
Relative-error monotonicity testing

Xi Chen ∗ Anindya De † Yizhi Huang ‡ Yuhao Li § Shivam Nadimpalli ¶

Rocco A. Servedio ‖ Tianqi Yang ∗∗

Abstract

The standard model of Boolean function property testing is not well suited for testing sparse functions
which have few satisfying assignments, since every such function is close (in the usual Hamming distance metric)
to the constant-0 function. In this work we propose and investigate a new model for property testing of Boolean
functions, called relative-error testing, which provides a natural framework for testing sparse functions.

This new model defines the distance between two functions f, g : {0, 1}n → {0, 1} to be

rel−dist(f, g) :=
|f−1(1)4 g−1(1)|

|f−1(1)|
.

This is a more demanding distance measure than the usual Hamming distance |f−1(1)4 g−1(1)|/2n when
|f−1(1)| � 2n; to compensate for this, algorithms in the new model have access both to a black-box oracle for
the function f being tested and to a source of independent uniform satisfying assignments of f .

In this paper we first give a few general results about the relative-error testing model; then, as our main
technical contribution, we give a detailed study of algorithms and lower bounds for relative-error testing of
monotone Boolean functions. We give upper and lower bounds which are parameterized by N = |f−1(1)|,
the sparsity of the function f being tested. Our results show that there are interesting differences between
relative-error monotonicity testing of sparse Boolean functions, and monotonicity testing in the standard model.
These results motivate further study of the testability of Boolean function properties in the relative-error model.

∗Columbia University. Email: xichen@cs.columbia.edu.
†University of Pennsylvania. Email: de.anindya@gmail.com.
‡Columbia University. Email: yizhi@cs.columbia.edu.
§Columbia University. Email: yuhaoli@cs.columbia.edu.
¶MIT. Email: shivamn@mit.edu.
‖Columbia University. Email: rocco@cs.columbia.edu.

∗∗Columbia University. Email: tianqi@cs.columbia.edu.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited373

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1 Introduction

Over the past several decades, property testing of Boolean functions has blossomed into a rich field with close
connections to a number of important topics in theoretical computer science including sublinear algorithms, learning
theory, and the analysis of Boolean functions [BLR93, Rub06, GGR98, Fis01, O’D14, Ron08]. The touchstone
problems in Boolean function property testing, such as monotonicity testing and junta testing, have been intensively
studied in a range of different models beyond the “standard” Boolean function property testing model which
is described below; these include distribution-free testing, tolerant testing, active testing, and sample-based
testing [HK07, PRR06, BBBY12, KR00].

The present work makes two main contributions: At a conceptual level, we introduce and advocate a natural
new model for property testing of Boolean functions extending the standard model, which we call relative-error
property testing. At a technical level, we give a detailed study of the problem of monotonicity testing in this new
relative-error model.

Motivation. In the standard model of Boolean function property testing, a testing algorithm gets black-box
access to an arbitrary unknown function f : {0, 1}n → {0, 1} and its goal is to tell whether f has the property
or has distance at least ε from every function satisfying the property, where the distance between two Boolean
functions f, g is taken to be the Hamming distance

ham-dist(f, g) :=
|f−1(1) 4 g−1(1)|

2n
,

i.e. the fraction of points in {0, 1}n on which they disagree. This model is closely analogous to the standard “dense
graph” property testing model [GGR98], in which the testing algorithm may make black-box queries for entries of
the unknown graph’s adjacency matrix and the distance between two undirected n-node graphs is the fraction of
all
(
n
2

)
possible edges that are present in one graph but not the other.

As is well known, the standard dense graph property testing model is not well suited to testing sparse graphs,
since under the Hamming distance measure mentioned above every sparse graph with o(n2) edges has distance
o(1) from the n-node empty graph with no edges. Consequently, alternative models were developed, with different
distance measures, for testing sparse graphs; these include the bounded-degree graph model (see [GR02] and
Chapter 9 in [Gol10]) and the general graph model (see [PR02] and Chapter 10 in [Gol10]).

What if we are interested in testing sparse Boolean functions, i.e. functions f : {0, 1}n → {0, 1} that have
|f−1(1)| � 2n? Analogous to the situation for graphs that was described above, every sparse Boolean function is
Hamming-distance-close to the constant-0 function, so the standard Boolean function property testing model is
not well suited for testing sparse functions.

Relative-error property testing. We propose a new framework, which we call relative-error property testing,
which is well suited for testing sparse Boolean functions. The relative-error property testing model differs from the
standard model in the following ways:

• First, we define the relative distance1 from a function f : {0, 1}n → {0, 1} to a function g : {0, 1}n → {0, 1}
to be

rel-dist(f, g) :=
|f−1(1) 4 g−1(1)|

|f−1(1)| , i.e. rel-dist(f, g) = ham-dist(f, g) · 2n

|f−1(1)| .

Relative-error testing uses relative distance, rather than Hamming distance, to measure distances between
functions.

• Second, in the relative-error testing model, the testing algorithm has access to two different oracles: (i) a
black-box (also called membership query) oracle MQ(f) as in the standard model, which is queried with a
point x and returns f(x) ∈ {0, 1}; and also (ii) a sample oracle Samp(f), which takes no input and, when
queried, returns a uniform random x ∼ f−1(1).

Motivation and rationale for the relative-error testing model. The motivation for a testing model which
can handle sparse functions is clear: just as there are many interesting graphs which are sparse, there are many

1See the beginning of Section 2 for a discussion of some of the basic properties of this definition.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited374

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

interesting Boolean functions which have relatively few satisfying assignments. (This is especially evident when
we view a Boolean function as a classification rule which outputs 1 on positive examples of some phenomenon
which may be elusive; for example, generic inputs might correspond to generic candidate drugs or molecules, while
positive examples correspond to candidates which have some rare but sought-after characteristic.) The distance
measure rel-dist(f, g) is natural to use when studying sparse Boolean functions, since it captures the difference
between f and g “at the scale” of the sparse function f , whatever that scale may be.

We observe that while the relative distance between two Boolean functions is not symmetric (i.e. rel-dist(f, g)
is not necessarily equal to rel-dist(g, f)), this does not pose a problem for us. The reason is that we are interested
in the setting where rel-dist(f, g) is small, and it is easily verified that if rel-dist(f, g) = ε is at most (say) 0.99,
then rel-dist(g, f) is also O(ε); so in the regime of interest to us, relative distance is symmetric “up to constant
factors.” We further observe that in the regime of our interest, the definition of relative distance is quite robust:
as long as rel-dist(f, g) is at most a small constant, then replacing |f−1(1)| in the denominator by any of |g−1(1)|,
|f−1(1)|+ |g−1(1)|, max{|f−1(1)|, |g−1(1)|} or min{|f−1(1)|, |g−1(1)|} only changes the value of rel-dist(f, g) by a
small constant factor.

The presence of a Samp(f) oracle in the relative-distance model makes it possible to have non-trivial testing
algorithms for sparse functions, since if only a black-box oracle were available then a huge number of queries could
be required in order to find any input on which the unknown sparse function outputs 1. (Indeed, it is difficult to
imagine a reasonable testing scenario in which the testing algorithm does not have some kind of access to positive
examples of the function being tested.)

Relation to the standard model. Simple arguments which we give in Section 3 show that if a property is
efficiently relative-error testable then it is also efficiently testable in the standard model, and moreover that
there are properties which are efficiently testable in the standard model but not in the relative-error model.
Thus, relative-error testing is at least as hard as standard-model testing. A wide range of natural questions
about the testability of well-studied Boolean function properties present themselves for this model; we discuss
some of these questions at the end of this introduction. The main technical results of this paper, though,
deal with relative-error testing of monotonicity, which is one of the most thoroughly studied Boolean function
properties [GGL+00, FLN+02, CS13a, CS13b, CST14, CDST15, KMS18]. (Recall that a Boolean function
f : {0, 1}n → {0, 1} is monotone if whenever x, y ∈ {0, 1}n have xi ≤ yi for all i, i.e. x � y, it holds that
f(x) ≤ f(y).)

1.1 Our results Comparison with standard-error model: We start in Section 3 by noting some basic
points of comparison between the relative-error property testing model vis-a-vis the standard-error property
testing model for general properties of Boolean functions. First of all, it is not too hard to establish (Fact 3.1)
that any property C which is testable in the relative-error model is also testable in the standard-error model. In
the other direction, any algorithm to test a property C in the standard error model can be used to test C in the
relative error model (see Fact 3.2). However, the overhead of this simulation grows as 1/p, where p := |f−1(1)|/2n
is the density of the target function f . Thus the most interesting and challenging regime for relative error property
testing is when the target function is sparse — i.e., p is vanishing as a function of n (p may even be as small as
2−Θ(n)).

Upper and lower bounds for monotonicity testing: We focus on monotonicity testing in the relative-error
model. Using the analysis of the “edge tester” [GGL+00] for monotonicity testing in the standard model, it
is easy to obtain a one-sided2, non-adaptive3 algorithm with O(n/ε) queries in the relative-error model (see
Section 4.1 as a warmup). Our main algorithm as stated below, on the other hand, makes O(log(N)/ε) queries,
where N := |f−1(1)| denotes the sparsity of f and is not given to the algorithm. Note that one always has
log(N)/ε ≤ n/ε as N ≤ 2n trivially but the former can be asymptotically lower when f is sparse (e.g., n1/3/ε
when N = 2n

1/3

).

2Recall that a one-sided tester for a class of functions is one which must accept (with probability 1) any function in the class. This
is in contrast to making two-sided error, where an algorithm may reject a function in the class with small probability.

3A non-adaptive algorithm is one in which the choice of its i-th query point does not depend on the responses received to queries
1, . . . , i− 1.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited375

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Theorem 1.1. (Testing algorithm) There is a one-sided adaptive algorithm which is an ε-relative-error tester
for monotonicity (i.e., it always returns “monotone” when the input function f is monotone and returns “not
monotone” with probability at least 2/3 when f has relative distance at least ε from monotone); with probability at
least 1− δ, it makes no more than O(log(1/δ)/ε+ log(N)/ε) calls to Samp(f) and MQ(f).

We remark that while the algorithm described in Theorem 1.1 is adaptive, it can be made non-adaptive
and still makes O(log(N)/ε) queries (in the worst case) when an estimate of N is given as part of the input
to the algorithm. Our first main lower bound shows that this is indeed tight: Ω̃(logN) queries are needed for
non-adaptive algorithms even when an estimate of N is given.

Theorem 1.2. (Non-adaptive lower bound) For any constant α0 < 1, there exists a constant ε0 > 0 such
that any two-sided, non-adaptive algorithm for testing whether a function f with |f−1(1)| = Θ(N) for some given
parameter N ≤ 2α0n is monotone or has relative distance at least ε0 from monotone must make Ω̃(logN) queries.

Finally, we show that Ω̃((logN)2/3) queries are needed for adaptive algorithms:

Theorem 1.3. (Adaptive lower bound) For any constant α0 < 1, there exists a constant ε0 > 0 such that
any two-sided, adaptive algorithm for testing whether a function f with |f−1(1)| = Θ(N) for some given parameter
N ≤ 2α0n is monotone or has relative distance at least ε0 from monotone must make Ω̃((logN)2/3) queries.

Theorem 1.2 and Theorem 1.3 also imply that, as functions of n, Ω̃(n) and Ω̃(n2/3) queries are needed for
non-adaptive and adaptive relative-error monotonicity testing algorithms, respectively.

Summarizing our results, we see that there is both a correspondence and a significant point of difference
between the state-of-the-art for standard-model monotonicity testing upper and lower bounds [CWX17, KMS18]
and the upper and lower bounds for relative-error monotonicity testing that we establish. (We fix the error
parameter ε to be a constant, for simplicity, in the discussion below.) In both cases there is a 3/2-factor-gap
between the exponent of the best known adaptive lower bound and the best known algorithm, but the source
of this gap is intriguingly different between the two cases. In the standard model, the best known algorithm is
the sophisticated “path tester” of Khot et al. [KMS18] which makes Õ(

√
n) queries, while the strongest lower

bound (for general testers, i.e. adaptive testers with two-sided error) is Ω̃(n1/3), due to Chen et al. [CWX17]. In
contrast, in the relative-error setting the best algorithm we know of is a variant of the simple “edge tester” (given
in Section 4), which achieves an O(log(N)) complexity. But in the relative-error setting, for a wide range of values
of N = |f−1(1)|, it is possible to prove a stronger Ω̃((logN)2/3) lower bound than in the standard model. So the
gap in the exponent is again a factor of 3/2; but in the relative-error setting the state-of-the-art algorithm is a
simple one (in contrast with the sophisticated algorithm and analysis, based on isoperimetry, from [KMS18]), and
a stronger lower bound is achievable in the relative-error model than in the standard model.

1.2 Technical Overview We now discuss techniques underlying our upper and lower bounds for relative-error
monotonicity testing, with the goal of giving some intuition for how the bounds are proved.

Upper bounds. We begin with the relative-error monotonicity testing algorithms. Our algorithm is based
on the “edge tester” for the standard monotonicity testing problem; the high-level idea is to look for an explicit
edge of the Boolean hypercube that witnesses a violation of monotonicity.

We begin by recalling the standard edge tester of [GGL+00]. It simply repeats the following test O(n/ε) times:
sample an x uniformly at random from {0, 1}n, sample a y “immediately above” x in the Boolean hypercube4,
and reject if f(x) > f(y). Note that such a rejection only happens if (x,y) violates monotonicity, so the algorithm
will never reject a monotone function f . To show that the algorithm will reject any f that is far from monotone
with high probability, [GGL+00] showed that if at least ε2n points need to be changed to make f monotone, then
f must have at least ε2n−1 such violating edges. Since there are n2n−1 edges in total in the Boolean hypercube,
the probability that the edge tester hits such a violating edge is at least ε/n.

We first describe a relative-error testing algorithm that is assumed to know the sparsity N (i.e. the sparsity N
is given to it as an input). This algorithm first samples an x ∈ f−1(1) using the sampling oracle Samp(f), then
samples a point y that is immediately above x, and rejects if f(y) = 0. One can see that the only difference
between this algorithm and the classical edge tester is that instead of sampling x uniformly from all of {0, 1}n, we

4Formally, y is a point with x ≺ y and ‖y‖1 = ‖x‖1 + 1, where ‖x‖1 denotes the Hamming weight of x ∈ {0, 1}n.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited376

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

sample x uniformly from f−1(1). Our analysis shows that the algorithm will find a violation with probability at
least Ω(ε/(logN)) when f is ε-relative-error-far from monotone.

The key observation for the analysis is the following: if a monotone function f has sparsity N , then any
point x ∈ f−1(1) must have ‖x‖1 ≥ n − logN , since every point above x must also be in f−1(1). For each x
having ‖x‖1 ≥ n− logN , there will be at most logN many possible y’s “immediately above” x, and hence our
relative-error testing algorithm is sampling from at most N logN possible (x, y) pairs. Applying the results of
[GGL+00], we know that when f is ε-relative-error-far from monotone, f has at least εN/2 many violating (x, y)
edges. Therefore, the probability that our algorithm will find a violation is at least ε/(2 logN).

Now we consider the more challenging situation that the algorithm does not know the sparsity N . Our
approach is to first obtain (an estimate of) the minimum Hamming weight of all points in f−1(1) by drawing a few
samples from the sampling oracle, and then run the algorithm sketched above. In more detail, suppose that x is
the sampled point with minimum Hamming weight, which is n− k; our algorithm samples a few uniform random
points from all points that are above x. If any of them have f = 0 then the algorithm rejects, and otherwise
it uses k as a proxy for logN in the algorithm sketched above. To see why this works, it suffices to consider
the case that f is ε-relative-error-far from monotone. Observe first that if any sampled x ∈ f−1(1) has weight
‖x‖1 < n− 2 logN , then most points above x cannot be in f−1(1) (since there are N2 points above x and only
N satisfying assignments in total), so sampling a few uniform random points above x will reveal a violation of
monotonicity. So we may assume that the sampled point x with minimum Hamming weight has Hamming weight
at least n− 2 logN . Now our earlier analysis shows that the earlier algorithm will indeed reject any f that has
relative error at least ε for monotonicity.

Lower bounds. We consider the case when the relative distance parameter ε is a constant. The upper
bounds show that even when N is much smaller than 2n, there are algorithms for relative error testing that make
only O(logN) queries. We describe some of the key new ideas behind our constructions for the Ω̃(logN) lower
bound for non-adaptive algorithms (Theorem 1.2, Section 6) and the Ω̃((logN)2/3) lower bound for adaptive
algorithms (Theorem 1.3, Section 7).

Intuitively, to make monotonicity testing as hard as possible, we would like to use functions that have as little
poset structure of the cube as possible. (For example, all monotonicity lower bounds in the standard model use
functions that are only nontrivial in the middle layers, i.e., points with Hamming weight (n/2)±O(

√
n), with all

points above the middle layers set to 1 and all points below set to 0 by default. This way only the poset structure
in the middle O(

√
n) layers is relevant.) Towards this end, our lower bound constructions use functions which are

only nontrivial on two adjacent layers of the Boolean hypercube, we call them two-layer functions (see Section 5).
More precisely, a function f is a two-layer function if it is only nontrivial on points in layers 3n/4 and 3n/4 + 1:
every point with weight < 3n/4 is set to 0 and every point with weight > 3n/4+1 is set to 1. (We use the constant
3/4 just to make the presentation more concrete; it can be replaced by any constant strictly between 1/2 and 1.)

In addition to the much simplified poset structure (which we discuss in the paragraph about our construction
below), two advantages of using two-layer functions follow from simple calculations: (1) For f to have ε-relative
error from monotonicity for some constant ε, it suffices to show that a constant fraction of points in the two layers
3n/4 and 3n/4 + 1 must be changed to make the function monotone; (2) The use of two-layer functions let us
reduce the analysis of general relative-error testing algorithms (which can use both MQ and Samp oracles) to
algorithms that use MQ only (see Claim 5.2).

So the main technical challenge is to establish strong lower bounds for two-layer functions. Recall that for
monotonicity testing in the standard model, state of the art lower bounds are obtained using the Talagrand DNF
[BB16, CWX17] (a random 2

√
n-term DNF in which each term has

√
n variables sampled uniformly at random)

and a depth-3 extension of the Talagrand DNF [CWX17]. The
√
n (in both the size of each term and the exponent

of the number of terms) comes from the fact we mentioned early about the middle O(
√
n) layers: if

√
n were

replaced by a larger polynomial n0.5+c, then most layers in the middle would become trivial (points in layers above
(n/2) +O(n0.5−c) would be most likely set to 1, and points in layers below (n/2)−O(n0.5−c) would be most likely
set to 0).

In contrast, since we only focus on two-layer functions, the obstacle described above is no longer there, and
it turns out that we can use a novel variant of the Talagrand DNF with 2Θ(n) many terms each of size Θ(n).
This is the construction that leads to our non-adaptive Ω̃(logN) lower bound for relative-error monotonicity
testing. For the Ω̃((logN)2/3) adaptive lower bound, our construction uses a corresponding variant of the depth-3
extension of Talagrand DNF. Using two-layer functions also necessitates various other technical modifications of

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited377

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

the [BB16, CWX17] constructions, which are detailed in Section 6 and Section 7.

1.3 Related work Several earlier works have considered property testing models which are similar to our model
of relative-error testing of Boolean functions f : {0, 1}n → {0, 1}. One such work is an early paper of Rademacher
and Vempala [RV04], who considered essentially a continuous-domain analogue of our framework. [RV04] studied
the problem of testing whether an unknown set S ⊂ R

n is convex versus ε-far from convex, where a finite-volume
set S ⊆ R

n is said to be ε-far from convex if Leb(S 4 C) ≥ ε · Leb(S) for every convex set C, where Leb(·) denotes
the Lebesgue volume. The query model considered in that work, like our query model, is that the algorithm is
given access both to a black-box oracle MQ(S) for (the indicator function of) the unknown set S, as well as access
to a Samp(S) oracle which when queried outputs a uniform random element of S.

[RV04] gave an (n/ε)O(n)-complexity algorithm for testing convexity in their model, and also gave an exponential
lower bound for a specific convexity tester known as the “line segment tester”; the [RV04] lower bound was
strengthened and extended to an exponential lower bound for a “convex hull tester” in recent work of Blais and
Bommireddi [BB20]. Neither of the works [RV04, BB20] studied general algorithms for relative-error property
testing or considered relative-error property testing of functions over the Boolean domain {0, 1}n, which is the
focus of the present work.

A similar model, in which the relative-distance measure is employed and the testing algorithm has both MQ(f)
and Samp(f) oracles, was considered by Ron and Tsur [RT14], who considered the problem of testing sparse
images for properties such as sparsity, convexity, monotonicity, and being a line. In their setting, the domain
of interest was the two-dimensional discrete grid [n]× [n], rather than the high-dimensional Boolean hypercube
{0, 1}n that we consider, and hence the results and techniques are very different between their setting and ours.

We remark that several early works [Mag00, KMS03] studied self-testing of real-valued functions with a
relative-error criterion, in the sense that error terms are allowed to be proportional to the particular function value
being computed. This line of work, with its focus on real-valued functions, has a rather different flavor from our
relative-error model of testing (sparse) Boolean functions.

1.4 Future work Apart from the general observations about relative-error testing given in Section 3, this
work focuses on monotonicity testing. We hope that the relative-error model may open up a new perspective on
Boolean function property testing more broadly, though, by giving a clean theoretical framework for studying
testing of sparse Boolean functions for all sorts of properties. Beyond monotonicity, there are many interesting
and natural questions about relative-error testing of other specific well-studied Boolean function properties; a few
of the questions which seem most interesting to us are listed below.

• Juntas: As we will discuss after Fact 3.2, there is a relative-error testing algorithm for the class of k-juntas
that makes O(k2k/ε) black-box queries and does not use the sample oracle. This dependence on k is
exponentially worse than the state-of-the-art O(k/ε+ k log k)-query k-junta testing algorithm [Bla09] for the
standard model, so it is natural to ask: can the class of k-juntas be relative-error tested using poly(k, 1/ε)
queries? We note that in the distribution-free model juntas are testable with poly(k, 1/ε) queries
[CLS+18, Bsh19], but it is not clear how a distribution-free testing algorithm can help with relative-error
testing.

• LTFs: As we will mention in Section 3, the class of LTFs can be ε-relative-error tested using poly(n, 1/ε)
samples and queries (by a reduction to the poly(n, 1/ε)-sample relative-error learning algorithm of [DDS15]).
However, in the standard property testing model it is known that the class of all linear threshold functions
(LTFs) over {0, 1}n can be ε-tested using only poly(1/ε) queries, independent of the ambient dimension n
[MORS10]. Are LTFs relative-error testable using poly(1/ε) queries and samples, or can an ωn(1) lower
bound be shown?

• DNFs: A similar question can be asked for DNFs. As we will mention in Section 3, the class of s-term
DNFs can be ε-relative-error tested using poly(nlog(s/ε)) samples and queries (by a reduction to the
poly(nlog(s/ε))-sample relative-error learning algorithm of [DDS15]). However, in the standard property
testing model it is known that the class of all s-term DNFs over {0, 1}n can be ε-tested using only poly(s/ε)
queries, independent of n [DLM+07, CGM11, Bsh20]. Are s-term DNFs relative-error testable using
poly(s/ε) queries and samples, or can an ωn(1) lower bound (or even an nωs(1) lower bound) be shown?

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited378

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

2 Preliminaries

We start by defining the distance metric that we will use:

Definition 1. Given two functions f, g : {0, 1}n → {0, 1}, the relative distance from f to g is defined as

rel-dist(f, g) :=
|f−1(1) 4 g−1(1)|

|f−1(1)| .

For a class C of functions from {0, 1}n to {0, 1}, the relative distance from f to C is given by

rel-dist(f, C) := min
g∈C

rel-dist(f, g).

Note that the relative distance between two Boolean functions is not symmetric (i.e. rel-dist(f, g) is not
necessarily equal to rel-dist(g, f)), this does not pose a problem for us: we will chiefly be interested in cases where
rel-dist(f, g) is small, and it is easily verified that if rel-dist(f, g) = ε is at most (say) 0.99, then rel-dist(g, f) = O(ε).
We further mention that in the regime of our interest, the definition of relative distance is fairly robust: as
long as rel-dist(f, g) is at most a small constant, then replacing |f−1(1)| in the denominator by any of |g−1(1)|,
|f1(1)|+ |g−1(1)|, or max{|f−1(1)|, |g−1(1)|}, only changes the value of rel-dist(f, g) by a constant factor.

Let f : {0, 1}n → {0, 1} be the unknown Boolean function that is being tested. Recall that a sampling oracle
for f is an oracle which takes no inputs and, each time it is invoked, independently returns a uniform random
element of f−1(1).5 A black-box oracle for f takes as input an n-bit string x and returns f(x); we sometimes refer
to a black-box oracle simply “oracle for f .”

Definition 2. (Relative-error property testing) Let C be a class of functions from {0, 1}n to {0, 1}. A
q-query ε-relative-error property testing algorithm for C is a randomized algorithm A which is given access to a
sampling oracle for f and a black-box oracle for f , where f may be any (unknown) function from {0, 1}n to {0, 1}.
A makes at most q calls to the sampling oracle and at most q calls to the black-box oracle, and has the following
performance guarantee:

• If f ∈ C then with probability at least 2/3 algorithm A outputs “accept”;

• If rel-dist(f, C) > ε then with probability at least 2/3 algorithm A outputs “reject.”

A one-sided relative error property testing algorithm is one which outputs “reject” with probability 0 unless f /∈ C
(i.e. if f ∈ C then it outputs “accept” with probability 1).

Remark 3. We note that without loss of generality a relative-error testing algorithm can be assumed to make all
q of its calls to the sampling oracle before making any calls to the black-box oracle.

Remark 4. Our main focus of interest in this work will be testing the class C of all monotone Boolean functions,
which we denote Cmonotone. It is easy to verify that any 2o(n)-query relative-error testing algorithm for this class must
use both the sampling oracle and the black-box oracle (we give a simple argument establishing this in Appendix B).
Thus our framework, which allows both the sampling oracle and the black-box oracle, is a “minimal adequate model”
for relative-error monotonicity testing.

3 Some general results on relative-error testing

Relative-error testing implies standard-model testing. We begin with the following straightforward fact,
which shows that any property that is efficiently relative-error testable is also efficiently testable in the standard
model:

Fact 3.1. Let C be any class of functions from {0, 1}n → {0, 1}. Suppose that there is a relative-error ε-testing
algorithm T for C that makes q(ε, n) many black-box queries and calls to Samp. Then there is a standard-model
ε-testing algorithm T ′ for C which makes at most O(1/ε2 + 1

εq(ε, n)) calls to the black-box oracle.

5If f is the constant-0 function then the sampling oracle is assumed to return a special ⊥ symbol; note that if this happens it

completely identifies the function f as the constant-0 function. Hence in our subsequent discussion we implicitly assume that the
function f being tested is not the constant-0 function.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited379

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Proof. Let α ∈ [0, 1] be the value of ham-dist(0, C), i.e. the Hamming distance between the constant-0 function
and the nearest function in C; the algorithm and its analysis will make use of this quantity. (Note that no queries
to the unknown function f are required for the algorithm to determine the value of α.)

The algorithm T ′ works as follows:

1. It first makes m1 = O(1/ε2) calls to the black-box oracle for f on uniform random inputs; let m′
1 ≤ m1 be

the number of those queries that have f(x) = 1. If m′
1/m1 ≤ ε/3, then T ′ outputs “accept” if α ≤ ε/2 and

outputs “reject” otherwise. If m′
1/m1 > ε/3, then

2. T ′ draws m2 = C
ε q(ε, n) independent uniform random points from {0, 1}n (for a suitable absolute constant

C) and queries f on each of them. If fewer than q(ε, n) of the m2 points are satisfying assignments of f then
T ′ halts and fails. Otherwise,

3. T ′ uses the first q(ε, n) of the satisfying assignments as the Samp(f) responses that algorithm T (ε, n)
requires. (Recall that by Definition 3, we may suppose that T makes all its calls to Samp(f) before making
any calls to MQ(f).) T ′ continues to simulate T (ε, n) (making at most q(ε, n) calls to MQ(f), the same way
T does) and returns what T ′ outputs.

The query complexity of T ′ is clearly as claimed. To establish correctness, we begin by observing that by
a simple Chernoff bound, with probability 99/100 the value of m′

1/m1 is within ±ε/100 of the true value of
|f−1(1)|/2n (we will use this repeatedly in the following arguments).

Case 1: f ∈ C. Suppose first that |f−1(1)|/2n ≤ ε/4. In this case, with probability at least 99/100 we have
m′

1/m1 ≤ ε/4 + ε/100 = 26ε/100. Since α ≤ ham-dist(f, 0) = |f−1(1)|/2n ≤ ε/4, in this case T ′ correctly outputs
“accept” in Step 1.

So suppose next that f ∈ C and ε/4 < |f−1(1)|/2n ≤ ε/2. In this case we have α ≤ ham-dist(f, 0) ≤ ε/2 so T ′

does not output “reject” in Step 1. Even if T ′ does not output “accept” in Step 1, since |f−1(1)|/2n ≥ ε/4, for a
suitable choice of the constant C we have that with probability at least 99/100 the algorithm T ′ does not fail in
Step 2. So the relative-error ε-testing algorithm T (ε, n) is executed in Step 3 and we invoke its guarantee, which is
that it outputs “accept” with probability at least 2/3 (since f ∈ C). So in this case as well T ′ correctly outputs
“accept” with high probability.

The remaining subcase of Case 1 is that f ∈ C and |f−1(1)|/2n > ε/2. In this case the probability that T ′

outputs “reject” in Step 1 is at most 1/100 (since this only happens if m′
1/m1 ≤ ε/3), so we may suppose that

T ′ reaches Step 2. In this case since |f−1(1)|/2n ≥ ε/2, for a suitable choice of the constant C we have that
with probability at least 99/100 the algorithm T ′ does not fail in Step 2. So as in the previous paragraph, the
relative-error ε-testing algorithm T (ε, n) is executed in Step 3, and in this case as well T ′ correctly outputs “accept”
with high probability (which can be amplified to any constant probability using standard techniques).

Case 2: ham-dist(f, C) > ε. Suppose first that |f−1(1)|/2n ≤ E = ε/4. Then in Step 1, with probability
99/100 we have m′

1/m1 ≤ ε/4+ ε/100 = 26ε/100. It cannot be the case that α ≤ ε/2 (because if α ≤ ε/2 then we
would have ham-dist(f, C) ≤ ham-dist(f, 0) + ham-dist(0, C) ≤ 3ε/4, but in Case 2 we have ham-dist(f, C) > ε), so
algorithm T ′

1 correctly outputs “reject” with high probability in Step 1.
Suppose next that ham-dist(f, C) > ε and ε/4 < |f−1(1)|/2n ≤ ε/2. If m′

1/m1 ≤ ε/3 then similar to
the previous paragraph we cannot have α ≤ ε/2 (because if α ≤ ε/2 then we would have ham-dist(f, C) ≤
ham-dist(f, 0) + ham-dist(0, C) ≤ ε, but in Case 2 we have ham-dist(f, C) > ε), so T1 correctly outputs “reject” in
Step 1. If m′

1/m1 > ε/3 then since |f−1(1)|/2n ≥ ε/4, for a suitable choice of the constant C we have that with
probability at least 99/100 the algorithm T ′ does not fail in Step 2. So the relative-error ε-testing algorithm T (ε, n)
is executed in Step 3 and we invoke its guarantee, which is that it correctly outputs “reject” with probability at
least 2/3 (since rel-dist(f, C) = ham-dist(f, C) · 2n

|f−1(1)| ≥ ham-dist(f, C) > ε). So in this case as well T ′ correctly

outputs “reject” with high probability.
The final case when ham-dist(f, C) > ε is that |f−1(1)|/2n > ε/2. In this case the probability that T ′ outputs

“reject” in Step 1 is at most 1/100 (since this only happens if m′
1/m1 ≤ ε/3), so we may suppose that T ′ reaches

Step 2. In this case the arguments of the previous paragraph again give us that T ′ correctly outputs “reject” with
high probability.

We remark that a simple example, given in Appendix A, shows that there are properties which are trivially
testable in the standard model but very hard to test in the relative-error model. Together with Fact 3.1, this
shows that relative-error testing is a more demanding model than the standard property testing model.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited380

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Standard-model testing implies relative-error testing, for not-too-sparse properties. The next result,
together with Fact 3.1, implies that standard-model testing and relative-error testing are essentially equivalent for
classes of functions that are “not too sparse:”

Fact 3.2. Let p = p(n) > 0 and let C be any class of functions from {0, 1}n → {0, 1} such that every f ∈ C has
|f−1(1)|/2n ≥ p. Suppose that there is a standard-model ε-testing algorithm T for C that makes q(ε, n) many
black-box queries. Then there is a relative-error ε-testing algorithm T ′ for C which, when run on any function
f : {0, 1}n → {0, 1}, makes no calls to the sampling oracle and at most O(1/p+ q(pε/2, n)) calls to the black-box
oracle.

Proof. Algorithm T ′ first makes m = O(1/p) calls to the black-box oracle for f on uniform random inputs, and
rejects if fewer than 3pm/4 of the queried points are satisfying assignments of f . If T ′ does not reject in this first
phase, it then performs O(1) many runs of the standard-model testing algorithm T , each time with closeness
parameter pε/2, and outputs the majority of those runs.

It is clear that the query complexity is as claimed. To establish correctness, first consider the case that f ∈ C.
Since |f−1(1)|/2n ≥ p, the probability that the algorithm rejects in the first phase is at most (say) 1/6 by a
standard multiplicative Chernoff bound. Since f ∈ C, the probability that any individual run of T outputs “reject”
is at most 1/3, so the probability that the majority of the O(1) runs output “reject” is at most (say) 1/6. Hence
the probability that f is rejected is at most 1/3 as desired.

Next, suppose that rel-dist(f, C) > ε. One possibility is that |f−1(1)|/2n ≤ p/2; if this is the case, then the
probability that T rejects in the first phase is at least 2/3 as required. So consider the other possibility, which is
that |f−1(1)|/2n > p/2. We have

ε < rel-dist(f, C) = min
g∈C

|f−1(1)4 g−1(1)|
|f−1(1)| <

2

p
·min
g∈C

|f−1(1)4 g−1(1)|
2n

,

which rearranges to give ham-dist(f, C) ≥ pε/2. So even if T ′ makes it to the second stage, the probability that
the majority of O(1) calls to T with closeness parameter pε/2 output “accept” is at most 1/3.

Fact 3.2 sheds light on relative-error testing of some classes that have been intensively studied in the standard
model. For instance, since every non-constant parity function f has |f−1(1)|/2n = 1/2, the standard-model
O(1/ε)-query testing algorithm for linear (parity) functions [BLR93] yields a relative-error tester with the same
O(1/ε)-query complexity. As another application, since every non-constant k-junta has |f−1(1)|/2n ≥ 1/2k, the
O(k/ε+ k log k)-query algorithm of Blais [Bla09] for testing juntas yields a relative-error tester for k-juntas that
makes O(k2k/ε) black-box queries. On the other hand, Fact 3.2 does not give anything for some other natural
classes such as LTFs, s-term DNF formulas, and monotone functions.

Relative-error learning implies relative-error testing. Several recent works [DDS15, CDS20] have studied
the problem of learning the distribution of satisfying assignments of an unknown Boolean function. In this
framework, a learning algorithm for a concept class C of Boolean functions over {0, 1}n has access to uniform
random satisfying assignments (i.e. to a sample oracle for the unknown target function f ∈ C), and the goal of the
learner is to output an ε-sampler for f−1(1), which is a circuit that, when given independent uniform random bits
as its input, outputs a draw from a distribution D that has total variation distance at most ε from the uniform
distribution over f−1(1). Known algorithms in this framework work in two stages:

1. First, they perform ε/2-relative-error proper learning of the unknown target function f ∈ C. This means
that they use independent uniform samples from f−1(1) to construct a hypothesis function h ∈ C which,
with probability at least 9/10, satisfies rel-dist(f, h) ≤ ε/2.

2. Next, they output an ε/2-sampler for h.

We now show that relative-error learning algorithms for a class of functions yield relative-error testing
algorithms for the same class, with query complexity comparable to the sample complexity of the learning
algorithm:

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited381

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Fact 3.3. Let C be a class of functions from {0, 1}n to {0, 1}. Let A be an algorithm which performs ε-relative-
error proper learning of C using s(ε, n) uniform samples from f−1(1). Then there is an ε-relative-error testing
algorithm T for C which makes at most s(ε/4, n) +O(1/ε) calls to the sample oracle and at most O(1/ε) calls to
the black-box oracle MQ(f).

Proof. The testing algorithm T works in the following stages:

1. Run the relative-error learning algorithm A with error parameter ε/4, using the sample oracle as the source
of uniform random examples (this requires s(ε/4, n) calls to the sample oracle, and no calls to the MQ
oracle). If A does not output a hypothesis h ∈ C then output “reject.” Otherwise, let h ∈ C denote the
hypothesis that A outputs, and

2. Draw m := O(1/ε) samples from Samp(f) and evaluate h on each of them. If h evaluates to 0 on more than
(3/8)εm of the samples, then output “reject.” Otherwise,

3. Draw m independent uniform samples from h−1(1)6 and use MQ(f) to evaluate f on each of them. If f
evaluates to 0 on more than (3/8)εm of them then output “reject,” otherwise output “accept.”

The query complexity is clearly as claimed, so we turn to establishing correctness. Suppose first that the
target function f belongs to C. The probability that the (ε/4)-relative-error learning algorithm does not output a
function h ∈ C is at most 1/10, so suppose that h ∈ C is the output of the relative-error learning algorithm, and
that rel-dist(f, h) ≤ ε/4. Write

(3.1) a · 2n := |f−1(1) ∩ h−1(1)|, b · 2n := |f−1(1) \ h−1(1)|, c · 2n := |h−1(1) \ f−1(1)|.

Since rel-dist(f, h) = |f−1(1)4h−1(1)|
|f−1(1)| ≤ ε/4, we have b+c

a+b ≤ ε/4. Since the probability that h evaluates to 0 on a

random example drawn from Samp(f) is b
a+b ≤ b+c

a+b ≤ ε/4, by a standard Chernoff bound the probability that T
outputs “reject” in Step 2 is at most 1/10; so suppose that algorithm T proceeds to Step 3. Since the probability
that f evaluates to 0 on a random example drawn from h−1(1) is

c

a+ c
=

a+ b

a+ c
· c

a+ b
≤ a+ b

a
· ε
4
=

1

1− b/(a+ b)
· ε
4
≤ 1

1− ε/4
· ε
4
≤ ε

3
,

the probability that T outputs “reject” in Step 3 is at most 1/10. So the overall probability that T outputs “reject”
is at most 1/10 + 1/10 + 1/10 < 1/3, as required since f ∈ C.

Next, suppose that rel-dist(f, C) > ε. If the relative-error learning algorithm does not output a hypothesis
h ∈ C, then the tester T outputs “reject” (as desired), so suppose that in stage 1 the tester T outputs a hypothesis
h ∈ C. Let a, b, c ∈ [0, 1] be as in Equation (3.1). Since b+c

a+b = rel-dist(f, h) ≥ rel-dist(f, C) > ε, it must be the case

that either b
a+b (which is the fraction of examples in f−1(1) that are labeled 0 by h) is at least 5ε/13, or c

a+b is at
least 8ε/13. In the first case, a Chernoff bound gives that T outputs “reject” in Step 2 with probability at least
2/3, and in the second case,

c

a+ c
=

1

a/c+ 1
≥ 1

(a+ b)/c+ 1
≥ 1

13/(8ε) + 1
≥ 8ε

21
.

Note that c
a+c is the fraction of examples in h−1(1) that are labeled 0 by f , so a Chernoff bound gives that T

outputs “reject” in Step 3 with probability at least 2/3.

Fact 3.3 lets us obtain some positive results for relative-error testing of well-studied concept classes, namely
LTFs and DNFs, from known positive results for learning those classes:

• En route to giving an efficient algorithm for learning the uniform distribution over satisfying assignments of an
unknown LTF over {0, 1}n, [DDS15] gives a poly(n, 1/ε)-sample algorithm which is an ε-relative-error proper
learner for LTFs over {0, 1}n. Hence by Fact 3.3, we get a poly(n, 1/ε)-query algorithm for relative-error
testing of LTFs over {0, 1}n.

6Note that while it may be a computationally hard task to generate a uniform random satisfying assignment of h, we are only
concerned with the query complexity of our testing algorithm and not its running time.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited382

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

• [DDS15] also gives a poly(nlog(s/ε))-sample ε-relative-error proper learning algorithm for s-term DNFs over
{0, 1}n (as part of an algorithm for learning the uniform distribution over satisfying assignments of an
unknown s-term DNF). Consequently, Fact 3.3 gives a poly(nlog(s/ε))-query algorithm for ε-relative-error
testing of the class of s-term DNFs.

On the other hand, Fact 3.3 is not useful for relative-error monotonicity testing, since even under the uniform
distribution on {0, 1}n(where both positive and negative random examples are available to the learner) no algorithm
can learn monotone Boolean functions to accuracy ε using fewer than 2Ω(

√
n/ε) samples [BCO+15].

4 Algorithms for relative-error monotonicity testing

In this section we present algorithms for relative-error monotonicity testing. At a high level, our algorithms
uses the same idea as the O(n/ε)-query edge tester for standard monotonicity testing. However, our algorithms
will be much more efficient when the function being tested is sparse. In particular, let N be the sparsity of the
given function f , i.e. N = |f−1(1)|. Our algorithms make O(log(N)/ε) calls to MQ(f) and Samp(f), where ε is
the (relative-error) distance parameter. Note that such an upper bound can still be highly non-trivial vis-a-vis
standard monotonicity testing even when N = 2Θ(n); for example, if N = 20.99n, then having relative-error ε is a
much stronger guarantee than having absolute error ε, since ham-dist(f, Cmonotone) = rel-dist(f, Cmonotone) · 2−0.01n.

We will present two versions of our algorithm that work in different settings. As a warmup, we first explain
how a variant of the simple edge tester gives an O(n/ε)-query algorithm; this algorithm does not need to be
provided with the value of N . Then, for our first main algorithm, we show how a modification of this simple
algorithm works, using O(log(N)/ε) queries, if the sparsity N is given to the algorithm as an input parameter.
Finally, our second main algorithm does not require the sparsity N as an input parameter. It works for any
Boolean function f : {0, 1}n → {0, 1}, and as long as the function f has sparsity N , the algorithm will (usually)
terminate within O(log(N)/ε) steps. The idea of this algorithm is to first learn a rough estimate of the sparsity
N and then run the first algorithm using the learned estimate of N . Because of this, the second algorithm is
adaptive, and it terminates after O(log(N)/ε) samples and queries only with high (say 0.99) probability. (We will
show how to boost the probability to an arbitrarily large 1− δ with only an O(log(1/δ)/ε) additive increase in the
sample and query complexity.)

4.1 Warmup: A nonadaptive O(n/ε)-query algorithm (that is not given N) We first show that the
O(n/ε) edge-tester algorithm in [GGL+00] still works in the relative-error setting with slight modification. The
intuition of the edge-tester is simple: the algorithm just tries to find a violating edge, i.e. an edge {x, y} such that
((x ≺ y) ∧ (f(x) > f(y))), and outputs “not monotone” if it finds such an edge. Since any far-from-monotone
function must have “many” violating edges, an algorithm that samples some edges and outputs “not monotone” if
and only if there is a violating edge among the sampled edges should work.

In more detail, we recall the following:

Lemma 4.1. ([GGL+00, Theorem 2]) If f : {0, 1}n → {0, 1} differs from any monotone function on at least ∆
points in {0, 1}n, then the number of violating edges {x, y} for f is at least ∆/2.

Remark 5. The above lemma is tight up to constant factors [GGL+00, Proposition 4].

If f satisfies rel-dist(f, Cmonotone) ≥ ε and |f−1(1)| = N , then f differs from any monotone function on at least
εN points. Thus, it directly follows from Lemma 4.1 that there are at least εN/2 violating edges for f . Moreover,
all violating edges have one vertex x such that f(x) = 1, so in order to find violating edges, we can sample from
the set of all edges that have at least one vertex x such that f(x), and this can be done with the sampling oracle.
We thus have the following algorithm:

Algorithm 1: An edge-testing algorithm

Input: n, ε, and access to the oracles MQ(f) and Samp(f).
Output: Either “monotone” or “not monotone”.

1. Query the sample oracle Samp(f) for a := 4n/ε times.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited383

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

2. For every sample x received, uniformly sample i ∈ [n], and query the oracle MQ(f) on x⊕ ei (which is
x with its i-th bit flipped). If xi = 0 (so that x ≺ x⊕ ei) and f(x⊕ ei) = 0 (which means {x, x⊕ ei} is
a violating edge), then output “not monotone” and halt.

3. If the algorithm did not output “not monotone” in Step 2, then output “monotone”.

The number of oracle calls made by the algorithm is 2× 4n/ε = O(n/ε). It is easy to see that the algorithm is
non-adaptive, as the queries in Step 2 do not depend on one another and can thus be made in one round. Also, it
is a one-sided algorithm, since when f is monotone, there is no violating edge, so the algorithm always outputs
“monotone”.

Now consider the case where f is ε-relatively-far from monotone. Note that all violating edges are in the
form of {x, x⊕ ei} where f(x) = 1, so for each (x, i) uniformly sampled from f−1(1)× [n], the probability that
{x, x⊕ ei} is a violating edge is at least (εN/2)/(N · n) = ε/(2n), as there are at least εN/2 violating edges. Since
the algorithm gets a uniform samples (x, i) from f−1(1)× [n], the probability that none corresponds to a violating
edge is at most (

1− ε

2n

)a

=

(
1− ε

2n

)4n/ε

≤ 1

3

for sufficiently large n. So with probability at least 2/3, the algorithm outputs “not monotone”.

4.2 A non-adaptive O(log(N)/ε)-query algorithm that is given N In this section, we will improve the
algorithm in the previous subsection and prove the following:

Theorem 4.1. There is a one-sided non-adaptive algorithm which, if it is given N := |f−1(1)|, is an ε-relative-
error tester for monotonicity making O(log(N)/ε) calls to Samp(f) and MQ(f).

The key to this theorem is the following observation: if f is monotone and |f−1(1)| = N , then for any
x ∈ f−1(1), the value of ‖x‖1 (i.e. the Hamming weight of x) is at least n − log2 N , because f(y) = 1 for any
y � x and the number of such y is 2n−‖x‖1 ≤ N . Therefore, if we know N and we found a point x ∈ {0, 1}n with
f(x) = 1 and ‖x‖1 < n− log2 N , then f cannot be monotone.

Moreover, if we assume that every x we get from the sample oracle has Hamming weight close to n, then we
can also improve the edge-testing algorithm (see Algorithm 1). Specifically, in the edge-testing algorithm, we
sample violating edges by sample from all edges that have one vertex x in f−1(1). However, for x ∈ f−1(1), only
edges going “upwards” from x (connecting x and x⊕ ei where x ≺ x⊕ ei) can be violating edges. Therefore, it
suffices to sample only from edges going upwards from x, and moreover, the number of these edges is much smaller
than n since x has Hamming weight close to n.

These observations naturally lead to the following algorithm.

Algorithm 2: A non-adaptive algorithm that is given N

Input: n, ε, N , and access to the oracles MQ(f) and Samp(f).
Output: Either “monotone” or “not monotone”.

1. Query the sample oracle Samp(f) for a := 16 log2(N)/ε times.

2. For every sample x received:

• If ‖x‖1 < n− 2 log2 N , output “not monotone” and halt.

• Otherwise, uniformly sample i from {i ∈ [n] : xi = 0}, and query the oracle MQ(x) on x⊕ ei. If
f(x⊕ ei) = 0 (which means {x, x⊕ ei} is a violating edge), then output “not monotone” and halt.

3. If the algorithm did not output “not monotone” in Step 2, then output “monotone”.

The number of oracle calls made by the algorithm is 2× 16 log2(N)/ε = O(log(N)/ε). Similar to the previous
subsection, the algorithm is non-adaptive, as the queries in Step 2 do not depend on one another and can thus be

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited384

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

made in one round, and the algorithm is also one-sided, since when f is monotone, there is no violating edge, so
the algorithm always outputs “monotone”.

Now suppose that f is ε-relatively-far from monotone. Consider the following two cases:

• Case 1: There are at least εN/2 elements of f−1(1) that have Hamming weight less than n− 2 log2 N . In
this case, the probability that Algorithm 2 draws a sample that has Hamming weight less than n− 2 log2 N
and outputs “not monotone” is at least

1−
(
1− εN/2

N

)a

= 1−
(
1− ε

2

)16 log2(N)/ε

≥ 2/3.

• Case 2: There are at most εN/2 elements of f−1(1) that has Hamming weight at least n− 2 log2 N . In this
case, if one of the x sampled in Stage 1 of the algorithm has Hamming weight less than n− 2 log2 N , then
the algorithm outputs “not monotone”. Below we condition on the event that all x sampled in the algorithm
have Hamming weight at least n− 2 log2 N .

We first bound the number of violating edges both of whose vertices have Hamming weight at least
n− 2 log2 N . Define function f ′ : {0, 1}n → {0, 1} such that f ′(t) = f(t) if ‖t‖1 ≥ n− 2 log2 N and f ′(t) = 0
otherwise. Then ham-dist(f ′, f) < (εN/2)/2n, so by the triangle inequality, the number of points on which
f ′ must disagree with any monotone function is greater than εN/2. Therefore, by Lemma 4.1, there are at
least εN/4 violating edges for f ′, and thus at least εN/4 violating edges for f with both vertices having
Hamming weight at least n− 2 log2 N .

For each violating edge both of whose vertices have Hamming weight at least n− 2 log2 N , the probability
that the edge is {x, x⊕ ei} when x is uniformly sampled from f−1(x) and i is uniformly sampled such that
xi = 0, conditioning on ‖x‖1 ≥ n− 2 log2 N , is at least 1/(N · 2 log2 N). Since there are at least εN/4 such
violating edges, the probability that Algorithm 2 encounters one of them and thus outputs “not monotone”
is at least

1−
(
1− εN/4

2N log2 N

)a

= 1−
(
1− ε

8 log2 N

)16 log2(N)/ε

≥ 2/3.

Hence, when f is ε-relatively-far from monotone, Algorithm 2 outputs “not monotone” with probability at
least 2/3.

4.3 An O(log(N)/ε)-complexity algorithm that does not know N In this subsection, we consider the
case when the algorithm does not have prior knowledge of N = |f−1(1)|, and prove the following, which is a
restatement of Theorem 1.1:

Theorem 1.1. (Testing algorithm) There is a one-sided adaptive algorithm which is an ε-relative-error tester
for monotonicity (i.e., it always returns “monotone” when the input function f is monotone and returns “not
monotone” with probability at least 2/3 when f has relative distance at least ε from monotone); with probability at
least 1− δ, it makes no more than O(log(1/δ)/ε+ log(N)/ε) calls to Samp(f) and MQ(f).

For this setting, the intuition is straight-forward: we first somehow get a rough estimate of N , and then
proceed as in the previous section as if we knew N .

Let k̂ be the (εN/2)-th-least Hamming weight among elements in f−1(1), that is, the (εN/2)-th smallest item

in (the multi-set) {‖x‖1 : x ∈ f−1(1)}. We will estimate k̂, or more precisely, estimate a lower bound for k̂, in the
algorithm. Recall that for monotone f and x ∈ f−1(1), all y � x should satisfy f(y) = 1, so it is easy to see that

N = |f−1(1)| ≥ 2n−k̂, and thus intuitively, k̂ gives useful information about the size of N for monotone f .
Now we describe the algorithm as in Algorithm 3. Let δ ∈ (0, 1/2) be a parameter.
It is easy to see that the algorithm always outputs “monotone” when f is monotone given that it only returns

“not monotone” when a violation to monotonicity is found. Below we consider the case when f is ε-relatively-far
from monotone and show that the algorithm returns “not monotone” with probability at least 2/3; we analyze its
query complexity at the end of the proof.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited385

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Algorithm 3: An algorithm that is not given N

Input: n, ε, and access to the oracles MQ(f) and Samp(f).
Output: Either “monotone” or “not monotone”.

1. Query the sample oracle Samp(f) for c := 8 log2(1/δ)/ε times. Let z be the sample that has the least
Hamming weight (if there are multiple such z, choose an arbitrary one); set k := ‖z‖1. Uniformly
sample y1, . . . , yb ∈ {y ∈ {0, 1}n : y � z} where b := 4 log2(1/δ). If there exists j ∈ [b] such that
f(yj) = 0, output “not monotone” and halt.

2. Query the sample oracle Samp(f) for a := 16(n− k)/ε times.

3. For every sample x received:

• Uniformly sample i from {i ∈ [n] : xi = 0}, and query f(x⊕ ei). If f(x⊕ ei) = 0 (which means
{x, x⊕ ei} is a violating edge), output “not monotone” and halt.

4. If the algorithm has not output “not monotone” so far, output “monotone”.

We first show that at the end of Step 1, with probability at least max{5/6, 1− δ}, either the algorithm outputs
“not monotone” or k satisfies

(4.2) n− 2 log2 N ≤ k ≤ k̂.

Note that the number of elements in f−1(1) that have Hamming distance at most k̂, by the choice of k̂, is at least

εN/2, so the probability that one of them appears as a sample in the first part of Step 1 (and thus k ≤ k̂), is at
least

1−
(
1− εN/2

N

)c

≥ 1−
(
1− ε

2

)8 log2(1/δ)/ε

≥ max

{
11

12
, 1− δ

2

}
.

On the other hand:

• If ‖z‖1 < n− 2 log2 N in Step 1, the probability that f(yj) = 0 for some j ∈ [b] is at least

1−
(

N

22 log2 N

)b

≥ 1− 1

N4 log2(1/δ)
≥ max

{
11

12
, 1− δ

2

}
,

in which case the algorithm will output “not monotone”.

Therefore, by a union bound, with probability at least max{5/6, 1−δ}, either the algorithm outputs “not monotone”
in Step 1, or k satisfies Equation (4.2).

Assuming Algorithm 3 does not output “not monotone” in Step 1 and k satisfies Equation (4.2), we show that
with probability at least 5/6, the algorithm outputs “not monotone” in Step 3.

To this end, we bound the probability of an x from Samp(f) leading Step 3 to return “not monotone”:

• Define f ′ : {0, 1}n → {0, 1} such that f ′(t) = f(t) if t has Hamming weight at least k and f ′(t) = 0

otherwise. Since k ≤ k̂, we have ham-dist(f ′, f) ≤ εN/2, so by triangle inequality, the Hamming distance
between f ′ and any monotone function is at least εN/2. Therefore, by Lemma 4.1, there are at least εN/4
violating edges for f ′, and thus at least εN/4 violating edges for f with both vertices having Hamming
weight at least k. As a result, when x is sampled from Samp(f), the probability that Step 3 returns “not
monotone” is at least

ε

4
· 1

n− k
,

where the ε/4 is the probability that x is in one of these εN/4 violating edges and 1/(n− k) is the
probability that the i sampled in Step 3 is exactly the direction of the edge that x lies in.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited386

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

As a result, Step 3 returns “not monotone” with probability at least

1−
(
1− ε

4(n− k)

)a

= 1−
(
1− ε

4(n− k)

)16(n−k)/ε

≥ 5

6
,

Therefore, when f is ε-relatively-far from monotone, Algorithm 3 outputs “not monotone” with probability at
least 2/3.

The number of oracle calls Algorithm 3 makes is at most

8 log2(1/δ)/ε+ 4 log2(1/δ) + 2× 16(n− k)/ε = O(log(1/δ)/ε+ log(N)/ε)

when n− 2 log2 N ≤ k holds from Equation (4.2), which happens with probability at least 1− δ.

5 Warmup: A one-sided non-adaptive Ω(logN) lower bound

As a warmup, we give a simple one-sided non-adaptive lower bound for relative-error monotonicity testing. In
particular, we prove the following theorem, which is inspired by the one-sided non-adaptive monotonicity testing
lower bound of [FLN+02] in the standard model:

Theorem 5.1. There is a constant ε0 > 0 and a parameter N = Θ(
(

n
3n/4

)
) such that any one-sided nonadaptive

algorithm for testing whether a function f with sparsity N is monotone or has relative distance at least ε0 from
monotone functions must make Ω(logN) many queries.

To prove this theorem, we focus on the following family of functions. For each i ∈ [n], define fi : {0, 1}n → {0, 1}
as follows:

fi(x) =





1 if ‖x‖1 > 3n/4 + 1

0 if ‖x‖1 < 3n/4

1− xi if ‖x‖1 ∈ {3n/4, 3n/4 + 1}.

Note that all fi have the same sparsity N = Θ(
(

n
3n/4

)
).

It is easy to show that every fi has large relative distance from monotone functions:

Claim 5.1. For every i ∈ [n], we have rel-dist(fi, Cmonotone) = Ω(1).

Proof. First observe that |f−1
i (1)| can be upper bounded as

|f−1
i (1)| ≤

n∑

j=3n/4

(
n

j

)
= O

((
n

3n/4

))
.

Define A = {x : xi = 0 and ‖x‖1 = 3n/4 − 1} and A↑ = {x : xi = 1 and ‖x‖1 = 3n/4}. Observe that for each
x ∈ A, there is a unique y ∈ A↑ such that fi(x) = 1 and fi(y) = 0. Further, x and y differ only in the ith

coordinate. This implies that dist(fi, Cmonotone) ≥ |A|. Thus,

rel-dist(fi, Cmonotone) ≥ Θ

(|A|(
n

3n/4

)
)

= Θ(1),

as was to be shown.

Given Claim 5.1 (letting ε0 be the hidden constant), our goal is to show that any randomized, non-adaptive
algorithm that can find a violation in fi with probability at least 2/3, for every i ∈ [n], must make Ω(n) queries. We
start by showing that it suffices to prove the same Ω(n) lower bound for any randomized, non-adaptive algorithm
that has access to the black-box oracle MQ(f) only.

We say f : {0, 1}n → {0, 1} is a two-layer function if

(5.3) f(x) =

{
1 if ‖x‖1 > 3n/4 + 1

0 if ‖x‖1 < 3n/4

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited387

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Note that every function fi is a two-layer function as defined in Equation (5.3). Indeed all functions used in our
lower bound proofs in the next two sections are two-layer functions as well.

One reason that two-layer testing is helpful for lower bound arguments is because the Samp(f) oracle is not
needed for two-layer testing — it can be simulated, at low overhead, with the MQ oracle. This means that to prove
a lower bound in our relative-error model for two-layer functions, it is sufficient to consider the slightly simpler
setting in which the testing algorithm’s only access to the unknown two-layer function f is via the MQ oracle.

Claim 5.2. If f : {0, 1}n → {0, 1} is a two-layer functions, then q calls to the Samp(f) oracle can be simulated,
with success probability at least 99/100, by making O(q) calls to the MQ oracle.

Proof. The simulation works by simply making Cq (for a suitable large constant C) many MQ(f) queries on
independent uniform random points x ∈ {0, 1}n that satisfy ‖x‖1 ≥ 3n/4, and using the first q points for which
f(x) = 1. It is clear that each such point x in the sample (for which f(x) = 1) corresponds to an independent
draw from Samp(f); correctness follows from a simple probabilistic argument using the fact that for any two-layer
function f , at least an Ω(1) fraction of all n-bit strings with Hamming weight at least 3n/4 are satisfying
assignments of f .

Given Claim 5.2, it suffices to show that any randomized, non-adaptive, MQ-only algorithm that can find a
violation in fi with probability at least (99/100) · 2/3 must make Ω(n) MQ queries. To this end, letting Dno be the
uniform distribution on fi, it suffices to prove Lemma 5.1 below, because any randomized, q-query, non-adaptive
algorithm that can find a violation in every fi with probability at least (99/100) · 2/3 implies a deterministic
algorithm that finds a violation in f ∼ Dno with probability at least (99/100) · 2/3.

Lemma 5.1. Any deterministic, q-query, non-adaptive, MQ-only algorithm finds a violation in f ∼ Dno with
probability at most q/n.

Proof. [Proof of Lemma 5.1] Let Q be the set of q queries. We assume without loss of generality that every x ∈ Q
has ‖x‖1 ∈ {3n/4, 3n/4 + 1}. We will show that Q can reveal a violation for at most q − 1 of the functions fi. To
argue this, consider an undirected graph G = (Q,E) in which the vertices correspond to queries in Q. Join any
two vertices in Q with an edge labeled by j if they differ at exactly the jth coordinate. Next, we drop all the edges
until we just retain a spanning forest G. Let the edges of the spanning forest be E′. Note that the spanning forest
has at most q − 1 edges.

Now, consider a function fi whose violation is revealed by the set of queries. For this to be the case, it must
mean that there is a pair of adjacent vertices — call them u and v – in G such that the corresponding edge is
labeled by i. This means that in the spanning forest, u and v must be in the same component. Furthermore, there
must be at least one edge in the path connecting u and v in the spanning forest which is labeled by i. Since the
number of edges in the spanning forest is at most q − 1, it follows that Q can reveal a violation for at most q − 1
of the functions fi.

Remark 6. In Theorem 5.1 as well as the rest of the paper, we work with two-layer functions as described above,
where the two layers in question are 3n/4 and 3n/4 + 1. This choice is made just for concreteness to aid with
readability; it is easy to verify that the definition of two-layer functions could be altered to use the two layers αn
and αn+ 1, for any constant α ∈ (1/2, 1), and that Theorem 5.1 would still go through with N = Θ(

(
n
αn

)
).

6 A two-sided non-adaptive lower bound

The goal of this section is to prove the following two-sided, non-adaptive lower bound for relative-error monotonicity
testing:

Theorem 6.1. Let N =
(

n
3n/4

)
. There is a constant ε0 > 0 such that any two-sided, non-adaptive algorithm for

testing whether a function f with |f−1(1)| = Θ(N) is monotone or has relative distance at least ε0 from monotone
functions must make Ω̃(logN) queries.

To see that Theorem 6.1 implies Theorem 1.2, we first note that for any choice of the parameter N ≤
(

n
3n/4

)
,

there exists a positive integer k ≤ n such that N = Θ(
(

k
3k/4

)
). The desired Ω̃(logN) lower bound for relative-error

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited388

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

testing of functions with sparsity Θ(N) can then be obtained from a routine reduction to Theorem 6.1 (with n set
to k) by embedding in a suitable subcube of {0, 1}n using functions f : {0, 1}n → {0, 1} of the form

f(x1, . . . , xn) = (xk+1 ∧ · · · ∧ xn) ∧ f ′(x1, . . . , xk).

Moreover, as discussed in Definition 6, 3/4 can be replaced by any constant α ∈ (1/2, 1). Choosing α to be
sufficiently close to 1/2 extends the lower bound to any N ≤ 2α0n for any constant α0 < 1.

As it will become clear in Section 6.1, all functions used in our lower bound proof are two-layer functions. We
will prove that any randomized, non-adaptive, MQ-only algorithm for testing two-layer functions with success
probability (99/100) · 2/3 must make Ω̃(n) queries. It follows from Claim 5.2 that, even with access to both MQ
and Samp, any randomized, non-adaptive algorithm for testing two-layer functions with success probability 2/3
must make Ω̃(n) queries. In the rest of the section, we focus on MQ-only algorithms.

6.1 Distributions Dyes and Dno Our proof is an adaptation of the Ω̃(
√
n) lower bound from [CWX17] for

two-sided non-adaptive monotonicity testing in the standard model.
To describe the construction of the yes- and no- distributions Dyes and Dno, we begin by describing the

distribution E . E is uniform over all tuples T = (Ti : i ∈ [L]), where L := (4/3)n and Ti : [n] → [n]. Equivalently,
to draw a tuple T ∼ E , for each i ∈ [L], we sample a random Ti by sampling each Ti(k) independently and
uniformly (with replacement) from [n] for each k ∈ [n]. We will refer to Ti as the i-th term in T and Ti(k) as the
k-th variable of Ti. Given a term Ti : [n] → [n], we abuse the notation to use Ti to denote the Boolean function
over {0, 1}n with Ti(x) = 1 if xTi(k) = 1 for all k ∈ [n] and Ti(x) = 0 otherwise. (So Ti is a conjunction, which is
why we refer to it as a term as mentioned above.)

A function f ∼ Dyes is drawn using the following procedure:

1. Sample T ∼ E and use it to define the multiplexer map Γ = ΓT : {0, 1}n → [L] ∪ {0∗, 1∗}:

ΓT (x) =





0∗ Ti(x) = 0 for all i ∈ [L]

1∗ Ti(x) = 1 for at least two different i ∈ [L]

i Ti(x) = 1 for a unique i ∈ [L].

2. Sample H = (hi : i ∈ [L]) from Eyes, where each hi : {0, 1}n → {0, 1} is independently (1) with probability
2/3, a random dictatorship Boolean function, i.e., hi(x) = xk with k sampled uniformly at random from [n];
and (2) with probability 1/3, the all-0 function.

3. Finally, with T and H in hand, f = fT ,H : {0, 1}n → {0, 1} is defined as follows: f(x) = 1 if
‖x‖1 > 3n/4 + 1; f(x) = 0 if ‖x‖1 < 3n/4; if ‖x‖1 ∈ {3n/4, 3n/4 + 1}, we have

f(x) =





0 ΓT (x) = 0∗

1 ΓT (x) = 1∗

hΓ(x)(x) otherwise (i.e., ΓT (x) ∈ [L])

A function f ∼ Dno is drawn using the same procedure, with the exception that H = (hi : i ∈ [L]) is drawn from
Eno (instead of Eyes): Each hi : {0, 1}n → {0, 1} is (1) with probability 2/3 a random anti-dictatorship Boolean
function hi(x) = xk with k drawn uniformly from [n]; and (2) with probability 1/3, the all-1 function. Note that
every function f in the support of either Dyes or Dno is a two-layer function as defined in Equation (5.3).

Our construction of Dyes and Dno differs in various ways from the construction for the two-sided, non-adaptive
lower bound in [CWX17], such as the number of terms and the biasing of the hi functions in Eyes and Eno.

In the next two lemmas we show that functions in the support of Dyes are monotone and f ∼ Dno is likely to
have large relative distance from monotone functions.

Lemma 6.1. Every function in the support of Dyes is monotone.

Proof. Fix a T from the support of E and H from the support of Eyes. This fixes a function f in the support of
Dyes.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited389

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Note that for two-layer functions, the only nontrivial points lie on layers {3n/4, 3n/4 + 1}. Thus, consider any
x ≺ y such that ‖x‖1 = 3n/4 and ‖y‖1 = 3n/4 + 1. Note that they in fact only differ on one bit. Assume that
f(x) = 1, and we will show that f(y) = 1.

Since f(x) = 1, we know that x satisfies at least one term. Thus y satisfies at least one term. If y satisfies
multiple terms, then f(y) = 1. So consider the case where y satisfies a unique term Ti′ . Since f(x) = 1, it must be
the case that x also uniquely satisfies the term Ti′ , which implies hi′ 6= 0. Thus, hi′ = xk for some k ∈ [n]. Since
f(x) = 1, we have xk = 1, which implies yk = 1 and f(y) = 1. This finishes the proof of the lemma.

Lemma 6.2. A function f ∼ Dno satisfies rel-dist(f , Cmonotone) = Ω(1) with probability Ω(1).

Proof. We will show that with probability at least 0.0001, the number of disjoint violating pairs for monotonicity
is Ω(|f−1(1)|). The lemma then follows directly from Lemma 4.1 and Definition 5.

Fix a function f from the support of Dno (equivalently, fix T from the support of E and H from the support
of Eno.) Note that violating pairs can only appear at the two non-trivial layers {3n/4, 3n/4 + 1}. Thus, at a high
level, we want to show there are many disjoint pairs x ≺ y such that 1) ‖x‖1 = 3n/4 and ‖y‖1 = 3n/4 + 1, and 2)
f(x) = 1 and f(y) = 0.

Fix an x ∈ {0, 1}n such that ‖x‖1 = 3n/4. Observe that if x is involved in some violating pair, then it must
be the case that x satisfies a unique term Ti′ for i

′ ∈ [L] and hi′ = xk for some k ∈ [n] such that xk = 0. So the
conditions above are necessary. It is also easy to see if they hold, then f(x) = 1, making x a candidate to be part
of some violating pair.

Let y be the string that is obtained by flipping the kth bit of x. Ideally, we want to conclude that f(y) = 0.
Indeed, hi′(y) = 0, but we need to be careful to make sure that y still satisfies the unique term Ti′ .

Formally, let X be the set of all points x such that 1) ‖x‖1 = 3n/4, 2) x satisfies a unique term Ti′ for i
′ ∈ [L],

and hi′ = xk for some k ∈ [n] such that xk = 0, 3) y (defined by flipping the kth bit of x) still satisfies the unique
term Ti′ .

Note that every x ∈ X and the corresponding y form a disjoint violating pair (since they must satisfy the
unique term so that the anti-dictatorship function is well-defined), thus the number of disjoint violating pairs is
lower bounded by the size of X. Note that X is a random variable depending on the choices of (T ,C) and H.
Next, we show that every fixed x with ‖x‖1 = 3n/4 is in X with constant probability.

Claim 6.1. For each x ∈ {0, 1}n such that ‖x‖1 = 3n/4, we have

Pr
T∼E,H∈Eno

[x ∈ X] ≥ 0.01.

Proof. We show the claim by calculating the probabilities in two steps. Fix x ∈ {0, 1}n such that ‖x‖1 = 3n/4
and k ∈ [n] such that xk = 0. Let y be x but with the k-th coordinate changed to 1. Note that ‖y‖1 = 3n/4 + 1.

First, the probability that x and y uniquely satisfy a term Ti for some i ∈ [L] is

L ·
(
3

4

)n

·
(
1−

(
3

4
+

1

n

)n
)L−1

≥ 1/e− 0.01 ≥ 0.35,

for some sufficiently large n.
Fix such an i′ ∈ [L]. The probability that hi′ = xk is 2

3n . Since x has n/4 coordinates that are 0, we have

Pr
T∼E,H∈Eno

[x ∈ X] ≥ 0.35 · 1/6 ≥ 0.05.

This finishes the proof of Claim 6.1.

Note that the number of points on the 3n/4 layer is
(

n
3n/4

)
≥ |f−1(1)|/100. Thus, the expected size of X is at

least |f−1(1)|/10000. Thus, we have |X| = Ω(|f−1(1)|) with probability at least 0.0001. This finishes the proof of
Lemma 6.2.

Let ε0 and c be the two constants hidden in the Ω(1)’s in Lemma 6.2, i.e., a function f ∼ Dno has relative
distance to monotonicity at least ε0 with probability at least c. Let α be the constant min(ε0, c)/100. Let

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited390

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

q = n/(C0 log n) for some sufficiently large constant C0 to be specified later. We show that no randomized, q-query,
non-adaptive, MQ-only algorithm can distinguish monotone functions from functions that have relative distance at
least ε0 with probability at least 1−α. This implies (using standard amplification techniques) that any randomized,
non-adaptive, MQ-only algorithm that distinguishes the two cases with probability (99/100) · 2/3 must make Ω(q)
queries as desired.

To this end, we use Yao’s minimax principle and consider a deterministic, q-query, non-adaptive, MQ-only
algorithm ALG which consists of a set Q of q query strings x1, . . . , xq and a decision procedure which outputs
“accept” or “reject” given f(xk) for each k ∈ [q]. In order to prove the lower bound, it suffices to prove the following
lemma:

Lemma 6.3. Let ALG be any non-adaptive, deterministic, q-query algorithm. Then

Pr
f∼Dyes

[
ALG accepts f

]
≤ (1 + α) · Pr

f∼Dno

[
ALG accepts f

]
+ α.

Assume Lemma 6.3, and assume for a contradiction that there is a randomized, nonadaptive, q-query algorithm
that can distinguish monotone functions from functions that have relative distance at least ε0 to Cmonotone with
probability at least 1− α. This implies a non-adaptive, deterministic algorithm ALG such that

Pr
f∼Dyes

[
ALG accepts f

]
− Pr

f∼Dno

[
ALG accepts f

]
≥ (1− α)− (1− c(1− α)) ≥ c/2,

using the choice of α. This contradicts Lemma 6.3, again using the choice of α.

6.2 Proof of Lemma 6.3 Given that Lemma 6.3 is only about running ALG on Dyes and Dno, we may assume
without loss of generality that every point queried by ALG lies in the two layers 3n/4 and 3n/4 + 1. Given a
function f = fT,H from the support of either Dyes or Dno and a set Q of q queries, we define the following tuple
(P ;R; ρ) as the outcome of Q on f , where P = (Pi : i ∈ [L]) with Pi ⊆ Q, R = (Ri : i ∈ [L]) with Ri ⊆ Q, and
ρ = (ρi : i ∈ [L]) with ρi : Pi → {0, 1}:

1. Start with Pi = Ri = ∅ for all i ∈ [L] (and ρi being the empty map given that Pi = ∅).

2. We build P and R as follows. For each x ∈ Q (the order does not matter), if no term in T is satisfied, add
x → Ri for all i ∈ [L]; if x satisfies a unique term in T , say Ti, add x → Pi and x → Rj for all j 6= i; if x
satisfies more than one term in T , letting i < i′ be the first two terms satisfied by x, add x → Pi, x → Pi′ ,
and x → Rj for all j : j < i′ and j 6= i.

3. For each i ∈ [L] such that Pi 6= ∅ and x ∈ Pi, set ρi(x) = hi(x).

We record the following facts about outcomes of Q on functions in the support of Dyes and Dno, which are evident
by construction:

Fact 6.1. The P and R parts of the outcome depend on T only. Once P is fixed, the ρ part of the outcome
depends on H only.

Moreover, values of f(x), x ∈ Q, can be determined by the outcome of Q on f . As a result, if the outcomes of
Q on two functions f and f ′ are the same, then ALG returns the same answer.

Fact 6.2.
∑

i∈[L] |Pi| ≤ 2q.

The following definition of bad vs good outcomes is crucial to the analysis:

Definition 7. Let (P ;R; ρ) be a possible outcome of Q on a function f from the support of Dyes and Dno. We
say (P ;R; ρ) is a bad outcome if at least one of the following two events happen:

• For some i ∈ [L], there exist x, y ∈ Pi such that
∣∣{k ∈ [n] : xk = yk = 1}

∣∣ ≤ 3n/4− 100 log n.

• For some i ∈ [L], there exist x, y ∈ Pi such that ρi(x) 6= ρi(y).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited391

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Otherwise, we say (P ;R; ρ) is a good outcome.

Lemma 6.3 follows from the following two claims:

Claim 6.2. Let Q be a set of q queries. Then we have

Pr
T∼E,H∼Eyes

[
outcome of Q on fT ,H is bad

]
≤ α.

Claim 6.3. Let Q be a set of q queries. For any good outcome ` = (P ;R; ρ), we have

Pr
T∼E,H∼Eyes

[
outcome of Q on fT ,H is `

]
≤ (1 + α) · Pr

T∼E,H∼Eno

[
outcome of Q on fT ,H is `

]
.

Proof. [Proof of Lemma 6.3 assuming Claim 6.2 and Claim 6.3] By Fact 6.1 the outcome of Q on f uniquely
determines f(x), x ∈ Q. This allows us to define L1 as the set of outcomes such that ALG accepts f if and only if
the outcome of Q on f lies in L1.

By Claim 6.2 and Claim 6.3, we have

Pr
f∼Dyes

[
ALG accepts f

]
=
∑

`∈L1

Pr
f∼Dyes

[
outcome of Q on f lies in L1

]

≤ Pr
f∼Dyes

[
outcome of Q on f is bad

]

+
∑

good ` ∈ L1

Pr
f∼Dyes

[
outcome of Q on f is `

]

≤ α+
∑

good ` ∈ L1

(1 + α) · Pr
f∼Dno

[
outcome of Q on f is `

]

≤ (1 + α) · Pr
f∼Dno

[
ALG accepts f

]
+ α.

This finishes the proof of the lemma.

We finish the proof by proving the two claims:

Proof. [Proof of Claim 6.3] Fix a good ` = (P ;R; ρ) and let I := {i ∈ [L] : Pi 6= ∅}. For each i ∈ I, let

Ai,1 :=
{
k ∈ [n] : xk = 1 for all x ∈ Pi

}
and Ai,0 :=

{
k ∈ [n] : xk = 0 for all x ∈ Pi

}
.

Since the outcome ` is good, we have

• For all i ∈ [L] and x, y ∈ Pi, we have

∣∣{k ∈ [n] : xk = yk = 1}
∣∣ > 3n/4− 100 log n

and thus, ∣∣{k ∈ [n] : xk = 1 ∩ yk = 0}
∣∣ = ‖x‖1 −

∣∣{k ∈ [n] : xk = yk = 1}
∣∣ ≤ 100 log n.

For each i ∈ [L] with any x ∈ Pi, we have

3n/4 + 1 ≥ ‖x‖1 ≥ |Ai,1| ≥ ‖x‖1 −
∑

y∈Pi

∣∣{k ∈ [n] : xk = 1 ∩ yk = 0}
∣∣ ≥ 3n/4−O(|Pi| log n).

Similarly, we have

n/4 ≥ n− ‖x‖1 ≥ |Ai,0| ≥ n− ‖x‖1 −
∑

y∈Pi

∣∣{k ∈ [n] : xk = 0 ∩ yk = 1}
∣∣ ≥ n/4−O(|Pi| log n).

• For each i ∈ I, we use ρi to denote the value of ρi(x) shared by all x ∈ Pi.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited392

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Consider a fixed T in the support of E such that the probability of (T,H) resulting in outcome ` is positive when
H ∼ Eyes. Then it suffices to show that

PrH∼Eno [(T,H) results in outcome `]

PrH∼Eyes
[(T,H) results in outcome `]

≥ 1

1 + α
.

By definition of the distributions Eno and Eyes, this ratio is a product over i ∈ I. For each i ∈ I, if ρi = 1, then the
factor is

2
3 · |Ai,0|

n + 1
3

2
3 · |Ai,1|

n

=
(2/3) · |Ai,0|+ (n/3)

(2/3) · |Ai,1|
.

Given that |Ai,1| = (3n/4)± O(|Pi| log n) and |Ai,0| = (n/4)± O(|Pi| log n) (and |Pi| log n ≤ 2q log n which can
be set to be sufficiently small compared to n by setting C0 to be sufficiently small),

(2/3) · |Ai,0|+ (n/3)

(2/3) · |Ai,1|
=

(n/2)±O(|Pi| log n)
(n/2)±O(|Pi| log n)

= 1±O

(|Pi| log n
n

)
.

Similarly when ρi = 0, the factor is

2
3 · |Ai,1|

n

2
3 · |Ai,0|

n + 1
3

=
(2/3) ·Ai,1

(2/3) ·Ai,0 + (n/3)
= 1±O

(|Pi| log n
n

)
.

As a result, using
∑

i∈I |Pi| ≤ 2q = 2n/(C0 log n) and setting C0 to be sufficiently small, we have

PrH∼Eno
[(T,H) results in outcome `]

PrH∼Eyes
[(T,H) results in outcome `]

≥
∏

i∈I

(
1−O

(|Pi| log n
n

))
≥ 1

1 + α
.

This finishes the proof of the claim.

Proof. [Proof of Claim 6.2] We first handle the first case of bad outcomes: some i ∈ [L] has x, y ∈ Pi with

∣∣{k ∈ [n] : xk = yk = 1}
∣∣ ≤ (3n/4)− 100 log n.

By a union bound over x, y and i, this happens with probability at most

(4/3)n · q2 ·
(
(3n/4)− 100 log n

n

)n

= q2
(
1− (4/3)100 log n

n

)n

= o(1).

Assume the first case does not happen. Define the same I and Ai,0, Ai,1 as in the last proof. Using the same
inequalities on |Ai,0| and |Ai,1|, we have for every i ∈ I,

∣∣∣[n] \ (Ai,0 ∪Ai,1)
∣∣∣ ≤ O(|Pi| log n).

For the second case to happen, there must be an i ∈ I such that hi(x) = xk sampled according to Eyes has
k ∈ [n]\ (Ai,0∪Ai,1). Thus, taking a union bound over all possible i ∈ I, the probability over H ∼ Eyes of resulting
in such an outcome is at most

∑

i∈I

(
2

3
·
∣∣[n] \ (Ai,0 ∪Ai,1)

∣∣
n

)
≤
∑

i∈I

(
O(|Pi| log n)

n

)
≤ α,

by using
∑

i∈I |Pi| ≤ 2q = 2n/(C0 log n) from Fact 6.2 and setting C0 to be sufficiently small.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited393

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

7 A two-sided adaptive lower bound

In this section we prove the following two-sided adaptive lower bound:

Theorem 7.1. Let N =
(

n
3n/4

)
. There is a constant ε0 > 0 such that any two-sided, adaptive algorithm for

testing whether a function f with |f−1(1)| = Θ(N) is monotone or has relative distance at least ε0 from monotone
functions must make Ω̃((logN)2/3) queries.

Observations similar to those below the statement of Theorem 6.1 show that Theorem 7.1 implies Theorem 1.3.
As it will become clear in Section 7.1, all functions used in our lower bound proof are two-layer functions as well.
It follows from Claim 5.2 that it suffices to show that any randomized, adaptive, MQ-only algorithm for testing
two-layer functions with success probability (99/100) · 2/3 must make Ω̃((log n)2/3) queries. So in the rest of the
section, we focus on MQ-only algorithms.

7.1 Distributions Dyes and Dno Our proof is an adaptation of the Ω̃(n1/3) lower bound from [CWX17] (see
Section 3) for adaptive monotonicity testing in the standard model.

We start with the distribution E . Let L := (4/3)n and M := 4n. E is uniform over all pairs (T,C) of the
following form: T = (Ti : i ∈ [L]) with Ti : [n] → [n] and C = (Ci,j : i ∈ [L], j ∈ [M]) with Ci,j : [n] → [n]. We call
Ti’s the terms and Ci,j ’s the clauses. Equivalently, to draw (T ,C) ∼ E :

• For each i ∈ [L], we sample a random term Ti by sampling Ti(k) independently and uniformly from [n] for
each k ∈ [n];

• For each i ∈ [L] and j ∈ [M], we sample a random clause Ci,j by sampling Ci,j(k) independently and
uniformly from [n] for each k ∈ [n].

Given a pair (T,C), we interpret Ti as a term and abuse the notation to write

Ti(x) =
∧

k∈[n]

xTi(k)

as a Boolean function over {0, 1}n. We say x satisfies Ti when Ti(x) = 1. On the other hand, we interpret each
Ci,j as a clause and abuse the notation to write

Ci,j(x) =
∨

k∈[n]

xCi,j(k).

Each pair (T,C) defines a multiplexer map Γ = ΓT,C : {0, 1}n → ([L]× [M]) ∪ {0∗, 1∗} as follows: We have
Γ(x) = 0∗ if Ti(x) = 0 for all i ∈ [L] and Γ(x) = 1∗ if Ti(x) = 1 for at least two different i’s in [L]. Otherwise there
is a unique i′ ∈ [L] with Ti′(x) = 1. In this case the multiplexer enters the second level and examines Ci′,j(x),
j ∈ [M]. We have Γ(x) = 1∗ if Ci′,j(x) = 1 for all j ∈ [M] and Γ(x) = 0∗ if Ci′,j(x) = 0 for at least two different
j’s in [M]. Otherwise there is a unique j′ ∈ [M] such that Ci′,j′(x) = 0, in which case the multiplexer outputs
Γ(x) = (i′, j′).

Next we define Dyes and Dno. A function f ∼ Dyes is drawn using the following procedure:

1. Sample a pair (T ,C) ∼ E , which is used to define a multiplexer map

Γ = ΓT ,C : {0, 1}n → ([L]× [M]) ∪ {0∗, 1∗}.

2. Sample H = (hi,j : i ∈ [L], j ∈ [M]) from Eyes, where each hi,j : {0, 1}n → {0, 1} is (1) with probability 2/3,
a random dictatorship Boolean function, i.e., hi(x) = xk with k sampled uniformly at random from [n]; and
(2) with probability 1/3, the all-0 function.

3. Finally, f = fT ,C,H : {0, 1}n → {0, 1} is defined as follows: f(x) = 1 if |x| > 3n/4 + 1; f(x) = 0 if
|x| < 3n/4; and when |x| ∈ {3n/4, 3n/4 + 1}, we have

f(x) =





0 if Γ(x) = 0∗

1 if Γ(x) = 1∗

hΓ(x)(x) otherwise (Γ(x) ∈ [L]× [M])

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited394

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

A function f ∼ Dno is drawn using the same procedure, with the exception that H = (hi,j : i ∈ [L], j ∈ [M]) is
drawn from Eno (instead of Eyes): Each hi : {0, 1}n → {0, 1} is (1) with probability 2/3 a random anti-dictatorship
Boolean function hi(x) = xk with k drawn and uniformly from [n]; and (2) with probability 1/3, the all-1 function.

Our construction of Dyes and Dno again differs in various ways from the construction for the two-sided, adaptive
lower bound in [CWX17], such as the number of terms and clauses and the biasing of hi in Eyes and Eno. (See
Figure 2 and Figure 3 of [CWX17] for some illustrations that can be helpful in understanding the fT,C,H functions.)
Note that every function in the support of either Dyes or Dno is a two-layer function as defined in Equation (5.3).

In the next two lemmas we show that functions in the support of Dyes are monotone and f ∼ Dno is likely to
have large relative distance from monotone functions.

Lemma 7.1. Every function f in the support of Dyes is monotone.

Proof. Fix a pair (T,C) from the support of E and H from the support of Eyes. This fixes a function f in the
support of Dyes.

Note that for two-layer functions, the only nontrivial points lie on layers {3n/4, 3n/4 + 1}. Thus, consider
any x ≺ y such that |x| = 3n/4 and |y| = 3n/4 + 1. Note that they in fact only differ on one bit. Assume that
f(x) = 1, and we will show that f(y) = 1.

Since f(x) = 1, we know that x satisfies at least one term and falsifies at most one clause. This implies that
y satisfies at least one term and falsifies at most one clause as well. If y satisfies multiple terms or satisfies a
unique term Ti′ and falsifies no clauses, then f(y) = 1. So consider the case where y satisfies a unique term Ti′

and falsifies a unique clause Ci′,j′ . Since x is below y and f(x) = 1, we have x uniquely satisfies the term Ti′ and
uniquely falsifies the clause Ci′,j′ as well. Again, since f(x) = 1, we have hi′,j′ 6= 0.

This means hi′,j′ = xk for some k ∈ [n]. Since f(x) = 1, we have xk = 1, which implies yk = 1 and f(y) = 1.
This finishes the proof.

Lemma 7.2. A function f ∼ Dno satisfies rel-dist(f , Cmonotone) = Ω(1) with probability Ω(1).

Proof. We will show that with probability at least 0.0001, the number of disjoint violating pairs to monotonicity is
Ω(|f−1(1)|). The lemma then follows directly from Lemma 4.1.

Fix a function f from the support of Dno (equivalently, fix (T,C) from the support of E and H from the
support of Eno.) Note that violating pairs can only appear at the two non-trivial layers {3n/4, 3n/4 + 1}. Thus, at
a high level, we want to show there are many disjoint pairs x ≺ y such that 1) |x| = 3n/4 and |y| = 3n/4 + 1, and
2) f(x) = 1 and f(y) = 0.

Fix an x ∈ {0, 1}n such that |x| = 3n/4. Observe that if x is involved in some violating pair, then it must be
the case that x satisfies a unique term Ti′ for i

′ ∈ [L] and falsifies a unique clause Ci′,j′ for j
′ ∈ [M]. Furthermore,

it needs to be that hi′,j′ = xk for some k ∈ [n] such that xk = 0. So the conditions above are necessary. It’s also
easy to see if they hold, then f(x) = 1, making x a candidate point to be part of some violating pair.

Let y be the string that is obtained by flipping the kth bit of x. Ideally, we want to conclude that f(y) = 0.
Indeed, hi′,j′(y) = 0, but we need to be careful to make sure that y still satisfies the unique term Ti′ and falsifies
the unique clause Ci′,j′ .

Formally, let X be the set of points x such that 1) |x| = 3n/4, 2) x satisfies a unique term Ti′ for i′ ∈ [L],
falsifies a unique clause Ci′,j′ for j′ ∈ [M], and hi′,j′ = xk for some k ∈ [n] such that xk = 0, 3) y (defined by
flipping the kth bit of x from 0 to 1) satisfies the unique term Ti′ and falsifies the unique clause Ci′,j′ .

Note that every x and the corresponding y form a disjoint violating pair (since they must satisfy the unique
term and clause so that the anti-dictatorship function is well-defined), thus the number of disjoint violating pairs
is lower bounded by the size of X. Note that X is a random variable depending on the choices of (T ,C) and H.
Next, we show that every fixed x is in X with constant probability:

Claim 7.1. For each x ∈ {0, 1}n such that |x| = 3n/4, we have

Pr
(T ,C)∼E,H∈Eno

[x ∈ X] ≥ 0.01.

Proof. We establish the claim by calculating the probability in three steps. Fix x ∈ {0, 1}n such that |x| = 3n/4
and k ∈ [n] such that xk = 0. Let y be x but with the kth coordinate flipped to 1. Note that |y| = 3n/4 + 1.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited395

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

First, the probability that x and y uniquely satisfy a term Ti for some i ∈ [L] is

L ·
(
3

4

)n

·
(
1−

(
3

4
+

1

n

)n
)L−1

≥ 1/e− 0.01 ≥ 0.35,

for some sufficiently large n.
Fix such an i′ ∈ [L]. Second, the probability that x and y uniquely falsify a clause Ci′,j for some j ∈ [M] is

M ·
(
1

4
− 1

n

)n

·
(
1−

(
1

4

)n
)M−1

≥ 1/e− 0.01 ≥ 0.35,

for some sufficiently large n.
Fix such a j′ ∈ [M]. The probability that hi′,j′ = xk is 2

3n . Since x has n/4 coordinates that are 0, we have

Pr
(T ,C)∼E,H∈Eno

[x ∈ X] ≥ (0.35)2 · 1/6 ≥ 0.02.

This finishes the proof.

Note that the number of points on the 3n/4 layer is
(

n
3n/4

)
≥ |f−1(1)|/100. Thus, the expected size of X is at

least |f−1(1)|/10000, and |X| = Ω(|f−1(1)|) with probability at least 0.0001.

Let ε0 and c be the two constants hidden in the Ω(1)’s in Lemma 7.2, i.e., a function f ∼ Dno has relative
distance to monotonicity at least ε0 with probability at least c. Let α = min(ε0, c)/100 and q := (n/C0 log n)

2/3 for
some sufficiently large constant C0 to be specified later. Following arguments similar to those around Lemma 6.3
in the previous section, it suffice to prove the following lemma for deterministic, adaptive, q-query, MQ-only
algorithms.

Lemma 7.3. Let ALG be any deterministic, adaptive, q-query, MQ-only algorithm. Then we have

Pr
(T ,C)∼E,H∼Eyes

[
ALG accepts fT ,C,H

]
≤ (1 + α) · Pr

(T ,C)∼E,H∼Eno

[
ALG accepts fT ,C,H

]
+ α.

7.2 Proof of Lemma 7.3 Now we start the proof of Lemma 7.3. Formally, a deterministic, adaptive, q-query
algorithm ALG is a depth-q binary decision tree, in which each internal node u is labelled with a query point
xu and has two children with edges to them labelled with 0 and 1, respectively. Each leaf of the tree is labelled
either “accept” or “reject.” Given any function f , the execution of ALG on f induces a path in the tree and ALG
returns the label of the leaf at the end. Since the goal of ALG is to distinguish Dyes from Dno (as described in the
statement of Lemma 7.3), we may assume without loss of generality that every point queried in ALG lies in the
two layers of 3n/4 and 3n/4 + 1.

Given a function f = fT,C,H from the support of either Dyes or Dno, we define the outcome of ALG on
f to be the following tuple (Q;P ;R; ρ), where Q is the set of ≤ q queries made by ALG along the path,
P = (Pi, Pi,j : i ∈ [L], j ∈ [M]), R = (Ri, Ri,j : i ∈ [L], j ∈ [M]) with every Pi, Pi,j , Ri, Ri,j ⊆ Q, and
ρ = (ρi,j : i ∈ [L], j ∈ [M]) with ρi,j : Pi,j → {0, 1}. P,R, ρ are built as follows:

1. Start with Pi = Ri = Pi,j = Ri,j = ∅ for all i ∈ [L] and j ∈ [M].

2. We build P and R as follows. For each query x ∈ Q made along the path, if no term in T is satisfied, add
x → Ri for all i ∈ [L]; if x satisfies more than one term in T , letting i < i′ be the first two terms satisfied by
x, add x → Pi, x → Pi′ , and x → Rk for all k : k < i′ and k 6= i; if x satisfies a unique term in T , say Ti, add
x → Pi and x → Rk for all k 6= i. For the last case we examine clauses Ci,j , j ∈ [M], on x. If no clause Ci,j ,
j ∈ [M], is falsified by x, add x → Ri,j for all j ∈ [M]; if more than one clause Ci,j , j ∈ [M], are falsified by
x, letting j < j′ be the first two such clauses, then add x → Pi,j , x → Pi,j′ and x → Ri,k for all k : k < j′

and k 6= j; if a unique clause Ci,j is falsified by x for some j ∈ [M], add x → Pi,j and x → Ri,k for all k 6= j.

3. For each i ∈ [L], j ∈ [M] and x ∈ Pi,j , set ρi,j(x) = hi,j(x). (So ρi,j is the dummy empty map for any i, j
with Pi,j = ∅.)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited396

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

We record the following facts about outcomes of ALG:

Fact 7.1. For each x ∈ Q, the value of f(x) is uniquely determined by the outcome of ALG on f . So if the
outcomes of ALG on two functions f and f ′ are the same, then ALG returns the same answer on all queries in Q.

Fact 7.2. For each i ∈ [L], we have ∪j∈[M]Pi,j ⊆ Pi. We also have
∑

i∈[L]

|Pi| ≤ 2|Q| and
∑

j∈[M]

|Pi,j | ≤ 2|Pi|, for every i ∈ [L].

We say the outcome (Q;P ;R; ρ) of ALG on f (from the support of either Dyes or Dno) is good if it satisfies
the following two conditions:

1. Condition C1: For every i ∈ [L] and j ∈ [M] with Pi,j 6= ∅, letting
Ai,j,0 =

{
k ∈ [n] : xk = 1 for all x ∈ Pi,j

}
and Ai,j,1 =

{
k ∈ [n] : xk = 0 for all x ∈ Pi,j

}
,

we have
∣∣|Ai,j,0| − n/4

∣∣,
∣∣|Ai,j,1| − 3n/4

∣∣ ≤ O
(
min

{
|Pi,j |2, |Pi|

}
· log n

)
.(7.4)

2. Condition C2: For every i, j with Pi,j 6= ∅, we have ρi,j(x) = ρi,j(y) for all x, y ∈ Pi,j .

Similar to Lemma 6.3 in the previous section, Lemma 7.3 follows from the next two claims:

Claim 7.2. Let ` = (Q;P ;R; ρ) be a good outcome. Then we have

Pr
(T ,C)∼E,H∼Eyes

[
outcome of ALG on fT ,C,H is `

]

≤ (1 + α) · Pr
(T ,C)∼E,H∼Eno

[
outcome of ALG on fT ,C,H is `

]
.

Proof. The proof is similar to that of Claim 6.3.
Fix a good outcome ` = (Q;P ;R; ρ). Consider a fixed pair (T,C) in the support of E such that the probability

of (T,C,H) resulting in ` is positive when H ∼ Eyes. Then it suffices to show that

(7.5)
PrH∼Eno

[(T,C,H) results in outcome `]

PrH∼Eyes [(T,C,H) results in outcome `]
≥ 1

1 + α
.

Let I be the set of i ∈ [L] such that Pi 6= ∅; for each i ∈ [L], let Ji be the set of j ∈ [M] such that Pi,j 6= ∅. Using
(7.4) and an argument similar to that used in Claim 6.3, this ratio is at least

1− 1

n
·
∑

i∈I

∑

j∈Ji

O
(
min

{
|Pi,j |2, |Pi|

}
· log n

)
.

As
∑

j∈Ji
|Pi,j | ≤ 2|Pi| by Fact 7.2, we have that

∑

j∈Ji

min
{
|Pi,j |2, |Pi|

}

is maximized when |Ji| = 2
√
|Pi| and |Pi,j | =

√
|Pi|, in which case

∑

i∈I

∑

j∈Ji

min
{
|Pi,j |2, |Pi|

}
=
∑

i∈I

2|Pi|3/2 ≤ O(q3/2)

since
∑

i∈I |Pi| ≤ 2q. (7.5) follows from the choice of q and by setting C0 to be sufficiently large.

Claim 7.3. We have

Pr
(T ,C)∼E,H∼Eyes

[
outcome of ALG on fT ,C,H is good

]
≥ 1− α.

We prove Claim 7.3 in Section 7.3. Lemma 7.3 follows from Claim 7.2 and Claim 7.3, with a proof similar to
that of Lemma 6.3.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited397

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

7.3 Proof of Claim 7.3 First we describe the following equivalent view of running ALG on a function f from
the support of Dyes: After each query, ALG receives the outcome (Q;P ;R; ρ) of queries made so far, where Q is
the set of queries made along the path so far and P,R, ρ are built similar to before using Q. From the outcome
(Q;P ;R; ρ), ALG can uniquely recover (Fact 7.1) f(x) for all queries made so far and for the most recent query in
particular; it then uses the latter to walk down the tree to make the next query, and repeats this until a leaf is
reached.

With this view, we describe algorithm ALG′ obtained by modifying ALG as follows: After querying x, the
outcome (Q;P ;R; ρ) that ALG receives is updated differently as follows:

1. x is added to Q, some sets of P and some sets of R in the same way as before.

2. When x is added to a Pi,j that is nonempty before x is queried, instead of setting ρi,j(x) to be hi,j(x),
ρi,j(x) is set to be the value of ρi,j(y) of any y ∈ Pi,j that was added to Pi,j before x. (Note that if x is the
first point added to Pi,j , then ρi,j(x) is set to be hi,j(x) as before.)

Once ALG′ receives the updated outcome, it recovers from it the value of f at x (which could be different from the
real value of f(x)) and simulates ALG for one step to make the next query. Note that this modification ensures
that at any time, the outcome of queries made so far as seen by ALG′ always satisfies Condition C2.

We prove the following two claims, from which Claim 7.3 follows. We prove Claim 7.5 first, and then prove
Claim 7.4 in the rest of the section.

Claim 7.4. The outcome of ALG′ on f ∼ Dyes satisfies Condition C1 with probability 1− o(1).

Claim 7.5. For any fixed outcome ` of ALG′ on f ∼ Dyes that satisfies Condition C1, we have

Pr
f∼Dyes

[
outcome of ALG on f is `

]
≥ (1− α/2) · Pr

f∼Dyes

[
outcome of ALG′ on f is `

]
.

Proof. Fix an outcome ` = (Q;P ;R; ρ) of ALG′ that satisfies Condition C1. For each Pi,j that is not empty, we
let x(i,j) denote the first point that is added to Pi,j . Let ρi,j = ρi,j(x

(i,j)), which by the description of ALG′ is the
same as hi,j(x

(i,j)).
To prove the claim, we show that for any fixed (T,C) such that the probability that the outcome of ALG′ on

f = fT,C,H with H ∼ Eyes is positive, we have

PrH∼Dyes
[outcome of ALG on fT,C,H is `]

PrH∼Dyes [outcome of ALG′ on fT,C,H is `]
≥ 1− α

2
.

Similar to arguments used before, this ratio can be written as a product of factors, one for each i, j with Pi,j 6= ∅.
For any i, j with Pi,j 6= ∅ and ρi,j = 0, the factor is

1
3 + 2

3 · |Ai,j,0|
n

1
3 + 2

3 · n−|x(i,j)|
n

≥ 1− 1

n
·O
(
min{|Pi,j |2, |Pi|} log n

)
.

using the assumption that ` satisfies Condition C1, where Ai,j,0 as before is the set of k ∈ [n] with xk = 0 for all
x ∈ Pi,j . Similarly, when ρi,j = 1 the factor is

2
3 · |Ai,j,1|

n

2
3 · |x(i,j)|

n

≥ 1− 1

n
·O
(
min{|Pi,j |2, |Pi|} log n

)
,

again using Condition C1. The rest of the proof follows from calculations similar to those at the end of the proof
of Claim 7.2.

To prove Claim 7.4, we start with a sufficient condition for the outcome of ALG′ to satisfy Condition C1.
We say the execution of ALG′ on f from the support of Dyes is regular if the following condition holds in every
round: Let (Q;P ;R; ρ) be the outcome of queries revealed to ALG′ so far (recall the modification of ρ since we
are interested in ALG′ instead of ALG), let x be the next query, and let (Q′;P ′;R′; ρ′) be the updated outcome
after x is queried. Then they satisfy

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited398

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

• For every i ∈ [L] with Pi 6= ∅, |Ai,1 \A′
i,1| ≤ 100 log n, where

Ai,1 :=
{
k ∈ [n] : yk = 1 for all y ∈ Pi

}
and Ai,1′ :=

{
k ∈ [n] : yk = 1 for all y ∈ P ′

i

}
.

• For every i ∈ [L], j ∈ [M] with Pi,j 6= ∅, |Ai,j,0 \A′
i,j,0| ≤ 100 log n, where

Ai,j,0 :=
{
k ∈ [n] : yk = 0 for all y ∈ Pi,j

}
and A′

i,j,0 :=
{
k ∈ [n] : yk = 0 for all y ∈ P ′

i,j

}

Claim 7.6. If execution of ALG′ on f is regular, then the outcome of ALG′ satisfies Condition C1.

Proof. Let (Q;P ;R; ρ) be the final outcome of ALG′ on f . For each i, j with Pi,j 6= ∅, let

Ai,1 :=
{
k ∈ [n] : yk = 1 for all y ∈ Pi

}
and Ai,j,0 :=

{
k ∈ [n] : yk = 0 for all y ∈ Pi,j

}
,

with Ai,j,1 being defined similarly (using yk = 1 instead of 0).
Given that the execution of ALG′ on f is regular, we have from the definition above that

3n/4 + 1 ≥ |Ai,1| ≥ (3n/4)− 100|Pi| log n and n/4 ≥ |Ai,j,0| ≥ (n/4)− 100|Pi,j | log n.

So Ai,j,0 already satisfies (7.4) given that Pi,j ⊆ Pi. We focus on Ai,j,1 below. For any x, y ∈ Pi,j ,

{k ∈ [n] : xk = yk = 0} ≥ |Ai,j,0| ≥ (n/4)− 100|Pi,j | log n.

Given that |x|, |y| ∈ {3n/4, 3n/4 + 1}, we have

∣∣{k ∈ [n] : xk = 1, yk = 0}
∣∣ ≤ 100|Pi,j | log n.

As a result, we fix any x ∈ Pi and have

|Ai,j,1| ≥ |x| −
∑

y∈Pi,j

∣∣{k ∈ [n] : xk = 1, yk = 0}
∣∣ ≥ 3n/4−O

(
|Pi,j |2 log n

)
.

Combining this with 3n/4 + 1 ≥ |Ai,j,1| ≥ |Ai,1| ≥ (3n/4)− 100|Pi| log n finishes the proof.

Claim 7.7. The execution of ALG′ on f ∼ Dyes is regular with probability at least 1− o(1).

Proof. Fix any outcome (Q;P ;R; ρ) that is revealed to ALG′ after k queries, k ≤ q, such that the execution so far
is regular, and let x be the next query. We show below that, conditioning on f ∼ Dyes reaching (Q;P ;R; ρ), the
probability that the execution of ALG′ is no longer regular after querying x is o(1/q). The lemma then follows by
applying a union bound on k.

To this end, notice that by definition, the execution of ALG′ remains regular after querying x unless either (1)
there exists an i ∈ [L] such that Pi 6= ∅, x satisfies Ti (and thus, could be added to Pi potentially) but

∆i :=
{
k ∈ [n] : k ∈ Ai,1 but xk = 0

}

has size at least 100 log n; or (2) there exist i, j ∈ [L] such that Pi,j 6= ∅, x violates Ci,j but

∆i,j :=
{
k ∈ [n] : k ∈ Ai,j,0 but xk = 1

}

has size at least 100 log n. In the rest of the proof, we show that (1) happens with probability at most o(1/q2).
The same upper bound for (2) follows from a symmetric argument. The lemma then follows by a union bound
over the O(q) many nonempty Pi and Pi,j ’s.

For (1) and any fixed i with Pi 6= ∅, assuming that |∆i| ≥ 100 log n, the conditional probability we are
interested in can be written as |U |/|V |, where V is the set of T : [n] → [n] such that

T (k) ∈ Ai,1 for all k ∈ [n] and each z ∈ Ri has zT (k) = 0 for some k ∈ [n]

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited399

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

and V is the set of T : [n] → [n] such that

T (k) ∈ Ai,1 \∆i for all k ∈ [n] and each z ∈ Ri has zT (k) = 0 for some k ∈ [n] .

Let ` = log n. First we write U ′ to denote the following subset of U : T ∈ U ′ if T ∈ U and the number of
k ∈ [n] with T (k) ∈ ∆i is `. It suffices to show that |V |/|U ′| = o(1/q2) given that U ′ is a subset of U . Next
we define the following bipartite graph G between U ′ and V : T ′ ∈ U ′ and V ∈ V have an edge if and only if
T ′(k) = T (k) for all k ∈ [n] with T ′(k) /∈ ∆i. From the construction, it is clear each T ′ ∈ U ′ has degree |Ai,1 \∆i|`.

To lowerbound the degree of a T ∈ V , note that one only needs at most q many variables of T to kill all
strings in Ri. As a result, the degree of each T ∈ V is at least

(
n− q

`

)
|∆i|`

By counting the number of edges in G in two different ways and using |Ai,1| ≤ n trivially, we have

|U ′|
|V | ≥

(
n− q

`

)
·
(

|∆i|
|Ai,1 \∆i|

)`

≥
(
n− q

`
· 100`

3/4n+ 1

)`

� q2.

This finishes the proof of the lemma.

Acknowledgements

X.C. is supported by NSF grants CCF-2106429 and CCF-2107187. A.D. is supported by NSF grants CCF-1910534
and CCF-2045128. Y.H. is supported by NSF grants CCF-2106429, CCF-2211238, CCF-2312242, CCF-2238221,
a Google CyberNYC grant, an Amazon Research Award, and a grant from the Columbia Center of Artificial
Intelligence Technology. Y.L. is supported by NSF grants CCF-2106429, CCF-2107187, and CCF-2211238. S.N. is
supported by NSF grants CCF-2106429, CCF-2211238, CCF-1763970, and CCF-2107187. R.A.S. is supported
by NSF grants CCF-2106429 and CCF-2211238. T.Y. is supported by NSF grants CCF-2106429, CCF-2107187,
CCF-2211238, CCF-2212135, CCF-2238221, CCF-2312242, CAREER award CCF-2144219, a Google CyberNYC
grant, an Amazon Research Award, AFOSR award FA9550-21-1-0040, and the Sloan Foundation. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors.

References

[BB16] A. Belovs and E. Blais. A polynomial lower bound for testing monotonicity. In Proceedings of the 48th ACM
Symposium on Theory of Computing, 2016.

[BB20] Eric Blais and Abhinav Bommireddi. On testing and robust characterizations of convexity. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, pages 18:1–18:15,
2020.

[BBBY12] Maria-Florina Balcan, Eric Blais, Avrim Blum, and Liu Yang. Active Property Testing. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS, pages 21–30, 2012.

[BCO+15] E. Blais, C. Canonne, I. Oliveira, R. Servedio, and L.-Y. Tan. Learning cicuits with few negations. In
Proceedings of the 15th Int. Workshop on Randomization and Computation (RANDOM), pages 512–527, 2015.

[Bla09] Eric Blais. Testing juntas nearly optimally. In Proc. 41st Annual ACM Symposium on Theory of Computing
(STOC), pages 151–158, 2009.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences, 47:549–595, 1993. Earlier version in STOC’90.

[Bsh19] Nader H. Bshouty. Almost optimal distribution-free junta testing. In 34th Computational Complexity Conference,
CCC, pages 2:1–2:13, 2019.

[Bsh20] Nader H. Bshouty. Almost optimal testers for concise representations. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, pages 5:1–5:20, 2020.

[CDS20] Clément L. Canonne, Anindya De, and Rocco A. Servedio. Learning from satisfying assignments under
continuous distributions. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 82–101. SIAM, 2020.

[CDST15] Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean Function Monotonicity Testing Requires
(Almost) n1/2 Non-adaptive Queries. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, pages 519–528, 2015.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited400

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

[CGM11] Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah. Efficient sample extractors for juntas with
applications. In Automata, Languages and Programming - 38th International Colloquium, ICALP, pages 545–556,
2011.

[CLS+18] Xi Chen, Zhengyang Liu, Rocco A. Servedio, Ying Sheng, and Jinyu Xie. Distribution-free junta testing. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), 2018.

[CS13a] Deeparnab Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean functions over the hypercube.
In Proceedings of the 45th ACM Symposium on Theory of Computing, pages 411–418, 2013.

[CS13b] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz testing over
hypercubes and hypergrids. In Symposium on Theory of Computing Conference, STOC, pages 419–428, 2013.

[CST14] Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for testing monotonicity. In
Proceedings of the 55th IEEE Symposium on Foundations of Computer Science, pages 286–295, 2014.

[CWX17] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond Talagrand functions: new lower bounds for testing
monotonicity and unateness. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pages 523–536, 2017.

[DDS15] A. De, I. Diakonikolas, and R. A. Servedio. Learning from satisfying assignments. In Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages 478–497, 2015.

[DLM+07] I. Diakonikolas, H. Lee, K. Matulef, K. Onak, R. Rubinfeld, R. Servedio, and A. Wan. Testing for concise
representations. In Proc. 48th Ann. Symposium on Computer Science (FOCS), pages 549–558, 2007.

[Fis01] E. Fischer. The art of uninformed decisions: A primer to property testing. Computational Complexity Column of
The Bulletin of the European Association for Theoretical Computer Science, 75:97–126, 2001.

[FLN+02] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky. Monotonicity
testing over general poset domains. In Proc. 34th Annual ACM Symposium on the Theory of Computing, pages
474–483, 2002.

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samordinsky. Testing monotonicity.
Combinatorica, 20(3):301–337, 2000.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, 45:653–750, 1998.

[Gol10] O. Goldreich, editor. Property Testing: Current Research and Surveys. Springer, 2010. LNCS 6390.
[GR02] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica, 32(2):302–343, 2002.
[HK07] S. Halevy and E. Kushilevitz. Distribution-Free Property Testing. SIAM J. Comput., 37(4):1107–1138, 2007.
[KMS03] Marcos A. Kiwi, Frédéric Magniez, and Miklos Santha. Approximate testing with error relative to input size. J.

Comput. Syst. Sci., 66(2):371–392, 2003.
[KMS18] Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperimetric-type theorems.

SIAM J. Comput., 47(6):2238–2276, 2018.
[KR00] M. Kearns and D. Ron. Testing problems with sub-learning sample complexity. Journal of Computer and System

Sciences, 61:428–456, 2000.
[Mag00] Frédéric Magniez. Multi-linearity self-testing with relative error. In STACS 2000, pages 302–313, Berlin,

Heidelberg, 2000. Springer Berlin Heidelberg.
[MORS10] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio. Testing halfspaces. SIAM J. on Comput.,

39(5):2004–2047, 2010.
[O’D14] R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
[PR02] Michal Parnas and Dana Ron. Testing the diameter of graphs. Random Struct. Algorithms, 20(2):165–183, 2002.
[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance approximation. Journal

of Computer and System Sciences, 72(6):1012–1042, 2006.
[Ron08] D. Ron. Property Testing: A Learning Theory Perspective. Foundations and Trends in Machine Learning,

1(3):307–402, 2008.
[RT14] Dana Ron and Gilad Tsur. Testing properties of sparse images. ACM Trans. Algorithms, 10(4):17:1–17:52, 2014.
[Rub06] R. Rubinfeld. Sublinear time algorithms. Proceedings of the International Congress of Mathematicians (ICM),

2006.
[RV04] Luis Rademacher and Santosh Vempala. Testing geometric convexity. In Foundations of Software Technology and

Theoretical Computer Science, pages 469–480, 2004.

A Separating standard and relative-error testing

We give a simple example of a property which provides a strong separation between the standard property testing
model and the relative-error testing model. The property is as follows: for n a multiple of three, let C be the class
of all functions g : {0, 1}n → {0, 1} for which |g−1(1)| is an integer multiple of 22n/3.

For any ε ≥ 2−n/3, it is clear that every f : {0, 1}n → {0, 1} has ham-dist(f, g) ≤ ε for some function in C, so

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited401

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

for such ε there is a trivial 0-query standard-model ε-testing algorithm (which always outputs “accept”). On the
other hand, fix any ε < 1 and consider the following two distributions over functions from {0, 1}n to {0, 1}:

• Dyes: A draw of f ∼ Dyes is obtained by choosing a uniformly random function from the set of all functions
that output 1 on exactly 22n/3 inputs in {0, 1}n.

• Dno: A draw of f ∼ Dno is obtained by choosing a uniformly random function from the set of all functions
that output 1 on exactly 1

22
2n/3 inputs in {0, 1}n.

It is clear that every function in the support of Dyes belongs to C, whereas every function in the support of Dno

has rel-dist(f, C) = 1 > ε. We claim that any relative-error ε-testing algorithm for C must make Ω(2n/3) black-box
queries or samples. To see this, first observe that any algorithm making o(2n/3) black-box queries has only an o(1)
chance of every querying an input x such that f(x) = 1, whether f is drawn from Dyes or from Dno, and thus the
two distributions are indistinguishable from o(2n/3) queries. But it is also the case that any algorithm making
m = o(2n/3) calls to Samp(f) will with probability 1− o(1) receive an identically distributed sample in both cases
(f ∼ Dyes versus f ∼ Dno), since in both cases the sample will consist of m independent uniform distinct elements
of {0, 1}n.

B Both oracles are needed for relative-error monotonicity testing

A sampling oracle alone doesn’t suffice: Let A be any algorithm which uses only the sampling oracle to do
relative-error monotonicity testing and makes q calls to the sampling oracle, where q is at most (roughly) 2n/2.
Consider the execution of A on a function f : {0, 1}n → {0, 1} which is either (1) the constant-1 function, or (2)
a uniform random Boolean function. The distribution of the sequence of samples received by A will be almost
identical in these two cases, since in both cases with high probability this will be a uniform random sequence of q
distinct elements of {0, 1}n. Since in case (1) the function f is monotone and in case (2) with overwhelmingly high
probability f has relative-distance at least 0.49 from every monotone function, it follows that such an algorithm A
cannot be a successful relative-error monotonicity tester.

A black-box oracle alone doesn’t suffice: Let A be any algorithm which uses only a black-box oracle to do
relative-error monotonicity testing and makes q calls to the black-box oracle, where q is at most 2n/2. Consider
the execution of A on a function f : {0, 1}n → {0, 1} which is either

1. f(x) = 1[x1 + · · ·+ xn ≥ 9n/10], or

2. Let S be a uniform random subset of 20.47n of the
(

n
n/2

)
= Θ(2n/

√
n) many strings in {0, 1}n that have

exactly n/2 ones. The function f outputs 1 on input x if either x1 + · · ·+ xn ≥ 9n/10 or if x ∈ S.

In case (2), a simple argument shows that any 2n/2-query algorithm such as A will only have an o(1) probability
of querying an input (an element of S) on which case (1) and case (2) disagree, so with 1− o(1) probability the
sequence of responses to queries that A receives will be identical in these two cases. Since in case (1) the function f
is monotone and in case (2) f has relative-distance at least 0.49 from every monotone function, such an algorithm
A cannot be a successful relative-error monotonicity tester.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited402

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

	Introduction
	Our results
	Technical Overview
	Related work
	Future work

	Preliminaries
	Some general results on relative-error testing
	Algorithms for relative-error monotonicity testing
	Warmup: A nonadaptive O(n/)-query algorithm (that is not given N)
	A non-adaptive O(log(N)/)-query algorithm that is given N
	An O(log(N)/)-complexity algorithm that does not know N

	Warmup: A one-sided non-adaptive (logN) lower bound
	A two-sided non-adaptive lower bound
	Distributions Dyes and Dno
	Proof of non-adaptive-mono-bound

	A two-sided adaptive lower bound
	Distributions Dyes and Dno
	Proof of lem:kaka
	Proof of lem:final

	Separating standard and relative-error testing
	Both oracles are needed for relative-error monotonicity testing

