly, let
Zy:i= {(zl,zz) € D), xD%: 7' < |z2|}

and
@y: D% xD*, - 7, C D}, x DY,

be the homeomorphism defined by

(!, 2%) = gy (', w?), 7' = W', 72 = wk

We define
vy D* | X ID* ([D* x D* ) x X
w P

by setting v, to be the fiber-wise harmonic section with boundary values given by vj, o @,
— Let o
v: Y x BY, — (D; X D;)x ¢
be the section defined by

-1
_|uioe; on Z,

v, 09, on Z,
Note that v is well defined since Z; N Z, = D and

. -1
V0@, |, = Up =000,

4.2.2 Derivative estimates in a set of type (B)

On Z,, since z! = w! and 72 = |w'|w?, we have

11 g 2 g _
w =z =pe?, z°=peY, w =
Iz p
By (4.3),
2
OR  1og o} 0.4 ah 1
ap 2( 10g p)3
Thus, noting that w' = z! = pel?,
2
a(UDO(pl) < 1 : OHD*11X{|LU2|=1}-
dp pz(— log p)3 Wy
Furthermore, (4.3) implies
dpo (171)

E.
Ei 4 peactogp) < oo+ bpt on D7 X {Ju?| =1}
’2

¢ 27r

|§}pxnj>12 :

44

Since v, is a fiber-wise harmonic section, an argument analogous to the proof of first inequality of Lemma 4.1

(i.e. apply the maximum principle for subharmonic functions d(u(p,e'?), u(p,e'?)) and d(u(pe'#r),
implies
2
ovy _% and aul l+bp inD* , X D*,.
dp pz(— log p)3 0 Wy w
Thus,
2
dnfe 1 4 B ppe? i XD
Jw pH—1og p)s 2rp

u(peit)))

4.5)
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Since « is a Lipschitz map, v;, o ¢, is a Lipschitz section for p > % Thus,

9o, |*
ow'

<C in D’;jl 1, X D7, (4.6)
3

Furthermore, using the harmonicity of v, restricted to the slice {w})} X IDZZ, we have by Theorem 2.16 that

T ov,
Ej log 70 = / ()w2

{0t} XDy,

2du? A dip?
—2i

<C+ E log 4.7)

1
for0 <r<ry <.

Lemma 4.2. (Derivative estimates in a set of type (B) away from the juncture).
For Q:=D: ,, there exists a constant C such that the following estimates hold:
I

%(zo,zo) <C, V(z,2}) € QxD*
ro v |* dz? A dz?
E; log . < / o7 o <C+E; log

().,

where0 <r <r, < i, zl € Qand 2% = rev.

Proof. Since D1, X D% C Z,, the estimates follow by applying the change of variables (4.4) to estimates (4.5),
¢ 3
(4.6), (4.7) and noting that p > i in Q. O

Lemma 4.3. (Derivative estimates in a set of type (B) near the juncture).

For v restricted to D% X D*, there exists a constant C such that the following estimates hold:
i 1

r
E; log7°$ /

().,

E; logr—’fJ < /

B x{24)

ov
072

2422 A dz2
-2

<C+E; 10g

24zt A dz!
=

ov

a1 <C+E log

* 1
forzo,z0 ED¥and0<r<ry < T

4

Proof. We only prove the first estimate, the second being similar. First, note that the lower bound follows from
the definition of E;. Next, we estimate the upper bound. For z; € [D’;, we have the inclusion {z})} XD,, CZ

whenever r, < |z;|. Thus, the change of variables w?” — z* = |w1|w2 in (4.7) yields

/

{2} XDy

ov
072

2422 A dz2

<C E; I
o + og

1 1
forz; € D7 and 0 <r <r < |z
4
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2
is different in Z,

Ifr< |Zé| < ry, we break up the integral into two integrals since the estimate for %

than in Z;. Indeed, by an analogous argument to the proof of (4.5), we have

oy

2
1 E; )
S0’ < +r*

- r2(— log r)% 2xr?

After a change of variables z! = |w?|w', 22 = w?,

% E rZ(—lig )i 27Ezjrz +r iz, @8
Thus, we have
ooiaznat 7| Faop. . Flaop
/ Fra i gf/ﬁrdr+/ﬁ rdr [do

{2 }xDy.,, ol r 12|

r 1y
7k E.
S<C+Ejlog°|)+// ! r+ L 4+ ) rdrde
r 0l ri(—log )3 2rr
Zy

<C+Ejlog ™.

Finally, if |z(1)| < r < r,, we only use the estimate (4.8). We omit the details. O

4.3 Gluing the maps

Given the homomorphism p: z,(M) — Isom(X) of Theorem 1, we will construct a prototype section v: M — Mx pf( .
LetP = {0} x {0} €Z;nX;and U = D, x D, be a set of type (B) with

ﬂj)z1 ~ I]jzl x {0} C Zj and [Dzz ~ {0} X|].:,Dzz (- Zi'

The identification of the product space D, X D,. as a subset of M is simultaneously induced by the local trivial-
izations of the disk bundles 7;: D; — X; and 7;: D; — X; via

7[1-_1("_)21) ~DyxD,. and 7;'(Dz) =Dy XDy

(cf. (3.11)).
Recall the following items associated with the set U:=D,1 X D ..

- [Slek] is the element of 7Z'1<[D;kk) generated by S}, fork =1,2

- [S;l] and [S;z] also are the elements of 7r1<[[_13j1 X D;) generated by S}, ~ S}, X {Z*} and S}, ~ {z'} X S},
respectively

- ﬂl([f]):k> is identified with its image in 7r1<llj>;°‘1 X [D;‘Z> for k = 1,2 as a subgroup

- o nl(D; X [va;> — Isom(X) is defined as p o1, where 1, is the induced map by the inclusion and p;{ =

P’|”1(Djk> fork=1,2

- <[|3>*1 X I]fo*z>><p/5( - D? x D%, and D* X, X — D* for k = 1,2 are fiber bundles.
zZ z zZ zZ z k Z

Next,let V= Q X I]jJZZ be a set of type (A) with

Q=QXx{0}CZ,



124 = G. Daskalopoulos and C. Mese: Infinite energy harmonic maps from quasi-compact Kéhler surfaces DE GRUYTER

The identification V ~ Q X D;‘Z is induced by the local trivialization
n}?l(Q) ~ QX D,

of the bundle 7;: D =X (cf. 3.9). IfUNV # ¢ (and hence QN D, # @), then the transition function of the
disk bundle z;: D ; — X; defines a smooth map

QN Dzl - UQ).

By [14, Proposition 2.6.1], there exists a locally Lipschitz section k: M — Mx p)? of the fiber bundle Mx pf( —
M. Let ky be the lift to (D; x D, )xp,X of the restriction of k to U* := B, x D7, and let

vy U* =D X DY, - (ID;‘1 X D;)xp/f(

be the local prototype section defined in Section 4.2. The composition of v;; and the quotient map MxX p,X -
Mx ,X defines a section of M ,X — U which we call again vy,

Also let ki, be the lift to <Q X ﬁ; )x p;X of the restriction of k to V* = Q X DZ‘Z and let
vV i=Qx D, - (Q X @)xﬂéj(

be the local prototype section defined in Section 4.1.1. The composition of v, and the quotient map Mx p;X -
Mx X defines a section of Mx,X — V which we call again vy,.

We claim that we can glue these local sections together to define v in U U V. To do so, we have to show the
following.

Lemma 4.4. If U and V are sets of type (B) and (A) respectively, then the sections vy and vy, agree on U* N V™.

Proof. For p € D, NQ, let Uy, p» Ky, p be the restrictions of vy, ky; respectively to { p} X I]jJ;‘2 and vy ,, ky , be the
restrictions of vy, ky, respectively to { p} X D*,. We claim that the harmonic sections vy , and vy, , are related
by the transition relation

Vy,p = Uy, po7(p).
Indeed, since multiplication by z(p) € U(D) is a conformal map, vy, , o 7(p) is harmonic on D* with bound-
ary values ky , =ky ,07(p) . .- The assertion follows from the uniqueness of harmonic maps (cf.

~{p}xs,
Theorem 2.16). O

Similar construction holds for two sets of type (A).
Lemma 4.5. IfU and V are both of type (A) and U NV # @, then vy and vy, agreeon U* N V™.
Proof. Apply the same argument as Lemma 4.4. O

Let V" be a finite open cover of D by sets of type (A) and of type (B). Let U, C U be the collection of sets of
type (A) and Uy C U be the collections of sets of type (B). Without the loss of generality, we can assume U5 is a
collection of disjoint sets. Set

Uy inUND; where U € Uy
) 4.9)

L=
vy in <VnD*1‘>\UUwhereVeU’A
1/ Uel,

and extend to the rest of M as a well-defined, locally Lipschitz global section of Mx pf( - M.
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Definition 4.6. The map
v:M - Mx,X (4.10)

constructed above is called the prototype section. The corresponding p-equivariant map o: M — X is called the
prototype map.

5 Energy estimates of the prototype section

The goal of this section is to obtain the energy estimates of the prototype section
v:M — Mx X

of Definition 4.6 with respect to the Poincaré-type metric g given by Definition 3.4. Throughout this section, we
use C to denote constants that are independent of the distance to the divisor. (Note that C may change from line
to line.)
We consider the following three types of sets intersecting the divisor £ C M:
(i) QxD: cQxD,asubsetin a set of type (A)
(i) Qx D; =Dy X ID% C D x D, a subset in a set of type (B) away from the crossing (cf. Figure 2)

(iii) D: xD: C DxD,asubsetin a set of type (B) at the crossing (cf. Figure 2)

N
NS

A neighborhood of X can be covered by a finite collection of sets of the above type. In order to estimate the
energy of v, we will compute its energy in each such set.

5.1 Energy in a set of type (A)

In this subsection we will use the following notation in addition to the one used in Section 4.1.
- QxD,, isthesubset of Q X Dwith 0 <r; < |2%| <1, < %.

- &, is the smooth metric on € as defined in Definition 3.5

— Area %, is the area with respect _to gs,

—  Pisthe product metric on €2 X D* defined by (3.26).

Note that
D, , NQXD)=QXD, , (cf (G6)).

The strategy for estimating the energy of the prototype section v in Q x D will be to first compute the energy
of v with respect to the product metric P (cf. (3.26)). Since the metrics P and g are close (cf. (3.27)), this will give
us the estimate of the energy of v with respect to g.

Zy

AT

— 2
crossin s et ’
3 Figure 2: Subsets of a set of type (B).
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Lemma 5.1. For a subset Q X D of a set of type (A), there exists a constant C > 0 such that the energy with respect
to the metric P of the prototype section v satisfies

-

T.
0<’EIQXD, . 1- EjAreang(Q) logr—i <C, 0<r<r,<-.

~

Proof. By (3.29),

PEU[QXD, ] = / P gz"l + P2 3”2 dvol,
Q><[D!,1,2
_ il ov | ov [Pdz? A dz?
= / p o dvol, + Fr T dvolng,
XDW’Z Tyl
hence the inequality on the right follows from Lemma 4.1 (cf. Remark 3.8).
By the definition of E;,
EjArea, (Q)log / / E; —dvol
ov|*dr A do
< 1
—/ / | [V
Q D’Nz
< / pi 32”1 + P2 g”z avol,
QXDHJ‘Z
=PEIQ x D, .1
which proves the inequality on the left. O

Lemma 5.2. For a subset Q X D of a set type (A), there exists a constant C > 0 such that the prototype section v
satisfies

<C, 0<r1<r231.

S

‘gE”[Q XD, 1 - EArea, (Q) log

Proof. By Lemma 5.1, it suffices to show that the difference of the energy of v with respect to g and with respect
to P is bounded; i.e.

fElQ XD, 1 - PEIQ XD, ]| <C

We obtain the above estimate with the help of Lemma 5.15 found in the Appendix to this chapter. Therefore we
need to first show that the assumption (5.3) of Lemma 5.15 is satisfied; in other words, we need an estimate of

the integral of ~ a; . Below, we will derive the estimate (5.3) by bounding the z!-energy and r-energy of v and
then subtractmg those from the full energy estimate of Lemma 5.1.

2
First, to bound the z'-energy of v, we use estimate % < Cof (4.1) to see that

/1a

QXD

ov

dz? A dz?
AL <
dVOI A —2ir*(logr* + A? ~ ¢

Ty

Second, from [6, 7, Proof of Lemma 3.4], we have
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A dz2 A dz?

<C
=20~

or
QXD,

r1.2

Thus Lemma 5.1 and the identities for P'ldvol, and P2dvol,, given by (3.29) imply the following integral estimate

/ #

on Y
QXD

2
dvol, /\dZ/\de —EjArea, (Q)logr2<C

vl
2100

1.y

We setr, = i and let r; — 0 above to obtain

/

QxD4
1

@2
00

dr A do <C
r

- Ej> dVOlgzl. A

Noting that &s, is a smooth metric, the assumption (5.3) of Lemma 5.15 is satisfied. Consequently (noting that A
appears in the metric expression of P is a bounded function),

/

QxD4
1

av |
00

dr A dé <c

1 e e
dvol,, rogr? + A7 ~

(5.1

where the constant C’ depends only on C.
We use the above estimate to compute the difference between $EV[Q X D, ] and PEVIQ x D, 1. The
trickiest to bound include the following two terms for which we use the estimate (5.1):

F) 2
. /ng%P% 25| (@vol, — dvoly)
To bound this term, note that since by (3.28)
1 dz* A dZ?
dvol, — dvol, = 0| ————— |dvol, = O()dvol,,
vol, — dvol, O((—logr2+A)2> vol, = O(1)dvo /\ 2= log % + A
and i
P2 =r*(logr® + A%
and thus A2 A d2
P2(dvol, — dvol,) = Odvol,, A — AL
(dvolp — dvoly) (Ddvo A —2i(—logr? + AY
Thus,
dz? A dz? dr A do
P""dl—dl_dl = dvol A
(dvol, — dvol,)) = dvo A —2ir*(—logr? + Ay Vol A r(—logr? + A)?
which in turn implies
dr A d6
P” _arade
/ / ‘60 g r(—logr? + Ay
Dl QxD 4
4 1
<ccC.

2
¢ o, (67 2|2

To bound this term, note that since g2 — P2 = 0(r2), we have

dz? A dz?

_p% — o(1 l, =dvol, A ——F———
g% 0(1) and dvol, = dvo N —2ir’(log r* + A)?
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by (3.29). Combining the above, we obtain

dr A d6

00 _ poo = o Tne 12 4+ AV
(8" —P")dvol, O(dvoly, A r(—logr? + A)*

Thus

dr A d6 <cc.

2
dVOIgEJ A r(—logr® + Ay ~

v Jdv
ﬁ‘dvolp sc/ ‘@

QxD 1
4

/ (gao _ Peo)
QXD

The other terms of ’gE” [Q2XD, . ]1- PEVIQ x D, ]| are also bounded by similar computations. We omit the
details. O

STy

Lemma 5.3. For a subset Q X D of a set type (A), there exists a constant C > 0 such that the prototype section v
satisfies
SE'IQXD, 1 <SE[QXD, ,1+C, 0<r<r,< %

for any locally Lipschitz section f:Q X D, , — Mx,X.
Proof. Since E; is the infimum of the energies of sections S} — R,x p;)?,

2r

4 Iy of
E]Areagzj(Q)log r < / p)
0

ry
2
dr
0 dQ/dvongj/ s
Q T
- / of
20

QXDy, r,

</Pﬁ

QX lDrl .VZ

=" E'l[QxD, ] 5.2)

dr Adf
r

2
dvol %, A

of 2
0z

of

2
o dvolp

+P2

Thus, the desired estimate with g replaced by P follows from combining the above estimate with Lemma 5.1.
Thus, we are left to show that

fE1QxD, | - EexD, ]| <C

To do S0, note that if the inequality
20

does not hold, then we are done since the desired estimate holds by Lemma 5.2. Hence, we can assume the above
inequality and apply Lemma 5.15 to conclude

/i

QXD
1

2

E.
— )dvol, A drAdo < 00
2T 8z; r

2
dr A de@
1 —— = <
avo &, r(logr? + Ay — ¢

where the constant C’ depends only on C. The rest of the proof is exactly as in the proof of Lemma 5.1. O
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5.2 Energy in a set of type (B) away from the crossing

In this subsection we will use the following notation in addition to the one used in Section 4.2.
- Q:=D 1

- Qx[Dr s is the subset of Q X D = |D11><IDW1thO <r <|zZ<r < Z

- &, is the smooth metric on Q as in Definition 3.5

- Area is the area with respect to gs,

- Pis the product metric on D x D defined by (3.3D).

Since Q:=D:, C D, the points of Q X D, ,. are uniformly away from the crossing. In particular, since
1 172

1 .
Z < pln QX [Drl,rz,

the metric expressions of g in a set of type (A) and of type (B) (cf. (3.24) and (3.32) respectively) show that g
restricted to 2 X D, . in set type (B) has the same asymptotic behavior as r — 0 as g in a set of type (A). Thus,
the procedure for obtaining energy estimates of v will be analogous to that in the previous subsection. Note that

D,, NQ@XDB)=QxD,, foro<r<r,< % (cf. (3.6)).

Lemma 5.4. ForasubsetQ X D, . ofasetoftype (B) (with€ = D ,), there exists a constant C > 0 such that the
I
prototype section v satisfies

PEVIQ x D, 1< EjAreagE]_(Q)log% +C, 0<r<r< %
1

Proof. Follow the proof of Lemma 5.1 but by replacing (3.29) by (3.36) and Lemma 4.1 by Lemma 4.2. (Note that
i < p,i.e. pisbounded away from 0, so the expressions in (3.29) and (3.36) are comparable.) O

Lemma 5.5. Forasubset QX D, . ofasetoftype (B) (with€ = D ,), there exists a constant C > 0 such that the
I
prototype section v satisfies

SE’IQ XD, .1~ E]-Areagzj(Q) log:—i <C 0<rnr<r< %

Proof. Follow the proof of Lemma 5.2 using Lemma 5.4 instead of Lemma 5.1. O

Lemma 5.6. For a subset Q X [[I)r1 " of a set of type (B) (with Q = D ,), there exists a constant C > 0 such that
, e
the prototype section v satisfies

SEVIQ XD, 1 <SEN[QXD, . 1+C, 0<r<r,< %
for any locally Lipschitz section f:Q X D, , — Mx,X.
Proof. Follow the proof of Lemma 5.3 using Lemma 5.5 instead of Lemma 5.2. O

5.3 Energy in a set of type (B) at the crossing

In this subsection we will use the following notation in addition the one used in Section 4.2.
- Dy, XD, isthesubsetof DX D with 0 <r; < |zK| <1, < ; fork=1,2,

- 8y 8 areas in Definition 3.5

- Area g and Area g, A€ the areas with respect to gy,

- Pisthe product metric on D x D defined by (3.31).
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The goal is to estimate the energy of v in the set

Unr, = (03 X0 \(2, 3 XD )

pictured in Figure 3. The procedure for doing so involves an extra step compared to the procedure in the previous
two subsections. Namely, we will first derive an expression for the energy with respect to the product metric P
in the box IDK% X IDr& pictured in Figure 4 (cf. Lemma 5.9 below). Then we take the difference of the energy with
respect to P contained in IDrl’% X Drl’% and in Dr2,§ X Drz,§ to bound the energy in U, ,, (cf. Lemma 5.10 below).

Finally, since the difference between the metric g and P is small, we obtain a bound for the energy with respect
to gin U, , (cf Lemma 5.11 below).

Definition 5.7. We define Py, Py to be the restriction of P (cf. (3.31)) to X;, X; respectively.

Remark 5.8. Note that Area, (D, ) = Area, (D, )for0<r<r < i by the symmetry of P.
i J

xD

Lemma 5.9. In a subset D of a set D* X D* of type (B), the prototype section v satisfies

IS

1
4

1 1
Ppv [uj;ni X ID,’%] - (E}-AreaPEj ([D,’% ) log e + El-AreaPEl ([Dr’% ) log E>‘ <cC
for0<r< i.

Proof. By Lemma 4.3,
Jdv

2 _
dz! A dZ! Ty
0| g SC+Elog?

=20

E; logr?0 < /

By X {2}

t
% A Figure 3: The region U,

112"

NS

_T
N

Figure 4: TheregionD, 1 XD, 1.
.3 ,

ISE
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for z3 € D% and 0 < r < r,. By (3.36),
2

/ Pﬁ
D

Combining the above, we obtain

EiAreaPZi<lDr,i)10g % < / pi

2dzt adzt | dz? AdZ?
=2i |=2ir*(log r¥)*

Jv

oJv oJv
ozt

07!

2
dvolp=//

and similarly

1 5| dv
EjAreaPZj (IDR% ) log e < / P? o dvol,
Dr 1XDr 1
"4 ‘4
1
< EjAreap ([Dr‘% ) log i C -

Lemma 5.10. In a subset D1 X D1 of a set of type (B), there exists a constant C > 0 such that in any subset (cf.

3.6)

1
4

IS

the prototype section v satisfies

r. r
0< PEU[Url,rz] - E]-Areapzj <ID*}:> log r—j - EiAreaPEi <[D>E> log r—j <C

Proof. By a straightforward computation,

Areap_ log —— —Areap log —
(P log g, —Arear, (0,

= Areapzj <Dr1,§ ) log % - Areap2 ( )log

+A1reapZ ( >logi—AreaP <[D ;>logi
1 T, 253

Ty 42

1

= Areay, < )log + (Areap (©,, ,2)>1 8 ar,

The second term is bounded by

Ty

/ _dr lo L
r(log r2y? g4r2

Ty

1 1
= <
(103 r, logr > log 4ry <1

1
0< (Areapzj(ﬂ])rl,rz)) log an,

Thus, combining the above equality and the inequality and then multiplying by E;, we obtain

1 1 Ty
EjAreaPZj (Drlsi ) log ar, EjAreaPEj (Drz,i ) log ar, <E; (Areapzj (D’i) log r + 1).



132 = G. Daskalopoulos and C. Mese: Infinite energy harmonic maps from quasi-compact Kéhler surfaces DE GRUYTER

Similarly,

1 1 r.
EiAreap, ([[Drl’%1 ) log i, EAreap, (IDrz’% ) log ar, <E <Areapzl_ <ID’£> log r—z + 1).

Furthermore, Lemma 5.9 implies

PEU[U,, rz] PEU [Dﬁ,l X D”l’l] - PEU [Drz,% X Drz,%]
1
< E]-Alreapz ( >log + E;Areap ( ,1,%>logﬂ
— E;Areap ( >log — EjAreap, ( >log — + C

Thus, the desired estimate follows from the fact that Area, (D, 1) = Areap_ (D, 1) (cf. Remark 5.8). N
i ’4 ) 4

Lemma 5.11. Inasubset D1 X
(cf. (3.6))

of aset D* x D* of type (B), there exists a constant C > 0 such that in any subset

1
1

IS

the prototype section v satisfies

SEV[U, 1 - E]-Areagzj <|D’j > log % — EiAreay <[D*1 ) log %
4 1 ' 4 1

Proof. Follows from the metric estimate (3.34) and Lemma 5.10. O

Lemma 5.12. In a subset D1 X

D: of a set D* X D* of type (B), there exists a constant C > 0 such that in any
subset (cf. (3.6))

D B 1
r1,rz=Dr1r2 <D% ID%), 0<r1<r251,

the prototype section v satisfies
SEY[ U.n,l< 8gf 0, 1+C

for any locally Lipschitz section f: U, , — Mx pX .
Proof. Follow the proof of Lemma 5.3 using Lemma 5.11 instead of Lemma 5.2. O

5.4 Energy estimates for the prototype section near the divisor

Combining the results of the previous three subsections, we obtain the following estimate in an open set D
(cf. (3.6)) near the divisor.

Ty,

Proposition 5.13. There exists a constant C > 0 such that the prototype section v of Definition 4.6 satisfies

[EN

¢E’[D,, ] Z E; Areag = )10g 0<r<r,<-.
Jj=1

'S

Proof. Since we can cover a neighborhood of X by a finite collection of sets of type (A) and type (B), the estimate
follows from Lemma 5.2, Lemma 5.5 and Lemma 5.11. O

Proposition 5.14. The section v is almost minimizing in M in the following sense: There exists a constant C > 0
such that
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[u—y

SE'ID,, ) <¢E/[D, , 1+C, 0<r<r,<;

S~

for any section f:M — Mx X.

Proof. Since we can cover a neighborhood of Z by a finite collection of sets of type (A) and type (B), the estimate,
the estimate follows from Lemma 5.3, Lemma 5.6 and Lemma 5.12. O
5.5 Appendix

We conclude this chapter with the following calculus result which was used in the derivation of the energy
estimates.

Lemma 5.15. Let Q X DY be asubset of Q X D of type (A) or Q X D*: = |D1 | X D oftype (B), with standard product

coordinates (2!, 2% = re“g) If alocally Lipschitz map f defined on Q X [D* satisfies

2 —
1 =1 dz* A dz?
e = 07" < .
/ ('09 c)dz AdZ A 2 <C (5.3)
QxD*
1
where
/%
{z'}x0D,
then )
ﬂ 1 =1 dz? A dz? <c
/ ’06 dz' AdZ" A 7r2(—10gr2)2 <C
QxD%

1

where C' is a constant depending only on C and c.

Proof. We start with the following claim: For any function y: [0, i] — R satisfying w(r) > c,

1 1
4

dr
/W(r)WSC10g2+/(W(T)—C
0

0

)4, (5.4)

To prove (5.4), first note that 27! < r < 2% implies

1 1 1 1

(log r%y? = (log 272 ~ 4(log 2)* &'

Furthermore, by the assumption that y(r) > ¢ > 0,

1

271 I
/y/(r) =c/ - / (w(r)—c)% §clog2+/(u/(r)—c)¥
9-i-1 9-i-1 9-i-1 0

The above two inequalities imply



134 = G. Daskalopoulos and C. Mese: Infinite energy harmonic maps from quasi-compact Kahler surfaces DE GRUYTER

1

y () w(r)
/ r(log 1"2)2 Z / r(log rz)2
o v

dr
—4(1og 2)22 / v

271

1

1wl
~ g S |cloez [ (vo-c
i=2

0

)dr

1

5610g2+/(t//(r)—c)¥

0

which proves (5.4).
Let 5

- 9f
w(r):= / ‘09

{z!}x0D,

dé.

Since y(r) > ¢, we have by (5.4) that

1 1

of I dr / / ar
Dlagl-"  <clog2 ar
/ / ‘ae rlogrdf = €082 20 -
0 | {z'}xoD, 0 | {z'}xoD,
for a.e. zt € Q. Thus,
/ Of|Pdzt AdZ' | rdrAde
00 —2i r’(log r2)?

QXD , 1
“1

dr dz! A dz!
r(log r?y? —2i

///

0 | {z'}xoD,

2 1 -1
| e
Q

0 1 {z1}xD, 4
g

_ dz! A dz! af
=c log 2 /7_21, + / <‘06
Q

QxD

f_, )iz Adz dradg
—2i ro

6 Harmonic maps of possibly infinite energy

The goal of this section is to prove Theorem 1, the existence of a harmonic map of logarithmic energy growth.
In Section 6.1, we show the existence of a harmonic map with the help of the prototype map. In Section 6.2, we
record the energy growth estimates for this map.
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Throughout this section, we use C to denote constants that are independent of the parameter r. Note that C
may change from line to line.

6.1 Proof of existence, Theorem 1

Proof. Forr € (0, i], let M, = M\D, (see Figure 5).
Next, let v: M — Mx p)? be the prototype section of Definition 4.6 and let

u.:M, —)MXPX

be the energy minimizer among all sections that agree with v on dM, for each r € (0, r;]. The existence of such
a section u, follows from the proof of [14, Theorem 2.7.2].
Since

$E"[D, ]+ $E%[M, ] = $E*[M,]
< 8EY[M,] (since u, is minimizing in M,)
=éE'[D,, 1+ $E'IM,. ]
< 8% D, 1+C+ SEV [M,.]  (by Proposition 5.14),

we have that
SEUr [Mrl] < gE”[Mrll +C. (6.1)

The right hand side of the inequality (6.1) is independent of the parameter r; i.e. once we fix r; € (0, %], the
quantity §E% (M, ] is uniformly bounded for all r € (0, r;]. This implies a uniform Lipschitz bound, say L, of u,
forr € (0,r;]in MZr1 (cf. [14, Theorem 2.4.6]).

Let @i, and D be the p-equivariant maps corresponding to sections u, and v. Thus,

d(@,(A(p)), t,(p)) < Ldy(A(p), p), pEM,,, A€A, re(0,n]
where A is the finite set of generators used in the definition of proper, Definition 2.7. If we let
¢ =Lmax{dy(A(p),p):AEA, pE J\E},

then by equivariance
d(p(Di(p), &(p))) <c, pe M., A€A, T1€0,r]

In other words, 6(&i,(p)) < L for all p € M,, and r € (0,r,]. By the properness of p, there exists P, € X and
R, > 0 such that
{&.(p): p €M, , r €(0,11]} C By (Pp).

Thus, following the proof of [15, Theorem 2.1.3], taking a compact exhaustion and applying the usual diagonal-
ization argument, there exists a subsequence of i, that converges locally uniformly to a p-equivariant harmonic
map i: M — X. Let u: M — Mx p)? be the corresponding harmonic section. O

Figure 5: The region M, C M.
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6.2 Energy estimates for the harmonic section

Lemma 6.1. For the harmonic section u: M — MxX pf( of Theorem 1 and the prototype section of Definition 4.6, we
have 1
SE'[M,] < SE'IM, ]+ C, Vr, €0, 1].

Proof. Follows from (6.1) and the lower semicontinuity of energy (cf. [14, Lemma 1.6.1]). O
Lemma 6.2. If v: M — Mx X is the prototype section of Definition 4.6 and u: M — Mx X is the harmonic section

of Theorem 1, there exists a constant C > 0 such that

1

ng“[Drl,,z] —¢E’D, 1| <C 0<r<r< .

IS

Proof. From the fact that D,.CD, : UM: =M,,Lemmaé6l, and the lower semicontinuity of energy (cf. [14,
4 4 4
Theorem 1.6.1]), we obtain

g [D, ] < SEYM, ] < $E°[M, ]+ C = £E° [D ] + 8 [M;] +C
1 1 1 1

1 1
1 "oy

Proposition 5.14 implies

Combining the above two inequalities we obtain

Ty

“p[p, .| - #E*[D, H <fe'|mi|+c
’ ’4 4

and similarly

'gE” D] -#E°[D,, || < #E°[m: ] +
74 ’4 4

The desired estimate follows from the above two inequalities. O

Lemma 6.3. Ifu: M — Mx pf( is the harmonic section of Theorem 1, then there exists C > 0 such that

[u—y

<C, 0<r<r,<-.

=

L

r

spu D, ] - Z E]-Areagzj <) logr—j
j=1

Proof. The estimate follows from Proposition 5.13 and Lemma 6.2. O

Lemma 6.4. Ifu: M — Mx pf( is the harmonic section of Theorem 1, then we have the following estimates in the
subset Q x D* of a set X D of type (A) or the subset Q X D*: = D1, X D* of a set D x D of type (B):
1 4

ou 2 1 -1 de A dZZ
/ ozt nEzA r’(—logry?
QxD*
ou |* £ 1A g7l 2 A 452

QXDE

4

2
ou

o dZP AdZ' A dZ2 AdZ < 0

QXDE
4




DE GRUYTER G. Daskalopoulos and C. Mese: Infinite energy harmonic maps from quasi-compact Kahler surfaces === 137

ou 2 E] 1 =1 dz? A dz?
ot Ti g dzt A 24 NG9
/ < 5a| ~ 3y )@ AEAT—— <o
Q><[D>"l
oul? 1. dz2 AdzZ?
/ 20 dz' A dz' A rz(—log rk)?
Q><[D!*1
1
Jdu dz? A dz?
— dz Adz! /\7( Tog 12y <
QxD*

where (z}, 22 = re®) are the standard product coordinates on Q X D.

Proof. All the estimates except for the last two follow immediately from Lemma 6.3. The last two follow from
the other estimates and Lemma 5.15. [

Recall that the standard product coordinates (2!, z%) on a set X D of type (A) are not necessarily the holo-
morphic coordinates (2!, {) of Definition 3.6. We will now reframe the statements of Lemma 6.4 in terms of the
holomorphic coordinates on the set of type (A). We first need some estimates that compares ¢ to z2.

Lemma 6.5. If(z!, z> = re?) and (z!, £ = se') are the standard product coordinates and holomorphic coordinates
respectively on a set Q X D of type (A), then

r=as+0@?)
% = a(l + O(r)) ?TZ; =0(r)
gr |a|(+ O(r) % =0
%:mﬂ %=“n

where a is a smooth function both bounded above and bounded away from 0 (cf. (3.18) and (3.19)).

Proof. Since
22 =al +00?)

by (3.19), the first estimate follows immediately. Furthermore, differentiating the above with respect to {, we
obtain the next two estimates The last four estimates are obtained by evaluating the differential forms of (3.17)
on the vector ﬁelds =, = and using the fact that |—| =0Q), |—| = 0(r?). O

Theorem 6.6. Ifu: M — Mx X is the harmonic section of Theorem 1, then we have the following estimates in the
set QX ID* away from a crossing (i.e. a subset of a set Q X D of type (A) or a subset Q X D*: = Dl 1 X D* of a set

D x D of type (B)),

ou

d¢ Ad¢

1 _ 5 MG
dZ Adz sz(— log s2)?

b dz' AdZE A dE AdE < 0
"~ 8xs?
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au 1 =1 dé’/\déj
dz' Adz
/ oc| ¥ NN gy
QxDi
/ AdZ' A AdE < 0
Q><[ED*1
1
‘. _
/ ou_ 5 dzl/\dzl/\w<
on 2 s
qu')*l
i
) _
OUl 41 A dzt A 96 ADE

on s?(—log s%)?

where (z',{ = se') are the holomorphic coordinates on Q X D (cf. Definition 3.6).

Proof. By Lemma 6.5, we have
s*(log s%)? = r’(log r)0(1),
5 =1+ om,

ou _ouwor  ouor _

o¢ 0z2 0 07z d¢ 0 2
ou _ouor  oudo
on  oron 000y

a1+ o)) + O(r)

_j 2y, ou
_arO( )+ 0(1)

Thus,
oul* of |oulr
o 871'32 = lal <6z2 8xr? 1+ 0)
@ au 2
on 0 o)+ | = O(r)

Thus, the second, third and fourth estimates now follow from Lemma 6.4. The first estimate is a restatement of
the first estimate of Lemma 6.4. O

Theorem 6.7. Ifu: M — MXx p)? is the harmonic section of Theorem 1, then we have the following estimates in the
set D* x D* at a crossing (i.e. a subset of a set D X D of type (B)),

N 1

Ju 2 1 -1 de A dZZ
ou dzt Ad bz Adze
/ ( oz} 87rp2> nEzA r’(—log r2y?
H_J*lxlﬁn*l
oul*  E \ dztadz 2 s
/ ( ﬁ 871,')"2 pz(_ Ingz)Z Adze AdZ° < o0
D* xD*

o
1771
i1

dz? A dz?

Ju
ap r(—log r?)? <o

/
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ou 2 le A le 2 -9
—| 555 Ad d
/ or pz(—logpz)z/\ Z°N0dz" < o0
[Ii)"l ><[|3>"l
/ oul®  Ej\dziadz! | dZ?AdZ?
op| 2x P2 r2(—log r?y?
D% xD%
1 1
/ oul*  E\ dz'adzZ A dz2 A dz?
00 21 | p*(—log p?)? r
D* xD*

1771
1 1

where (! = pel?, z2 = rei?) are the holomorphic coordinates on D X D (cf. Definition 3.2).

Proof. The standard product coordinates of a set of type (B) are also the holomorphic coordinates. Thus, these
estimates follow immediately from Lemma 5.9 and (3.35). O

7 Generalization to higher dimensions

The construction of harmonic maps from quasi-compact Kahler surfaces generalizes to quasi-compact Kéhler
manifolds of arbitrary dimension. Indeed, let M = M\ X be a n-dimensional quasi-compact Kéhler manifold
where X is a normal crossing divisor. Then, every point x in an irreducible component X, of X has a neighborhood
U which can be written in holomorphic coordinates as U = D"~ x D*k, Aneighborhood D"~! X D* (resp. D"~% X
D*?) is analogous to a neighborhood of type (A) (resp. type (B)) defined above. Thus, the prototype map is defined
analogously in those neighborhoods. We can also define the prototype map in other neighborhoods using an
inductive argument. Once the prototype map is constructed, the existence of harmonic maps follows as in the
two-dimensional case.

In our upcoming papers, we will only use the two-dimensional case. More precisely, we combine Theorem 1
with an inductive argument due to Mochizuki (cf. [7]) to deduce the existence of pluriharmonic maps in any
dimension in the quasi-projective case. This is why we gave the details only for Kahler surface domains.
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