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Abstract

We consider the problem of testing whether an unknown and arbitrary set S ⊆ R
n (given as a black-box

membership oracle) is convex, versus ε-far from every convex set, under the standard Gaussian distribution.

The current state-of-the-art testing algorithms for this problem make 2Õ(
√
n)·poly(1/ε) non-adaptive queries,

both for the standard testing problem and for tolerant testing.
We give the first lower bounds for convexity testing in the black-box query model:

• We show that any one-sided tester (which may be adaptive) must use at least nΩ(1) queries in order to
test to some constant accuracy ε > 0.

• We show that any non-adaptive tolerant tester (which may make two-sided errors) must use at least

2Ω(n1/4) queries to distinguish sets that are ε1-close to convex versus ε2-far from convex, for some absolute
constants 0 < ε1 < ε2.

Finally, we also show that for any constant c > 0, any non-adaptive tester (which may make two-sided errors)

must use at least n1/4−c queries in order to test to some constant accuracy ε > 0.

1 Introduction

High-dimensional convex geometry is a rich topic at the intersection of geometry, probability, and analysis
(see [B+97, GW93, LL15, Tro18, Tko18, HW20], among many other works, for general overviews). Apart from
its intrinsic interest, a strong motivation for the study of high-dimensional convex sets from the perspective
of theoretical computer science is that convexity often translates into a form of mathematical niceness which
facilitates efficient computation, as witnessed by the plethora of positive results in algorithms and optimization for
convex functions and convex sets. In this work, the object of study is the convex set:

A set K ⊂ R
n is convex if and only if for every two points x, y ∈ R

n, any point z on the segment
between x and y lies in K whenever x and y lie in K.

The above gives a “local” characterization of convex sets, where “local” refers to the fact that (aside from quantifying
over all co-linear points x, z, y,) an algorithm may make three membership queries to check the condition — in
particular, non-convexity can be verified with three queries. Can one relax the “for all” quantification to give a
local condition which characterizes approximately convex sets? Is there an algorithm which, by making very few
queries, can determine whether or not a set is (almost) convex?

A natural vantage point for this broad question is that of property testing [BLR93, RS96], which provides
an algorithmic framework for studying the above questions. In our setting, we consider property testing of
convex sets with respect to the standard Gaussian distribution, arguably the most natural distribution over
R

n. Indeed, various learning, property testing, and other algorithmic problems in the Gaussian setting have
been intensively studied in theoretical computer science [KOS08, Vem10, MORS10, Kan11, Kan12, Kan14, KK14,
KNOW14, Kan15, CFSS17, CDS19, DMN19, OSTK21, DMN21, HSSV22, DNS23]. Furthermore, while a large
body of mathematical work (e.g. [Bor75, Bal93, LO99, Lat02, Naz03, Bor03, CEFM04, LO05, Bor08, Roy14])
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investigates the geometry of high-dimensional convex sets against the Gaussian distribution, convexity over
Gaussian space arises naturally within theoretical computer science in the context of algorithmic discrepancy
theory [Glu89, Ban10, LM15, Rot17, LRR17, Eld22, RR23b] and lattice problems [RR23a, Rot23, RSD24].

We consider the following algorithmic task: A (randomized) testing algorithm has black-box query access
to an unknown and arbitrary function f : Rn → {0, 1} (the indicator function of a subset of Rn), and its goal
is to make as few membership queries on f as possible while deciding whether f is convex or ε-far from convex
(meaning f and any indicator of a convex set g : Rn → {0, 1} disagree on x ∼ N(0, In) with probability at least
ε). Thus, a testing algorithm gives an efficiently-checkable (randomized) condition which all convex sets satisfy,
and furthermore, any set which satisfies this condition is “almost” convex (with respect to the standard Gaussian
distribution). For example, the definition of a convex set naturally leads to the following property testing question,
whose positive resolution would directly give a “constant-query” testing algorithm (i.e. an algorithm whose query
complexity depends only on ε and not on the ambient dimension n):

Does there exist a probability distribution over co-linear points x, z,y in R
n such that the condition

Pr[z ∈ K |x,y ∈ K] ≥ 1− δ(ε) implies that the set K must be ε-close to convex with respect to the
standard Gaussian?1

In this work, we show the first non-trivial lower bounds for testing convexity under the standard Gaussian
distribution. Our lower bounds not only give a negative resolution to the above question, they imply that, in a
variety of property testing models (non-adaptive, adaptive, one-sided, two-sided, and tolerant), a dependence on
the ambient dimension n is always necessary. Prior to this work, an O(1/ε)-query test was entirely possible for all
of those models.2

As further discussed in Section 1.3, a number of prior works have studied convexity testing in a range of
different settings, yet large gaps remain in our understanding. Most closely related are the works of [KOS08],
who study learning convex sets over N(0, In), and [CFSS17], who study testing convexity over N(0, In) when
restricted to sample-based testers (i.e. the algorithm can only query a given number of random points independently
drawn from N(0, In)). On the upper bound side, the best algorithm for convexity testing [CFSS17] is based
on [KOS08] and queries 2Õ(

√
n)/ε2 randomly sampled points from N(0, In). Hence, this “sample-based” tester

gives a non-adaptive property testing algorithm.3 Turning to lower bounds, [CFSS17] showed that, when restricted
to sample-based testers, (i) algorithms which incur one-sided error must make 2Ω(n) queries,4 and (ii) algorithms
which incur two-sided error must make 2Ω(

√
n) queries. Importantly, lower bounds on sample-based testers do

not imply any lower bounds for algorithms which are allowed to make unrestricted queries. There are many
prominent property testing problems (e.g., linearity and monotonicity) where the complexity of sample-based
testing is significantly higher than the complexity in the (standard) query-based model.5

1.1 Our Results and Discussion This work gives the first non-trivial lower bounds for query-based convexity
testing. We prove three different lower bounds for three variants of the property testing model, which we now
describe. As mentioned, the best known algorithm for convexity testing is the non-adaptive algorithm of [CFSS17],

which makes 2Õ(
√
n)/ε2 non-adaptive queries (and makes two-sided error).

Our first result gives a polynomial lower bound for one-sided adaptive testers:

Theorem 1.1. (One-sided adaptive lower bound) For some absolute constant ε > 0, any one-sided
(potentially adaptive) ε-tester for convexity over N(0, In) must use nΩ(1) queries.

1Such a distribution would immediately yield a proximity-oblivious testing algorithm [GR11], one of the strongest forms of property
testing. Prior to this work, the existence of a proximity-oblivious tester for convexity was entirely possible.

2An Ω(1/ε)-query lower bound is easily seen to hold for essentially every non-trivial property, since this many queries are required
to distinguish between the empty set (which is convex) and a random set of volume 2ε (which is far from convex and far from having
most properties of interest).

3Recall that a non-adaptive testing algorithm is one in which the choice of its i-th query point does not depend on the responses
received to queries 1, . . . , i− 1.

4Recall that a one-sided tester for a class of functions is one which must accept (with probability 1) any function f that belongs to
the class. This is in contrast to making two-sided error, where an algorithm may reject a function in the class with small probability.

5For example, linearity testing over {0, 1}n admits O(1/ε)-query algorithms [BLR93], but requires Ω(n) queries for sample-based

testers [GR16]. Monotonicity testing over {0, 1}n admits poly(n)-query algorithms [GGL+00, CS13, CST14, KMS18], but requires
Ω(2n/2) for sample-based testers [GGL+00].
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We also consider a challenging and well-studied extension of the standard testing model which is known as
tolerant testing [PRR06]. Recall that an (ε1, ε2)-tolerant tester for a class of functions is a testing algorithm
which must accept with high probability if the input is ε1-close to some function in the class and reject with
high probability if the input is ε2-far from every function in the class; thus the standard property testing model
corresponds to (0, ε)-tolerant testing.

The sample-based algorithm for convexity testing that is given in [CFSS17] is based on agnostic learning results
from [KOS08]. It follows easily from the analysis in [CFSS17] and results of [KOS08] that for any 0 ≤ ε1 < ε2 with

ε2 − ε1 = ε, the [CFSS17] approach gives a 2Õ(
√
n)/ε4 -query sample-based algorithm for (ε1, ε2)-tolerant testing of

convexity. As our final result, we give a mildly exponential lower bound on the query complexity of two-sided
non-adaptive tolerant convexity testing:

Theorem 1.2. (Two-sided non-adaptive tolerant testing lower bound) There exist absolute con-
stants 0 < ε1 < ε2 < 0.5 such that any non-adaptive (ε1, ε2)-tolerant tester for convexity over N(0, In) (which may

make two-sided errors) must use at least 2Ω(n1/4) queries.

Returning to the standard testing model, our final result gives a polynomial lower bound for two-sided
non-adaptive testers:

Theorem 1.3. (Two-sided non-adaptive lower bound) For any constant c > 0, there is a constant
ε = εc > 0 such that any non-adaptive ε-tester for convexity over N(0, In) (which may make two-sided errors)
must use at least n1/4−c queries.

Since q-query non-adaptive lower bounds imply (log q)-query adaptive lower bounds, Theorem 1.3 implies an
Ω(log n) two-sided adaptive convexity testing lower bound. (This is in contrast to the nΩ(1)-query lower bound
against one-sided adaptive testers given by Theorem 1.1.)

1.2 Techniques Our lower bounds rely on a wide range of techniques and constructions, and draw inspiration
from prior work on monotonicity testing of Boolean functions f : {0, 1}n → {0, 1} [CST14, BB16, CWX17, PRW22,
CDL+24].6 Indeed, a conceptual contribution of our work is to highlight a (perhaps unexpected) connection
between ideas in monotonicity testing and convexity testing. Our work thus adds to and strengthens a recently
emerging analogy between monotone Boolean functions and high-dimensional convex sets [DNS21, DNS22, DNS24].
Establishing this connection requires a number of technical and conceptual innovations for each of our main results;
we highlight some of the key ideas below.

1.2.1 The Nazarov Body A central role in our lower bounds in Theorem 1.1 and Theorem 1.2 is played by
the so-called “Nazarov body” [Naz03, KOS08, CFSS17]. This is a randomized construction of a convex set B

which is a slight variation of a construction originally due to Nazarov [Naz03], which is essentially as follows: we
choose N ≈ 2

√
n halfspaces H1, . . . ,HN in the space R

n, where each halfspace Hi is a random halfspace at a
distance roughly n1/4 from the origin. In more detail, each halfspace is Hi(x) := 1

{
gi · x ≥ r

}
where r ≈ n3/4

and gi is drawn from N(0, In). The convex set B is obtained by taking the intersection of all N halfspaces with
Ball(

√
n), the origin-centered ball of radius

√
n.7 The exact parameters r and N are set carefully so that with

high probability the “Gaussian volume” of B, i.e. Prg∼N(0,In)[g ∈ B], is a constant bounded away from 0 and 1.
Note that for the Nazarov body B and any point x ∈ Ball(

√
n) \B, there is a non-empty subset Jx ⊆ [N ]

such that j ∈ Jx iff Hj(x) = 0, i.e., the point x violates the halfspace Hj for all j ∈ Jx. Now, define a point
x ∈ Ball(

√
n) \B to lie in the set U i if the set Jx = {i}, so x ∈ Ball(

√
n) lies in U i if Hi is the unique halfspace

violated by x. The set U := ∪i∈[N ]U i is thus the set of “uniquely violated points” in Ball(
√
n). A crucial feature

of the Nazarov construction is that the Gaussian volume of the set of points which are uniquely violated, i.e.,
Gaussian volume of the set U , is “large” compared to the Gaussian volume of the set Ball(

√
n) \B (see Lemma 3.5

for the precise statement).

6Recall that a Boolean function f : {0, 1}n → {0, 1} is monotone if whenever x, y ∈ {0, 1}n satisfy xi ≤ yi for i ∈ [n], we have
f(x) ≤ f(y).

7We remark that the original construction of [Naz03] differs from our construction in a number of ways: the distribution over

random halfspaces is slightly different, and the body is not intersected with Ball(
√
n). For technical reasons, our specific construction

facilitates our lower bound arguments.
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The original construction of Nazarov may be viewed as a Gaussian-space analogue of Talagrand’s random CNF
formula [Tal96] (see [DNS24] for a discussion of this connection). Talagrand’s random CNF has been very useful in
lower bounds for monotonicity testing over the Boolean hypercube, as demonstrated by [BB16, CWX17, CDL+24].
We use our modified Nazarov body to obtain new lower bounds for convexity testing, as described below.

1.2.2 One-Sided Adaptive Lower Bound Recall that a one-sided tester always outputs “accept” on convex
sets and outputs “reject” on far-from-convex sets with probability at least 2/3 — this requirement implies that
the tester rejects only if a certificate of non-convexity is found (i.e. a set of queries x1, . . . , xt which lie in the body,
and a query y in the convex hull of x1, . . . , xt which is not in the body). In order to argue a q-query lower bound,
it suffices to (1) design a distribution Dno over sets which are far-from-convex with high probability, and (2) argue
that no q-query deterministic algorithm can find a certificate of non-convexity.

The key will be to “hide” the non-convexity within the uniquely violated sets of the Nazarov body. Consider
working in R

2n and first randomly draw an n-dimensional “control subspace” C and the orthogonal n-dimensional
“action subspace” A; we embed the n-dimensional Nazarov body in the control subspace C. A point x ∈ R

2n lies
in our (non-convex) body iff:

• It has Euclidean norm at most
√
2n, and in addition, xC (the projection onto the control subspace) has

norm at most
√
n; and

• The point xC lies within an n-dimensional Nazarov body that we randomly sample within the control
subspace C; or, for every j ∈ [N ] where Hj(xC) = 0, the projection xA on the action subspace lies outside
of a “strip” of width 1 along a randomly sampled direction vj in the action subspace. (See Section 4.1.2).

Consider a line through a point x ∈ R
2n in direction vj , for j ∈ [N ] such that xC lies in the uniquely violated

region U j and xA lies inside the strip along vj (and therefore outside our body). Then, as the line proceeds
out from x in directions vj and −vj , it remains in the uniquely violated region U j (since vj is orthogonal to C)
but exits the strip, thereby entering the body and exhibiting non-convexity. By design, the uniquely violated
regions and the strips are large enough to constitute a constant fraction of the space, giving the desired distance
to convexity (Lemma 4.1). Intuitively, detecting non-convexity is hard because the algorithm does not know C,
the halfspace Hj(·), or the direction vj . In fact, we show that an algorithm which makes few queries cannot find,
with probability at least 2/3, two points x, z outside the same halfspace Hj(·) such that x lies inside and z outside
the strip in direction vj .

Roughly speaking, the proof proceeds as follows. First, we show that, except with o(1) probability, any two
queries x, z which are far (at distance at least 1000

√
qn1/4) cannot lie outside the same halfspace Hj(·) while

having projections onto C with norm at most
√
n (Lemma 4.4), and moreover it is extremely unlikely for a query

to be falsified by more than q halfspaces (this follows from a calculation in Lemma 3.2). The argument is geometric
in nature and is given in Section 4.5, and essentially argues that it is unlikely, since the algorithm does not know
the control subspace C or the vector defining the halfspace, that two far-away queries happen to uniquely falsify
the same halfspace.

On the other hand, consider the halfspaces which are falsified by some query (and notice there are most q2

such halfspaces, since each query is falsified by at most q halfspaces). Since all such queries are within distance
1000

√
qn1/4 of each other, the projection of any two such queries onto the direction defining the strip is a segment

of length O(
√
q/n1/4) with high probability, and the precise location of this segment is uniform(-like, from Gaussian

anti-concentration) (see Section 4.5.1). Therefore, the probability of any particular segment of length O(
√
q/n1/4)

which goes from inside to outside the strip of width 1 is roughly O(
√
q/n1/4). We take a union bound over the q2

possible halfspaces, each containing at most q queries which define segments which may “cross” the strip with
probability O(

√
q/n1/4), for a total probability of O(q3.5/n1/4). Since this must be at least 2/3 for the algorithm

to succeed, this gives the nΩ(1) lower bound.

1.2.3 Two-Sided Non-Adaptive Tolerant Lower Bound Continuing the analogy with monotonicity testing
lower bounds, the proof of Theorem 1.2 is inspired by recent lower bounds on tolerant monotonicity testing, namely
[PRW22] and the follow-up work of [CDL+24]. The basic idea of [PRW22] is to construct a family of functions by
randomly partitioning the space of variables into control variables and action variables: if the control variables are
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not balanced, i.e. there are more 1s than 0s (or vice-versa), then the function is trivially set to 1 (resp. to 0) both
for f ∼ Dyes and for f ∼ Dno. If the control variables are balanced, then, at a high level,

1. for f ∼ Dyes the function on the action variables is close to monotone;

2. for f ∼ Dno the function on the action variables is far from monotone.

Roughly speaking, the analysis in [PRW22] shows that unless the algorithm queries two points such that both
these points (a) have the same setting of the control variables, and (b) the control variables are balanced, the
algorithm cannot distinguish between f ∼ Dyes and f ∼ Dno. As the control and action variables are partitioned
at random, it turns out that satisfying both (a) and (b) is not possible for a non-adaptive algorithm unless the
algorithm makes 2Ω(

√
n) many queries. In particular, [PRW22] shows that distinguishing between functions which

are c1/
√
n-close to monotone versus c2/

√
n-far from monotone (where c2 > c1 > 0) cannot be done with 2o(

√
n)

queries.
The main modification in [CDL+24] vis-a-vis [PRW22] is the following: one can think of the balanced setting

of the control variables in the construction described above as the “minimal satisfying assignments” of the Majority
function. In [CDL+24], the Majority function is replaced by Talagrand’s random monotone DNF [Tal96], a
well-studied function in Boolean function analysis and related areas [MO03, OW07]. The specific properties of

Talagrand’s monotone DNF allows [CDL+24] to obtain a 2n
1/4

query lower bound for non-adaptive testers where
the functions in Dyes are c1-close to monotone and functions in Dno are c2-far from monotone, where c2 > c1 are
positive constants.

For Theorem 1.2, the goal is to obtain lower bounds for tolerant convexity testing rather than monotonicity
testing. Towards that goal, let us assume that the ambient space is Rn+1. We choose a random n-dimensional
subspace C and think of it as the control subspace, and we view its one-dimensional orthogonal complement as the
action subspace A (analogous to the notion of control and action variables in [PRW22, CDL+24]).8 We embed the
Nazarov body B (described earlier) in the control subspace. We define the Dyes and Dno distributions in analogy
with [CDL+24], roughly as follows: for x ∈ R

n+1,

1. If the projection xC does not lie in the uniquely violated set of B, then f(x) is defined the same way for
f ∼ Dyes and f ∼ Dno;

2. If the projection xC lies in the uniquely violated set, then f(x) is set differently for f ∼ Dyes and f ∼ Dno

(depending on the projection xA to the action subspace). In particular, for f ∼ Dyes, f is defined in such a
way that f−1(1) is close to a convex set, and for f ∼ Dno, f is defined in such a way that f−1(1) is far from
every convex set. This crucially uses the fact that the Gaussian volume of U is “large” compared to the
Gaussian volume of the set Ball(

√
n) \B, as mentioned in our earlier discussion of the Nazarov body.

At a high level, the indistinguishability argument showing that q = 2Ω(n1/4) non-adaptive queries are required
to distinguish f ∼ Dyes from f ∼ Dno is a case analysis based on the distance between any given pair of query
vectors x and y (see Lemma 5.3 and Lemma 5.4), combined with a union bound over all

(
q
2

)
possible pairs of

query vectors. Roughly speaking, if ‖x− y‖ is small, then the way that f depends on the projection to the action
subspace makes it very unlikely to reveal a difference between f ∼ Dyes and f ∼ Dno. On the other hand, if
‖x − y‖ is large, then it is very unlikely for x and y to lie in the same set U i, which must be the case for the
pair x, y to reveal a difference between f ∼ Dyes and f ∼ Dno. There are many technical issues and geometric

arguments required to carry out this rough plan, but when all the dust settles the argument gives a 2Ω(n1/4) lower
bound for tolerant convexity testing.

1.2.4 Two-Sided Non-Adaptive Bound Our approach to prove Theorem 1.3 is inspired by the lower bounds
of [CDST15] on non-adaptive monotonicity testing. As in most property testing lower bounds for non-adaptive
algorithms, the high-level approach is to use Yao’s principle; we follow [CDST15] in that we use a suitable
high-dimensional central limit theorem as the key technical ingredient for establishing indistinguishability between

8We remark that in the one-sided adaptive lower bound described above, it would not have been possible to use a one-dimensional
action subspace because an adaptive algorithm would be able to detect that “global structure,” which is shared across all the U i’s; this

is why the dimension of the action subspace A was n in the earlier construction, and there was a different random “action direction”
vj from A for each j ∈ [N ] in the earlier construction.
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the yes- and no- distributions. In [CDST15] both the yes- and no- functions are linear threshold functions over
{−1,+1}n, but since any linear threshold function is trivially a convex set, the [CDST15] construction cannot be
directly used to prove a convexity testing lower bound. Instead, in order to ensure that our no- functions are both
indistinguishable from the yes- functions and are far from every convex set, we work with degree-2 polynomial
threshold functions (PTFs) over Rn rather than linear threshold functions over {−1,+1}n. At a high level, degree-2
PTFs of the form

∑

i λix
2
i where each λi is positive (note that any such PTF is a convex set) play the “yes-function”

role that monotone LTFs play in the [CDST15] argument, and degree-2 PTFs of the form
∑

i λ
′
ix

2
i where a constant

fraction of the λ′
i’s are negative play the “no-function” role that far-from-monotone LTFs play in the [CDST15]

argument. We show that having a constant fraction of the λ′
i’s be negative is sufficient, in the context of our

construction, to ensure that no-functions are far from convex, and we show that the multi-dimensional central
limit theorem used in [CDST15] can be adapted to our context to establish indistinguishability and thereby prove
the desired lower bound.

1.3 Related Work A number of earlier papers have considered different aspects of convexity testing. One
strand of work deals with testing convexity of (real-valued) functions f : [N ] → R, where convexity means the
second derivative is positive.9 This study was initiated by Parnas et al. [PRR03], and extended by Pallavor
et al. [PRV18], who gave an improved result parameterized by the image size of the function being tested; by
Blais et al. [BRY14b], who gave lower bounds on testing convexity of real-valued functions over the hypergrid
[N ]d; and by Belovs et al. [BBB20], who gave upper and lower bounds on the number of queries required to test
convexity of real-valued functions over various discrete domains including the discrete line, the “stripe” [3]× [N ],
and the hypergrid [N ]d. (See also the work of Berman et al. [BRY14a], who investigated a notion of “L1-testing”
real-valued functions over [N ]d for convexity.)

A different body of work, which is closer to this paper, deals with testing convexity of high-dimensional
sets (equivalently, Boolean indicator functions). The earliest work we are aware of along these lines is that
of Rademacher and Vempala [RV05].10 In their formulation, a body K ⊆ R

n is ε-far from being convex if
Leb(K 4 C) ≥ ε · Leb(K) for every convex set C, where Leb(·) denotes the Lebesgue volume (note that, in
contrast, our model uses absolute volume under the Gaussian measure, rather than relative volume under the
Lebesgue measure). Moreover, [RV05] allow the testing algorithm access to a black-box membership oracle (as in
our model) as well as a “random sample” oracle which can generates a uniform random point from K (for testing
with respect to relative measures, such an oracle is necessary). The main positive result of [RV05] is a (cn/ε)n

sample- and query- algorithm for testing convexity in their model. [RV05] also give an exponential lower bound
for a simple “line segment tester,” which checks whether a line segment connecting two (uniformly random) points
from the body is contained within the body. This lower bound was strengthened and extended to an exponential
lower bound for a “convex hull tester” in recent work of Blais and Bommireddi [BB20]. We note that the negative
results of [RV05] and [BB20], while they deal with natural and interesting candidate testing algorithms, only rule
out very specific kinds of testers and do not provide lower bounds against general testing algorithms in their
framework.

The most closely related work for us is the study of sample-based testing algorithms for convexity under

the N(0, In) distribution [CFSS17]. As was mentioned earlier, [CFSS17] gave a 2Õ(
√
n)/ε2-sample algorithm for

convexity testing and showed that any sample-based tester must use 2Ω(
√
n) samples; we remark that lower bounds

for sample-based testers do not have any implications for query-based testing.11 Finally, another closely related

paper is the recent work of Blais et al. [BBH24] which gives nearly matching upper and lower bounds of 3Ω̃(
√
n)

queries for one-sided non-adaptive convexity testing over {−1, 0, 1}n. [BBH24] cites the high-dimensional Gaussian
testing problem as motivation for their study of the ternary cube, and asks “Can queries improve upon the bounds
of [CFSS17, HY22] for testing convex sets with samples in R

n under the Gaussian distribution?” (Question 1.15
of [BBH24]). Our work makes progress on this question by establishing the first lower bounds for query-based
testing under the Gaussian distribution.

9These works study discrete domains, where a discrete derivative is used.
10The study of convexity testing in two dimensions was initiated in earlier work of Raskhodnikova [Ras03] for the domain [N ]2, and

has since been extended to sample-based testing [BMR16], testing over the continuous domain [0, 1]2 [BMR19], and tolerant testing

[BMR22]; see also [BF18].
11[CFSS17] also gave a 2O(n log(n/ε))-sample one-sided algorithm, which was generalized to testing under arbitrary product

distributions by [HY22].
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2 Preliminaries

We use boldfaced letters such as x,X, etc. to denote random variables (which may be real- or vector-valued;
the intended type will be clear from the context). We write x ∼ D to indicate that the random variable x is
distributed according to probability distribution D. We will frequently identify a set K ⊆ R

n with its 0/1-valued
indicator function, i.e., K(x) = 1 if x ∈ K and K(x) = 0 otherwise. We write ln to denote natural logarithm and
log to denote base-two logarithm.

2.1 Geometry We write S
n−1 for the unit sphere in R

n, i.e. S
n−1 = {x ∈ R

n : ‖x‖ = 1} where ‖x‖ denotes
the `2-norm of x. We write Ball(r) ⊆ R

n to denote the `2-ball of radius r in R
n, i.e.

Ball(r) :=
{
x ∈ R

n : ‖x‖ ≤ r
}
.

We will frequently write Ball := Ball(
√
n). We recall the following standard bound on the volume of spherical

caps (see e.g. Lemma 2.2 of [B+97]):

Lemma 2.1. For 0 ≤ ε < 1, we have Pr [u1 ≥ ε] ≤ e−nε2/2, where u ∼ S
n−1, i.e. u is a Haar random vector

drawn uniformly from the unit sphere S
n−1.

2.2 Gaussian and Chi-Squared Random Variables For µ ∈ R
n and Σ ∈ R

n×n, we write N(µ,Σ) to denote
the n-dimensional Gaussian distribution centered at µ and with covariance matrix Σ. In particular, identifying
0 ≡ 0n and writing In for the n×n identity matrix, we will denote the n-dimensional standard Gaussian distribution
by N(0, In). We write Vol(K) to denote the Gaussian measure of a (Lebesgue measurable) set K ⊆ R

n, i.e.

Vol(K) := Pr
g∼N(0,In)

[g ∈ K].

We recall the following standard tail bound on Gaussian random variables:

Proposition 2.1. (Theorem 1.2.6 of [Dur19] or Equation 2.58 of [Wai15]) Let Φ : R → (0, 1) denote
the cumulative density function of the (univariate) standard Gaussian distribution, i.e.

Φ(r) = Pr
g∼N(0,1)

[g ≤ r].

Then for all r > 0, we have

ϕ(r)

(
1

r
− 1

r3

)

≤ 1− Φ(r) ≤ ϕ(r)

(
1

r
− 1

r3
+

3

r5

)

where ϕ is the one-dimensional standard Gaussian density which is given by

ϕ(x) :=
1√
2π

e−x2/2.

It is well known that if g ∼ N(0, In), then ‖g‖ is distributed according to the chi distribution with n degrees
of freedom, i.e. ‖g‖ ∼ χ(n). It is well known (see e.g. [Wik23]) that the mean of the χ2(n) distribution is
n, the median is n(1 − Θ(1/n)), and for n ≥ 2 the probability density function is everywhere at most 1. We
note that an easy consequence of these facts is that the origin-centered ball Ball(

√
n) of radius

√
n in R

n has
Vol(B(

√
n)) = 1/2 + o(1).

We will require the following tail bound on χ2(n) random variables:

Proposition 2.2. (Section 4.1 of [LM00]) Suppose y ∼ χ2(n). Then for any t > 0, we have

Pr
y∼χ2(n)

[

y ≥ n+ 2
√
nt+ 2t

]

≤ e−t and Pr
y∼χ2(n)

[

y ≤ n− 2
√
nt
]

≤ e−t.
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2.3 Property Testing and Tolerant Property Testing Let Pconv := Pconv(n) denote the class of convex
subsets of Rn, i.e.

Pconv =
{

L ⊆ R
n : L is convex

}

.

Given a set K ⊆ R
n, we define its distance to convexity as

dist(K,Pconv) := inf
L∈Pconv

Vol(K4L)

where K4L = (K \ L) ∪ (L \K) denotes the symmetric difference of K and L. In particular, we will say that K
is ε-close to (resp. ε-far from) a convex set if dist(K,Pconv) ≤ ε (resp. ≥ ε).

Definition 1. (Property testers and tolerant property testers) Let ε, ε1, ε2 ∈ [0, 0.5] with ε1 < ε2.
An algorithm A is an ε-tester for convexity if, given black-box query access to an unknown set K ⊆ R

n, it has the
following performance guarantee:

• If K is convex, then A outputs “accept” with probability at least 2/3;

• If dist(K,Pconv) ≥ ε, then A outputs “reject” with probability at least 2/3.

An algorithm A is an (ε1, ε2)-tolerant tester (or simply an (ε1, ε2)-tester) for convexity if it has the following
performance guarantee:

• If dist(K,Pconv) ≤ ε1, then A outputs “accept” with probability at least 2/3;

• If dist(K,Pconv) ≥ ε2, then A outputs “reject” with probability at least 2/3.

In particular, note that every ε-tester is a (0, ε)-tolerant tester.

Our query-complexity lower bounds for non-adaptive property testing algorithms are obtained via Yao’s
minimax principle [Yao77], which we recall below. (We remind the reader that an algorithm for the problem of
(ε1, ε2)-tolerant testing is correct on an input function f provided that it outputs “yes” if f is ε1-close to the
property and outputs “no” if f is ε2-far from the property; if the distance to the property is between ε1 and ε2
then the algorithm is correct regardless of what it outputs.)

Theorem 2.1. (Yao’s principle) To prove an Ω(q)-query lower bound on the worst-case query complexity of
any non-adaptive randomized testing algorithm, it suffices to give a distribution D on instances such that for any
q-query non-adaptive deterministic algorithm A, we have

Pr
f∼D

[

A is correct on f
]

≤ c.

where 0 ≤ c < 1 is a universal constant.

3 Nazarov’s Body

Our constructions in Sections 4 and 5 will employ modifications of a probabilistic construction of a convex body
due to Nazarov [Naz03]. Nazarov’s randomized construction yields a convex set with asymptotically maximal
Gaussian surface area [Bal93, Naz03], and modifications thereof have found applications in learning theory and
polyhedral approximation [KOS08, DNS24].

Definition 2. (Nazarov’s body) For r,N > 0, we write Naz(r,N) to be the distribution over convex subsets
of Rn where a draw B ∼ Naz(r,N) is obtained as follows:

1. For i ∈ [N ], draw independent vectors gi ∼ N(0, In) and let Hi ⊆ R
n denote the halfspace

(3.1) Hi := {x ∈ R
n : x · gi ≤ r}.

2. Output the convex set B ⊆ R
n where

B := Ball(
√
n) ∩





N
⋂

i=1

Hi



.
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Note that for any fixed x ∈ R
n,

Pr
Hi

[x ∈ Hi] = Pr
gi∼N(0,In)

[

x · gi ≤ r
]

= Pr
gi∼N(0,In)





n
∑

j=1

xjg
i
j ≤ r





= Pr
g∼N(0,1)

[

g ≤ r

‖x‖

]

= Φ

(

r

‖x‖

)

(3.2)

where Φ(·) is the univariate Gaussian cumulative density function. Consequently, because of the independence of
gi, we have

(3.3) Pr
B∼Naz(r,N)

[x ∈ B] = 1
{

‖x‖ ≤ √
n
}

· Φ
(

r

‖x‖

)N

.

Note that B can be also written as

B = Ball(
√
n) \

⋃

i∈[N ]

(

Ball(
√
n) \Hi

)

.

For each i ∈ [N ], we define F i (for “flap”) to be points in Ball(
√
n) which are falsified by Hi, i.e.

F i := Ball(
√
n) \Hi.

Given a non-empty T ⊆ [N ], we write F T :=
⋂

i∈T F i. We will be interested in points in Ball(
√
n) that are

falsified by a unique halfspace Hi and denote the set of such points as U i (for “unique”):

U i := F i \
⋃

j 6=i

F j .

3.1 Useful Estimates Suppose N satisfies N = nωn(1); in both Sections 4 and 5 we will take N = 2
√
n. Let

c1 > 0 be a parameter; in Section 4, we will set c1 = ln 2 ± O(1)/N , and in Section 5 we will take c1 to be a
suitable small absolute constant.

Throughout this section we will take r to be the unique positive number such that

(3.4) Φ

(

r√
n

)

= 1− c1
N

.

Gaussian tail bounds allow us to relate r and N :

Lemma 3.1. We have

r =

√

√

√

√2n(1− o(1)) ln

(

N

c1

√

n

2π

)

.

Proof. Note that because N = ωn(1), it follows that r = ω(
√
n); otherwise, note that 1 − Φ

(

r√
n

)

= Ωn(1),

contradicting Equation (3.4). Next, it follows from Proposition 2.1 and Equation (3.4) that

(3.5)





√
n

r
−
(√

n

r

)3


 · ϕ
(

r√
n

)

≤ c1
N

≤
√
n

r
· ϕ
(

r√
n

)

.
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0
n

√

n

r
‖gi‖

Hi

H1

H2

H3

HN

U1

F 2,3

Figure 1: A depiction of B (in green) sampled from Naz(r,N).

The upper bound implies that

r · exp
(

r2

2n

)

≤ N

c1

√

n

2π
, and so ln r +

r2

2n
≤ ln

(

N

c1

√

n

2π

)

.

In particular, this implies that

(3.6) r ≤

√

√

√

√2n ln

(

N

c1

√

n

2π

)

.

Next, note that the lower bound from Equation (3.5) implies that

N

c1

√

n

2π

(

1− n

r2

)

≤ r exp

(

r2

2n

)

, and so ln

(

(1− o(1))N

c1

√

n

2π

)

≤ ln r +
r2

2n
.

This in turn implies that

(3.7) r ≥

√

√

√

√2n(1− o(1)) · ln
(

N

c1

√

n

2π

)

The result follows from Equations (3.6) and (3.7).

We need the following lemma which will be useful in analyzing our construction in Section 4.

Lemma 3.2. Let x ∈ R
n be a point with ‖x‖ ≤ √

n. Then

Pr
B∼Naz(r,N)



x ∈
⋃

|T |≥q

F T



 ≤ cq1
q!
.
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for all q ∈ [N ].

Proof. Note that

Pr
B∼Naz(r,N)



x ∈
⋃

|T |≥q

F T



 ≤
(

N

q

)

Pr
B∼Naz(r,N)

[

x ∈ F 1 ∩ . . . ∩ F q

]

≤ 1

q!



N

(

1− Φ

(

r

‖x‖

)

)





q

≤ 1

q!



N

(

1− Φ

(

r√
n

)

)





q

=
cq1
q!

where the penultimate equality relies on Equation (3.4).

We will also require a lower bound on the expected volume of
⊔N

i=1 U i:

Lemma 3.3. For constant 0 < c1 ≤ 0.9 and N = 2
√
n, we have

E
B∼Naz(r,N)






Vol





N
⊔

i=1

U i










= Ω(c1).

Proof. Fix any x ∈ R
n and any i ∈ [N ]. Note that

(3.8) Pr
B∼Naz(r,N)

[x ∈ U i] = 1
{

‖x‖ ≤ √
n
}

·
(

1− Φ

(

r

‖x‖

)

)

Φ

(

r

‖x‖

)N−1

.

It follows that

E
[

Vol(U i)
]

= E
x∼N(0,In)

[

Pr
B∼Naz(r,N)

[x ∈ U i]

]

= Vol
(

Ball(
√
n)
)

E
x∼N(0,In)





(

1− Φ

(

r

‖x‖

)

)

Φ

(

r

‖x‖

)N−1
∣

∣

∣

∣

∣

‖x‖ ≤ √
n





≥ 1

2
E

x∼N(0,In)





(

1− Φ

(

r

‖x‖

)

)

Φ

(

r√
n

)N−1
∣

∣

∣

∣

∣

‖x‖ ≤ √
n





≥ 1

2

(

1− c1
N

)N−1

E
x∼N(0,In)



1− Φ

(

r

‖x‖

)

∣

∣

∣

∣

∣

‖x‖ ≤ √
n





≥ 1

2

(

1− c1 +
c1
N

)

E
x∼N(0,In)



1− Φ

(

r

‖x‖

)

∣

∣

∣

∣

∣

‖x‖ ≤ √
n



(3.9)

where the penultimate inequality follows from Equation (3.4) and the final inequality relies on the fact that
(1− y)z ≥ 1− yz.
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Next, at the cost of 0.01 probability mass (thanks to Proposition 2.2), we can assume that ‖x‖ ∈ [
√
n−10,

√
n].

It follows that

E
x∼N(0,In)





(

1− Φ

(

r

‖x‖

)

)∣

∣

∣

∣

∣

√
n− 10 ≤ ‖x‖ ≤ √

n



 ≥ 0.99 ·
(

1− Φ

(

r√
n− 10

)

)

.

Standard Gaussian tail bounds give that

1 ≥
1− Φ

(

r√
n−10

)

1− Φ
(

r√
n

) ≥

(√
n−10
r − (

√
n−10)3

r3

)

exp
(

−r2

2(
√
n−10)2

)

√
n
r exp

(

−r2

2n

)(Proposition 2.1)

≥ (1− o(1)) · exp
(

r2(100− 20
√
n)

2n(
√
n− 10)2

)

= Θ(1),

where the last line uses our bounds on r from Lemma 3.1 and our bounds on c1 from the statement of the current
lemma. Putting everything together and recalling that c1 < 0.9, we get that for n large enough,

E
[

Vol(U i)
]

≥ Ω

(

1− Φ

(

r√
n

)

)

= Ω

(

c1
N

)

(3.10)

thanks to Equation (3.4). Consequently, we have

(3.11) E






Vol





⊔

i∈[N ]

U i










≥ Ω(c1),

completing the proof.

Next we show that the volume of
⊔

i U i is highly concentrated:

Lemma 3.4. Suppose N = 2
√
n. With probability at least 1− o(1), we have

Vol





⊔

i∈[N ]

U i



 ≥ 0.9 · E
B∼Naz(r,N)






Vol





⊔

i∈[N ]

U i










.

Proof. Let Naz∗(r,N) be the same distribution as Naz(r,N) except that when drawing B, each gi is drawn from
N(0, In) conditioning on ‖gi‖ =

√
n ± 10n1/4 (instead of just drawing gi ∼ N(0, In)). Recall N = 2

√
n. By

Proposition 2.2, the probability of ‖gi‖ /∈ [
√
n− 10n1/4,

√
n+10n1/4] for some i ∈ [N ] is at most o(1). As a result,

we have

E
B∼Naz∗(r,N)






Vol





⊔

i∈[N ]

U i










≥ E

B∼Naz(r,N)






Vol





⊔

i∈[N ]

U i










− o(1).

Moreover, it suffices to show that when B ∼ Naz∗(r,N), we have

Vol





⊔

i∈[N ]

U i



 ≥ 0.99 · E
B∼Naz∗(r,N)






Vol





⊔

i∈[N ]

U i










.(3.12)

with probability at least 1− o(1). To this end, we recall McDiarmid’s inequality:
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Theorem 3.1. (McDiarmid bound [McD89]) Let X1, . . . ,XS be independent random variables taking values
in a set Ω. Let G : ΩS → R be such that for all i ∈ [S] we have

∣

∣G(x1, . . . , xS)−G(x1, . . . , xi−1, x
′
i, xi+1, . . . , xS)

∣

∣ ≤ ci

for all x1, . . . , xS and x′
i in Ω. Let µ = E[G(X1, . . . ,XS)]. Then for all τ > 0, we have

Pr
[

G(X1, . . . ,XS) < µ− τ
]

< exp

(

− τ2
∑

i∈[S] c
2
i

)

.

We will take S = N , Xi to be the halfspaces Hi and G(·) to be the volume of ti∈[N ]U i, as we draw
B ∼ Naz∗(r,N). Given the way gi is drawn in B ∼ Naz∗(r,N), the volume of each Hi is always at least (using

r ≥
√

2n3/2(1− o(1) by Lemma 3.1)

Φ

(

r√
n+ 10n1/4

)

≥ 1− e−(1−o(1))
√
n,

from which we have ci ≤ e−(1−o(1))
√
n. As a consequence,
∑

i∈[N ]

c2i ≤ N · e−(1−o(1))
√
n = e−Ω(

√
n).

It follows from McDiarmid that Equation (3.12) holds with probability at least 1− o(1).

Finally, the following lemma will allow us to obtain bounds on the distance to convexity of the “yes”- and
“no”-distributions in Section 5:

Lemma 3.5. For r satisfying Equation (3.4), we have

E
B∼Naz(r,N)






Vol





⊔

i∈[N ]

U i










≥
(

2

c1
− 2

)

E
B∼Naz(r,N)






Vol





⋃

|T |≥2

F T










.

Proof. Fix x ∈ R
n and i ∈ [N ]. Recall Equation (3.8). On the other hand, we have

Pr
B∼Naz(r,N)



x ∈
⋃

|T |≥2

F T



 ≤
(

N

2

)

Pr
B∼Naz(r,N)

[x ∈ F 1 ∩ F 2]

=

(

N

2

)

Pr
B∼Naz(r,N)

[

x ∈ Ball(
√
n) ∩ (Rn \H1) ∩ (Rn \H2)

]

≤ N2

2
· 1
{

‖x‖ ≤ √
n
}

·
(

1− Φ

(

r

‖x‖

)

)2

(3.13)

where we once again used Equation (3.2). It follows from Equations (3.8) and (3.13) that for x ∈ Ball(
√
n) (i.e

‖x‖ ≤ √
n), we have

N ·Pr [x ∈ U i]

Pr[x ∈ ⋃|T |≥2 F T ]
≥
(

2

N

)

Φ

(

r

‖x‖

)N−1
(

1− Φ

(

r

‖x‖

)

)−1

≥
(

2

N

)

Φ

(

r√
n

)N−1
(

1− Φ

(

r√
n

)

)−1

(3.14)

=

(

2

c1

)(

1− c1
N

)N−1

(3.15)

≥
(

2

c1

)(

1− c1 +
c1
N

)

(3.16)

>
2

c1
− 2
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where Equation (3.14) relies on the fact that ‖x‖ ≤ √
n and Φ(·) being increasing, Equation (3.15) relies on our

definition of r from Equation (3.4), and Equation (3.16) relies on Bernoulli’s inequality: (1− y)z ≥ 1− yz. (Note
that for x with ‖x‖ >

√
n, we have Pr[x ∈ U i] = Pr[x ∈ ⋃|T |≥2 F T ] = 0.)

To conclude, we have

N · E
B∼Naz(r,N)

[

Vol(U i)
]

= E
B∼Naz(r,N)

[

N · Pr
x∼N(0,In)

[x ∈ U i]

]

= E
x∼N(0,In)

[

N · Pr
B∼Naz(r,N)

[x ∈ U i]

]

≥
(

2

c1
− 2

)

E
x∼N(0,In)






Pr

B∼Naz(r,N)



x ∈
⋃

|T |≥2

F T










(3.17)

=

(

2

c1
− 2

)

E
B∼Naz(r,N)






Pr

x∼N(0,In)



x ∈
⋃

|T |≥2

F T











=

(

2

c1
− 2

)

E
B∼Naz(r,N)






Vol





⋃

|T |≥2

F T











where Equation (3.17) follows from the earlier calculation, completing the proof.

4 One-Sided Adaptive Lower Bound

For this section, it will be most convenient for us to work over R2n. Let us restate Theorem 1.1 in this setting:

Theorem 4.1. (One-sided adaptive lower bound, restated) For some absolute constant ε > 0, any one-
sided ε-tester for convexity over N(0, I2n) (which may be adaptive) must use nΩ(1) queries.

At a high level, the proof of Theorem 1.1 works by (1) first defining a distribution Dno of “no-functions”
(Boolean-valued functions over R2n, or equivalently, subsets of R2n), and showing that an Ω(1) fraction of draws
from Dno yield sets which are Ω(1)-far from convex; and (2) then arguing that for a suitable absolute constant
c > 0, any nc-query algorithm (even an adaptive one) has only an o(1) probability of querying a set of points whose
labels are inconsistent with every convex set in R

2n. In the next subsection we describe the distribution Dno.

4.1 The distribution Dno of far-from-convex sets

4.1.1 Setup We will see that every function f in the support of Dno outputs 0 on every input point x ∈ R
2n

with ‖x‖ >
√
2n. To describe how f behaves within the

√
2n-ball, denoted by

Ball(
√
2n) :=

{

x ∈ R
2n : ‖x‖ ≤

√
2n
}

,

we require some more setup.

The “control subspace,” the “action subspace,” and the Nazarov body. Let C be a Haar random
n-dimensional subspace of R2n; we call C the control subspace. Let A be the orthogonal complement of C (which
is also an n-dimensional subspace); we call A the “action subspace.” Given a vector x ∈ R

n, we write xC to
denote the orthogonal projection of x onto C and we write xA to denote the orthogonal projection of x onto A,
so every vector satisfies x = xA + xC .

Fix N := 2
√
n (we assume without loss of generality that n is a perfect square, so N is an integer). For this

choice of N , let B ∼ Naz(r,N,C) where Naz(r,N,C) is as defined in Definition 2 but with the n-dimensional
control subspace C playing the role of Rn. (We emphasize that B ∼ Naz(r,N,C) is a subset of R2n which is an
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“n-subspace junta,” meaning that for any x ∈ R
2n, membership of x in B depends only on xC .) We take r to be

the unique positive number such that

Φ

(

r√
n

)N

=
1

2
.

In other words, we choose r to be the unique value such that any point x with ‖xC‖ =
√
n has probability 1/2 of

being in B ∼ Naz(r,N,C) (cf. Equation (3.3)). Note that

Φ

(

r√
n

)

=

(

1

2

)
1
N

= 1− c1
N

for a value c1 = ln 2± O(1)

N

by the Taylor expansion of e− ln(2)/N and setting of r (Lemma 3.1).

The “action directions.” For each i ∈ [N ], draw a random vector vi from the standard Normal distribution
N(0, In) over the n-dimensional action subspace A (independent of everything else). We say that vi is the action
direction for the i-th flap F i of the Nazarov body B. We note that for every pair i, j ∈ [N ], the vector gi defining
the i-th halfspace Hi of the Nazarov body is orthogonal to the vector vj (because gi ∈ C and vj ∈ A).

4.1.2 The distribution Dno For a fixed setting of the control subspace C and the (orthogonal) action subspace

A, of ~H := (H1, . . . , HN ) (which also specifies B and Fi’s) and of ~v := (v1, . . . , vN ), we define the function
fC,A, ~H,~v

: R2n → {0, 1} as follows:

fC,A, ~H,~v(x) =















0 x /∈ Ball(
√
2n) or ‖xC‖ >

√
n;

1 x ∈ Ball(
√
2n) and xC ∈ B;

∧

j∈T 1
[

〈vj , x〉 /∈ [−
√
n
2 ,

√
n
2 ]
]

x ∈ Ball(
√
2n) and xC ∈ FT for some ∅ 6= T ⊆ [N ].

A random function f ∼ Dno is drawn as follows: first we draw a Haar random n-dimensional subspace C; then A

is taken to be the n-dimensional (Haar random) orthogonal complement of C; then we draw B ∼ Naz(r,N,C)

(which gives a draw of ~H as in Equation (3.1)); then we draw ~v = (v1, . . . ,vN ) from A as described above; then
we set the function f to be f

C,A, ~H,~v.

4.2 Sets in Dno are far from convex We need a constant fraction of the no-functions to be constant-far from
convex. This is given by the following lemma:

Lemma 4.1. With probability Ω(1) over a draw of f ∼ Dno, we have that Vol(f4g) = Ω(1) for every
g : R2n → {0, 1} that is the indicator function of a convex set in R

2n.

We require a few definitions. Define ThinShell := {x ∈ R
2n :

√
2n − 2 ≤ ‖x‖ ≤

√
2n − 1}. Given an

outcome of f ∼ Dno (which determines the gi’s, vi’s, F i’s and U i’s), for i ∈ [N ] define U := ti∈[N ]U i. Define
p := Ef∼Dno

[Vol[U ∩ ThinShell]].

Lemma 4.2. p = Ω(1) =⇒ Lemma 4.1.

Proof. If p = Ω(1) then Prf [Vol[U ∩ ThinShell] = Ω(1)] = Ω(1). We view the draw of f as taking place in
two stages: in the first one C, A, and ~g = (g1, . . . , gN ) are drawn, and in the second one ~v = (v1, . . . ,vN ) is
drawn. Observe that the set U depends only on the first stage. Say that any outcome of the first stage for which
Vol[U ∩ ThinShell] = Ω(1) holds is a good outcome of the first stage, so an Ω(1) fraction of outcomes of the first
stage are good.

Fix any good outcome C,A,~g of the first stage (note that this fixes U1, . . . , UN and hence U), and consider a
draw of x ∼ N(0, I2n). We have the following claim:

Claim 3. For a suitable absolute constant a > 0, we have Prx∼N(0,I2n)[x ∈ U ∩ ThinShell and ‖xC‖ ∈
[
√
n− a,

√
n]] = Ω(1).
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Proof. Since we have fixed a good outcome C,A,~g of the first stage, we have that Prx∼N(0,I2n)[x ∈ U∩ThinShell] ≥
c for some absolute constant c > 0. Moreover, every outcome of x ∈ U ∩ ThinShell has ‖xC‖ ≤ √

n, since U is a
subset of B. So to prove the claim we need only show that Prx∼N(0,I2n)[‖xC‖ <

√
n− a] ≤ c/2.

We first observe that by standard bounds on the chi-square distribution (Proposition 2.2), we have that
Prx∼N(0,I2n)[‖x‖ /∈ [

√
2n−a′,

√
2n+a′]] ≤ c/4 for a suitable constant a′. So fix any length ` ∈ [

√
2n−a′,

√
2n+a′].

Fix any vector z ∈ R
2n with ‖z‖ = `; by the rotational symmetry of the N(0, I2n) distribution and the rotational

symmetry of drawing a Haar random n-dimensional subspace C of R2n, the distribution of ‖xC‖ conditioned on
‖x‖ = ` is the same as the distribution of ‖zC‖ where C is a Haar random n-dimensional subspace C of R2n.
A routine application of the Johnson-Lindenstrauss theorem (see e.g. Theorem 5.3.1 of [Ver18]) gives us that
PrC [‖zC‖ <

√
n − a] ≤ c/4, for a suitable choice of the constant a. So Prx∼N(0,I2n)[‖xC‖ <

√
n − a] ≤ c/2 as

required, and the claim is proved.

Now, given an x that lies in U ∩ ThinShell and has ‖xC‖ ∈ [
√
n− a,

√
n], consider an outcome of the second

stage, i.e. the draw of ~v; note that this draw completes the draw of f ∼ Dno. Define the vectors

x+ := x+
vi

‖vi‖ , x− := x− vi

‖vi‖ .

Let us say that an outcome of ~v for which f(x) = 0, f(x+) = 1, f(x−) = 1 is a fine outcome of ~v for x. We will
use the following claim:

Claim 4. For any fixed x that lies in U ∩ ThinShell and has ‖xC‖ ∈ [
√
n − a,

√
n], we have Pr~v[~v is fine for

x] = Ω(1).

Proof. Since x ∈ Ui ∩ ThinShell for some i, it must be the case that also x+, x− ∈ Ui (because every possible
outcome of vi is orthogonal to every possible outcome of gj for every j ∈ [N ]). So ~v is fine if and only if

〈

vi, x−
〉

< −
√
n

2
≤
〈

vi, x
〉

≤
√
n

2
<
〈

vi, x+
〉

, or equivalently,

(4.18)
〈

vi, x
〉

− ‖vi‖ < −
√
n

2
≤
〈

vi, x
〉

≤
√
n

2
<
〈

vi, x
〉

+ ‖vi‖.

Since x ∈ ThinShell we have
√
2n− 2 ≤ ‖x‖ ≤

√
2n− 1, i.e.

2n− 4
√
2n+ 4 ≤ ‖x‖2 = ‖xC‖2 + ‖xA‖2 ≤ 2n− 2

√
2n+ 1,

and since ‖xC‖ ∈ [
√
n− a,

√
n] we have that n− 2a

√
n+ a2 ≤ ‖xC‖2 ≤ n. So

(4.19) n− 4
√
2n+ 4 ≤ ‖xA‖2 ≤ n− 2

√
2n+ 2a

√
n+ 1− a2.

Now since vi is drawn from a standard N(0, In) distribution over the subspace A, a routine calculation using (i)
Equation (4.19); (ii) the fact that ‖vi −

〈

vi, x
〉

x
‖x‖‖2 and

〈

vi, x
〉

are independent and are distributed as a draw

from the χ2(n− 1) distribution and a draw from N(0, ‖xA‖2) respectively; and (iii) the fact that a draw from the
χ2(n− 1) distribution takes value n(1± o(1)) except with vanishingly small probability, gives that Equation (4.18)
holds with Ω(1) probability.

As an immediate consequence of Claim 4, we get that an Ω(1) fraction of outcomes of ~v are such that

(4.20) Pr
x∼N(0,I2n)

[

v is fine for x | x ∈ U ∩ ThinShell & ‖xC‖ ∈
[√

n− a,
√
n
]

]

= Ω(1).

Fix any outcome ~v of ~v for which Equation (4.20) holds. To conclude the proof of Lemma 4.1, we observe that
since x ∈ Ui implies that x+, x− are also in Ui, it follows that any z ∈ R

n can participate in at most three triples
of the form (x, x−, x+), so the maximum possible degree of overlap across all of the triples is at most a factor of
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three. Moreover, for any x ∈ ThinShell, it holds that
√
2n − 3 ≤ ‖x‖ − 1 ≤ ‖x+‖, ‖x−‖ ≤ ‖x‖+ 1 ≤

√
2n, and

hence the pdf of the χ2(2n) distribution is within a constant factor on each of the three inputs ‖x‖, ‖x+‖ and ‖x−‖
(so the N(0, I2n) Gaussian’s pdf is within a constant factor on each of the three inputs x, x+, x−). Combining this
with Claim 3, we get that for an Ω(1) fraction of outcomes of f ∼ Dno, the value of f needs to be altered on at
least an Ω(1) fraction of inputs drawn from N(0, In) in order to “repair” all of the violating triples (x, x+, x−) for
which x ∈ U ∩ ThinShell and ‖xC‖ ∈ [

√
n− a,

√
n]. This gives Lemma 4.2.

Proof. [Lemma 4.1] To prove Lemma 4.1 it remains only to show that p = Ω(1), i.e. to show that

(4.21) Pr
f∼Dno,x∼N(0,I2n)

[x ∈ (U ∩ ThinShell)] = Ω(1).

We first observe that we have Prx∼N(0,I2n)[x ∈ ThinShell] = Ω(1). Fix any outcome x ∈ ThinShell. Consider a
draw of the Haar random n-dimensional subspace C of R2n which is part of the draw of f ∼ Dno. Similar
to the proof of Claim 3, using ‖x‖ ∈ [

√
2n − 2,

√
2n − 1] the Johnson-Lindenstrauss theorem gives that

PrC [‖xC‖ ∈ [
√
n − 1,

√
n]] = Ω(1). Finally, fix any outcome C of C such that ‖xC‖ ∈ [

√
n − 1,

√
n], and

consider the “completion” of the draw of f ∼ Dno (i.e. the draw of B ∼ Naz(r,N,C) which induces an outcome of
U). We have

(4.22) Pr
f
[x ∈ U ] = N ·

(

1− Φ

(

r

‖xC‖

)

)

Φ

(

r

‖xC‖

)N−1

,

so to complete the proof of Lemma 4.1 it suffices to show that (5.29) = Ω(1). We have

Φ

(

r

‖xC‖

)N−1

≥ Φ

(

r√
n

)N−1

=

(

1− c1
N

)N−1

= Ω(1),

where the first equality is Equation (3.4) and the second is because c1 = Θ(1). Similar to the proof of Lemma 3.3,
we have

1− Φ
(

r
‖xC‖

)

1− Φ
(

r√
n

) ≥
1− Φ

(

r√
n−1

)

1− Φ
(

r√
n

) ≥

(√
n−1
r − (

√
n−1)3

r3

)

exp
(

−r2

2(
√
n−1)2

)

√
n
r exp

(

−r2

2n

)(Proposition 2.1)

≥ (1− o(1)) exp

(

r2(1− 2
√
n)

2n(
√
n− 1)2

)

= Θ(1), using Lemma 3.1.

So

N ·
(

1− Φ

(

r

‖xC‖

)

)

≥ N ·Θ(1) ·
(

1− Φ

(

r

‖xC‖

)

)

= N ·Θ(1) · c1
N

= Ω(1),

where the first equality is by Equation (3.4). This concludes the proof of Lemma 4.1.

4.3 Proof of Theorem 1.1

Definition 5. (One-sided Adaptive Algorithms as Binary Trees) Fix n, q ∈ N. A q-query one-sided
deterministic algorithm, Alg, for testing convexity in R

2n is specified by a rooted binary tree of depth q where each
node contains the following information:

• Each node v which is a not a leaf contains a query vector xv ∈ R
2n, as well as two out-going edges, one

labeled 0 and one labeled 1, to nodes which we label v(0) and v(1), respectively.

• Each leaf node v contains an output ov which is set to “accept” or “reject.” Let Q1 (or Q0) denote the set
of points queried along the path that are labelled 1 (or 0, respectively). Then ov is set to be “reject” if and
only if Q0 ∩ conv(Q1) 6= ∅.
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By adding nodes which repeat the queries, we may assume, without loss of generality, that the depth of every leaf
of the tree is exactly q.

A q-query deterministic algorithm Alg executes on a function f : R2n → {0, 1} by taking the natural root-to-leaf
path given by following the function values which the oracle returns at the queries within each of the nodes. In
particular, we will make repeated use of the following definitions which capture the execution of the algorithm Alg
on a function f :

• The node v0 is the root of the tree, which is the starting point of the root-to-leaf path. Then, the nodes
v1, . . . , vq indicate the root-to-leaf path generated by executing the algorithm on the function f . In
particular, at time step t ∈ {0, . . . , q − 1}, we have vt+1 = vt(f(xvt))

• The set Q0 is defined to be ∅, and for t ∈ {0, . . . , q− 1} the set Qt+1 is defined to be Qt ∪ {xvt} ⊂ R
n. Thus

Qt+1 is the set of vectors that are queried at time steps prior to t+ 1.

Once the algorithm reaches the leaf node vq, the algorithm outputs ovq , and we will refer to Alg(f) as the output
(“accept” or “reject”) produced by the algorithm. It is trivial to see that since any q-query deterministic algorithm
corresponds to a tree of depth q, the total number of query vectors xv ∈ R

2n across all nodes of the tree is at most
2q. Our goal is to show that, if Alg is a q-query deterministic algorithm which makes one-sided error, then

Pr
f∼Dno

[

Alg(f) = “reject”
]

= o(1).(4.23)

Recall that implicit in a fixed function f in the support of Dno are the control and action subspaces C,A ⊂ R
2n,

as well as the vectors g1, . . . , gN ∈ C and v1, . . . , vN ∈ A, and that g1, . . . , gN define B, Hi and Fi regions. In
order to simplify our notation, we will often refer to a subset of the queries Q̃k for any k ≤ q whose norm on the
control subspace is bounded,

Q̃k =
{

x ∈ Qk : ‖xC‖ ≤ √
n
}

.

Toward showing the above upper bound, we define two important events (which will depend on the draw f ∼ Dno).

Definition 6. Given Alg and a function f from Dno, we consider the following three events:

• E1(f): This event occurs if at the end of the execution of Alg on f , every point x ∈ Q̃q lies in at most q
flaps, and for every flap Fi with Q̃q ∩ Fi 6= ∅,
(4.24) ‖x− y‖ ≤ 1000

√
qn1/4 for all x, y ∈ Q̃q ∩ Fi.

• E2(f): This event occurs if at the end of the execution of Alg on f , for every flap Fi with Q̃q ∩ Fi 6= ∅ and
every x, y ∈ Q̃q ∩ Fi, we have

1
[

〈vi, x〉 /∈ [−√
n/2,

√
n/2]

]

= 1
[

〈vi, y〉 /∈ [−√
n/2,

√
n/2]

]

.

Theorem 1.1 follows immediately from the following three lemmas:

Lemma 4.3. Let Alg be a one-sided, deterministic, q-query algorithm for testing convexity. Then, if Alg(f) outputs
“reject,” the event E2(f) occurred.
Lemma 4.4. Let Alg be a one-sided, deterministic, q-query algorithm. Then,

Pr
f∼Dno

[

E1(f)
]

≥ 1− o(1).

Lemma 4.5. Let Alg be a one-sided, deterministic, q-query algorithm, where q ≤ n0.05. Then,

Pr
f∼Dno

[

E2(f) ∩ E1(f)
]

≤ o(1).

Proof. [Proof of Theorem 1.1 Assuming Lemmas 4.3 to 4.5] We upper bound the expression

Pr
f∼Dno

[

Alg(f) = “accept”
]
(4.3)

≥ Pr
f∼Dno

[

E2(f)
]

≥ Pr
f∼Dno

[

E1(f)
]

− Pr
f∼Dno

[

E2(f) ∩ E1(f)
]

≥ 1− o(1)

using Lemmas 4.4 and 4.5.
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4.4 Proof of Lemma 4.3 Since Alg is a q-query deterministic algorithm which has one-sided error, in order
for the algorithm to output “reject,” the set Qq queried by the root-to-leaf path obtained by executing Alg on f
must contain x1, . . . , x`, y ∈ Qq satisfying

y ∈ conv(x1, . . . , x`), f(y) = 0, and f(x1) = · · · = f(x`) = 1.

In particular, from y ∈ conv(x1, . . . , x`), we must have that, for any vector u ∈ R
2n, there exists a j ∈ [`] such

that 〈xj , u〉 ≥ 〈y, u〉. This implies that:

• We must have that all x1, . . . , x` satisfy ‖(xi)C‖2 ≤ √
n, and ‖yC‖2 ≤ √

n, and this means these vectors lie
in Q̃q. The part of ‖(xi)C‖2 ≤ √

n follows trivially from f(x1) = · · · = f(x`) = 1. On the other hand, if
‖yC‖2 >

√
n, letting u ∈ C be the unit vector u = yC/‖yC‖2, there exists an xj with

‖(xj)C‖2 ≥ 〈xj , u〉 ≥ 〈y, u〉 = ‖yC‖2 >
√
n,

and hence f(xj) = 0, which would be a contradiction with f(xj) = 1.

• We must have y /∈ B since f(y) = 0. As a result, there is a nonempty T such that y ∈ FT . In addition,
f(y) = 0 implies that there exists an i ∈ T such that y ∈ Fi but

1
[

〈vi, y〉 /∈ [−√
n/2,

√
n/2]

]

= 0.

Given that y ∈ Fi, setting u = gi, there exists an xj such that 〈xj , g
i〉 > 〈y, gi〉 ≥ r and thus, xj ∈ Fi. It

follows from f(xj) = 1 and the construction that

1
[

〈vi, xj〉 /∈ [−√
n/2,

√
n/2]

]

= 1.

This concludes the proof using i, y and xj .

4.5 Proof of Lemma 4.4 To prove Lemma 4.4, we introduce five new, easy-to-analyze events E1,1, E1,2, E1,3,
E1,4 and E1,5, show that each happens with probability at least 1− o(1), and that E1,1 ∩ E1,2 ∩ E1,3 ∩ E1,4 ∩ E1,5
implies E1. For the n-dimensional subspace C ⊂ R

2n (in particular, the control subspace for f), we denote
Shell(C) := {x ∈ R

2n :
√
n − 100q ≤ ‖xC‖2 ≤ √

n}, where xC denotes the orthogonal projection of x onto the
subspace C.

• E1,1(f): This event occurs if no query x in Alg with ‖xC‖2 ≤ √
n lies in

⋃

|T |≥q FT defined by f ;

• E1,2(f): This event occurs if no query x in Alg satisfies x /∈ Shell(C) and x /∈ B (or equivalently,
‖xC‖2 <

√
n− 100q and x ∈ Fi for some i ∈ [N ]);

• E1,3(f): This event occurs if no query x in Alg with ‖xC‖2 ≤ √
n has

〈x, gi〉 ≥ r + 100qn1/4, for some i ∈ [N ];

• E1,4(f): This event does not occur if there exist i ∈ [N ] and two queries x, z in Alg where (i) xC and zC are
not scalar multiples of each other, zC = (1 + a)xC + by denotes the unique decomposition with xC ⊥ y,
‖y‖2 = 1 and b > 0, such that x ∈ Fi and |〈y, gi〉| ≥ 100

√
q.

• E1,5(f): The event occurs whenever every pair x, y ∈ Alg satisfy ‖x− y‖2 ≤ 2‖(x− y)C‖2.

We first prove that E1(f) is implied by the five events together. Then, we show that each of the events holds
individually with probability 1− o(1). By a union bound over the five events, this gives Lemma 4.4.

Lemma 4.6. E1,1(f) ∩ E1,2(f) ∩ E1,3(f) ∩ E1,4(f) ∩ E1,5(f) implies E1(f).
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Proof. Recall that Q̃q denotes the set of (at most q) queries made by Alg when running on f whose orthogonal
projections onto C each have norm at most

√
n. First E1,1(f) implies that the number of “nonempty” flaps i ∈ [N ],

i.e. flaps Fi that have Q̃q ∩ Fi 6= ∅, is at most q2. Fix any nonempty flap Fi and any two points x, z ∈ Q̃q ∩ Fi.
First consider the case that xC and zC are scalar multiples of each other. Note that we have x, z ∈ Shell(C) by
E1,2(f) and thus, ‖(x− z)C‖2 ≤ 100q (since they are scalar multiples of each other). By E1,5(f), ‖x− z‖2 ≤ 200q,
which is consistent with the requirement of E1(f) since q = o(

√
qn1/4).

So consider the case when xC , zC are not scalar multiples of each other, and let zC = (1 + a)xC + by be the
unique decomposition with xC ⊥ y and y ∈ C with ‖y‖2 = 1 and b > 0. Let α := ‖(x − z)C‖22 = a2‖xC‖22 + b2.
Our goal is to establish that

(4.25) α ≤ 250000q
√
n,

so that we may use E1,5(f) to deduce that (4.24) holds for x and z.
We have ‖zC‖22 = (1 + a)2‖xC‖22 + b2. Given that ‖zC‖2 ≤ √

n,

(1 + 2a)‖xC‖22 + α = ‖zC‖22 ≤ n.

By E1,2(f), we have x ∈ Shell(C) and thus, ‖xC‖2 ≥ √
n− 100q. Plugging this in, we have

(1 + 2a)(n− 200q
√
n+ 10000q2) + α ≤ n,

or equivalently,

(4.26) α ≤ −2an+ (1 + 2a)(200q
√
n− 10000q2) ≤ 200q

√
n+ a(−2n+ 400q

√
n− 20000q2).

Let’s consider two cases:

Case 1: a ≥ −200q/
√
n. We have from Equation (4.26) (note that the coefficient of a is negative and is a value

larger than −2n)

‖(x− z)C‖22 = α ≤ 200q
√
n+ 2n · 200q√

n
= 600q

√
n,

and we get Equation (4.25).

Case 2: a < −200q/
√
n. In this case, using r ≤ 〈z, gi〉, 〈x, gi〉 ≤ r+100qn1/4 (where the first inequality is because

x, z ∈ Fi and the second is from E1,3(f)) gives

r ≤
=〈z,gi〉

︷ ︸︸ ︷

(1 + a) · 〈x, gi〉+ b · 〈y, gi〉 ≤ a · 〈x, gi〉+

b/c 〈x,gi〉≤r+100qn1/4

︷ ︸︸ ︷

r + 100qn1/4 +b ·
b/c |〈y,gi〉|≤100

√
q

︷ ︸︸ ︷

(100
√
q)

so (recall that a < −200q/
√
n is negative and −a is positive)

b ≥ −a · 〈x, gi〉 − 100qn1/4

100
√
q

≥ −ar

200
√
q
.

Recalling that ‖zC‖22 = (1 + a)2‖xC‖22 + b2 ≤ n and that ‖xC‖22 ≥ n− 200q
√
n+ 10000q2, we get

n ≥ (1 + 2a+ a2)(n− 200q
√
n) +

a2r2

40000q
≥ (1 + 2a)(n− 200q

√
n) +

a2r2

40000q

and hence,

a2 · r2

40000q
≤ 200q

√
n− 2a(n− 200q

√
n).

Recalling that a < 0, dividing through by −a we get

(−a) · r2

40000q
≤ 200q

√
n

−a
+ 2(n− 200q

√
n)

(using −a ≥ 200q/
√
n)

︷︸︸︷

≤ 3n.
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So we have

0 < −a ≤ 120000qn

r2
=

60000q√
n

· (1 + o(1)),

by the setting of r in Lemma 3.1. Recalling Equation (6.54), we get

α ≤ 200q
√
n− 2an ≤ 200q

√
n+ 240000q

√
n,

as was to be shown.

Event E1,1(f). We now show that with probability at least 1− o(1) over the draw of f ∼ Dno, all 2
q queries

specified by Alg avoid the region which is the intersection of at least q flaps. Consider any fixed query x and fix
any setting of the control subspace C ⊂ R

2n with ‖xC‖2 ≤ √
n. Using Lemma 3.2 (and the fact C is isomorphic

to R
n),

Pr
B∼Naz(r,N,C)



x ∈
⋃

|T |≥q

F T



 ≤ cq1
q!
,

so that a union bound over 2q queries gives (2c1)
q/q! = o(1) for large q.

Event E1,2(f). Similarly to above, we proceed by a union bound over all 2q queries. We consider a fixed
control subspace C and we let x be a query with ‖xC‖2 <

√
n− 100q, so

Pr
B∼Naz(r,N,C)

[
∃i ∈ [N ] : x ∈ F i

]
≤ N ·

(

1− Φ

(
r√

n− 100q

))

≤ N ·



1− Φ

(

r√
n

(

1 +
100q√

n

))




≤ N ·
√
n

r
· exp

(

− r2

2n

(

1 +
200q√

n

))

= N ·
√
n

r
· exp

(

− r2

2n

)

· exp
(

−100r2q

n3/2

)

≤ 2c1 · exp (−10q) ,

by the setting of r from Lemma 3.1. The desired claim then follows from a union bound over all 2q queries.
Event E1,3(f). Consider any query x, and consider a fixed setting of the control subspace C with ‖xC‖2 ≤ √

n.
Then,

Pr
B∼Naz(r,N)

[

∃i ∈ [N ] : 〈x, gi〉 ≥ r + 100qn1/4
]

≤ N



1− Φ

(

r + 100qn1/4

√
n

)



≤ N




1− Φ




r√
n

(

1 +
100qn1/4

r

)






 ≤ o(2−q),

where the computation proceeds similarly to E1,2(f).
Event E1,4(f). For a fixed control subspace C, we may consider two arbitrary queries x, z among the set of

all 2q queries with ‖xC‖2, ‖zC‖2 ≤ √
n. This gives 22q possible settings of the unit vector y which is orthogonal

to xC . In order for the event to fail, there must exists some i ∈ [N ] where 〈gi, xC〉 ≥ r and |〈gi, y〉| ≥ 100
√
q.

Furthermore, since xC and y are orthogonal, these two events are independent:

Pr
gi

[
〈gi, xC〉 ≥ r ∧ |〈gi, y〉| ≥ 100

√
q
]
≤ c1

N
· e−1002q/2,

hence, we may take a union bound over all i ∈ [N ] and all 22q pairs of vectors x and z.
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Event E1,5(f). Finally, consider any two vectors x and y which are queries among the 2q possible queries in
Alg. The Johnson-Lindenstrauss lemma (see Theorem 5.3.1 in [Ver18]) says that a random n-dimensional subspace
C of R2n will satisfy ‖(x− y)C‖2 ≥ (1/

√
2− ε)‖x− y‖2 except with probability exp

(
−Ω(ε2n)

)
. Thus, for large

enough n, ‖x− y‖2 ≤ 2‖(x− y)C‖2 except with probability exp
(
−Ω(n)

)
, and since q � n, we may union bound

over all 22q pairs of queries in Alg.

4.5.1 Proof of Lemma 4.5 For E2(f) ∩ E1(f) to happen, there must exist a level k ∈ [q] such that

• After the the first k − 1 queries Q̃ = Q̃k−1, E1(f) holds, i.e., the number of flaps Fi with Q̃ ∩ Fi 6= ∅ is at
most q2. In every such Fi, every two points in Q̃ ∩ Fi have distance at most 1000

√
qn1/4 and share the same

value of
1
[

〈vi, x〉 /∈ [−√
n/2,

√
n/2]

]

,

which we denote by bi ∈ {0, 1}.

• Let y be the k-th query. There exists an i such that Q̃ ∩ Fi 6= ∅ and y ∈ Fi such that

(4.27) ‖y − x‖2 ≤ 1000
√
qn1/4

for all x ∈ Q̃ ∩ Fi (the number of such i is at most q) but

1
[

〈vi, x〉 /∈ [−√
n/2,

√
n/2]

]

6= bi.

We prove below that when q ≤ n0.05, the probability of the event above for a fixed k is o(1/q) and
thus, Lemma 4.5 follows by applying a union bound on k. This follows from a union bound on all i ∈ [N ]
such that Q̃ ∩ Fi 6= ∅ and every x ∈ Q̃ ∩ Fi satisfies (Equation (4.27)), taking X (or z) below as Q̃ ∩ Fi (or y,
respectively) projected on the space orthogonal to gi and b as bi.

Lemma 4.7. Let b ∈ {0, 1}, and let X be a set of at most q points in Ball(
√
2n) and y ∈ Ball(

√
2n). Suppose that

every pair x ∈ X and y satisfy
‖(x− y)A‖2 ≤ 1000

√
qn1/4.

Then over the draw of v ∼ N(0, In) in A, the probability of 1[〈v, y〉 /∈ [−√
n/2,

√
n/2]] 6= b conditioning on the

event that 1[〈v, x〉 /∈ [−√
n/2,

√
n/2]] = b for all x ∈ X is at most O(

√
q log n/n1/4).

Before proving Lemma 4.7, we show how it implies Lemma 4.5 from a union bound. In particular, we have
concluded that

Pr
f∼Dno

[

E2(f) ∩ E1(f)
]

≤
u.b over k ∈ [q]

︷︸︸︷
q ×

u.b over i
︷︸︸︷

q2 ×O
(√

q log n/n1/4
)

= O(q3.5 log n/n1/4).

Proof. [Proof of Lemma 4.7] Fix a point x∗ ∈ X. We show that (1) the probability of 1[〈v, x∗〉 /∈ [−√
n/2,

√
n/2]] =

b for all x is at least Ω(1); and (2) the probability of

1[〈v, y〉 /∈ [−√
n/2,

√
n/2]] 6= 1[〈v, x∗〉 /∈ [−√

n/2,
√
n/2]]

is at most O(
√
q log n/n1/4). The lemma then follows.

To analyze (2), we consider any 0 < γ ≤ √
n/4 and any sign ξ ∈ {−1, 1}. We have that a draw of a Gaussian

v lying in the action subspace A satisfies

Pr
v

[
〈v, x∗〉 ∈ [ξ

√
n/2− γ, ξ

√
n/2 + γ]

]
= Pr

g∼N(0,1)



g ∈
[

ξ
√
n

2‖x∗
A‖2

− γ

‖x∗
A‖2

,
ξ
√
n

2‖x∗
A‖2

+
γ

‖x∗
A‖2

]



≤ min
τ>0

{
2γ

τ
,
4τ

n
· e−n/8τ2

}

,
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where we have used Gaussian anti-concentration (to conclude it does not lie within an interval of width 2γ/‖x∗
A‖2),

as well as Gaussian tail-bounds to say g is is larger than
√
n/(4‖x∗

A‖2). The minimum over τ > 0 is meant to
quantify over possible values of ‖x∗

A‖2. Letting γ = 50000
√
qn1/4 log n allows us to conclude that the probability

that 〈v, x∗〉 lies within distance γ of −√
n/2 or

√
n/2 is at most O(

√
q log n/n1/4).

On the other hand, given that ‖(y − x∗)A‖ ≤ 1000
√
qn1/4, we also have that

Pr
v

[∣
∣〈v, y − x∗〉

∣
∣ ≥ 1000

√
qn1/4 log n

]

≤ Pr
g∼N(0,1)

[
|g| ≥ log n

]
,

which is smaller than any inverse polynomial in n. Therefore, we have that, except with probability at most
O(

√
q log n/n1/4), for both ξ ∈ {−1, 1},

•
∣
∣
∣〈v, x∗〉 − ξ ·

√
n
2

∣
∣
∣ ≤ 50000

√
qn1/4 log n; and

• |〈v, x∗ − y〉| ≤ 1000
√
qn1/4 log n.

When these two events occur, event (2) cannot occur, which shows that (2) occurs with probability at most
O(

√
q log n/n1/4).

To conclude (1), we note that any x∗ with ‖x∗
A‖2 ≤

√
2n satisfies

Pr
v

[
〈v, x∗〉 ∈ [−√

n/2,
√
n/2]

]
= Pr

g∼N(0,1)

[

g ∈
[

− 1

2
√
2
,

1

2
√
2

]]

= Ω(1),

which shows that conditioning on event (1) does not significantly affect the probability of (2).

5 A Mildly-Exponential Lower Bound for Non-Adaptive Tolerant Testers

We will prove the following:

Theorem 5.1. (Two-sided non-adaptive tolerant testing lower bound) There exist absolute con-
stants 0 < ε1 < ε2 < 0.5 such that any non-adaptive (ε1, ε2)-tolerant tester for convexity over N(0, In) (which may

make two-sided errors) must use at least 2Ω(n1/4) queries.

5.1 The Dyes and Dno Distributions Before specifying the Dyes and Dno distributions, we first describe some
necessary objects.

The Control and Action Subspaces. Throughout, we will work over Rn+1 for convenience. Let A denote
a random 1-dimensional subspace of Rn+1, i.e.

A = {tv : t ∈ R} where v ∼ S
n is a Haar-random unit vector.

Let C be the orthogonal complement of A; note that C is a random n-dimensional subspace of Rn+1. We call C
the control subspace and we call A the action subspace.

Given a vector x ∈ R
n, we write xC to denote the projection of x onto C and we write xA to denote the

projection of x onto A, so every vector satisfies x = xA + xC . Recalling that A is a 1-dimensional subspace, when
there is no risk of confusion we write xA to denote the scalar value t such that xA = tv.

Constants. We will use four positive absolute constants c0, c1, c2 and τ in the construction. Here c0 is the
constant hidden in the statement of Lemma 3.3. We set c1, c2 and τ as follows:

c1 =
1

100
and c2 = τ =

c0c1
100

(5.28)

so that Equation (5.29) at the end of Section 5.2 is Ω(1).
Nazarov’s Body on the Control Subspace. Let N := 2

√
n. We take r to satisfy Equation (3.4) for the

absolute constant c1 given in Equation (5.28), and draw B ∼ Naz(r,N,C) (cf. Definition 2) where Naz(r,N,C) is
as defined in Definition 2 but with the n-dimensional control subspace C playing the role of Rn. (This notation is
as in Section 4.1.1 where we write Naz(r,N,C) to mean the distribution Naz(r,N) over bodies in C.) Similar
to Section 4, B ⊆ R

n+1 is a C-subspace junta. Note in particular that a draw of B ∼ Naz(r,N,C) immediately
specifies gi,Hi,F i,U i for i ∈ [N ] (and that the sets Hi,F i,U i ⊆ R

n+1 are C-subspace juntas as well).
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Functions on the Action Subspace. Let c2 be the absolute constant given in Equation (5.28). Intuitively,
2c2 will be the Gaussian measure of two symmetric intervals in the action subspace A. More formally we define

Curb :=

[

Φ−1

(
1− 2c2

3

)

,Φ−1

(
1 + c2

3

)]

∪
[

Φ−1

(
2− c2

3

)

,Φ−1

(
2 + 2c2

3

)]

.

Using the absolute constant τ given in Equation (5.28), we also define the interval

I :=
[√

n+ 1−
√

2 ln(2/τ),
√
n+ 1 +

√

2 ln(2/τ)
]

,

and we observe that a random draw of x from N(0, In+1) has ‖x‖ ∈ I with probability at least 1− τ . We write
Shelln+1 to denote the corresponding spherical shell in R

n+1, i.e.

Shelln+1 =
{
x ∈ R

n+1 : ‖x‖ ∈ I
}
.

Finally, let P be a uniformly random subset of [N ].
For a fixed setting of C (which defines the complementary A), B (which in turn defines Hi, Fi, the FT ’s, and

Ui), and P , we define the function gC,B,P : Rn+1 → {0, 1, 0?, 1?} as follows:

gC,B,P (x) =







0 if ‖xC‖ ≥ √
n or x ∈ ⋃|T |≥2 FT or x /∈ Shelln+1,

1 if x ∈ Shelln+1 and x ∈ B,

0 if x ∈ Shelln+1 and x ∈ Ui for some i ∈ [N ] and xA ∈ Curb,

0? if x ∈ Shelln+1 and x ∈ Ui for some i ∈ P and xA /∈ Curb,

1? if x ∈ Shelln+1 and x ∈ Ui for some i /∈ P and xA /∈ Curb.

The Dyes and Dno Distributions. To sample a set from either Dyes or Dno, first draw C,B,P as described
above; note that this induces a draw of A,Hi,F i, the F T ’s, and U i. Draws from Dyes and Dno are identical on
points x ∈ R

n+1 where gC,B,P (x) ∈ {0, 1}; on the other values, however,

• For functions in Dyes, we set 0? 7→ 0 and 1? 7→ 1.

• For functions in Dno, we set

0? 7→ 1
{
xA /∈ Middle

}
and 1? 7→ 1{xA ∈ Middle}

where we define

Middle :=

(

Φ−1

(
1 + c2

3

)

,Φ−1

(
2− c2

3

))

⊂ R.

See Figures 2 and 3 for illustrations of Dyes and Dno.

5.2 Distance to Convexity Recall that a draw of a function from either Dyes or Dno induces a draw of B,C,
and P . First, we give an upper bound on the expected distance to convexity of a function drawn from Dyes. Let
ε1 be the constant given by

ε1 := 2c2 + τ + 2 · E
B∼Naz(r,N)




Vol




⋃

|T |≥2

F T








.

Proposition 5.1. We have dist(fyes,Pconv) ≤ ε1 with probability at least 0.5 when fyes ∼ Dyes.

Proof. Consider a fixed choice of C,B and P . We then consider the convex set G′
C,B,P ⊂ R

n+1 defined as the

intersection of Hi (for i ∈ P ) and the set {x : ‖xC‖2 ≤ √
n}. By construction, the set G′

C,B,P is a convex set. Let
g′C,B,P denote the corresponding indicator function. We now analyze the distance between the functions gC,B,P

(where, as for functions in the support of Dyes, we identify 0? with 0 and 1? with 1) and g′C,B,P .
First of all, by construction, if gC,B,P (x) = 1, then g′C,B,P (x) is also 1. So to bound the distance, we note that

there are three possible ways in which gC,B,P (x) can be 0 but g′C,B,P (x) can be 1:
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0n

√

n

r

‖gi‖

Hi

U i

Hj

U j

C ∼= R
n

A ∼= R

j ∈ P

1 11

A ∼= R

i /∈ P

0 00

f
yes

(x) = 1

Figure 2: A depiction of Dyes. We identify the control subspace C ∼= R
n. The annulus defined by the boundary of

Ball(
√
n) and the dotted circle corresponds to points x which satisfy x ∈ Shelln+1 and ‖xC‖ ≤ √

n. Finally, the
red region in the action subspace A ∼= R corresponds to Curb.

1. x ∈ ∪|T |≥2FT ;

2. x 6∈ Shelln+1;

3. There is some i ∈ [N ] such that x ∈ Ui and xA ∈ Curb.

By definition, (i) the Gaussian volume of the first set is Vol(∪|T |≥2FT ); (ii) the Gaussian volume of the second set
is bounded by τ ; (iii) the Gaussian volume of the third set is bounded by Vol(Curb) which by definition is 2c2.
Thus, for a specific instantiation of C, B and P ,

dist(gC,B,P ,Pconv) ≤ 2c2 + τ +Vol




⋃

|T |≥2

FT



.

The claim follows from Markov’s inequality, that the last term on the RHS above is at most twice the expectation
with probability at least 1/2.
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0n

√

n

r

‖gi‖

Hi

U i

Hj

U j

C ∼= R
n

A ∼= R

j ∈ P

0 11

A ∼= R

i /∈ P

1 00

f
no
(x) = 1

Figure 3: A depiction of Dno. Our conventions are as in Figure 2.

Next, we give a lower bound on the expected distance to convexity of a function drawn from Dno. Let ε2 be the
constant given as

ε2 :=

(
1− 2c2

3

)






0.3 · E

B∼Naz(r,N)




Vol





N⊔

i=1

U i








− τ

2






.

Proposition 5.2. We have dist(fno,Pconv) ≥ ε2 with probability at least 1− o(1) when fno ∼ Dno.

Proof. As before, consider a fixed choice of C,B and P . Take any xC such that xC ∈ Ui for some i ∈ P and
‖xC‖ ≥

√
n+ 1−

√

2 ln(2/τ) (which is the left end of I). For any such xC , the line along xA looks like the picture
at the top of Figure 3, except that the function is set to 0 when ‖xC‖ makes x go outside of Shelln+1. Given that
‖xC‖ ≤ √

n, this only happens when |xA| is at least Ω(n1/4) given that τ ≤ 1/10000 in Equation (5.28).
As a result, the distance to convexity along this line in the action space (with xC fixed) is at least

Vol(Middle) = (1− 2c2)/3. This follows immediately from the fact that Middle is a symmetric interval about 0
and the choice of parameters in the definition of Middle.
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Given that the mass of x with ‖xC‖ <
√
n+ 1−

√

2 ln(2/τ) is at most τ/2, it follows that

dist(fno,Pconv) ≥









∑

i∈P

Vol(Ui)



− τ

2




 ·

(
1− 2c2

3

)

The result follows by a straight forward modification of Lemma 3.4 to show that with probability at least 1− o(1),
we have

∑

i∈P Vol(Ui) is at least 0.3 ·E[Vol(ti∈[N ]U i)] when B ∼ Naz(r,N).

Setting Parameters. We verify that ε2 − ε1 = Ω(1):

ε2 − ε1 ≥
(
1− 2c2

3

)






0.3 ·E




Vol





N⊔

i=1

U i








− τ

2







− 2c2 − τ − 2 ·E




Vol




⋃

|T |≥2

F T










≥ E




Vol





N⊔

i=1

U i










(
1− 2c2

10
− c1

1− c1

)

− 2c2 − τ

(
7− 2c2

6

)

(Lemma 3.5)

≥ c0c1

(
1− 2c2

10
− c1

1− c1

)

− 2c2 −
7τ

6
,(5.29)

(where the last line is by Lemma 3.3) which is Ω(1) given choices of c0, c1, c2 and τ made in Equation (5.28).

5.3 Proof of Theorem 1.2 We introduce some helpful notation and outline the high-level structure of the
argument.

5.3.1 Setup and Outline of Argument We introduce the following notation:

Notation 7. Given an outcome of the control subspace C and of Nazarov’s body B = H1 ∩ · · · ∩HN ∩Ball(
√
n) ⊂

R
n+1 within C as defined earlier, for x ∈ R

n+1 we define the set SB(x) as

SB(x) :=
{
` ∈ [N ] : x ∈ F`

}
.

Note that if x and y have xC = yC , then SB(x) = SB(y), i.e. only the C-part of x affects SB.

We define the regions Left,Middle,Right ⊂ R as follows:

Left :=

(

−∞,Φ−1

(
1− 2c2

3

))

,

Middle :=

(

Φ−1

(
1 + c2

3

)

,Φ−1

(
2− c2

3

))

,

Right :=

(

Φ−1

(
2 + 2c2

3

)

,∞
)

.

Note that LefttMiddletRighttCurb = R (where as before we identify R with an outcome of the one-dimensional
action subspace A).

To establish indistinguishability, we show that no non-adaptive deterministic algorithmA that makes q = 2c3n
1/4

queries, for some sufficiently small constant c3, can distinguish Dyes from Dno. Specifically, for any nonadaptive
deterministic algorithm A with query complexity q, we show that

(5.30) Pr
fyes∼Dyes

[
A accepts fyes

]
≤ Pr

fno∼Dno

[
A accepts fno

]
+ o(1).

To this end, we define Bad to be the following event:
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Bad: There are x, y ∈ Shelln+1 queried by A that (i) satisfy SB(x) = SB(y) = {`} for some ` ∈ [N ]
(or equivalently, x, y ∈ U` for some `), and (ii) have xA, yA belonging to two distinct sets among
Left, Middle, Right.

We will first show in Lemma 5.1 that A can distinguish Dyes from Dno only when Bad occurs. On the other
hand, in Lemma 5.2, we show Bad occurs with probability o(1) when the number of queries is q = 2c3n

1/4

and c3 is
sufficiently small. Lemmas 5.1 and 5.2 together establishe Equation (5.30); the proof of this is analogous to the
proof of Theorem 1 in Section 4.2 of [CDL+24] and we refer the reader to [CDL+24] for full details. Theorem 1.2
then follows from Equation (5.30) via Yao’s minimax principle (Theorem 2.1).

5.3.2 Indistinguishability of Dyes and Dno We write A(f) to denote the sequence of q answers to the queries
made by A to f . We write viewA(Dyes) (respectively viewA(Dno)) to be the distribution of A(fyes) for fyes ∼ Dyes

(respectively fno ∼ Dno). The following claim asserts that conditioned on Bad not happening, the distributions
viewA(Dyes|Bad) and viewA(Dno|Bad) are identical.

Lemma 5.1. viewA(Dyes|Bad) = viewA(Dno|Bad).

Proof. Let Q be the set of points queried by A. Recall that the distributions of the subspaces C and action
variables A are identical for Dyes and Dno. So fix an arbitrary outcome of the n-dimensional subspace C and
the orthogonal one-dimensional subspace A. As the distribution of the Nazarov body B ∼ Naz(r,N,C) is also
identical for Dyes and Dno, we fix an arbitrary outcome B of B. Let f be a random function drawn from either
Dyes or Dno.

Note that for any point x ∈ R
n+1 such that |SB(x)| 6= 1 or x /∈ Shelln+1 or xA ∈ Curb, by construction we

have that f(x) can be determined directly in the same way for both Dyes and Dno (no query is required). So it
suffices for us to consider the points x such that |SB(x)| = 1, x ∈ Shelln+1, and xA /∈ Curb. We call these points
important points.

We divide these important points into disjoint groups according to SB(x). More precisely, for every ` ∈ [N ],
let X` = {x ∈ R

n+1 | x is important, SB(x) = {`}}. Let f `(x) denote the function f(x) restricted to X` (where
as stated above, f denotes either a function drawn from Dyes or from Dno). The condition that Bad does not
happen implies that either xA ∈ Left for all x ∈ Q ∩X`, or xA ∈ Middle for all x ∈ Q ∩X`, or xA ∈ Right for all
x ∈ Q ∩X`. In particular, this means f `(x) = f `(y) for all x, y ∈ Q ∩X`, and this holds for both Dyes and Dno.

Since f `(x) are the same for all x ∈ Q ∩ X`, the distribution of f ` is actually one random bit. Indeed,
f `(x) = 0 with probability 1/2 and f `(x) = 1 with probability 1/2 (because each element ` ∈ [N ] belongs to P

with probability 1/2) independently, and this holds for both Dyes and Dno. This completes the proof of the lemma.

Next, we show that Bad happens with probability o(1) (recall that q = 2c3n
1/4

). The proof of the following
lemma follows the proof of an analogous lemma from [CDL+24]:

Lemma 5.2. For any fixed set of points Q = {x1, · · · , xq} ⊂ R
n+1, we have Pr[Bad] = o(1).

Proof. Fix a pair of query points x, y ∈ R
n+1 that belong to Q. By the definition of Bad, we may assume without

loss of generality that x, y ∈ Shelln+1. Let Badx,y be the event that

(a) x, y ∈ U ` for some ` ∈ [N ] (equivalently, SB(x) = SB(y) = {`}), and

(b) xA, yA belong to two distinct sets among {Left,Middle,Right}.

Analogous to the argument in [CDL+24], we will show that

(5.31) Pr
B
[Badx,y] ≤ min{PrB[(a)],PrB[(b)]} is very small.

Recall that each of the two intervals defining Curb (cf. Section 5.3.1) has the same width which we will denote
ρ(c2) for succinctness, i.e.

ρ(c2) := Φ−1

(
1 + c2

3

)

− Φ−1

(
1− 2c2

3

)

.

Copyright c© 2025 by SIAM
Unauthorized reproduction of this article is prohibited473

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



On one hand, for (b) to happen on x, y, we must have

(�)
∣
∣xA − yA

∣
∣ ≥ ρ(c2).

On the other hand, (a) means

(?) There exists ` ∈ [N ] such that SB(x) = SB(y) = {`}.

It follows that Pr[Badxy] ≤ min{Pr[�],Pr[?]}. We will show that min{Pr[�],Pr[?]} ≤ 2−4c3n
1/4

and will do so
via the following lemmas, Lemma 5.3 and Lemma 5.4 (below c > 0 is a suitable positive absolute constant):

Lemma 5.3. If ‖x− y‖ ≤ cn3/8, then Pr[�] ≤ 2−4c3n
1/4

.

Proof. Fix x, y such that ‖x−y‖ ≤ cn3/8. For succinctness we write z to denote x−y, so z ∈ R
n+1 and ‖z‖ ≤ cn3/8;

our goal is to show that |zA| ≤ ρ(c2) except with probability at most 2−4c3n
1/4

.
Since A is a Haar-random direction in R

n+1, the distribution of zA is the same as the distribution of ‖z‖ · v1

where v ∼ S
n−1. Hence by standard bounds on spherical caps (Lemma 2.1),

Pr

[

|v1| ≥
t√
n

]

≤ e−t2/2.

Taking t =
√
8c3 · n1/8, this probability is at most e−4c3n

1/4

< 2−4c3n
1/4

. So we set our threshold as

‖z‖ ≤ ρ(c2)

2
√
2c3

· n3/8,

i.e. we require that c ≤ ρ(c2)

2
√
2c3

, and the lemma is established.

Lemma 5.4. If ‖x− y‖ > cn3/8, then Pr[?] ≤ 2−4c3n
1/4

.

We defer the proof of Lemma 5.4 to Section 5.3.3. Thanks to Lemmas 5.3 and 5.4, we get that

Pr[Badxy] ≤ min
{
Pr[�],Pr[?]

}
≤ 2−4c3n

1/4

.

By a union bound over all (at most 22c3n
1/4

) pairs of points x, y from Q, we get that

Pr[Bad] ≤ 2−4c3n
1/4 · 22c3n1/4

= 2−2c3n
1/4

= o(1),

which completes the proof.

5.3.3 Proof of Lemma 5.4 For the remainder of this section, we will always assume that x, y ∈ Shelln+1

satisfy ‖x− y‖ > cn3/8. Note that we can view the construction gC,B,P as a two stage process:

• We first draw C, which is a Haar random n dimensional subspace of Rn+1.

• We then draw B ∼ Naz(r,N,C), and we draw P as a uniformly random subset of [N ].

We require the following claim:

Claim 8. Suppose x, y ∈ Shelln+1 satisfy ‖x− y‖ > cn3/8. Then with probability at least 1− 2−Ω(n1/4) over the
outcomes of C, we have

(5.32) ‖xC‖ ≥ ‖x‖ − 1, ‖yC‖ ≥ ‖y‖ − 1, and ‖(x− y)C‖ ≥ cn3/8 − 1.
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Proof. Fix x, y ∈ Shelln+1 such that ‖x− y‖ > cn3/8. Because A is drawn Haar-randomly (and since it defines
C), it follows from Lemma 2.1 that

Pr
A

[

‖xA‖ ≥ t · n−1/2 · ‖x‖
]

≤ e−t2/2.

Let t = βn1/8 for a suitable constant β > 0. The previous inequality gives

Pr
A

[

‖xA‖ ≥ β · n−3/8 · ‖x‖
]

≤ e−β2n1/4/2.

Thus, with probability 1− e−β2n1/4/2, we have

‖xC‖ =
√

‖x‖2 − ‖xA‖2 = ‖x‖ ·
√

1− ‖xA‖2
‖x‖2

≥ ‖x‖ ·
(

1− ‖xA‖2
2‖x‖2

)

= ‖x‖ − ‖xA‖2
2‖x‖

≥ ‖x‖ − β2n−3/4‖x‖
2

.

As x ∈ Shelln+1 and thus ‖x‖ ≤ 2
√
n, it follows that the last expression is at least ‖x‖ − 1. Identical calculations

yield the corresponding lower bounds on ‖yC‖ and ‖(x− y)C‖.

Fix an outcome C of C such that Equation (5.32) holds. For convenience, we will write x′ for xC , y
′ for yC ,

both of which lie in R
n. For the rest of the argument, we will work over C, i.e. we view sets such as H`,H

′
` and

B as lying in C (which we identify with R
n) rather than in R

n+1.
The following argument is analogous to (parts of) the proof of Lemma 15 of [CDL+24]. Recall

SB(x′) =
{
` ∈ [N ] : x′ ∈ U `

}
.

By Claim 8, we have that

Pr [?] ≤ 2−Ω(n1/4) +Pr
B

[
SB(x′) = SB(y′) = {`} for some `

]

= 2−Ω(n1/4) +Pr
B

[

B(x′) = SB(y′) and ∃` s.t. SB(y′) = {`}
]

≤ 2−Ω(n1/4) +Pr
B

[
SB(x′) = SB(y′) | ∃` s.t. SB(y′) = {`}

]
,

where x′, y′ satisfy Equation (5.32). We will analyze the case when ` = 1, which is without loss of generality since

Pr[X| t` E`] ≤ sup
`

Pr[X|E`]

for disjoint events {E`} and since the probabilities

Pr
B

[
SB(x′) = SB(y′) | ∃` s.t. SB(x′) = {`1}

]
= Pr

B

[
SB(x′) = SB(y′) | ∃` s.t. SB(x′) = {`2}

]

for all `1, `2 ∈ [N ]. So our goal is to upper bound

(5.33) PrB
[
SB(x′) = SB(y′) | SB(y′) = {1}

]
.

Observe that the event “SB(y′) = {1}” that we are conditioning on is an event over the random draw of B, i.e.
over the draw of g1, . . . , gN . To analyze this event it is helpful to introduce the following notation: For z′ ∈ R

n,
define

hfsp(z′) :=

{{
g ∈ R

n : g · z′ ≥ r
}

‖z′‖ ≤ √
n,

∅ ‖z′‖ >
√
n.
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Consequently, the event “SB(y′) = {1}” is the same as the event

{

g1 ∈ hfsp(y′)
}

∧
{

gi /∈ hfsp(y′) for i ∈ {2, . . . , N}
}

.

We may fix any outcome g2∗, . . . , gN∗ of g2, . . . , gN all of which lie outside of hfsp(y′), and we get (writing ~g to
denote (g1, . . . , gN )) that

(5.33) = Pr
~g

[

SB(x′) = SB(y′) | (g1 ∈ hfsp(x′)) ∧
(

gi /∈ hfsp(x′) for i ∈ [2 : N ]
)]

≤ sup
gi∗ /∈hfsp(y′)

i 6=1

Pr
~g

[

SB(x′) = SB(y′) | (g1 ∈ hfsp(x′)) ∧
(

gi = gi∗ for i ∈ [2 : N ]
)]

(5.34)

≤ sup
gi∗ /∈hfsp(y′)

i 6=1

Pr
~g

[

g1 ∈ hfsp(x′) ∩ hfsp(y′) | (g1 ∈ hfsp(x′)) ∧
(

gi = gi∗ for i ∈ [2 : N ]
)]

(5.35)

= Pr
g∼N(0,In)

[
g ∈ hfsp(x′) ∩ hfsp(y′) | g ∈ hfsp(x′)

]
,(5.36)

where Equation (5.34) uses Pr[X| t` E`] ≤ sup` Pr[X|E`] as earlier; Equation (5.35) uses that if g1 ∈ hfsp(y′)
then in order to have SB(x′) = SB(y′) it must be the case that g1 ∈ hfsp(x′) ∩ hfsp(y′); and Equation (5.36) is
because the event g1 ∈ hfsp(x′) ∩ hfsp(y′) is independent of the outcome of g2, . . . , gS . So in what follows our
goal is to upper bound (5.36). In other words, recalling that we write Vol(K) to denote the Gaussian measure of
the set K (cf. Section 2.2), our goal is to obtain an upper bound on

(5.37) (5.36) =
Vol(hfsp(x′) ∩ hfsp(y′))

Vol(hfsp(x′))
,

which is a two-dimensional problem because the only thing that matters about the outcome of g ∼ N(0, In)
vis-a-vis (5.37) is the projection of g in the directions of x′ and y′. Towards this goal, we recall the following tail
bound for bivariate Gaussian random variables:

Proposition 5.3. (Equation (2.11) of [Wil05]) Suppose (Z1,Z2) ∼ N(0,Σ) where

Σ =

[
1 ρ
ρ 1

]

for ρ > 0.

Then for h, k > 0, we have

Pr
(Z1,Z2)∼N(0,Σ)

[Z1 > h,Z2 > k] ≤ Φ(−h)



Φ

(

ρh− k
√

1− ρ2

)

+ ρe(h
2−k2)/2Φ

(

ρk − h
√

1− ρ2

)

.

Let g ∼ N(0, In). Define the random variables

Z1 :=
g · x′

‖x′‖ and Z2 :=
g · y′
‖y′‖

and set h := r
‖x′‖ , k := r

‖y′‖ . It is immediate that

Vol(hfsp(x′)) = Pr [Z1 > h] and Vol(hfsp(x′) ∩ hfsp(y′)) = Pr [Z1 > h,Z2 > k].

Furthermore, note that Var[Z1] = Var[Z2] = 1. We also have ρ := E [Z1Z2] =
x′·y′

‖x′‖‖y′‖ . Thanks to Claim 8, we

have

(cn3/8 − 1)2 ≤ ‖x′ − y′‖2 = ‖x′‖2 + ‖y′‖2 − 2x′ · y′ ≤ 2(n− x′ · y′)
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which in turn implies that

(5.38) ρ =
x′ · y′

‖x′‖‖y′‖ ≤
(

n− 1

2
(cn3/8 − 1)2

)

1

‖x′‖‖y′‖ .

Using Claim 8 and the fact that x, y ∈ Shelln+1, we have that ‖x′‖, ‖y′‖ ≥
√
n+ 1−

√

2 ln(2/τ)−1 and combining
this with Equation (5.38) gives

(5.39) ρ ≤

(

n− 1
2 (cn

3/8 − 1)2
)

(√
n+ 1− 2

√

2 ln(2/τ)− 1
)2 = 1− Ω(n−1/4).

Note that Vol(hfsp(x′)) = Φ(−h). Consequently, using Proposition 5.3 we get

(5.37) ≤ Φ

(

ρh− k
√

1− ρ2

)

+ ρe(h
2−k2)/2Φ

(

ρk − h
√

1− ρ2

)

,

and we will obtain an upper bound on this in the remainder of this section. In particular, note that

ρh− k ≤
(

1− Ω(n−1/4)
) r

‖x′‖ − r

‖y′‖

=
r

‖x′‖

(

1− Ω(n−1/4)− ‖x′‖
‖y′‖

)

Recall that ‖x′‖, ‖y′‖ ≤ √
n and that ‖x′‖ ≥

√
n+ 1−

√

2 ln(2/τ)−1. Hence, for n large enough and an appropriate
constant τ , we have

(5.40)
‖x′‖
‖y′‖ ≥ 1− Ω(n−1/2)

and consequently, we get that

ρh− k ≤ O





r

‖x′‖ · n1/4

(

O

(

1

n1/4

)

−Θ(1)

)



 ≤ O

(

−r

‖x′‖ · n1/4

)

≤ −Ω(1)

for an appropriate choice of τ . The final inequality relies on the above lower bound on ‖x′‖ and Lemma 3.1. An
identical calculation gives that ρk − h ≤ −Ω(1). It follows that

(5.37) ≤ 2 exp





r2

‖x′‖2

(

1− ‖x′‖2
‖y′‖2

)



Φ

(

−Ω(1)
√

1− ρ2

)

≤ 2 exp
(

o(1)
)

Φ

(

−Ω(1)
√

1− ρ2

)

(5.41)

≤ 2 exp
(

o(1)
)

Φ
(

−Ω(n1/8)
)

(5.42)

≤ 2−Θ(n1/4)(5.43)

where the final inequality relies on a standard Gaussian tail bound (cf. Proposition 2.1). To see Equation (5.41),
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note that

exp





r2

‖x′‖2

(

1− ‖x′‖2
‖y′‖2

)



 ≤ exp



Θ

(

n3/2 ln(1/c1)√
n+ 1−

√

2 ln(2/τ)− 1

)(

1− ‖x′‖2
‖y′‖2

)





≤ exp



Θ

(

n3/2 ln(1/c1)√
n+ 1−

√

2 ln(2/τ)− 1

)

·O(n−1)





≤ exp

(

O

(

1√
n

)

)

,

where we used Lemma 3.1 and Equation (5.38). Equation (5.42) immediately follows from Equation (5.39). Finally,
note that Equation (5.43) completes the proof.

6 Two-Sided Non-Adaptive Lower Bound

Our goal in this section is to prove Theorem 1.3 restated below:

Theorem 6.1. (Two-sided non-adaptive lower bound) For any constant c > 0, there is a constant
ε = εc > 0 such that any non-adaptive ε-tester for convexity over N(0, In) (which may make two-sided errors)
must use at least n1/4−c queries.

6.1 Setup We recall some necessary tools and results from [CDST15].

6.1.1 Distributions with Matching Moments The first results we need, stated below as Propositions 6.1
and 6.2, establish the existence of two finitely supported random variables that match the first ` moments of a
univariate Gaussian, for any `. Crucially, one of the random variables is supported entirely on non-negative reals,
while the other puts nonzero probability on negative values (so if ` is any fixed constant, it puts a constant amount
of probability on negative values):

Proposition 6.1. ([CDST15] Proposition 3.1) Given an odd ` ∈ N, there exists a value µ = µ(`) > 0 and a
real random variable u such that

1. u is supported on at most ` nonnegative real values; and

2. E[uk] = Eg∼N(µ,Ik)[g
k] for all k ∈ [`].

Proposition 6.2. ([CDST15] Proposition 3.2) Given µ > 0 and ` ∈ N, there exists a real random variable v

such that

1. v is supported on at most `+ 1 real values, with Pr[v < 0] > 0; and

2. E[vk] = Eg∼N(µ,Ik)[g
k] for all k ∈ [`].

We will use u (respectively v) to sample coefficients in our construction of the yes-distribution (respectively
the no-distribution).

6.1.2 Mollifiers, CLTs, Tail Bounds and Other Tools We recall the following basic proposition from
[CDST15] and its simple proof:

Proposition 6.3. ([CDST15] Proposition 4.1) Let A,Ain ⊆ R
q where Ain ⊆ A. Let Ψin : Rq → [0, 1] be a

function satisfying Ψin(X) = 1 for all X ∈ Ain and Ψin(X) = 0 for all X /∈ A. Then for all random variables
S,T :

∣

∣Pr[S ∈ A]−Pr[T ∈ A]
∣

∣ ≤
∣

∣E[Ψin(S)]−E[Ψin(T )]
∣

∣+max
{

Pr[S ∈ A \ Ain], Pr[T ∈ A \ Ain]
}

.
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Proof. Observe that Pr[S ∈ A] ≥ E[Ψin(S)] and Pr[S ∈ A] ≤ E[Ψin(S)] +Pr[S ∈ A \ Ain], and likewise for T .
As a result, we have

Pr[S ∈ A]−Pr[T ∈ A] ≤ E[Ψin(S)] +Pr[S ∈ A \ Ain]−E[Ψin(T )], and

Pr[S ∈ A]−Pr[T ∈ A] ≥ E[Ψin(S)]−Pr[T ∈ A \ Ain]−E[Ψin(T )].

Combining these, we have the proposition.

We adopt the following notation: for J = (J1, . . . , Jq) ∈ N
q a q-dimensional multi-index, we let |J | denote

J1 + · · · + Jq and let J ! denote J1!J2! · · · Jq!. We write #J to denote |{i ∈ [q] : Ji 6= 0}| (and we observe that
#J ≤ |J |). Given X ∈ R

q we write XJ to denote
∏q

i=1(Xi)
Ji , and we write X|J ∈ R

#J to denote the projection
of X onto the coordinates for which Ji 6= 0. For f : Rq → R, we write f (J) to denote the J-th derivative, i.e.

f (J) =
∂J1+···+Jqf

∂xJ1

1 · · · ∂xJq
q

.

We recall the standard multivariate Taylor expansion:

Fact 6.1. (Multivariate Taylor expansion) Given a smooth function f : Rq → R and k ∈ N,

f(X +∆) =
∑

|J|≤k

f (J)(X)

J !
·∆J + (k + 1)

∑

|J|=k+1

(

∆J

J !
E
[

(1− τ )kf (J)(X + τ∆)
]

)

,

for X,∆ ∈ R
q, where τ is uniform random over the interval [0, 1].

We recall the standard Berry–Esseen theorem for sums of independent real random variables (see for example,
[Fel68]), which is a quantitative form of the Central Limit Theorem:

Theorem 6.2. (Berry–Esseen) Let s = x1 + · · ·+ xn, where x1, . . . ,xn are independent real-valued random
variables with E[xj ] = µj and Var[xj ] = σ2

j , and
∑n

i=1 E
[

|xi|3
]

≤ κ. Let g denote a Gaussian random variable

with mean
∑n

j=1 µj and variance
∑n

j=1 σ
2
j , matching those of s. Then for all θ ∈ R, we have

∣

∣Pr[s ≤ θ]−Pr[g ≤ θ]
∣

∣ ≤ O(κ)
√

∑n
j=1 σ

2
j

.

For g ∼ N(0, In), the value
∑n

i=1 g
2
i is distributed according to a chi-squared distribution with n degrees of

freedom, denoted χ(n)2. We recall the following tail bound:

Lemma 6.1. (Tail bound for the chi-squared distribution, from [Joh01]) Let X ∼ χ(n)2. Then we
have

Pr
[

|X − n| ≥ tn
]

≤ e−(3/16)nt2 , for all t ∈ [0, 1/2).

Following [CDST15], our proof will employ a carefully chosen “mollifier,” i.e. a particular smooth function
which approximates the indicator function of a set (the use of such mollifiers is standard in Lindeberg-type
“replacement method” analyses). We will use a specific mollifier, given in [CDST15], whose properties are tailored
to our sets of interest (unions of orthants). The key properties of this mollifier are as follows:

Proposition 6.4. ( [CDST15] Proposition 4.3: “product mollifier”) Let O be a union of orthants in R
q.

For all ε > 0, there exists a smooth function ΨO : Rq → [0, 1] with the following properties:

1. ΨO(X) = 0 for all X /∈ O.

2. ΨO(X) = 1 for all X ∈ O with mini{|Xi|} ≥ ε.

3. For any multi-index J ∈ N
q such that |J | = k, ‖Ψ(J)

O ‖∞ ≤ α(k) · (1/ε)k, where α(k) = kO(k).

4. For any J ∈ N
q, Ψ

(J)
O (X) 6= 0 only if X ∈ O and |Xi| ≤ ε for all i such that Ji 6= 0. Equivalently,

Ψ
(J)
O (X) 6= 0 only if X ∈ O and ‖X|J‖∞ ≤ ε.
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6.1.3 Clipping Given C > 0, we define the “clipping” function clipC : Rn → {0, 1} which, on input a vector
x ∈ R

n, outputs 1 if and only if ‖x‖ ≤ √
n+ C.

6.2 The Yes- and No- Distributions Let c > 0 (this is the c of Theorem 1.3 ). Let u and v be the random
variables given by Propositions 6.1 and 6.2, where we take ` to be the smallest odd integer that is at least 1/c and
take µ = µ(`).

A set K drawn from our “yes-distribution” Dyes has indicator function defined as follows:

• First, choose a Haar random orthonormal basis normalized so that each vector has Euclidean length 1/
√
n,

and denote those vectors a(1), . . . ,a(n). (So a(1) ∈ R
n is a Haar random unit vector in R

n scaled by 1/
√
n;

a(2) is Haar random over the radius-(1/
√
n) sphere in the (n − 1)-dimensional subspace of Rn that is

orthogonal to a(1); and so on.)

• Then n independent draws u1, . . . ,un are made from the real random variable u of Proposition 6.1.

• The indicator function K(x) is

(6.44) K(x) = 1
[

u1(a
(1) · x)2 + · · ·+ un(a

(n) · x)2 ≤ µ & clipC(x) = 1
]

.

(Here C > 0 is a suitable constant, depending only on c but not on n, that will be fixed later in our argument.)

A set K drawn from our “no-distribution” Dno is defined very similarly, with the only difference being that v
takes the place of u:

• The vectors a(1), . . . ,a(n) are chosen exactly as in the yes-case.

• Then n independent draws v1, . . . ,vn are made from the real random variable v of Proposition 6.2.

• The indicator function K(x) is

(6.45) K(x) = 1
[

v1(a
(1) · x)2 + · · ·+ vn(a

(n) · x)2 ≤ µ & clipC(x) = 1
]

.

(Here C > 0 is the same constant as in the yes-case.)

We remark that our yes- and no- functions differ from the yes- and no- functions of [CDST15] in a number of
ways: Our functions involve a random orthonormal basis, they are degree-2 polynomial threshold functions rather
than linear threshold functions, and they involve clipping. (In contrast the [CDST15] functions do not involve
choosing a random orthonormal basis, are LTFs, and do not incorporate any clipping.)

6.2.1 Distance to Convexity We first consider yes-functions. Since u is supported on non-negative real

values and a(1), . . . ,a(n) are orthogonal vectors, every outcome of 1
[

u1(a
(1) · x)2 + · · ·+ un(a

(n) · x)2 ≤ µ
]

is an

ellipsoid in R
n. Since clipC(x) is the indicator function of a ball in R

n, and the intersection of a ball and an
ellipsoid is a convex set, we immediately have the following:

Corollary 6.1. For every C > 0, every K ⊂ R
n in the support of Dyes is convex.

The following lemma shows that a constant fraction of draws of K ∼ Dno are constant-far from being convex
(intuitively, this is because with extremely high probability a constant fraction of the coefficients v1, . . . ,vn are
negative, which causes the degree-2 PTF to be far from an ellipsoid):

Lemma 6.2. For a suitable choice of the constant C > 0, with probability at least 1/2 a random K ∼ Dno is κ-far
from convex (where κ > 0 depends on µ and ` and hence only on c).

Proof. By the rotational symmetry of the N(0, In) distribution, we may assume that the orthonormal basis
a(1), . . . ,a(n) is the canonical basis e1, . . . , en scaled by 1/

√
n. Thus a draw of K ∼ Dno (after a suitable rotation)

is
K(x) = 1

[

v1x
2
1 + · · ·+ vnx

2
n ≤ nµ & clipC(x) = 1

]

.

Copyright c© 2025 by SIAM
Unauthorized reproduction of this article is prohibited480

D
o
w

n
lo

ad
ed

 0
5
/2

2
/2

5
 t

o
 1

2
8
.5

9
.1

8
.1

2
4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



Given this, it suffices to show that a random set

(6.46) K ′ := 1
[

v1x
2
1 + · · ·+ vnx

2
n ≤ nµ

]

is 2κ-far from convex with probability at least 1/2. If we have this, then since K has distance at most κ from K ′

(which holds for a suitable choice of the constant C, using Lemma 6.1), the lemma follows.
To analyze Equation (6.46), we begin by recalling that by Proposition 6.2, the random variable v has

probability pi > 0 of taking value di for 1 ≤ i ≤ `′, where `′ is some value that is at most ` + 1, and we have
d1 < 0, d1 < d2 < · · · < d`′ , and p1 + · · ·+ p`′ = 1. Taking k = 1 in item (2) of Proposition 6.2, we have

(6.47) p1d1 + · · ·+ p`′d`′ = µ.

For i ∈ [`′], let ni denote the number of indices j ∈ [n] such that vj = di. Since all of the values p1, . . . , p`′ are
constants independent of the asymptotic parameter n, by a standard Chernoff bound and union bound, we have
that for suitable constants c1, . . . , c`′ > 0 (which depend on the pi’s),

(6.48) Pr
v1,...,vn

[

ni ∈ [pin− ci
√
n, pin+ ci

√
n] for each i ∈ [`′]

]

≥ 1/2.

Fix any outcome (v1, . . . , vn) of (v1, . . . ,vn) such that the event on the LHS of Equation (6.48) is satisfied. In the
rest of the proof we will argue that for such an outcome the set

(6.49) K ′ = 1
[

v1x
2
1 + · · ·+ vnx

2
n ≤ nµ

]

corresponding to Equation (6.46) is Ω(1)-far from convex.
For each i ∈ [`′], let Si ⊂ [n] denote the set of indices j ∈ [n] such that vj = di. Let c′i be such that

|Si| = pin+ c′i
√
n, and observe that |c′i| ≤ ci. For ease of notation we may suppose that S1 consists of the first

coordinates {1, . . . , p1n+ c′1
√
n} (this is without loss of generality by the rotational invariance of N(0, In)).

Fix any i ∈ {2, . . . , `′} and consider the tuple of random Gaussian coordinates (xj)j∈Si for a draw of
x = (x1, . . . ,xn) ∼ N(0, In). We have

E
x





∑

j∈Si

x2
j



 = pin+ c′i
√
n,

and by the Berry-Esseen theorem (Theorem 6.2), we get that

(6.50) Pr





∑

j∈Si

x2
j ∈

[

pin−Ai

√
n, pin+Ai

√
n
]



 ≥ 1− 1

10`′

for suitable positive absolute constants A2, . . . , A`′ (depending on the pi’s and the c′i’s but not on n).
Let A := `′ ·max{|d2|, . . . , |d`′ |} ·max{A2, . . . , A`′}.. By a union bound applied to Equation (6.50) over all

i ∈ {2, . . . , `′}, with probability at least 9/10 we have that

(6.51)

`′
∑

i=2

∑

j∈Si

dix
2
j ∈











`′
∑

i=2

dipin



−A
√
n,





`′
∑

i=2

dipin



+A
√
n






;

let us say that any such outcome of (xj)j∈S2∪···∪S`′
is good. Fix any good outcome (xj)j∈S2∪···∪S`′

of the last
n−(p1n+c′1

√
n) coordinates of x ∼ N(0, In), and let A′ ∈ [−A,A] be the value such that the LHS of Equation (6.51)

is equal to
(

∑`′

i=2 dipin
)

+A′√n. Recalling Equation (6.47), for this good outcome of the last n− (p1n+ c′1
√
n)

coordinates, the set (6.49) (viewed as an indicator function of coordinates 1, . . . , p1n+ c′1
√
n) becomes

(6.52) 1





p1n+c′1
√
n

∑

j=1

d1x
2
j ≤ p1d1n−A′√n



.
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Recalling that d1 < 0, this is equivalent to

(6.53) 1





p1n+c′1
√
n

∑

j=1

x2
j ≥ p1n− (A′/d1)

√
n



.

Let q denote the probability that (6.53) holds for independent standard Gaussians x1, . . . ,xp1n+c′1
√
n; the Berry-

Esseen theorem implies that q is a constant in (0, 1) which is bounded away from both 0 and 1. By the radial
symmetry of the N(0, 1)p1n+c′1

√
n distribution, it follows that the subset of Rp1n+c′1

√
n whose indicator function

is given by Equation (6.53) is Ω(1)-far from convex, because it is Ω(1)-far from convex on a “line by line” basis.
In more detail, for each unit vector v ∈ R

p1n+c′1
√
n, the function (6.53) labels points on the corresponding line

{tv : t ∈ R} as follows:

(i) if |t| ≥
√

p1n− (A′/d1)
√
n then (6.53) outputs 1 on tv;

(ii) if |t| >
√

p1n− (A′/d1)
√
n then (6.53) outputs 0 on tv.

Since this labeling corresponds to the complement of an interval, and since both (i) and (ii) have constant
probability as explained above, the distance to convexity is Ω(1), and the proof of Lemma 6.2 is complete.

6.3 Proof of Theorem 1.3 As is usual for a non-adaptive lower bound, we use Yao’s principle. Let X be a
q× n query matrix, so the i-th row Xi∗ = (Xi1, . . . ,Xin) is a vector in R

n corresponding to the i-th query made by
some deterministic algorithm. We will argue that the behavior of such a deterministic algorithm will be almost
the same on a target function K ∼ Dyes and on a target function K ∼ Dno.

First, since our analysis will only consider target functions drawn from Dyes and Dno, and any draw from
either of these distributions always involves clipping (the clipC component of Equations (6.44) and (6.45)), we may
suppose without loss of generality that each query vector Xi∗ has ‖Xi∗‖ ≤ √

n+ C, i.e. it satisfies clipC(Xi∗) = 1.
Let Ryes be the {0, 1}q-valued random variable obtained by drawing K ∼ Dyes (recall that this corresponds

to drawing u1,a
(1), . . . ,un,a

(n)) and setting the t-th coordinate of Ryes to be

K(Xt∗) = 1
[

u1(a
(1) · Xt∗)

2 + · · ·+ un(a
(n) · Xt∗)

2 ≤ µ
]

.

Similarly, let Rno be the {0, 1}q-valued random variable obtained by drawing K ∼ Dno (recall that this corresponds
to drawing v1,a

(1), . . . ,vn,a
(n)) and setting the t-th coordinate of Rno to be

K(Xt∗) = 1
[

v1(a
(1) · Xt∗)

2 + · · ·+ vn(a
(n) · Xt∗)

2 ≤ µ
]

.

To prove a two-sided non-adaptive lower bound of q queries, it suffices to show that for the Ryes,Rno defined
above, we have dTV(Ryes,Rno) = o(1).

Let us write a to denote a = (a(1), . . . , a(n)), and let us write Ra
yes to denote the random variable Ryes

conditioned on having the outcome of a(1), . . . ,a(n) come out equal to a, and similarly for Ra
no. Using the coupling

interpretation of total variation distance and the natural coupling between Dyes and Dno, we have that

(6.54) dTV(Ryes,Rno) ≤ E
a∼Haar

[

dTV(R
a
yes,R

a
no)
]

,

so it suffices to upper bound the RHS of Equation (6.54) by o(1).
Let us say that an outcome a = (a(1), . . . , a(n)) ∈ (Rn)n is bad if there is a pair (t, j) ∈ [q] × [n] such that

(a(j) · Xt∗)2 ≥ 10 lnn
n . Recalling that each query vector Xt∗ has norm at most

√
n+C and that each a(j) is a Haar

random unit vector scaled by 1/
√
n, it is easy to show that bad outcomes of a have very low probability:

Lemma 6.3. Pr[a is bad] = o(1).

Proof. Fix some pair (t, j) ∈ [q]× [n] and let r ≤ √
n+C be the norm of the query vector Xt∗. The distribution of

a(j) · Xt∗ is precisely the distribution of the first coordinate of a Haar random point drawn from the n-dimensional
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sphere of radius r/
√
n. Hence, writing u ∼ S

n−1 to denote a Haar random point from the n-dimensional unit
sphere, we have

Pr

[

(a(j) · Xt∗)
2 ≥ 10 lnn

n

]

= Pr
u∼Sn−1

[

|u1|r√
n

≥
√
10 lnn√

n

]

≤ Pr
u∼Sn−1

[

u1 ≥
√
10 lnn

r

]

≤ Pr
u∼Sn−1

[

u1 ≥ 3
√
lnn√
n

]

(using r ≤ √
n+ C)

≤ e−(9/2) lnn = 1/n9/2,

using a standard bound on spherical caps (see Lemma 2.1). Since there are only qn < n5/4 many pairs (t, j) ∈ [q]×[n],
a union bound concludes the proof.

Fix a = (a(1), . . . , a(n)) to be any non-bad outcome of a. Recalling Equation (6.54), by Lemma 6.3 it suffices to
show that dTV(R

a
yes,R

a
no) ≤ o(1); this is our goal in the rest of the proof.

Let S ∈ R
q be the random column vector whose t-th entry is

u1(a
(1) · Xt∗)

2 + · · ·+ un(a
(n) · Xt∗)

2 − µ,

and let T ∈ R
q be the random column vector whose t-th entry is

v1(a
(1) · Xt∗)

2 + · · ·+ vn(a
(n) · Xt∗)

2 − µ.

The response vector Ra
yes is determined by the orthant of Rq in which S lies and the response vector Ra

no is
determined by the orthant of Rq in which T lies. So to prove a q-query monotonicity testing lower bound for
non-adaptive algorithms, it suffices to upper bound

(6.55) dUO(S,T ) ≤ o(1),

where dUO is the “union-of-orthants” distance:

dUO(S,T ) := max
{

|Pr[S ∈ O]−Pr[T ∈ O]| : O is a union of orthants in R
q
}

.

In what follows, we will show that dUO(S,T ) ≤ o(1) when q = O(n1/4−c). To this end, let O denote a union of
orthants such that

(6.56) dUO(S,T ) =
∣

∣Pr[S ∈ O]−Pr[T ∈ O]
∣

∣.

Following [Mos08, GOWZ10, CDST15], we first use the Lindeberg replacement method to bound

(6.57)
∣

∣E[ΨO(S)]−E[ΨO(T )]
∣

∣,

and then apply Proposition 6.3 to bound (6.56).

For all i ∈ {0, 1 . . . , n} we introduce the R
q-valued hybrid random variable Q(i) whose t-th coordinate is

(Q(i))t =

i
∑

j=1

vj(a
(j) · Xt∗)

2 +

n
∑

j=i+1

uj(a
(j) · Xt∗)

2.

Observe that Q(0) = S and Q(n) = T . Informally, we are considering a sequence of hybrid distributions between
S and T obtained by swapping out each of the u-summands for a corresponding v-summand one by one. The
main idea is to bound the difference in expectations

(6.58)
∣

∣E[ΨO(Q
(i−1))]−E[ΨO(Q

(i))]
∣

∣ for each i,
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since summing (6.58) over all i ∈ [n] gives an upper bound on

∣

∣E[ΨO(S)]−E[ΨO(T )]
∣

∣ =
∣

∣E[ΨO(Q
(0))]−E[ΨO(Q

(n))]
∣

∣ ≤
n
∑

i=1

∣

∣E[ΨO(Q
(i−1))]−E[ΨO(Q

(i))]
∣

∣

using the triangle inequality.
To bound (6.58), we define the R

q-valued random variable R−i whose t-th coordinate is

(6.59) (R−i)t =

i−1
∑

j=1

vj(a
(j) · Xt∗)

2 +

n
∑

j=i+1

uj(a
(j) · Xt∗)

2.

Writing Φ(vi, a
(i)) to denote the random vector in R

q whose t-th coordinate is vi(a
(i) · Xt∗)2 and likewise for

Φ(ui, a
(i)), we have that

∣

∣E[ΨO(Q
(i−1))]−E[ΨO(Q

(i))]
∣

∣ =
∣

∣E[ΨO(R−i +Φ(vi, a
(i)))]−E[ΨO(R−i +Φ(ui, a

(i)))]
∣

∣.

Truncating the Taylor expansion of ΨO at the `-th term (Fact 6.1), we get

(6.60)

E
[

ΨO(R−i +Φ(vi, a
(i)))

]

=
∑

|J|≤`

1

J !
·E
[

Ψ
(J)
O (R−i) · (Φ(vi, a

(i)))J
]

+
∑

|J|=`+1

`+ 1

J !
·E
[

(1− τ )`Ψ
(J)
O (R−i + τΦ(vi, a

(i)))(Φ(vi, a
(i)))J

]

where τ is a random variable uniformly distributed on the interval [0, 1] (so the very last expectation is with
respect to τ , vi and R−i). Writing the analogous expression for E[ΨO(R−i +Φ(vi, a

(i)))], we observe that by
Propositions 6.1 and 6.2 the first sums are equal term by term, i.e. we have

∑

|J|≤`

1

J !
·E
[

Ψ
(J)
O (R−i) · (Φ(vi, a

(i)))J
]

=
∑

|J|≤`

1

J !
·E
[

Ψ
(J)
O (R−i) · (Φ(ui, a

(i)))J
]

for each |J | ≤ h. Thus we may cancel all but the last terms to obtain

∣

∣E[ΨO(Q
(i−1))]−E[ΨO(Q

(i))]
∣

∣ ≤
∑

|J|=`+1

`+ 1

J !
‖Ψ(J)

O ‖∞
(

E
[

|(Φ(vi, a
(i)))J |

]

+E
[

|(Φ(ui, a
(i)))J |

]

)

.

Observe that there are |{J ∈ N
q : |J | = `+ 1}| = Θ(q`+1) many terms in this sum. Recalling that each value of

(a(j) · Xt∗)2 is at most 10 logn
n (because ā is not bad), that both ui and vi are supported on at most ` + 1 real

values that depend only on ` (by Propositions 6.1 and 6.2), and Proposition 6.4, we have that for any τ > 0 (we
will choose a value for τ soon),

(6.61)
∣

∣E[ΨO(Q
(i−1))]−E[ΨO(Q

(i))]
∣

∣ = O`(1) ·
(

q

τ

)`+1

·
(

10 log n

n

)(`+1)/2

.

Summing over all i ∈ [n] costs us a factor of n and so we get

(6.62)
∣

∣E[ΨO(S)]−E[ΨO(T )]
∣

∣ = O`(1) ·
(

q

τ

)`+1

· (10 log n)
(`+1)/2

n(`−1)/2
.

Equation (6.62) gives us the desired bound on Equation (6.57); it remains only to apply Proposition 6.3 to
finish the argument. To do this, let

Bτ =
{

X ∈ O : |Xi| ≤ τ for some i ∈ [q]
}
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(Bτ corresponds to the region A \ Ain of Proposition 6.3). Since both v and u are supported on values of
magnitude O`(1), using the one-dimensional Berry-Esseen inequality (Theorem 6.2) and a union bound across the
q coordinates we get that

(6.63) Pr[S ∈ Bτ ],Pr[T ∈ Bτ ] ≤ O`(qτ) +O`(q/
√
n).

So by applying Proposition 6.3, we get that

dUO(S,T ) ≤ O`(qτ) +O`(q/
√
n) +O`(1) ·

(

q

τ

)`+1

· (10 log n)
(`+1)/2

n(`−1)/2
.

Choosing τ = 1/n1/4 and recalling that ` is the smallest odd integer that is at least 1/c, we get that for
q = O(n1/4−c) the RHS above is O`((10 log n)

(`+1)/2n−c). This is o(1) for any constants c > 0, ` ∈ N, and the
proof of Theorem 1.3 is complete.
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