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Lower Bounds for Convexity Testing
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Abstract

We consider the problem of testing whether an unknown and arbitrary set S C R™ (given as a black-box
membership oracle) is convex, versus e-far from every convex set, under the standard Gaussian distribution.

The current state-of-the-art testing algorithms for this problem make 20(v/m)-poly(1/e) non-adaptive queries,
both for the standard testing problem and for tolerant testing.
We give the first lower bounds for convexity testing in the black-box query model:
e We show that any one-sided tester (which may be adaptive) must use at least nfM queries in order to
test to some constant accuracy € > 0.
e We show that any non-adaptive tolerant tester (which may make two-sided errors) must use at least
1/4
2%n i) queries to distinguish sets that are €1-close to convex versus e2-far from convex, for some absolute
constants 0 < g1 < e2.
Finally, we also show that for any constant ¢ > 0, any non-adaptive tester (which may make two-sided errors)
must use at least n'/4¢ queries in order to test to some constant accuracy € > 0.

1 Introduction

High-dimensional convex geometry is a rich topic at the intersection of geometry, probability, and analysis
(see [BT97, GW93, LL15, Trol8, Tkol8, HW20], among many other works, for general overviews). Apart from
its intrinsic interest, a strong motivation for the study of high-dimensional convex sets from the perspective
of theoretical computer science is that convexity often translates into a form of mathematical niceness which
facilitates efficient computation, as witnessed by the plethora of positive results in algorithms and optimization for
convex functions and convex sets. In this work, the object of study is the convex set:

A set K C R™ is convex if and only if for every two points z,y € R™, any point z on the segment
between x and y lies in K whenever x and y lie in K.

The above gives a “local” characterization of convex sets, where “local” refers to the fact that (aside from quantifying
over all co-linear points z, z,y,) an algorithm may make three membership queries to check the condition — in
particular, non-convexity can be verified with three queries. Can one relax the “for all” quantification to give a
local condition which characterizes approzimately convex sets? Is there an algorithm which, by making very few
queries, can determine whether or not a set is (almost) convex?

A natural vantage point for this broad question is that of property testing [BLR93, RS96], which provides
an algorithmic framework for studying the above questions. In our setting, we consider property testing of
convex sets with respect to the standard Gaussian distribution, arguably the most natural distribution over
R™. Indeed, various learning, property testing, and other algorithmic problems in the Gaussian setting have
been intensively studied in theoretical computer science [KOS08, Vem10, MORS10, Kanl1, Kanl12, Kanl4, KK14,
KNOW14, Kanl5, CFSS17, CDS19, DMN19, OSTK21, DMN21, HSSV22, DNS23]. Furthermore, while a large
body of mathematical work (e.g. [Bor75, Bal93, LO99, Lat02, Naz03, Bor03, CEFM04, LOO05, Bor08, Roy14])
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investigates the geometry of high-dimensional convex sets against the Gaussian distribution, convexity over
Gaussian space arises naturally within theoretical computer science in the context of algorithmic discrepancy
theory [Glu89, Banl10, LM15, Rot17, LRR17, Eld22, RR23b] and lattice problems [RR23a, Rot23, RSD24].

We consider the following algorithmic task: A (randomized) testing algorithm has black-box query access
to an unknown and arbitrary function f: R™ — {0,1} (the indicator function of a subset of R™), and its goal
is to make as few membership queries on f as possible while deciding whether f is convex or e-far from convex
(meaning f and any indicator of a convex set g : R" — {0, 1} disagree on & ~ N (0, I,,) with probability at least
). Thus, a testing algorithm gives an efficiently-checkable (randomized) condition which all convex sets satisty,
and furthermore, any set which satisfies this condition is “almost” convex (with respect to the standard Gaussian
distribution). For example, the definition of a convex set naturally leads to the following property testing question,
whose positive resolution would directly give a “constant-query” testing algorithm (i.e. an algorithm whose query
complexity depends only on € and not on the ambient dimension n):

Does there exist a probability distribution over co-linear points x, z,y in R™ such that the condition
Priz € K|x,y € K| > 1 — §(e) implies that the set K must be e-close to convex with respect to the
standard Gaussian?'

In this work, we show the first non-trivial lower bounds for testing convexity under the standard Gaussian
distribution. Our lower bounds not only give a negative resolution to the above question, they imply that, in a
variety of property testing models (non-adaptive, adaptive, one-sided, two-sided, and tolerant), a dependence on
the ambient dimension n is always necessary. Prior to this work, an O(1/e)-query test was entirely possible for all
of those models.?

As further discussed in Section 1.3, a number of prior works have studied convexity testing in a range of
different settings, yet large gaps remain in our understanding. Most closely related are the works of [KOSO08],
who study learning convex sets over N(0,I,), and [CFSS17], who study testing convexity over N(0,I,) when
restricted to sample-based testers (i.e. the algorithm can only query a given number of random points independently
drawn from N(0,I,)). On the upper bound side, the best algorithm for convexity testing [CFSS17] is based
on [KOS08] and queries 20(Vn)/e” randomly sampled points from N (0,1,). Hence, this “sample-based” tester
gives a non-adaptive property testing algorithm.? Turning to lower bounds, [CFSS17] showed that, when restricted
to sample-based testers, (i) algorithms which incur one-sided error must make 22(™ queries,* and (ii) algorithms
which incur two-sided error must make 22(vV?) queries. Importantly, lower bounds on sample-based testers do
not imply any lower bounds for algorithms which are allowed to make unrestricted queries. There are many
prominent property testing problems (e.g., linearity and monotonicity) where the complexity of sample-based
testing is significantly higher than the complexity in the (standard) query-based model.”

1.1 Our Results and Discussion This work gives the first non-trivial lower bounds for query-based convexity
testing. We prove three different lower bounds for three variants of the property testing model, which we now
describe. As mentioned, the best known algorithm for convexity testing is the non-adaptive algorithm of [CFSS17],
which makes 20(vn)/<* non-adaptive queries (and makes two-sided error).

Our first result gives a polynomial lower bound for one-sided adaptive testers:

THEOREM 1.1. (ONE-SIDED ADAPTIVE LOWER BOUND) For some absolute constant € > 0, any one-sided
(potentially adaptive) e-tester for convexity over N(0,I,) must use n*") queries.

1Such a distribution would immediately yield a prozimity-oblivious testing algorithm [GR11], one of the strongest forms of property
testing. Prior to this work, the existence of a proximity-oblivious tester for convexity was entirely possible.

2An Q(1/e)-query lower bound is easily seen to hold for essentially every non-trivial property, since this many queries are required
to distinguish between the empty set (which is convex) and a random set of volume 2e (which is far from convex and far from having
most properties of interest).

3Recall that a non-adaptive testing algorithm is one in which the choice of its i-th query point does not depend on the responses
received to queries 1,...,7 — 1.

4Recall that a one-sided tester for a class of functions is one which must accept (with probability 1) any function f that belongs to
the class. This is in contrast to making two-sided error, where an algorithm may reject a function in the class with small probability.

5For example, linearity testing over {0,1}™ admits O(1/¢)-query algorithms [BLR93], but requires Q(n) queries for sample-based
testers [GR16]. Monotonicity testing over {0,1}™ admits poly(n)-query algorithms [GGLT00, CS13, CST14, KMS18], but requires
Q(27/2) for sample-based testers [GGLT00].

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

447



Downloaded 05/22/25 to 128.59.18.124 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

We also consider a challenging and well-studied extension of the standard testing model which is known as
tolerant testing [PRRO6]. Recall that an (g1, e3)-tolerant tester for a class of functions is a testing algorithm
which must accept with high probability if the input is €;-close to some function in the class and reject with
high probability if the input is eo-far from every function in the class; thus the standard property testing model
corresponds to (0,¢)-tolerant testing.

The sample-based algorithm for convexity testing that is given in [CFSS17] is based on agnostic learning results
from [KOS08]. It follows easily from the analysis in [CFSS17] and results of [KOSO08] that for any 0 < &1 < g9 with
€9 — 1 = ¢, the [CFSS17] approach gives a 20(\/5)/54—query sample-based algorithm for (1, e9)-tolerant testing of
convexity. As our final result, we give a mildly exponential lower bound on the query complexity of two-sided
non-adaptive tolerant convexity testing:

THEOREM 1.2. (TWO-SIDED NON-ADAPTIVE TOLERANT TESTING LOWER BOUND) There exist absolute con-
stants 0 < g1 < g9 < 0.5 such that any non-adaptive (e1,e9)-tolerant tester for convexity over N(0,1,) (which may

make two-sided errors) must use at least 202(n*h) queries.

Returning to the standard testing model, our final result gives a polynomial lower bound for two-sided
non-adaptive testers:

THEOREM 1.3. (TWO-SIDED NON-ADAPTIVE LOWER BOUND) For any constant ¢ > 0, there is a constant
e =¢e. > 0 such that any non-adaptive e-tester for convexity over N(0,1,) (which may make two-sided errors)
must use at least n'/4=¢ queries.

Since g-query non-adaptive lower bounds imply (log ¢)-query adaptive lower bounds, Theorem 1.3 implies an
Q(logn) two-sided adaptive convexity testing lower bound. (This is in contrast to the M _query lower bound
against one-sided adaptive testers given by Theorem 1.1.)

1.2 Techniques Our lower bounds rely on a wide range of techniques and constructions, and draw inspiration
from prior work on monotonicity testing of Boolean functions f : {0,1}" — {0,1} [CST14, BB16, CWX17, PRW22,
CDL*24].% Indeed, a conceptual contribution of our work is to highlight a (perhaps unexpected) connection
between ideas in monotonicity testing and convexity testing. Our work thus adds to and strengthens a recently
emerging analogy between monotone Boolean functions and high-dimensional convex sets [DNS21, DNS22, DNS24].
Establishing this connection requires a number of technical and conceptual innovations for each of our main results;
we highlight some of the key ideas below.

1.2.1 The Nazarov Body A central role in our lower bounds in Theorem 1.1 and Theorem 1.2 is played by
the so-called “Nazarov body” [Naz03, KOS08, CFSS17]. This is a randomized construction of a convex set B
which is a slight variation of a construction originally due to Nazarov [Naz03], which is essentially as follows: we
choose N =~ 2V™ halfspaces Hy,..., Hy in the space R, where each halfspace H; is a random halfspace at a
distance roughly n'/* from the origin. In more detail, each halfspace is H;(z) := 1{gi -x > r} where 7 ~ n3/4
and g is drawn from N (0, I,,). The convex set B is obtained by taking the intersection of all N halfspaces with
Ball(y/n), the origin-centered ball of radius v/n.” The exact parameters r and N are set carefully so that with
high probability the “Gaussian volume” of B, i.e. Prg n(0,1,)[g € B, is a constant bounded away from 0 and 1.

Note that for the Nazarov body B and any point x € Ball(y/n) \ B, there is a non-empty subset J, C [N]
such that j € J, iff H;(z) = 0, i.e., the point x violates the halfspace H; for all j € J,. Now, define a point
z € Ball(y/n) \ B to lie in the set U; if the set J, = {i}, so = € Ball(y/n) lies in U, if H; is the unique halfspace
violated by z. The set U := U;c;nUj; is thus the set of “uniquely violated points” in Ball(y/n). A crucial feature
of the Nazarov construction is that the Gaussian volume of the set of points which are uniquely violated, i.e.,
Gaussian volume of the set U, is “large” compared to the Gaussian volume of the set Ball(y/n) \ B (see Lemma 3.5
for the precise statement).

SRecall that a Boolean function f : {0,1}™ — {0,1} is monotone if whenever x,y € {0,1}™ satisfy x; < y; for i € [n], we have
f(z) < f(y)

"We remark that the original construction of [Naz03] differs from our construction in a number of ways: the distribution over
random halfspaces is slightly different, and the body is not intersected with Ball(y/n). For technical reasons, our specific construction
facilitates our lower bound arguments.
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The original construction of Nazarov may be viewed as a Gaussian-space analogue of Talagrand’s random CNF
formula [Tal96] (see [DNS24] for a discussion of this connection). Talagrand’s random CNF has been very useful in
lower bounds for monotonicity testing over the Boolean hypercube, as demonstrated by [BB16, CWX17, CDL™24].
We use our modified Nazarov body to obtain new lower bounds for convexity testing, as described below.

1.2.2 One-Sided Adaptive Lower Bound Recall that a one-sided tester always outputs “accept” on convex
sets and outputs “reject” on far-from-convex sets with probability at least 2/3 — this requirement implies that
the tester rejects only if a certificate of non-convexity is found (i.e. a set of queries x1, ..., 2; which lie in the body,
and a query y in the convex hull of 1, ..., z; which is not in the body). In order to argue a g-query lower bound,
it suffices to (1) design a distribution D, over sets which are far-from-convex with high probability, and (2) argue
that no g-query deterministic algorithm can find a certificate of non-convexity.

The key will be to “hide” the non-convexity within the uniquely violated sets of the Nazarov body. Consider
working in R?" and first randomly draw an n-dimensional “control subspace” C and the orthogonal n-dimensional
“action subspace” A; we embed the n-dimensional Nazarov body in the control subspace C. A point z € R?” lies
in our (non-convex) body iff:

e It has Euclidean norm at most v/2n, and in addition, ¢ (the projection onto the control subspace) has
norm at most y/n; and

e The point z¢ lies within an n-dimensional Nazarov body that we randomly sample within the control
subspace C} or, for every j € [N] where H;(x¢c) = 0, the projection x4 on the action subspace lies outside
of a “strip” of width 1 along a randomly sampled direction 7 in the action subspace. (See Section 4.1.2).

Consider a line through a point z € R?" in direction v/, for j € [N] such that z¢ lies in the uniquely violated
region U; and x4 lies inside the strip along v/ (and therefore outside our body). Then, as the line proceeds
out from z in directions v/ and —v7, it remains in the uniquely violated region U; (since v; is orthogonal to C)
but exits the strip, thereby entering the body and exhibiting non-convexity. By design, the uniquely violated
regions and the strips are large enough to constitute a constant fraction of the space, giving the desired distance
to convexity (Lemma 4.1). Intuitively, detecting non-convexity is hard because the algorithm does not know C,
the halfspace H (), or the direction v7. In fact, we show that an algorithm which makes few queries cannot find,
with probability at least 2/3, two points x, z outside the same halfspace H ;(-) such that z lies inside and z outside
the strip in direction v7.

Roughly speaking, the proof proceeds as follows. First, we show that, except with o(1) probability, any two
queries z, z which are far (at distance at least 1000\/31711/ %) cannot lie outside the same halfspace H ;(-) while
having projections onto C with norm at most v/n (Lemma 4.4), and moreover it is extremely unlikely for a query
to be falsified by more than ¢ halfspaces (this follows from a calculation in Lemma 3.2). The argument is geometric
in nature and is given in Section 4.5, and essentially argues that it is unlikely, since the algorithm does not know
the control subspace C' or the vector defining the halfspace, that two far-away queries happen to uniquely falsify
the same halfspace.

On the other hand, consider the halfspaces which are falsified by some query (and notice there are most ¢
such halfspaces, since each query is falsified by at most ¢ halfspaces). Since all such queries are within distance
1000\/6711/ 4 of each other, the projection of any two such queries onto the direction defining the strip is a segment
of length O(,/q/ n'/*) with high probability, and the precise location of this segment is uniform(-like, from Gaussian
anti-concentration) (see Section 4.5.1). Therefore, the probability of any particular segment of length O(\/a/nl/ 4)
which goes from inside to outside the strip of width 1 is roughly O(,/g/n'/*). We take a union bound over the ¢
possible halfspaces, each containing at most g queries which define segments which may “cross” the strip with
probability O(,/g/n'/*), for a total probability of O(¢>?/n'/*). Since this must be at least 2/3 for the algorithm

to succeed, this gives the n*(!) lower bound.

1.2.3 Two-Sided Non-Adaptive Tolerant Lower Bound Continuing the analogy with monotonicity testing
lower bounds, the proof of Theorem 1.2 is inspired by recent lower bounds on tolerant monotonicity testing, namely
[PRW22] and the follow-up work of [CDL*24]. The basic idea of [PRW22] is to construct a family of functions by
randomly partitioning the space of variables into control variables and action variables: if the control variables are
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not balanced, i.e. there are more 1s than Os (or vice-versa), then the function is trivially set to 1 (resp. to 0) both
for f ~ Dyes and for f ~ Dy,. If the control variables are balanced, then, at a high level,

1. for f ~ Dyes the function on the action variables is close to monotone;
2. for f ~ Dy, the function on the action variables is far from monotone.

Roughly speaking, the analysis in [PRW22] shows that unless the algorithm queries two points such that both
these points (a) have the same setting of the control variables, and (b) the control variables are balanced, the
algorithm cannot distinguish between f ~ Dy and f ~ Dy,. As the control and action variables are partitioned
at random, it turns out that satisfying both (a) and (b) is not possible for a non-adaptive algorithm unless the
algorithm makes 2%V many queries. In particular, [PRW22] shows that distinguishing between functions which
are ¢; /v/n-close to monotone versus cy/+/n-far from monotone (where co > ¢; > 0) cannot be done with 2°(v7)
queries.

The main modification in [CDL"24] vis-a-vis [PRW22] is the following: one can think of the balanced setting
of the control variables in the construction described above as the “minimal satisfying assignments” of the Majority
function. In [CDL*24], the Majority function is replaced by Talagrand’s random monotone DNF [Tal96], a
well-studied function in Boolean function analysis and related areas [MO03, OW07]. The specific properties of
Talagrand’s monotone DNF allows [CDL*24] to obtain a gn'/* query lower bound for non-adaptive testers where
the functions in Dy are ci-close to monotone and functions in Dy, are cp-far from monotone, where cy > ¢; are
positive constants.

For Theorem 1.2, the goal is to obtain lower bounds for tolerant convexity testing rather than monotonicity
testing. Towards that goal, let us assume that the ambient space is R**!. We choose a random n-dimensional
subspace C' and think of it as the control subspace, and we view its one-dimensional orthogonal complement as the
action subspace A (analogous to the notion of control and action variables in [PRW22, CDL"24]).® We embed the
Nazarov body B (described earlier) in the control subspace. We define the Dy and Dy, distributions in analogy
with [CDL*24], roughly as follows: for z € R**1,

1. If the projection z¢ does not lie in the uniquely violated set of B, then f(x) is defined the same way for
f ~ Dyes and f ~ Dno;

2. If the projection z¢ lies in the uniquely violated set, then f(x) is set differently for f ~ Dyes and f ~ Dy,
(depending on the projection 4 to the action subspace). In particular, for f ~ Dy, f is defined in such a
way that fﬁl(l) is close to a convex set, and for f ~ Dy, f is defined in such a way that fﬁl(l) is far from
every convex set. This crucially uses the fact that the Gaussian volume of U is “large” compared to the
Gaussian volume of the set Ball(y/n) \ B, as mentioned in our earlier discussion of the Nazarov body.

At a high level, the indistinguishability argument showing that ¢ = 22(n'/h) non-adaptive queries are required
to distinguish f ~ Dy from f ~ D,, is a case analysis based on the distance between any given pair of query
vectors z and y (see Lemma 5.3 and Lemma 5.4), combined with a union bound over all (g) possible pairs of
query vectors. Roughly speaking, if ||z — y|| is small, then the way that f depends on the projection to the action
subspace makes it very unlikely to reveal a difference between f ~ Dyes and f ~ Dyo. On the other hand, if
|z — yl| is large, then it is very unlikely for  and y to lie in the same set U;, which must be the case for the
pair z,y to reveal a difference between f ~ Dyos and f ~ Dy,. There are many technical issues and geometric

arguments required to carry out this rough plan, but when all the dust settles the argument gives a 220" Jower
bound for tolerant convexity testing.

1.2.4 Two-Sided Non-Adaptive Bound Our approach to prove Theorem 1.3 is inspired by the lower bounds
of [CDST15] on non-adaptive monotonicity testing. As in most property testing lower bounds for non-adaptive
algorithms, the high-level approach is to use Yao’s principle; we follow [CDST15] in that we use a suitable
high-dimensional central limit theorem as the key technical ingredient for establishing indistinguishability between

8We remark that in the one-sided adaptive lower bound described above, it would not have been possible to use a one-dimensional
action subspace because an adaptive algorithm would be able to detect that “global structure,” which is shared across all the U;’s; this
is why the dimension of the action subspace A was n in the earlier construction, and there was a different random “action direction”
vl from A for each j € [N] in the earlier construction.
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the yes- and no- distributions. In [CDST15] both the yes- and no- functions are linear threshold functions over
{=1,41}"™, but since any linear threshold function is trivially a convex set, the [CDST15] construction cannot be
directly used to prove a convexity testing lower bound. Instead, in order to ensure that our no- functions are both
indistinguishable from the yes- functions and are far from every convex set, we work with degree-2 polynomial
threshold functions (PTFs) over R™ rather than linear threshold functions over {—1,+1}". At a high level, degree-2
PTFs of the form ), X\iz? where each ); is positive (note that any such PTF is a convex set) play the “yes-function’
role that monotone LTFs play in the [CDST15] argument, and degree-2 PTFs of the form ), \;z? where a constant
fraction of the A}’s are negative play the “no-function” role that far-from-monotone LTFs play in the [CDST15]
argument. We show that having a constant {raction of the A;’s be negative is sufficient, in the context of our
construction, to ensure that no-functions are far from convex, and we show that the multi-dimensional central
limit theorem used in [CDST15] can be adapted to our context to establish indistinguishability and thereby prove
the desired lower bound.

)

1.3 Related Work A number of earlier papers have considered different aspects of convexity testing. One
strand of work deals with testing convexity of (real-valued) functions f: [N] — R, where convexity means the
second derivative is positive.” This study was initiated by Parnas et al. [PRR03], and extended by Pallavor
et al. [PRV18], who gave an improved result parameterized by the image size of the function being tested; by
Blais et al. [BRY14b], who gave lower bounds on testing convexity of real-valued functions over the hypergrid
[N]%; and by Belovs et al. [BBB20], who gave upper and lower bounds on the number of queries required to test
convexity of real-valued functions over various discrete domains including the discrete line, the “stripe” [3] x [N],
and the hypergrid [N]?. (See also the work of Berman et al. [BRY14a], who investigated a notion of “L-testing”
real-valued functions over [N]¢ for convexity.)

A different body of work, which is closer to this paper, deals with testing convexity of high-dimensional
sets (equivalently, Boolean indicator functions). The earliest work we are aware of along these lines is that
of Rademacher and Vempala [RV05].'° In their formulation, a body K C R™ is e-far from being convex if
Leb(K A C) > ¢ - Leb(K) for every convex set C, where Leb(-) denotes the Lebesgue volume (note that, in
contrast, our model uses absolute volume under the Gaussian measure, rather than relative volume under the
Lebesgue measure). Moreover, [RV05] allow the testing algorithm access to a black-box membership oracle (as in
our model) as well as a “random sample” oracle which can generates a uniform random point from K (for testing
with respect to relative measures, such an oracle is necessary). The main positive result of [RV05] is a (cn/e)™
sample- and query- algorithm for testing convexity in their model. [RV05] also give an exponential lower bound
for a simple “line segment tester,” which checks whether a line segment connecting two (uniformly random) points
from the body is contained within the body. This lower bound was strengthened and extended to an exponential
lower bound for a “convex hull tester” in recent work of Blais and Bommireddi [BB20]. We note that the negative
results of [RV05] and [BB20], while they deal with natural and interesting candidate testing algorithms, only rule
out very specific kinds of testers and do not provide lower bounds against general testing algorithms in their
framework.

The most closely related work for us is the study of sample-based testing algorithms for convexity under
the N(0,1,) distribution [CFSS17]. As was mentioned earlier, [CFSS17] gave a 20(v™/¢*_sample algorithm for
convexity testing and showed that any sample-based tester must use 292(v) gamples; we remark that lower bounds
for sample-based testers do not have any implications for query-based testing.!! Finally, another closely related
paper is the recent work of Blais et al. [BBH24] which gives nearly matching upper and lower bounds of 32(vn)
queries for one-sided non-adaptive convexity testing over {—1,0,1}™. [BBH24] cites the high-dimensional Gaussian
testing problem as motivation for their study of the ternary cube, and asks “Can queries improve upon the bounds
of [CFSS17, HY22] for testing convex sets with samples in R™ under the Gaussian distribution?” (Question 1.15
of [BBH24]). Our work makes progress on this question by establishing the first lower bounds for query-based
testing under the Gaussian distribution.

9These works study discrete domains, where a discrete derivative is used.

10The study of convexity testing in two dimensions was initiated in earlier work of Raskhodnikova [Ras03] for the domain [N]?, and
has since been extended to sample-based testing [BMR16], testing over the continuous domain [0, 1]2 [BMR19], and tolerant testing
[BMR22]; see also [BF18].

LL[CFSS17] also gave a 20(nlog(n/€))_sample one-sided algorithm, which was generalized to testing under arbitrary product
distributions by [HY22].

2
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2 Preliminaries

We use boldfaced letters such as x, X, etc. to denote random variables (which may be real- or vector-valued;
the intended type will be clear from the context). We write & ~ D to indicate that the random variable x is
distributed according to probability distribution D. We will frequently identify a set K C R™ with its 0/1-valued
indicator function, i.e., K(x) =1if x € K and K(z) = 0 otherwise. We write In to denote natural logarithm and
log to denote base-two logarithm.

2.1 Geometry We write S"~! for the unit sphere in R", i.e. S"! = {2 € R": ||z| = 1} where ||z| denotes
the fo-norm of x. We write Ball(r) C R™ to denote the ¢>-ball of radius r in R", i.e.

Ball(r) := {z e R" : ||z| < r}.

We will frequently write Ball := Ball(y/n). We recall the following standard bound on the volume of spherical
caps (see e.g. Lemma 2.2 of [BT97]):

LEMMA 2.1. For 0 < e < 1, we have Prlu; > ¢] < 6’”52/2, where u ~ S* !, i.e. w is a Haar random vector
drawn uniformly from the unit sphere S*1.

)

2.2 Gaussian and Chi-Squared Random Variables For ;1 € R"™ and ¥ € R"*", we write N (1, ) to denote
the n-dimensional Gaussian distribution centered at g and with covariance matrix . In particular, identifying
0 = 0™ and writing I, for the n x n identity matrix, we will denote the n-dimensional standard Gaussian distribution
by N(0, I,). We write Vol(K) to denote the Gaussian measure of a (Lebesgue measurable) set K C R™, i.e.

Vol(K):= P K].
ol(K) = Pr lgcK]

We recall the following standard tail bound on Gaussian random variables:

PROPOSITION 2.1. (THEOREM 1.2.6 OF [DUR19] OR EQUATION 2.58 OF [WAIl5]) Let ® : R — (0,1) denote
the cumulative density function of the (univariate) standard Gaussian distribution, i.e.

Then for all r > 0, we have

o) (3-%) st-em <ot (3o 5+ 2

roord P s
where @ is the one-dimensional standard Gaussian density which is given by

1 -}

It is well known that if g ~ N (0, I,,), then | g|| is distributed according to the chi distribution with n degrees
of freedom, i.e. [|g|| ~ x(n). It is well known (see e.g. [Wik23]) that the mean of the x?(n) distribution is
n, the median is n(1 — ©(1/n)), and for n > 2 the probability density function is everywhere at most 1. We
note that an easy consequence of these facts is that the origin-centered ball Ball(y/n) of radius v/n in R™ has
Vol(B(y/n)) =1/2+ o(1).

We will require the following tail bound on x?(n) random variables:

PROPOSITION 2.2. (SECTION 4.1 OoF [LMO00]) Suppose y ~ x2(n). Then for any t > 0, we have

Pr y2n+2\/nt+2t}§e*t and Pr [ygn—Q\/nt}Se*t.

y~x2(n) y~x2(n)
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2.3 Property Testing and Tolerant Property Testing Let Peony := Peonv(n) denote the class of convex
subsets of R", i.e.
Pconv == {L Q R™:Lis COHVGX}.

Given a set K C R”, we define its distance to convezity as

dist(K, Peony) = inf Vol(K A L)

€Pconv

where K AL = (K \ L)U (L\ K) denotes the symmetric difference of K and L. In particular, we will say that K
is e-close to (resp. e-far from) a convex set if dist(K, Peony) < € (resp. > ).

DEFINITION 1. (PROPERTY TESTERS AND TOLERANT PROPERTY TESTERS) Let €,¢1,¢2 € [0,0.5] with €1 < ea.
An algorithm A is an e-tester for convezity if, given black-box query access to an unknown set K C R"™, it has the
following performance guarantee:

e If K is convex, then A outputs “accept” with probability at least 2/3;
o If dist(K, Peony) > €, then A outputs “reject” with probability at least 2/3.

An algorithm A is an (g1, e2)-tolerant tester (or simply an (e1,e2)-tester) for convexity if it has the following
performance guarantee:

o [f dist(K, Peonv) < €1, then A outputs “accept” with probability at least 2/3;
o If dist(K, Peonv) = €2, then A outputs “reject” with probability at least 2/3.
In particular, note that every e-tester is a (0, e)-tolerant tester.

Our query-complexity lower bounds for non-adaptive property testing algorithms are obtained via Yao’s
minimax principle [Yao77], which we recall below. (We remind the reader that an algorithm for the problem of
(e1,e2)-tolerant testing is correct on an input function f provided that it outputs “yes” if f is e1-close to the
property and outputs “no” if f is es-far from the property; if the distance to the property is between €1 and &5
then the algorithm is correct regardless of what it outputs.)

THEOREM 2.1. (YAO’s PRINCIPLE) To prove an §(q)-query lower bound on the worst-case query complezity of
any non-adaptive randomized testing algorithm, it suffices to give a distribution D on instances such that for any
q-query non-adaptive deterministic algorithm A, we have

Pr [A 18 correct on f] <e.
F~D
where 0 < ¢ < 1 s a universal constant.

3 Nazarov’s Body

Our constructions in Sections 4 and 5 will employ modifications of a probabilistic construction of a convex body
due to Nazarov [Naz03]. Nazarov’s randomized construction yields a convex set with asymptotically maximal
Gaussian surface area [Bal93, Naz03], and modifications thereof have found applications in learning theory and
polyhedral approximation [KOS08, DNS24].

DEFINITION 2. (NAZAROV’S BODY) Forr, N > 0, we write Naz(r, N) to be the distribution over conver subsets
of R™ where a draw B ~ Naz(r, N) is obtained as follows:

1. For i € [N], draw independent vectors g' ~ N(0,1,) and let H; C R™ denote the halfspace
(3.1) H,:={recR":z-g'<r}.

2. Output the convex set B C R™ where

N
B :=Ball(vn)n | (| Hi |.
=1
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Note that for any fixed x € R”,

Prlre H)]= Pr [:ﬁgigr}
H; gi~N(0,I,)

= <
ng(OI ) szgj =

T
Pr < —
g~N(0,1) {g - IICU}

(3.2) - cb(”;')

where ®(-) is the univariate Gaussian cumulative density function. Consequently, because of the independence of
g', we have

(3.3) Pr  [oe B = 1{|al < vii} - q><| ”> |

B~Naz(r,N)

Note that B can be also written as

B =Ball(vn)\ | (Ball )\ H; )

i€[N]
For each i € [N], we define F'; (for “flap”) to be points in Ball(y/n) which are falsified by H;, i.e.
F'L = Ball(\/ﬁ) \ Hi-

Given a non-empty 7' C [N], we write Fr := (\,cp Fi. We will be interested in points in Ball(/n) that are
falsified by a unique halfspace H; and denote the set of such points as U; (for “unique”):

J#i

3.1 Useful Estimates Suppose N satisfies N = n“»(; in both Sections 4 and 5 we will take N = 2V™. Let
¢1 > 0 be a parameter; in Section 4, we will set ¢; = In2 + O(1)/N, and in Section 5 we will take ¢; to be a
suitable small absolute constant.

Throughout this section we will take r to be the unique positive number such that

(34) @(&H) —1-.

Gaussian tail bounds allow us to relate » and V:

LEMMA 3.1. We have

Proof. Note that because N = w,(1), it follows that r = w(y/n); otherwise, note that 1 — <I>(
contradicting Equation (3.4). Next, it follows from Proposition 2.1 and Equation (3.4) that

£ (8)) o) <55 2ol )

T T
454
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Figure 1: A depiction of B (in green) sampled from Naz(r, N).

The upper bound implies that

r2 N |n r2 N |n
r - exp o < —4 /= and so lnr+2—§ln —/— .
n

c1 V2w

In particular, this implies that

N |n
. < .,l12nl —/ = .
(3.6) r < n n<61 27r>

Next, note that the lower bound from Equation (3.5) implies that

N 2 1—0o(1))N |/ 2
R (L < rexp - , and so In 7( o)) i glnrJrr—.
c \ 27 72 2n c1 2 2n

This in turn implies that

C1 2

N
(3.7) r>,|2n(l —o(1))-In ( n)
The result follows from Equations (3.6) and (3.7). |

We need the following lemma which will be useful in analyzing our construction in Section 4.

LEMMA 3.2. Let z € R™ be a point with ||z| < \/n. Then

P € Fr| < —.
BNNaZIET,N) v U =
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for all g € [N].

Proof. Note that

IN

(N> Pr [zeFiNn...NF

Pr |ze |J Fr
B~Naz(r,N) q / B~Naz(r,N)

IT|>q

q
1
<~ [~n[1-@ (T)
q! ]
q
1 r
<—|N|1-9(—
~q! ( ( (\/ﬁ) )
_d
g
where the penultimate equality relies on Equation (3.4). d

We will also require a lower bound on the expected volume of |_|f\;1 U;:

LEMMA 3.3. For constant 0 < c; < 0.9 and N = 2\/’7, we have

N
E voll | |U; || = Q).
B~Naz(r,N) © !Tll (CI)

Proof. Fix any € R" and any i € [N]. Note that

(3.8) Pr [zeU]=1{|z| <Vn}- (1_(13(”:2”))@( ! )N_l.

B~Naz(r,N) ||:c||

It follows that

E [Vol(U;)] =

Pr [:B S Uz]‘|

E
x~N(0,I,,) | B~Naz(r,N)

N—-1
T T
— Vol(Ball(yn)) E 1_<1><> <I><)
( ) o) EVRNE
1 . r N—-1
- E 1—of ) )o( =
2 2N (0.1) ( <||w||)> (\/ﬁ>
1 C1 N-1 r
- E 1-9( +— <
(%) m [ o () | Jzll < v

1 c1 r
3.9 —(1-— — E 1—-&(— <
(3.9) =3 ( “at N) e N (0T, (||m||) | el < vn

where the penultimate inequality follows from Equation (3.4) and the final inequality relies on the fact that
(1-y)*>1-yz

]| < v/n

Y

Izl < vn

v

\%
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Next, at the cost of 0.01 probability mass (thanks to Proposition 2.2), we can assume that ||| € [v/n—10,/n].
It follows that

o <1 ” i )‘\/ﬁ—1o<||m<f >0.99 - < (I)(\/ﬁ—lﬂ))

Standard Gaussian tail bounds give that

o) o )
T o-o(y) oo ()

(1 —o(1))-exp (W)

=0(1),

(ﬁ—lo _ (\/77—10>3)
r 3
(Proposition 2.1)

Y]

v

where the last line uses our bounds on r from Lemma 3.1 and our bounds on ¢; from the statement of the current
lemma. Putting everything together and recalling that ¢; < 0.9, we get that for n large enough,

(3.10) E [VolU,)] = Q( (;77)) - Q<§\17>

thanks to Equation (3.4). Consequently, we have

(3.11) E |Vol| | | Ui || =),
1€[N]

completing the proof. a
Next we show that the volume of | |, U; is highly concentrated:

LEMMA 3.4. Suppose N = 2V™. With probability at least 1 — o(1), we have

V > 0.9 ,
ol |_| U | > BNNE(T,N) Vol ’|_| U,
i€[N] i€[N]

Proof. Let Naz*(r, N) be the same distribution as Naz(r, N) except that when drawing B, each g is drawn from
N(0,1I,,) conditioning on ||g*|| = /7 £ 10n'/* (instead of just drawing g* ~ N(0,1,)). Recall N = 2v". By
Proposition 2.2, the probability of ||g°|| & [/n — 10n'/%, \/n + 10n'/4] for some i € [N] is at most o(1). As a result,
we have

> E — .
BNNaZ (r,N) |—| Ui B~Naz(r,N) |—| Ui 0(1)
1E€[N]

Moreover, it suffices to show that when B ~ Naz*(r, N), we have
(3.12) Vol [ | | Ui] >099- E vol| | | U;

B~Naz*(r,N) .
1€[N] 1€[N]

with probability at least 1 — o(1). To this end, we recall McDiarmid’s inequality:
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THEOREM 3.1. (MCDIARMID BOUND [McDR89]) Let X1,...,X g be independent random variables taking values
in a set Q. Let G: Q% — R be such that for all i € [S] we have
‘G(l‘l, coss) — G(T1, o T 1, T i - - ,xs)’ < ¢

forall z1,...,xzs and = in Q. Let u = E[G(X1,...,Xs)]. Then for all T > 0, we have

,7_2
Pr [G(Xl,...,XS) < M*T} < exp <ZCQ> .
i€[S] i

We will take S = N, X; to be the halfspaces H; and G(-) to be the volume of U;c(njU;, as we draw
B ~ Naz*(r, N). Given the way g’ is drawn in B ~ Naz*(r, N), the volume of each H; is always at least (using

r > 4/2n3/2(1 — o(1) by Lemma 3.1)

.
q, ( o1 e-(—o()va
N 10n1/4> = ’

from which we have ¢; < e~(Imo(W)vn  Ag g consequence,
3 F <N e 1oV _ ),
1€[N]

It follows from McDiarmid that Equation (3.12) holds with probability at least 1 — o(1). |

4

Finally, the following lemma will allow us to obtain bounds on the distance to convexity of the “yes”- and

“no”-distributions in Section 5:

LEMMA 3.5. For r satisfying Equation (3.4), we have

2
E Vol i >1—-=2 E 1 F
B~Naz(r,N) © |—| u - <Cl ) B~Naz(r,N) Vo U T
i€[N] [T =2

Proof. Fix x € R™ and ¢ € [N]. Recall Equation (3.8). On the other hand, we have

N
Pr T € U Fr| < < > Pr [x € F1 N Fs)
B~Naz(r,N) =2 2 B~Naz(r,N)

_ (JZ ) o BE [ € Ball(Vi) 1 (R \ H)) 1 (B H))

2
N2 T
el < va- (1-e( )
y il < vk ol
where we once again used Equation (3.2). It follows from Equations (3.8) and (3.13) that for « € Ball(y/n) (i.e
lz]| < +/n), we have
N-1 -1
N -PrzeU, Z<2 (I)<T) 1<I>(r>

Pr(z € Ujp)>, Fr k4| [Ed|

1

)
o0 (7)) (7))
)

(3.13)

IN

(3.15) - <c21 (1 - ;)Nl
(3.16) > <021> (1 —e+ ;})
>%_2
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where Equation (3.14) relies on the fact that ||z|| < y/n and ®(-) being increasing, Equation (3.15) relies on our
definition of r from Equation (3.4), and Equation (3.16) relies on Bernoulli’s inequality: (1 —y)* > 1 —yz. (Note
that for z with ||| > /n, we have Pr(z € U;] = Pr[z € Up|5, Fr] = 0.)

To conclude, we have

N

. E
B~Naz(r,N)

[Vol(U,)| = E N- Pr [xeU
B~Naz(r,N) x~N(0,I,)

= E N- Pr [xe UZ}]
x~N(0,I,,) B~Naz(r,N)
2
(3.17) > ( — 2) E Pr ze |J Fr
C1 x~N(0,I,,) | B~Naz(r,N)
L 7|22 |
2
:(—2) E Pr |ze ) Fr
&1 B~Naz(r,N) | ®~N(0,I,)
|T|>2
2
= ( ~ 2) E vol| |J Fr
C1 B~Naz(r,N)
|T|>2
where Equation (3.17) follows from the earlier calculation, completing the proof. O

4 One-Sided Adaptive Lower Bound

For this section, it will be most convenient for us to work over R?”. Let us restate Theorem 1.1 in this setting:

THEOREM 4.1. (ONE-SIDED ADAPTIVE LOWER BOUND, RESTATED) For some absolute constant € > 0, any one-
sided e-tester for convexity over N (0, I,) (which may be adaptive) must use n*V) queries.

At a high level, the proof of Theorem 1.1 works by (1) first defining a distribution Dy, of “no-functions”
(Boolean-valued functions over R?", or equivalently, subsets of R?"), and showing that an (1) fraction of draws
from D, yield sets which are Q(1)-far from convex; and (2) then arguing that for a suitable absolute constant
¢ > 0, any n-query algorithm (even an adaptive one) has only an o(1) probability of querying a set of points whose
labels are inconsistent with every convex set in R?™. In the next subsection we describe the distribution Dy,.

4.1 The distribution D, of far-from-convex sets

4.1.1 Setup We will see that every function f in the support of D, outputs 0 on every input point z € R?"
with ||z]| > v/2n. To describe how f behaves within the v/2n-ball, denoted by

Ball(v2n) := {z € R* : ||jz|| < V2n},

we require some more setup.

The “control subspace,” the “action subspace,” and the Nazarov body. Let C be a Haar random
n-dimensional subspace of R?"; we call C the control subspace. Let A be the orthogonal complement of C (which
is also an n-dimensional subspace); we call A the “action subspace.” Given a vector x € R™, we write z¢ to
denote the orthogonal projection of x onto C' and we write x4 to denote the orthogonal projection of = onto A,
so every vector satisfies © = x4 + z¢.

Fix N :=2vn (we assume without loss of generality that n is a perfect square, so N is an integer). For this
choice of N, let B ~ Naz(r, N,C) where Naz(r, N, C) is as defined in Definition 2 but with the n-dimensional
control subspace C playing the role of R™. (We emphasize that B ~ Naz(r, N, C) is a subset of R?" which is an
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“n-subspace junta,” meaning that for any x € R?", membership of z in B depends only on x¢.) We take r to be
the unique positive number such that
> r\Y 1
(#) -3

In other words, we choose 7 to be the unique value such that any point  with |z¢|| = y/n has probability 1/2 of
being in B ~ Naz(r, N, C) (cf. Equation (3.3)). Note that

r\ (1 %_ c1 _ o(1)
(I)<\/ﬁ>_<2> =1 N foravaluecl—ln2:|:T

In(2)/N

by the Taylor expansion of e~ and setting of r (Lemma 3.1).

The “action directions.” For each i € [N], draw a random vector v’ from the standard Normal distribution
N(0, I,,) over the n-dimensional action subspace A (independent of everything else). We say that v* is the action
direction for the i-th flap F; of the Nazarov body B. We note that for every pair i, j € [IV], the vector g* defining
the i-th halfspace H® of the Nazarov body is orthogonal to the vector v (because g° € C and v’ € A).

4.1.2 The distribution D,,, For a fixed setting of the control subspace C' and the (orthogonal) action subspace
A, of H := (Hy,...,Hy) (which also specifies B and F;’s) and of ¥ := (v',...,v"V), we define the function
foags: R —{0,1} as follows:

0 x ¢ Ball(v/2n) or ||zc|| > /n;
foags@ =141 x € Ball(v2n) and z¢ € B;
/\jeT 1 [(vj, z) ¢ [—@, %]] z € Ball(v/2n) and z¢ € Fr for some () # T C [N].

A random function f ~ D, is drawn as follows: first we draw a Haar random n-dimensional subspace C'’; then A
is taken to be the n-dimensional (Haar random) orthogonal complement of C; then we draw B ~ Naz(r, N, C)
(which gives a draw of H as in Equation (3.1)); then we draw ¥ = (v!,...,v") from A as described above; then

we set the function f to be fo 4 7 &

4.2 Sets in D,, are far from convex We need a constant fraction of the no-functions to be constant-far from
convex. This is given by the following lemma:

LEMMA 4.1. With probability Q(1) over a draw of f ~ Dy, we have that Vol(fAg) = Q(1) for every
g :R?" — {0,1} that is the indicator function of a conver set in R*".

We require a few definitions. Define ThinShell := {z € R*" : 2n — 2 < ||z < v2n — 1}. Given an
outcome of f ~ Dy, (which determines the g*’s, v'’s, F'’s and U,’s), for i € [N] define U := UienUi. Define
p = Ef.p,, [Vol[lU N ThinShell]].

LEMMA 4.2. p=Q(1) = Lemma 4.1.

Proof. If p = Q(1) then Prg[Vol[U N ThinShell] = Q(1)] = Q(1). We view the draw of f as taking place in
two stages: in the first one C, A, and § = (g',... ,gN) are drawn, and in the second one ¥ = (v?,..., vN) is
drawn. Observe that the set U depends only on the first stage. Say that any outcome of the first stage for which
Vol[U N ThinShell] = (1) holds is a good outcome of the first stage, so an (1) fraction of outcomes of the first
stage are good.

Fix any good outcome C, A, § of the first stage (note that this fixes Uy,...,Un and hence U), and consider a
draw of & ~ N(0, Is,). We have the following claim:

CrLAM 3. For a suitable absolute constant a > 0, we have Pry n(o,1,,)[® € U N ThinShell and ||zc|| €

[V —a,v/n]] = Q(1).
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Proof. Since we have fixed a good outcome C, A, g of the first stage, we have that Prgn(0,7,,)[® € UNThinShell] >
c for some absolute constant ¢ > 0. Moreover, every outcome of « € U N ThinShell has ||z¢|| < +/n, since U is a
subset of B. So to prove the claim we need only show that Pry.no,z,,)[llzc| < vn —a] < c/2.

We first observe that by standard bounds on the chi-square distribution (Proposition 2.2), we have that
Pro vzl € [V2n—d',v2n+da']] < ¢/4 for a suitable constant a’. So fix any length £ € [v2n—d’, vV2n+a'].
Fix any vector z € R?" with ||z|| = ¢; by the rotational symmetry of the N(0, I2,) distribution and the rotational
symmetry of drawing a Haar random n-dimensional subspace C of R*", the distribution of ||z¢|| conditioned on
||| = ¢ is the same as the distribution of ||z¢|| where C is a Haar random n-dimensional subspace C of R?".
A routine application of the Johnson-Lindenstrauss theorem (see e.g. Theorem 5.3.1 of [Verl8]) gives us that
Prc(||zc|l < v/n — a] < ¢/4, for a suitable choice of the constant a. So Pry.no,n.)[llzc| < vn—a] <c/2 as
required, and the claim is proved. O

Now, given an x that lies in U N ThinShell and has ||z¢|| € [v/n — a,+/n], consider an outcome of the second
stage, i.e. the draw of ¥; note that this draw completes the draw of f ~ D,,. Define the vectors

N v' v!
r =T+, r =T — — .
[[o]] [

Let us say that an outcome of ¥ for which f(z) =0, f(z7) =1, f(z7) = 1 is a fine outcome of ¥ for x. We will
use the following claim:

CLAM 4. For any fized z that lies in U N ThinShell and has ||zc| € [vn — a,/n], we have Prz[¥ is fine for
x] = Q(1).

Proof. Since x € U; N ThinShell for some 4, it must be the case that also %, 2~ € U; (because every possible
outcome of v’ is orthogonal to every possible outcome of g7 for every j € [N]). So ¥ is fine if and only if

<'ui,x_> < —? < <vi,m> < ? < <vi,x+>, or equivalently,

(4.18) <vm> —[lv'll < *? < <v:c> <

oI

< (') + o'l
Since x € ThinShell we have v2n — 2 < ||lz|| < v2n — 1, i.e.

2n —4vV2n + 4 < ||z = ||zc|? + ||lzal|® < 20 — 2V2n + 1,
and since ||z¢|| € [v/n — a,+/n] we have that n — 2ay/n + a® < ||z¢||* < n. So
(4.19) n—4V2n+4 < |lzal® <n—2v2n+ 2av/n + 1 —d>.

Now since v® is drawn from a standard N (0, I,,) distribution over the subspace A, a routine calculation using (i)
Equation (4.19); (ii) the fact that [|v® — (v, x>Hz—HH2 and (v’,z) are independent and are distributed as a draw

from the x?(n — 1) distribution and a draw from N (0, ||z.4(|?) respectively; and (iii) the fact that a draw from the
x2(n — 1) distribution takes value n(1 4+ o(1)) except with vanishingly small probability, gives that Equation (4.18)
holds with (1) probability. |

As an immediate consequence of Claim 4, we get that an Q(1) fraction of outcomes of ¥ are such that

(4.20) Nf(’OrI : v is fine for @ | * € U N ThinShell & |zc| € [vn —a, \/ﬁ” =Q(1).

Fix any outcome ¥ of ¥ for which Equation (4.20) holds. To conclude the proof of Lemma 4.1, we observe that
since z € U; implies that ™,z ™ are also in Uj;, it follows that any z € R™ can participate in at most three triples
of the form (z,2~,2m), so the maximum possible degree of overlap across all of the triples is at most a factor of
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three. Moreover, for any € ThinShell, it holds that v2n — 3 < ||lz|| — 1 < ||z, ||lz7|| < ||=|| + 1 < V2n, and
hence the pdf of the x?(2n) distribution is within a constant factor on each of the three inputs ||z||, ||z | and ||z~ ||
(so the N(0, I>,,) Gaussian’s pdf is within a constant factor on each of the three inputs z, 2™, 27). Combining this
with Claim 3, we get that for an Q(1) fraction of outcomes of f ~ D,,, the value of f needs to be altered on at

least an (1) fraction of inputs drawn from N (0, I,,) in order to “repair” all of the violating triples (z,z+,z~) for
which € U N ThinShell and |z¢|| € [/n — a,/n]. This gives Lemma 4.2. 0

Proof. [Lemma 4.1] To prove Lemma 4.1 it remains only to show that p = Q(1), i.e. to show that

4.21 P U N ThinShell)] = Q(1).
o2 f~D,,0,a:~rN(o712,,L)[x € ( inShell)] (1)

We first observe that we have Pry.no,1,,)[2 € ThinShell] = Q(1). Fix any outcome 2 € ThinShell. Consider a
draw of the Haar random n-dimensional subspace C of R?" which is part of the draw of f ~ D,,. Similar
to the proof of Claim 3, using |z|| € [V2n — 2,v/2n — 1] the Johnson-Lindenstrauss theorem gives that
Prclllzc| € [vVn — 1,v/n]] = Q(1). Finally, fix any outcome C of C such that ||z¢|| € [v/n — 1,4/n], and
consider the “completion” of the draw of f ~ D, (i.e. the draw of B ~ Naz(r, N, C') which induces an outcome of
U). We have

“22) Frivetl=n: <l“b(||x7;||)>q’(||x2||)N_l’

so to complete the proof of Lemma 4.1 it suffices to show that (5.29) = (1). We have

(pa) =) -(5) -

where the first equality is Equation (3.4) and the second is because ¢; = ©(1). Similar to the proof of Lemma 3.3,
we have

1—<1>(”; ”) § 1—@(\; ) (ﬁ‘l— (*/’Z;”S)e
1—®

n—1
> >
1-o( %) () o ()
(

Q

(Proposition 2.1)

vV
_

o)
—~
=

o)

]
hol

VR

N- (1_(1)(”;0”)) >N-O(1)- (1-@(”;;“)) :N.e(l)-%zﬁu),

where the first equality is by Equation (3.4). This concludes the proof of Lemma 4.1.
O

4.3 Proof of Theorem 1.1

DEFINITION 5. (ONE-SIDED ADAPTIVE ALGORITHMS AS BINARY TREES) Fix n,q € N. A ¢-query one-sided
deterministic algorithm, Alg, for testing convexity in R?" is specified by a rooted binary tree of depth q where each
node contains the following information:

e FEach node v which is a not a leaf contains a query vector x, € R?", as well as two out-going edges, one
labeled 0 and one labeled 1, to nodes which we label v(0) and v(1), respectively.

e Each leaf node v contains an output o, which is set to “accept” or “reject.” Let Q1 (or Qo) denote the set
of points queried along the path that are labelled 1 (or 0, respectively). Then o, is set to be “reject” if and

only if Qo Nconv(Qy) # 0.
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By adding nodes which repeat the queries, we may assume, without loss of generality, that the depth of every leaf
of the tree is exactly q.

A g-query deterministic algorithm Alg executes on a function f: R?" — {0,1} by taking the natural root-to-leaf
path given by following the function values which the oracle returns at the queries within each of the nodes. In
particular, we will make repeated use of the following definitions which capture the execution of the algorithm Alg
on a function f:

e The node v° is the root of the tree, which is the starting point of the root-to-leaf path. Then, the nodes
v, ..., v indicate the root-to-leaf path generated by executing the algorithm on the function f. In
particular, at time step t € {0,...,q — 1}, we have v'*1 = v!(f(x,))

e The set QO is defined to be (), and for t € {0,...,q — 1} the set Q' is defined to be Q* U {x,:} C R™. Thus
Q't! is the set of vectors that are queried at time steps prior to ¢ + 1.

Once the algorithm reaches the leaf node v?, the algorithm outputs 0,4, and we will refer to Alg(f) as the output
(“accept” or “reject”) produced by the algorithm. It is trivial to see that since any ¢-query deterministic algorithm
corresponds to a tree of depth ¢, the total number of query vectors x, € R2" across all nodes of the tree is at most
29. Our goal is to show that, if Alg is a g-query deterministic algorithm which makes one-sided error, then

4.2 P Al = “reject” | = o(1).
(4.23) SPr [Alg(f) = “reject”] = o(1)
Recall that implicit in a fixed function f in the support of D, are the control and action subspaces C, A C R?",
as well as the vectors g',...,¢g"¥ € C and v',..., 0N € A, and that ¢',...,¢" define B, H; and F; regions. In

order to simplify our notation, we will often refer to a subset of the queries Q¥ for any k < ¢ whose norm on the
control subspace is bounded,

Q"= {z e Q"+ |lzol < v}
Toward showing the above upper bound, we define two important events (which will depend on the draw f ~ D).
DEFINITION 6. Given Alg and a function f from Dy, we consider the following three events:

e &1(f): This event occurs if at the end of the execution of Alg on f, every point x € QY lies in at most q
flaps, and for every flap F; with Q1N F; # (),

(4.24) | — y|| <1000y/gn'/*  for all z,y € Q1N F;.

o & (f): This event occurs if at the end of the execution of Alg on f, for every flap F; with QINF, # 0 and
every x,y € Q1N F;, we have

1!, 2) ¢ [=vi/2,vi/2l| = 1['y) & Va2, vas2)).
Theorem 1.1 follows immediately from the following three lemmas:

LEMMA 4.3. Let Alg be a one-sided, deterministic, q-query algorithm for testing convexity. Then, if Alg(f) outputs
“reject,” the event Eo(f) occurred.

LEMMA 4.4. Let Alg be a one-sided, deterministic, q-query algorithm. Then,
>1- .
ff’Dl“ [E1(f)] = 1—0(1)

no

LEMMA 4.5. Let Alg be a one-sided, deterministic, q-query algorithm, where ¢ < n%9%. Then,
Pr [&F &) <o),

Proof. [Proof of Theorem 1.1 Assuming Lemmas 4.3 to 4.5] We upper bound the expression

(4.3) .
Pr [Alg(f) = “accept”] = Pr [&()] 2 Pr [&(f)] - Pro [52(1”) ﬂ&(f)} >1-o(1)
using Lemmas 4.4 and 4.5. 0
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4.4 Proof of Lemma 4.3 Since Alg is a ¢g-query deterministic algorithm which has one-sided error, in order
for the algorithm to output “reject,” the set Q9 queried by the root-to-leaf path obtained by executing Alg on f
must contain x1,...,xe,y € Q7 satisfying

y € conv(zy,...,xe), f(y)=0, and f(x1)=---= f(ag) =1

In particular, from y € conv(zy,...,x,), we must have that, for any vector u € R?", there exists a j € [¢] such
that (x;,u) > (y,u). This implies that:

e We must have that all zy,. ..,z satisfy ||(z;)cll2 < v/n, and [Jycll2 < v/, and this means these vectors lie
in Q9. The part of ||(z;)c|2 < /n follows trivially from f(x1) =--- = f(ap) = 1. On the other hand, if
lycllz > v/n, letting u € C be the unit vector u = yc/|lyc||2, there exists an x; with

I@i)cllz = (s u) > (y,u) = llycllz > Vo,
and hence f(z;) = 0, which would be a contradiction with f(z;) = 1.

e We must have y ¢ B since f(y) = 0. As a result, there is a nonempty T such that y € Fr. In addition,
f(y) =0 implies that there exists an ¢ € T such that y € F; but

1[(v',y) & [=v/2,vn/2l]| =0,

Given that y € Fj, setting u = g¢', there exists an z; such that (x;,¢*) > (y,¢’) > r and thus, z; € F}. It
follows from f(x;) =1 and the construction that

(o', ;) ¢ [~v//2,v//2)] = 1.
This concludes the proof using 4,y and z;.

4.5 Proof of Lemma 4.4 To prove Lemma 4.4, we introduce five new, easy-to-analyze events &1, &1 2,13,
&1,4 and & 5, show that each happens with probability at least 1 —o(1), and that &1 NE2NE3NE14NELs
implies &. For the n-dimensional subspace C C R?" (in particular, the control subspace for f), we denote
Shell(C) := {z € R* : \/n — 100q < ||zc||2 < v/n}, where zc denotes the orthogonal projection of x onto the
subspace C.

e &1,1(f): This event occurs if no query z in Alg with [lzc|l2 < /n lies in U7, Fr defined by f;

e &12(f): This event occurs if no query = in Alg satisfies x ¢ Shell(C') and x ¢ B (or equivalently,
|lzc|l2 < v/n —100¢q and = € F; for some i € [N]);

o &1.3(f): This event occurs if no query = in Alg with ||z¢l|2 < +/n has

(z,g") > 1+ 100q711/47 for some ¢ € [N];

o & 4(f): This event does not occur if there exist ¢ € [N] and two queries z, z in Alg where (i) z¢ and z¢ are
not scalar multiples of each other, zc = (1 4 a)zc + by denotes the unique decomposition with z¢o L y,
|yl =1 and b > 0, such that z € F; and |(y, g*)| > 100,/g.

e & 5(f): The event occurs whenever every pair z,y € Alg satisfy ||z — y|l2 < 2||(z — y)c||2-

We first prove that £ (f) is implied by the five events together. Then, we show that each of the events holds
individually with probability 1 — o(1). By a union bound over the five events, this gives Lemma 4.4.

LEMMA 4.6. 51’1(f) N 51’2(‘]() n 51’3(]0) n 5174(]“) n 81,5(f) implies gl(f)
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Proof. Recall that Q7 denotes the set of (at most ¢) queries made by Alg when running on f whose orthogonal
projections onto C' each have norm at most v/n. First & 1(f) implies that the number of “nonempty” flaps i € [N],
i.e. flaps F; that have Q7N F; # 0, is at most ¢2. Fix any nonempty flap F; and any two points z, z € Q4N F}.
First consider the case that x¢ and z¢ are scalar multiples of each other. Note that we have x, z € Shell(C) by
&1 2(f) and thus, ||[(z — 2)c||2 < 100g (since they are scalar multiples of each other). By &1 5(f), ||z — z||2 < 200g,
which is consistent with the requirement of & (f) since ¢ = o(/gn'/4).

So consider the case when z¢, z¢ are not scalar multiples of each other, and let zo = (1 + a)x¢ + by be the
unique decomposition with zc L y and y € C with [jy|la = 1 and b > 0. Let o := ||(z — 2)¢||3 = a?|zc||3 + b2
Our goal is to establish that

(4.25) a < 250000qy/n,

so that we may use & 5(f) to deduce that (4.24) holds for = and z.
We have ||zc||3 = (1 + a)?||zc||3 + b?. Given that ||zc|l2 < /7,

(1+2a)llzcl3 + a = |zl <n.
By &1.2(f), we have z € Shell(C) and thus, ||z¢||2 > +/n — 100g. Plugging this in, we have
(1 + 2a)(n — 200gy/n + 10000¢*) + a < n,
or equivalently,
(4.26) a < —2an + (1 4 2a)(200gy/n — 10000¢%) < 200g+v/n + a(—2n + 400gy/n — 20000¢2).

Let’s consider two cases:

Case 1: a > —200g/+/n. We have from Equation (4.26) (note that the coefficient of a is negative and is a value

larger than —2n)

2
z—2)c 2:a§200q\/ﬁ+2n-@=600q\/ﬁ,
(= 2)cll2

N
and we get Equation (4.25).

Case 2: a < —200g/+/n. In this case, using < (z,¢°), (x,¢") < r+100gn'/* (where the first inequality is because
x,z € F; and the second is from & 3(f)) gives

=(z,9") b/e (x,g")<r+100gn'/*  bc [(y,g')|<100,/7
r<(l+a) (z,¢")+b-(y,9") <a-{z,0"Y+ r+ 10an1/4 +b - (100+/q)

so (recall that a < —200¢/+/n is negative and —a is positive)

—a- 1y 1/4 _
ps @ (x,g") — 100gn S _—ar

- 100,/g = 200,/g

Recalling that ||zc||3 = (1 + a)?||zc||3 + b? < n and that ||z¢||3 > n — 200g/n + 10000¢2, we get

2,.2 2,.2

a‘r a‘r
> (142 %)(n — 200 > (1+2 — 200
n>(1+2a+a”)(n q\/ﬁ)+40000q > (14 2a)(n q\/ﬁ)+40000q
and hence,
2
9 r
- — < 200 -2 — 200 .
" 10000g qv'n — 2a(n qv/'n)
Recalling that a < 0, dividing through by —a we get
) 900 (using —a > 200q/+/n)
(—a) L avn +2(n — 200gy/n) < 3n.

140000 = —a
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So we have 120000 60000

qn q
_ < = M 1 1
0< —a < 7’2 \/ﬁ ( + 0( ))7

by the setting of 7 in Lemma 3.1. Recalling Equation (6.54), we get

a < 200gy/n — 2an < 200g+/n + 240000¢+/n,
as was to be shown. O

Event & 1(f). We now show that with probability at least 1 — o(1) over the draw of f ~ Dy, all 27 queries
specified by Alg avoid the region which is the intersection of at least ¢ flaps. Consider any fixed query x and fix
any setting of the control subspace C' C R*" with [lz¢|2 < v/n. Using Lemma 3.2 (and the fact C' is isomorphic
to R™),

q

C

Pr T e U Fr| < —1,

B~Naz(r,N,C) q'
IT|2q

so that a union bound over 29 queries gives (2¢1)9/q! = o(1) for large q.
Event & 2(f). Similarly to above, we proceed by a union bound over all 29 queries. We consider a fixed
control subspace C and we let x be a query with ||z¢|l2 < v/n — 100q, so

.
P Jie[Nl:zeF|<N-[1-®(—"
B~Naz(rr'7N,C)[Z€[ J:zeFi] < ( <\/ﬁ—100q>>
r 100q
<N-|1-0| 1 (1+224
= (ﬁ( +\/ﬁ)>

n r? 200q
<N. YD, R e
- r P ( 2n < + \/ﬁ)
n r? 10072
=N- % - exp <_2n> - exp (—713/2(1> < 2¢ -exp (—10q),

by the setting of r from Lemma 3.1. The desired claim then follows from a union bound over all 29 queries.
Event &; 3(f). Consider any query x, and consider a fixed setting of the control subspace C with ||z¢]l2 < v/n.
Then,

NG

1 1 1/4
Pr [3i€[N]: (z,g") > r+100gn/"| <N [1-@ <7°+00‘1”>
B~Naz(r,N)

1 1/4
SN 1—® L 1+M SO(Q*Q)’
\/ﬁ T

where the computation proceeds similarly to & 2(f).

Event & 4(f). For a fixed control subspace C, we may consider two arbitrary queries z, z among the set of
all 29 queries with ||z¢||2, ||2¢ ]2 < v/n. This gives 227 possible settings of the unit vector y which is orthogonal
to z¢. In order for the event to fail, there must exists some i € [N] where (g;,z¢) > r and |(g;,y)| > 100,/q.
Furthermore, since z¢ and y are orthogonal, these two events are independent:

C _ 2
Pr [<gi7«756‘> >rAg;y)| > 100\/5] < Nl L e~100%0/2,
it

hence, we may take a union bound over all i € [N] and all 227 pairs of vectors z and z.
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Event & 5(f). Finally, consider any two vectors z and y which are queries among the 27 possible queries in
Alg. The Johnson-Lindenstrauss lemma (see Theorem 5.3.1 in [Ver18]) says that a random n-dimensional subspace
C of R*" will satisfy ||(z — y)cll2 > (1/V2 —¢)|| — y||2 except with probability exp (—€2(?n)). Thus, for large
enough n, ||z — yll2 < 2|[(z — y)c|l2 except with probability exp (—Q(n)), and since ¢ < n, we may union bound
over all 229 pairs of queries in Alg.

4.5.1 Proof of Lemma 4.5 For &(f) N &;(f) to happen, there must exist a level k € [g] such that

o After the the first k — 1 queries Q = QF~', £,(f) holds, i.e., the number of flaps F; with Q N F; # 0 is at

most ¢2. In every such F}, every two points in Q N F; have distance at most 1000\/§n1/ 4 and share the same

value of '
1 [w, ) & [—vn/2,vn/2]],
which we denote by b; € {0,1}.
e Let y be the k-th query. There exists an i such that Q N F; # 0 and y € F; such that

(4.27) ly — |2 < 1000,/gn*/*

for all € Q N F; (the number of such i is at most ¢) but
1w, 2) ¢ [=Vn/2,v/n/2]] # b

We prove below that when ¢ < n%0, the probability of the event above for a fixed k is o(1/q) and
thus, Lemma 4.5 follows by applying a union bound on k. This follows from a union bound on all ¢ € [N]
such that Q N F; # 0 and every € Q N F; satisfies (Equation (4.27)), taking X (or z) below as QNF, (or y,
respectively) projected on the space orthogonal to ¢g° and b as b;.

LEMMA 4.7. Let b € {0,1}, and let X be a set of at most q points in Ball(v/2n) and y € Ball(v/2n). Suppose that
every pair x € X and y satisfy
[z = y)alla < 1000y/gn"/*.

Then over the draw of v ~ N(0,1I,) in A, the probability of 1[(v,y) & [—v/n/2,/n/2]] # b conditioning on the
event that 1[(v,z) & [—v/n/2,v/n/2]] = b for all x € X is at most O(\/qlogn/n/*).

Before proving Lemma 4.7, we show how it implies Lemma 4.5 from a union bound. In particular, we have
concluded that

u.b over k € [q] u.b over i

oy ~= /2\ 174\ _ 3.5 1/4
ffg E(f)N&(f)] < q X q xO(\/alogn/n )70((] logn/n*'?).

Proof. [Proof of Lemma 4.7] Fix a point * € X. We show that (1) the probability of 1[{v,z*) ¢ [—y/n/2,/n/2]] =
b for all z is at least Q(1); and (2) the probability of

(v,y) ¢ [=vn/2,v/n/2]] # 1[(v,2") & [-v/n/2,v/n/2]]

is at most O(y/glogn/n'/*). The lemma then follows.
To analyze (2), we consider any 0 < v < /n/4 and any sign ¢ € {—1,1}. We have that a draw of a Gaussian
v lying in the action subspace A satisfies

Pr[(v,07) € [&v/n/2 = 7,6V/n/2+1]] = Pr e[wﬁ v &My

g~N(0,1) 2lzillz Nznlle” 2zl llzh ]l
S min {277 4l . en/STQ} 7
>0 T ' n
467 Copyright © 2025 by SIAM

Unauthorized reproduction of this article is prohibited



Downloaded 05/22/25 to 128.59.18.124 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

where we have used Gaussian anti-concentration (to conclude it does not lie within an interval of width 2v/||z%]2),
as well as Gaussian tail-bounds to say g is is larger than /n/(4]|z%||2). The minimum over 7 > 0 is meant to
quantify over possible values of ||z%||2. Letting v = 50000\/6711/ 4logn allows us to conclude that the probability
that (v, 2*) lies within distance v of —/n/2 or \/n/2 is at most O(,/glogn/nl/4).

On the other hand, given that ||(y — 2*)4]| < 1000,/gn'/*, we also have that

P{ Ly —2*)| > 1000, /gn'/1 }< P > logn]
o |(vy x)|7 Van' /" logn 7gNN(I(‘),1) [|g\7 ogn]

which is smaller than any inverse polynomial in n. Therefore, we have that, except with probability at most
O(,/qlogn/n'/*), for both ¢ € {-1,1},

° <v,x*>f§~4

< 50000,/gn'/*log n; and

e |(v,2* —y)| < 1000,/gn'/*logn.

When these two events occur, event (2) cannot occur, which shows that (2) occurs with probability at most
O(,/qlogn/n*/*).
To conclude (1), we note that any z* with ||z% ||z < v/2n satisfies

Pr[(v.0%) € [-vA/2vi/Z) = Pr [g e [2\1@ 2;§H — o),

which shows that conditioning on event (1) does not significantly affect the probability of (2). d

5 A Mildly-Exponential Lower Bound for Non-Adaptive Tolerant Testers
We will prove the following;:

THEOREM 5.1. (TWO-SIDED NON-ADAPTIVE TOLERANT TESTING LOWER BOUND) There exist absolute con-
stants 0 < €1 < g9 < 0.5 such that any non-adaptive (e1,€2)-tolerant tester for convexity over N(0,I,) (which may

make two-sided errors) must use at least 20(n'/h)

queries.
5.1 The Dy, and D,, Distributions Before specifying the Dyes and D, distributions, we first describe some
necessary objects.

The Control and Action Subspaces. Throughout, we will work over R™+! for convenience. Let A denote
a random 1-dimensional subspace of R**1 i.e.

A = {tv : t € R} where v ~ S" is a Haar-random unit vector.

Let C be the orthogonal complement of A; note that C' is a random n-dimensional subspace of R**!1. We call C
the control subspace and we call A the action subspace.

Given a vector x € R”, we write z¢ to denote the projection of z onto C and we write x4 to denote the
projection of z onto A, so every vector satisfies x = x4 + z¢. Recalling that A is a 1-dimensional subspace, when
there is no risk of confusion we write x 4 to denote the scalar value ¢ such that z4 = tv.

Constants. We will use four positive absolute constants cg, ¢1,co and 7 in the construction. Here ¢q is the
constant hidden in the statement of Lemma 3.3. We set ¢1, co and 7 as follows:

CoC1
and ¢y =7 =

2 - 0
(5 8) C1 100

100
so that Equation (5.29) at the end of Section 5.2 is (1).

Nazarov’s Body on the Control Subspace. Let N :=2V". We take r to satisfy Equation (3.4) for the
absolute constant ¢; given in Equation (5.28), and draw B ~ Naz(r, N, C) (cf. Definition 2) where Naz(r, N, C) is
as defined in Definition 2 but with the n-dimensional control subspace C playing the role of R™. (This notation is
as in Section 4.1.1 where we write Naz(r, N, C) to mean the distribution Naz(r, N) over bodies in C.) Similar
to Section 4, B C R"*! is a C-subspace junta. Note in particular that a draw of B ~ Naz(r, N, C) immediately
specifies g*, H;, F;,U; for i € [N] (and that the sets H;, F;,U; C R"*! are C-subspace juntas as well).
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Functions on the Action Subspace. Let ¢s be the absolute constant given in Equation (5.28). Intuitively,
2co will be the Gaussian measure of two symmetric intervals in the action subspace A. More formally we define

(I>_1 1—2co (I)_l 1+ co (I)_l 2—cy CIJ_l 24 2c¢9
3 ’ 3 3 ’ 3 ’

Using the absolute constant 7 given in Equation (5.28), we also define the interval

I:= [\/n T1-2W(2/7),Vn+1+ \/21n(2/7>}a

Curb := U

and we observe that a random draw of @ from N (0, I,,+1) has ||| € I with probability at least 1 — 7. We write
Shell, 1 to denote the corresponding spherical shell in R*+!, i.e.

Shell,, 1 = {x e R lz|| € I}.

Finally, let P be a uniformly random subset of [N].
For a fixed setting of C' (which defines the complementary A), B (which in turn defines H;, F;, the Fp’s, and
U;), and P, we define the function go g p : R"™! — {0,1,0%,1*} as follows:

0 if [lzc|l = Vnor @ € Upsy Frr or @ & Shell, 14,

if € Shell,,y; and z € B,
go,,p(x) =<0 if x € Shell,.; and x € U; for some i € [N] and x4 € Curb,
0* if ¢ € Shell,,; and z € U; for some i € P and x4 ¢ Curb,
1* if x € Shell,,11 and x € U; for some i ¢ P and x4 ¢ Curb.

The Dy and D, Distributions. To sample a set from either Dyes or Dy, first draw C, B, P as described
above; note that this induces a draw of A, H;, F';, the Fr’s, and U;. Draws from Dyes and Dy, are identical on
points z € R where go g p(z) € {0,1}; on the other values, however,

e For functions in Dy.s, we set 0* — 0 and 1* > 1.
e For functions in D,,,, we set

0" 1{x4 ¢ Middle} and 1"+ 1{z4 € Middle}

Middle := (qu (IJ;CQ),@* (2 _362)> CR.

See Figures 2 and 3 for illustrations of Dyes and Dye.

where we define

5.2 Distance to Convexity Recall that a draw of a function from either Dyes or Dy, induces a draw of B, C,
and P. First, we give an upper bound on the expected distance to convexity of a function drawn from Dys. Let
€1 be the constant given by

€1:=2c0+T+2- E Vol U Fr
B~Naz(r,N)
|T|>2

PropoOsITION 5.1. We have dist(fyesﬂ%onv) < &1 with probability at least 0.5 when f o ~ Dyes.

yes

Proof. Consider a fixed choice of C, B and P. We then consider the convex set G 5 p C R"*! defined as the
intersection of H; (for i € P) and the set {z : ||z¢ll2 < y/n}. By construction, the set G 5 p is a convex set. Let
gc.p,p denote the corresponding indicator function. We now analyze the distance between the functions gc g, p
(where, as for functions in the support of Dy, we identify 0% with 0 and 1* with 1) and g¢ 5 p-

First of all, by construction, if go,5,p(x) = 1, then g p p(z) is also 1. So to bound the distance, we note that
there are three possible ways in which gc p p(7) can be 0 but g¢ g p(7) can be 1:
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[] fral@=1

Figure 2: A depiction of Dyes. We identify the control subspace C' = R". The annulus defined by the boundary of
Ball(y/n) and the dotted circle corresponds to points  which satisfy @ € Shell,, 11 and ||z¢|| < v/n. Finally, the
red region in the action subspace A = R corresponds to Curb.

1.z € Ujp|>2Fr;
2. x & Shell,,41;
3. There is some i € [N] such that € U; and x4 € Curb.
By definition, (i) the Gaussian volume of the first set is Vol(U|p|>2Fr); (ii) the Gaussian volume of the second set

is bounded by 7; (iii) the Gaussian volume of the third set is bounded by Vol(Curb) which by definition is 2cs.
Thus, for a specific instantiation of C, B and P,

dist(gc, B, Py Peonv) < 2¢2 + 7 + Vol U Fr
|T|>2

The claim follows from Markov’s inequality, that the last term on the RHS above is at most twice the expectation
with probability at least 1/2. 0
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(] ful®=1

Figure 3: A depiction of D,,. Our conventions are as in Figure 2.

Next, we give a lower bound on the expected distance to convexity of a function drawn from D,,. Let €5 be the
constant given as

1-2¢ N T
- 2

= 3. E 1 . _r
“2 ( 3 > 0-3 B~Naz(r,N) Vo 7.:|_! Ui 2

PROPOSITION 5.2. We have dist(f,,, Peonv) > €2 with probability at least 1 — o(1) when f o ~ Dro.

Proof. As before, consider a fixed choice of C, B and P. Take any z¢ such that z¢ € U; for some i € P and
|zcll > vn+1—+/2In(2/7) (which is the left end of I). For any such z¢, the line along z 4 looks like the picture
at the top of Figure 3, except that the function is set to 0 when ||z¢|| makes = go outside of Shell, ;. Given that
|zc|| < v/n, this only happens when |z4] is at least Q(n'/*) given that 7 < 1/10000 in Equation (5.28).

As a result, the distance to convexity along this line in the action space (with z¢ fixed) is at least
Vol(Middle) = (1 — 2¢2)/3. This follows immediately from the fact that Middle is a symmetric interval about 0
and the choice of parameters in the definition of Middle.
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Given that the mass of z with |lz¢|| < vn + 1 — /2In(2/7) is at most 7/2, it follows that

T 1—2¢
ist( fnos Peonv) = 1(U; -5 |-
dist (fnos Peonv) ;VO (Uy) 5 < 3 )

The result follows by a straight forward modification of Lemma 3.4 to show that with probability at least 1 — o(1),
we have » ., Vol(Uy) is at least 0.3 - E[Vol(U;e;nU;)] when B ~ Naz(r, N). 0

Setting Parameters. We verify that eo —e; = Q(1):

N
1-2
82—81>( 302) 0.3-E | Vol | |U; —% ~20-7-2-E |Vol| |J Fr
=t |T|>2
N 1—-2c c 7 —2¢
(Lemma 3.5) >E Vol L—!Ui ( o 21_101>2027_< . 2)
1—2¢ c1 T
. > — — _
(5.29) COC1< 10 1_01> 2¢o 6

(where the last line is by Lemma 3.3) which is (1) given choices of ¢g, ¢1, c2 and 7 made in Equation (5.28).

5.3 Proof of Theorem 1.2 We introduce some helpful notation and outline the high-level structure of the
argument.

5.3.1 Setup and Outline of Argument We introduce the following notation:

NOTATION 7. Given an outcome of the control subspace C and of Nazarov’s body B = H1N---N Hy NBall(y/n) C
R+ within C as defined earlier, for x € R"*! we define the set Sg(z) as

Sp(x) :={le[N]:z e F}.
Note that if © and y have xc = yo, then Sp(x) = Sp(y), i.e. only the C-part of x affects Sp.
We define the regions Left, Middle, Right C R as follows:

Left := (oo,<I>1 (1_2C2>>,
3
Middle i— [ @1 152 g1 (2= )
3 3
Right := (@1 (2 +3262>,oo>.

Note that Left LU Middle L Right LI Curb = R (where as before we identify R with an outcome of the one-dimensional
action subspace A).

To establish indistinguishability, we show that no non-adaptive deterministic algorithm A that makes ¢ = gean'/t

queries, for some sufficiently small constant c3, can distinguish Dy from D,,,. Specifically, for any nonadaptive
deterministic algorithm A4 with query complexity ¢, we show that

(5.30) Pr  [A accepts f

Fyes~Dyes

< ; Pr  [A accepts f,,] +o(1).

o~Dno

yes]

To this end, we define Bad to be the following event:
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Bad: There are z,y € Shell,, ;1 queried by A that (i) satisfy Sp(z) = Sp(y) = {¢} for some ¢ € [N]
(or equivalently, z,y € U, for some £), and (ii) have xa,ya belonging to two distinct sets among
Left, Middle, Right.

We will first show in Lemma 5.1 that A can distinguish Dys from Dy, only when Bad occurs. On the other
hand, in Lemma 5.2, we show Bad occurs with probability o(1) when the number of queries is ¢ = 2esn* and c3 is
sufficiently small. Lemmas 5.1 and 5.2 together establishe Equation (5.30); the proof of this is analogous to the
proof of Theorem 1 in Section 4.2 of [CDL"24] and we refer the reader to [CDL*24] for full details. Theorem 1.2
then follows from Equation (5.30) via Yao’s minimax principle (Theorem 2.1).

5.3.2 Indistinguishability of Dy.; and D,, We write A(f) to denote the sequence of ¢ answers to the queries
made by A to f. We write view 4(Dyes) (respectively view 4(Dyo)) to be the distribution of A(f ) for fes ~ Dyes
(respectively f,, ~ Dno). The following claim asserts that conditioned on Bad not happening, the distributions
view 4(Dyes|gzg) and view 4(Dpo|gsg) are identical.

LEMMA 5.1. view 4(Dyes|gzg) = View 4(Dnolgzg)-

Proof. Let @ be the set of points queried by A. Recall that the distributions of the subspaces C and action
variables A are identical for Dycs and Dy,. So fix an arbitrary outcome of the n-dimensional subspace C' and
the orthogonal one-dimensional subspace A. As the distribution of the Nazarov body B ~ Naz(r, N, C) is also
identical for Dyes and Dy, we fix an arbitrary outcome B of B. Let f be a random function drawn from either
Dyes 0T Dyg.

Note that for any point € R™*! such that |Sg(x)| # 1 or = ¢ Shell,,;; or 24 € Curb, by construction we
have that f(z) can be determined directly in the same way for both Dycs and Dy, (n0 query is required). So it
suffices for us to consider the points x such that |Sp(z)| =1, x € Shell,,+1, and x4 ¢ Curb. We call these points
important points.

We divide these important points into disjoint groups according to Sp(z). More precisely, for every ¢ € [N],
let X, = {z € R"™! | z is important, Sg(x) = {¢}}. Let f,(z) denote the function f(z) restricted to X, (where
as stated above, f denotes either a function drawn from Dyes or from D). The condition that Bad does not
happen implies that either x4 € Left for all x € Q N Xy, or x4 € Middle for all z € QN Xy, or x4 € Right for all
z € QN Xy In particular, this means f,(z) = f,(y) for all ,y € Q@ N Xy, and this holds for both Dyes and Dy,.

Since f,(x) are the same for all x € @ N X,, the distribution of f, is actually one random bit. Indeed,
fo(x) = 0 with probability 1/2 and f,(z) = 1 with probability 1/2 (because each element ¢ € [N] belongs to P
with probability 1/2) independently, and this holds for both Dyes and Dy,,. This completes the proof of the lemma.
O

Next, we show that Bad happens with probability o(1) (recall that ¢ = 2C3”1/4). The proof of the following
lemma follows the proof of an analogous lemma from [CDL*24]:

LEMMA 5.2. For any fized set of points Q = {x',--- 29} C R""!, we have Pr[Bad] = o(1).

Proof. Fix a pair of query points x,y € R"*! that belong to Q. By the definition of Bad, we may assume without
loss of generality that x,y € Shell, ;. Let Bad, , be the event that

(a) x,y € Uy for some £ € [N] (equivalently, Sg(x) = Sp(y) = {¢}), and
(b) xa,ya belong to two distinct sets among {Left, Middle, Right}.

Analogous to the argument in [CDL"24], we will show that

(5.31) P;r[BadI’y] < min{Prg[(a)], Prp[(b)]} is very small.

Recall that each of the two intervals defining Curb (cf. Section 5.3.1) has the same width which we will denote

p(c2) for succinctness, i.e.
1(1+4+c (1 —2c¢
= =) e 22,
p(c2) < 3 > ( 3 >
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On one hand, for (b) to happen on z,y, we must have
() |za —yal| > p(ca).
On the other hand, (a) means

(%) There exists ¢ € [N] such that Sg(z) = Sg(y) = {¢}.

It follows that Pr[Bad,,] < min{Pr[o], Pr[«]}. We will show that min{Pr[o], Pr[«]} < 2—4esn'" and will do so
via the following lemmas, Lemma 5.3 and Lemma 5.4 (below ¢ > 0 is a suitable positive absolute constant):

LEMMA 5.3. If & — yl| < en3/®, then Prlo] < 2-4ean'/",

Proof. Fix x,y such that ||z —y|| < ¢n®/8. For succinctness we write z to denote z—y, so z € R**! and ||z|| < en®/8;
our goal is to show that |za| < p(ce) except with probability at most g—desn'/t,
Since A is a Haar-random direction in R"*!, the distribution of z4 is the same as the distribution of ||z - v;

where v ~ S*~1. Hence by standard bounds on spherical caps (Lemma 2.1),
Pr ||vy| > b <e 2
SV .

Taking t = /8cs - n!/%, this probability is at most e~4¢n"* < 2=4¢sn"* g5 we set our threshold as

plez) 3/8
< .
ol < 2L i,
i.e. we require that ¢ < 22, and the lemma is established. O

- 2\/ 2(;3 )

LEMMA 5.4. If ||{E — y” > Cn3/87 then PI‘[*] < 2740377,1/4.

We defer the proof of Lemma 5.4 to Section 5.3.3. Thanks to Lemmas 5.3 and 5.4, we get that

Pr(Bad,,] < min {Pr[o], Pr[x]} < 274",

By a union bound over all (at most 2203"1/4) pairs of points z,y from @, we get that

/4 . 2203n1/4 _ 272637’7,1/4

Pr[Bad] < 24’ = o(1),

which completes the proof. ]

5.3.3 Proof of Lemma 5.4 For the remainder of this section, we will always assume that =,y € Shell, 11
satisfy || — y|| > en?/8. Note that we can view the construction gc.B,P as a two stage process:

e We first draw C, which is a Haar random n dimensional subspace of R"*1.
e We then draw B ~ Naz(r, N, C), and we draw P as a uniformly random subset of [N].

We require the following claim:

n1/4)

CLAIM 8. Suppose x,y € Shell, 1 satisfy ||z — y| > cn®®. Then with probability at least 1 — 27 over the

outcomes of C, we have

(5.32) lecl = el = 1. lwell > vl 1. and |~ v)el > en®* ~1.
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Proof. Fix z,y € Shell,, 41 such that ||z — y|| > en®/8. Because A is drawn Haar-randomly (and since it defines
C), it follows from Lemma 2.1 that

Pr [[oall = t-n72 - ]| < /2,

Let t = fn'/® for a suitable constant 3 > 0. The previous inequality gives

_ _p2,.1/4
Pr [[oal = 803/ o] < e,

Thus, with probability 1 — 6*52”1/4/2, we have

lzcll = Vlzll> = lzall> = llz] - /1 -
]2
- 2[|||?
[zal?
o —
[l]
B2n =34 |«
> o - el

As x € Shell,, ;1 and thus ||z|| < 24/n, it follows that the last expression is at least ||z|| — 1. Identical calculations
yield the corresponding lower bounds on |lyc|| and ||(z — y)c|l- |

Fix an outcome C of C such that Equation (5.32) holds. For convenience, we will write 2’ for z¢, 3’ for yo,
both of which lie in R™. For the rest of the argument, we will work over C, i.e. we view sets such as Hy, H} and
B as lying in C' (which we identify with R™) rather than in R" 1.

The following argument is analogous to (parts of) the proof of Lemma 15 of [CDL24]. Recall

Sp(@')={lec[N]:2' €eU,}.
By Claim 8, we have that
Pr[+] <2720 4 I]’Br [SB(z') = Sp(y') = {} for some /]
=9-mVh 4 I]’Br [B(2") = Sp(y') and I s.t. Sp(y') = {¢}]
<90 4 Pr[Sp(x') = Sp(y) | st Se) = {0}],
where ',y satisfy Equation (5.32). We will analyze the case when ¢ = 1, which is without loss of generality since
Pr(X| U, Ef < Sl;p Pr[X|E]
for disjoint events {E,;} and since the probabilities
P;r (Sp(a') = Sp(y) | st Sp(a’) ={0}] = I;r [Se(a") = Sp(y) | st Sp(a’) = {l}]

for all ¢1,¢5 € [N]. So our goal is to upper bound

(5.33) Prp [Sp(2') = SB(y) | SB(y) ={1}].

Observe that the event “Sp(y’) = {1}” that we are conditioning on is an event over the random draw of B, i.e.
over the draw of g',...,g". To analyze this event it is helpful to introduce the following notation: For 2z’ € R™,
define

n : vy > / <
hfsp(2') = {geR g2 20} |2] < Vn,
0 12"l > /.
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Consequently, the event “Sp(y’) = {1}” is the same as the event
{gl € hfsp(y’)} A {gi ¢ hfsp(y') for i € {2,.. .,N}}.

We may fix any outcome g2*,...,g"* of g2,...,g" all of which lie outside of hfsp(y’), and we get (writing § to
denote (g',...,g")) that

(5.33) = lgr |:SB(£L‘/) = SB(Y) | (g* € hisp(z')) A (gi ¢ hisp(z') for i € [2: N])}

(5.34) < sup Pr [SB(x’) = SB(Y) | (g* € hfsp(z')) A (gi =g foriec[2: N])}
9" ¢hfsp(y’) 9
i#1
(5.35) < sup Pr [gl € hfsp(z’) Nhfsp(y’) | (g* € hfsp(z’)) A (gi =g™ forie[2: N])}
9'" ¢hfsp(y) 9
i#1
(5.36) = Pr [gehfsp(z’) Nhisp(y) | g € hisp(z”)],
g~N(0,1)

where Equation (5.34) uses Pr[X| U, E;] < sup, Pr[X|E;] as earlier; Equation (5.35) uses that if g* € hfsp(y’)
then in order to have Sg(z’) = Sg(y’) it must be the case that g' € hfsp(z’) Nhfsp(y’); and Equation (5.36) is
because the event g' € hfsp(z’) N hfsp(y’) is independent of the outcome of g2,...,g°. So in what follows our
goal is to upper bound (5.36). In other words, recalling that we write Vol(K') to denote the Gaussian measure of
the set K (cf. Section 2.2), our goal is to obtain an upper bound on

Vol(hfsp(z’) N hisp(y'))
Vol(hfsp(z))

(5.37) (5.36) =

which is a two-dimensional problem because the only thing that matters about the outcome of g ~ N(0, I,,)
vis-a-vis (5.37) is the projection of g in the directions of 2’ and gy’. Towards this goal, we recall the following tail
bound for bivariate Gaussian random variables:

PROPOSITION 5.3. (EQUATION (2.11) oF [WIL05]) Suppose (Z1,Z2) ~ N(0,X) where
_|tr
E—L} 1} for p>0.

Then for h,k > 0, we have

Pr [Z1>h,Zy >kl <®(—h)| ® <ph_k> + pe*=F)/2g (pk_}l)
(Z1,Z2)~N(0,%)

1—p2? 1—p2?

Let g ~ N(0, I,). Define the random variables

/

gy
[l

_g-a

Zl = 0
[l

and Z2 =

and set h = I\;’H’ k= HyT’H' It is immediate that

Vol(hfsp(z')) = Pr[Z; > h] and Vol(hfsp(z’) Nhisp(y’)) = Pr[Z1 > h, Zs > k.

’

Furthermore, note that Var[Z;] = Var[Z;] = 1. We also have p := E[ZZ,] 2 Thanks to Claim 8, we

REAIEE
have

(en®® =12 < o' —y/|I* = [|2/|* + ly/|]* — 22" - < 2(n — o' - )
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which in turn implies that

'y 1, 48 5 1
(5.38) p=——"—>< (n — —(en /8 _ 1)? ) .
(eIl 2 21y

Using Claim 8 and the fact that x,y € Shell, 1, we have that ||z'|, ||y’|| > v/» + 1 —/2In(2/7) — 1 and combining
this with Equation (5.38) gives

n— L(en3/8 —1)2
(5.39) p< ( 2 D) =1-Qn 4.

47(%n+—1—2thKZW)—1)2

Note that Vol(hfsp(z’)) = ®(—h). Consequently, using Proposition 5.3 we get

h—k k—h
(537) < @ L2 ) 4 pe® R /2g ( LI
1—p2? 1—p2?

and we will obtain an upper bound on this in the remainder of this section. In particular, note that

h—k<(1-Qm Yy _
ph =k < (1007 o =
: Y

= _—(1-9(n Y -
||z'||< ) =

Recall that ||2/[],||y'|| < v/n and that [|2/|| > v/n + 1—4/21n(2/7)—1. Hence, for n large enough and an appropriate
constant 7, we have

(5.40) ']

and consequently, we get that

r 1 —r
Pk < O\ (O<n1/4) ) 9(1)> - O<||||n/> =

for an appropriate choice of 7. The final inequality relies on the above lower bound on ||z’|| and Lemma 3.1. An
identical calculation gives that pk — h < —Q(1). It follows that

Y S —a()
(530 = 2exp ||:c/||2<1 ||y/||2> ‘D<F—p2>
(5.41) gzwp@un®<_QU)>

(5.42) EZZexp(OUJ)¢<-4?Uf/%)

(5.43) < 96"

where the final inequality relies on a standard Gaussian tail bound (cf. Proposition 2.1). To see Equation (5.41),
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note that

n®2In(1/c1) s

P ®<\/n+1—\/2ln(2/7)—1><1 ||y’||2>

n3/21n(1/cl) 3
< exp ®<\/n+1—\/21n(2/7)—1>.0(n )

1
o (O (w)) |
where we used Lemma 3.1 and Equation (5.38). Equation (5.42) immediately follows from Equation (5.39). Finally,
note that Equation (5.43) completes the proof.

IN

il PO
exp —
FIEATE

6 Two-Sided Non-Adaptive Lower Bound

Our goal in this section is to prove Theorem 1.3 restated below:

THEOREM 6.1. (T'WO-SIDED NON-ADAPTIVE LOWER BOUND) For any constant ¢ > 0, there is a constant
€ =¢e. > 0 such that any non-adaptive e-tester for convexity over N(0,1I,) (which may make two-sided errors)
must use at least nt/4=¢ queries.

6.1 Setup We recall some necessary tools and results from [CDST15].

6.1.1 Distributions with Matching Moments The first results we need, stated below as Propositions 6.1
and 6.2, establish the existence of two finitely supported random variables that match the first £ moments of a
univariate Gaussian, for any ¢. Crucially, one of the random variables is supported entirely on non-negative reals,
while the other puts nonzero probability on negative values (so if ¢ is any fixed constant, it puts a constant amount
of probability on negative values):

PROPOSITION 6.1. ([CDST15] PROPOSITION 3.1) Given an odd £ € N, there exists a value p = u(€) >0 and a
real random variable w such that

1. u is supported on at most £ nonnegative real values; and
2. E[u*] = Eg n(u1,)[9"] for all k € [0].
PROPOSITION 6.2. ([CDST15] PROPOSITION 3.2) Given p > 0 and £ € N, there exists a real random variable v

such that

1. v is supported on at most £ + 1 real values, with Pr[v < 0] > 0; and
2. E[v"] = Egn(u,1,)9"] for all k € [(].

We will use u (respectively v) to sample coefficients in our construction of the yes-distribution (respectively
the no-distribution).

6.1.2 Mollifiers, CLTs, Tail Bounds and Other Tools We recall the following basic proposition from
[CDST15] and its simple proof:

PROPOSITION 6.3. ([CDST15] PROPOSITION 4.1) Let A, A;;, € R? where A, C A. Let U, : R — [0,1] be a
function satisfying U, (X) =1 for all X € Ay, and V4, (X) =0 for all X ¢ A. Then for all random variables
S, T:

|Pr[S € A] — Pr[T € A| < |E[¥,(5)] — E[¥,(T)]| + max{Pr[S € A\ Ai], Pr[T € A\ A}
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Proof. Observe that Pr[S € A] > E[¥;,(S)] and Pr[S € A] < E[V,,(S)] +Pr[S € A\ A;;,], and likewise for T.
As a result, we have

Pr(S € A~ Pr{T € 4] < BlW,,(S)] + Pr[S € A\ Ain] ~ B[V, (T)], and
Pr[S € A —Pr[T € A > E[¥,,(S)] — Pr[T € A\ A;] — E[V,,(T)].
Combining these, we have the proposition. 0
We adopt the following notation: for J = (Ji,...,J,;) € N? a g-dimensional multi-index, we let |J| denote

Ji+ -+ Jy and let J! denote Ji!Jo!--- J,l. We write #J to denote |{i € [q]: J; # 0}| (and we observe that
#J <|J|). leen X € RY we write XJ to denote 7 ,(X;)"i, and we wrlte X|; € R#/ to denote the projection

of X onto the coordinates for which J; # 0. For f : R? — R, we write f(/) to denote the J-th derivative, i.e.
8J1+~~~+Jqf
ozt .. -83521]“ .

f(J) —

We recall the standard multivariate Taylor expansion:

FacT 6.1. (MULTIVARIATE TAYLOR EXPANSION) Given a smooth function f:RY — R and k € N,

fX+A) = Zf A4 (k+1) Y (gi]E[(lT)kf(J)(XJrTA)]),

|J|<k |J|=k+1
for X, A € R, where T is uniform random over the interval [0, 1].

We recall the standard Berry—Esseen theorem for sums of independent real random variables (see for example,
[Fel68]), which is a quantitative form of the Central Limit Theorem:

THEOREM 6.2. (BERRY—ESSEEN) Let s = ml + -+ x,, where x4, ...,x, are independent real-valued random
variables with Elz;] = p; and Var[z;] = o7, and ZZ VE [|zi*] < k. Let g denote a Gaussian random variable
with mean Z 1 My and variance Z o? matchmg those of s. Then for all 8 € R, we have

i—105>
O(x)
Z?:l 012' .
For g ~ N(0,1,), the value >_1" | g? is distributed according to a chi-squared distribution with n degrees of
freedom, denoted y(n)%. We recall the following tail bound:

| Pr[s < 6] — Prlg < 0]| <

LEMMA 6.1. (TAIL BOUND FOR THE CHI-SQUARED DISTRIBUTION, FROM [JOHO1]) Let X ~ x(n)2. Then we
have ,
r(|X —n|>tn] < e~ GO for all t € [0,1/2).

Following [CDST15], our proof will employ a carefully chosen “mollifier,” i.e. a particular smooth function
which approximates the indicator function of a set (the use of such mollifiers is standard in Lindeberg-type

“replacement method” analyses). We will use a specific mollifier, given in [CDST15], whose properties are tailored

to our sets of interest (unions of orthants). The key properties of this mollifier are as follows:

PROPOSITION 6.4. ( [CDST15] PROPOSITION 4.3: “PRODUCT MOLLIFIER”) Let O be a union of orthants in RY.
For all e > 0, there exists a smooth function ¥ : R? — [0, 1] with the following properties:

1. Up(X) =0 forall X ¢ O.
2. Up(X) =1 for all X € O with min;{|X;|} > ¢.
3. For any multi-index J € N? such that |J| = k, H\Ifg)Hoo < alk) - (1/e)*, where a(k) = kOW).

4. For any J € N9, \Ilg)(X) #0 only if X € O and | X;| < e for all i such that J; # 0. Equivalently,
\Ifg)(X) #0 only if X € O and || X ||| <e.
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6.1.3 Clipping Given C > 0, we define the “clipping” function clips : R” — {0, 1} which, on input a vector
x € R", outputs 1 if and only if ||z]| < /n + C.

6.2 The Yes- and No- Distributions Let ¢ > 0 (this is the ¢ of Theorem 1.3 ). Let w and v be the random
variables given by Propositions 6.1 and 6.2, where we take £ to be the smallest odd integer that is at least 1/c and
take p = u(f).

A set K drawn from our “yes-distribution” Dyes has indicator function defined as follows:

e First, choose a Haar random orthonormal basis normalized so that each vector has Euclidean length 1/y/n,
and denote those vectors aV), ... a(™. (So aV € R" is a Haar random unit vector in R™ scaled by 1/y/n;
a® is Haar random over the radius-(1/y/n) sphere in the (n — 1)-dimensional subspace of R™ that is
orthogonal to a(?; and so on.)

e Then n independent draws uq,...,u, are made from the real random variable u of Proposition 6.1.

e The indicator function K (x) is
6.44 Kx:1u1a(l)-x2+-~-—|—una(”)-xQS,u&clip z)=1].
c

(Here C > 0 is a suitable constant, depending only on ¢ but not on n, that will be fixed later in our argument.)

A set K drawn from our “no-distribution” D, is defined very similarly, with the only difference being that v
takes the place of wu:

e The vectors a'V, ..., a™ are chosen exactly as in the yes-case.
e Then n independent draws v1, ..., v, are made from the real random variable v of Proposition 6.2.

e The indicator function K (z) is
(6.45) K(z)=1 [Ul(a<1> 1)+ (@™ - 2)? < p & clipp(z) = 1]
(Here C > 0 is the same constant as in the yes-case.)

We remark that our yes- and no- functions differ from the yes- and no- functions of [CDST15] in a number of
ways: Our functions involve a random orthonormal basis, they are degree-2 polynomial threshold functions rather
than linear threshold functions, and they involve clipping. (In contrast the [CDST15] functions do not involve
choosing a random orthonormal basis, are LTFs, and do not incorporate any clipping.)

6.2.1 Distance to Convexity We first consider yes-functions. Since w is supported on non-negative real
values and a(M, ..., a(™ are orthogonal vectors, every outcome of 1 [ul(a(l) )24 uy(a™x)? < u} is an

ellipsoid in R™. Since clips(z) is the indicator function of a ball in R™, and the intersection of a ball and an
ellipsoid is a convex set, we immediately have the following:

COROLLARY 6.1. For every C > 0, every K C R" in the support of Dyes is conves.

The following lemma shows that a constant fraction of draws of K ~ D, are constant-far from being convex
(intuitively, this is because with extremely high probability a constant fraction of the coefficients vy, ..., v, are
negative, which causes the degree-2 PTF to be far from an ellipsoid):

LEMMA 6.2. For a suitable choice of the constant C' > 0, with probability at least 1/2 a random K ~ Dy, is k-far
from convex (where k > 0 depends on p and £ and hence only on c).

Proof. By the rotational symmetry of the N(0,I,) distribution, we may assume that the orthonormal basis
aV, ... a™ is the canonical basis ej, ..., e, scaled by 1/y/n. Thus a draw of K ~ D, (after a suitable rotation)
is

K(z)=1|viz? + - +v,22 <np & clipa(z) = 1].
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Given this, it suffices to show that a random set
(6.46) K':=1|viz] 4+ +v,22 <np

is 2k-far from convex with probability at least 1/2. If we have this, then since K has distance at most x from K’
(which holds for a suitable choice of the constant C, using Lemma 6.1), the lemma follows.

To analyze Equation (6.46), we begin by recalling that by Proposition 6.2, the random variable v has
probability p; > 0 of taking value d; for 1 < i < ¢/, where ¢’ is some value that is at most £ 4+ 1, and we have
d1 <0,dy <dg <---<dp,and p; + -+ ppr = 1. Taking k =1 in item (2) of Proposition 6.2, we have

(6.47) pidi + -+ pode = p.
For i € [¢], let n; denote the number of indices j € [n] such that v; = d;. Since all of the values p1,...,pp are
constants independent of the asymptotic parameter n, by a standard Chernoff bound and union bound, we have
that for suitable constants ¢i,...,cp > 0 (which depend on the p;’s),
(6.48) Pr [n; € [pin — ¢;v/n,pin+ ¢;\/n] for each i € [(']] > 1/2.

V1, Un

Fix any outcome (vy,...,v,) of (v1,...,v,) such that the event on the LHS of Equation (6.48) is satisfied. In the
rest of the proof we will argue that for such an outcome the set

(6.49) K =1[0af + -+ vzl < npl

corresponding to Equation (6.46) is Q(1)-far from convex.

For each i € [¢'], let S; C [n] denote the set of indices j € [n] such that v; = d;. Let ¢} be such that
|Si| = pin + ¢i+/n, and observe that |c}| < ¢;. For ease of notation we may suppose that S; consists of the first
coordinates {1,...,p1n + ¢}/n} (this is without loss of generality by the rotational invariance of N(0, I,,)).

Fix any i € {2,...,¢'} and consider the tuple of random Gaussian coordinates (x;);cs, for a draw of
x = (xy,...,x,) ~ N(0,I,). We have

e[ o] s v
JES:

and by the Berry-Esseen theorem (Theorem 6.2), we get that

1
2
(6.50) Pr Z x; € [pin — Aiv/n,pin+ Aiv/n] | > 1— o7
JES:
for suitable positive absolute constants As, ..., Ay (depending on the p;’s and the ¢;’s but not on n).
Let A:= /¢ -max{|ds],...,|d¢|}  max{As,..., Ap}.. By a union bound applied to Equation (6.50) over all

i€{2,...,0'}, with probability at least 9/10 we have that

¢

¢ 4
1=2 1=2

i=2 j€S;

let us say that any such outcome of (x;);es,u...us, is good. Fix any good outcome (z;);cs,u...us, of the last
n—(pin+ci\/n) coordinates of & ~ N(0,I,,), and let A" € [— A, A] be the value such that the LHS of Equation (6.51)

is equal to (Zf/:Q dl-pm) + A’y/n. Recalling Equation (6.47), for this good outcome of the last n — (p1n + ¢j/n)

coordinates, the set (6.49) (viewed as an indicator function of coordinates 1,...,pin + ¢|+/n) becomes
pintcivn
(652) 1 Z d1$3 S plleL — A,\/’Tl .
j=1
481 Copyright © 2025 by SIAM
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Recalling that d; < 0, this is equivalent to

pintciv/n

(6.53) 1 Z a? > pin— (A'/di)v/n|.

Jj=1

Let g denote the probability that (6.53) holds for independent standard Gaussians x1,...,x,,, o)/ the Berry-
Esseen theorem implies that ¢ is a constant in (0, 1) which is bounded away from both 0 and 1. By the radial
symmetry of the N (0, 1)”1"“‘6/1‘/5 distribution, it follows that the subset of RP1" €1V whose indicator function
is given by Equation (6.53) is 2(1)-far from convex, because it is Q(1)-far from convex on a “line by line” basis.
In more detail, for each unit vector v € Rp”“”:llﬁ, the function (6.53) labels points on the corresponding line
{tv : t € R} as follows:

(i) if [t| > /pin — (A’/dy)y/n then (6.53) outputs 1 on tv;

(i) if [¢| > \/pin — (A’/d1)\/n then (6.53) outputs 0 on tv.

Since this labeling corresponds to the complement of an interval, and since both (i) and (ii) have constant
probability as explained above, the distance to convexity is (1), and the proof of Lemma 6.2 is complete. ]

6.3 Proof of Theorem 1.3 As is usual for a non-adaptive lower bound, we use Yao’s principle. Let X be a
¢ X n query matrix, so the i-th row Xj. = (X1, ..., Xin) is a vector in R™ corresponding to the i-th query made by
some deterministic algorithm. We will argue that the behavior of such a deterministic algorithm will be almost
the same on a target function K ~ Dy and on a target function K ~ Dy,.

First, since our analysis will only consider target functions drawn from Dyes and Dy, and any draw from
either of these distributions always involves clipping (the clip component of Equations (6.44) and (6.45)), we may
suppose without loss of generality that each query vector X, has ||Xi.| < v/n+ C, i.e. it satisfies clipo(X;.) = 1.

Let Ryes be the {0,1}%-valued random variable obtained by drawing K ~ Djy.s (recall that this corresponds
to drawing w1, aM, ... u,, a(”)) and setting the t-th coordinate of Ry to be

K(X,.) =1 [ul(a“) X 4 un(@™ - X)? < N].

Similarly, let R, be the {0, 1}%-valued random variable obtained by drawing K ~ Dy, (recall that this corresponds
to drawing v1,aM, ... v,, a(”)) and setting the t-th coordinate of R, to be

K(X,) =1 [vl(a(l) X))t op(a™ - X,)? < u]

To prove a two-sided non-adaptive lower bound of ¢ queries, it suffices to show that for the Ry, Ry, defined
above, we have dpy (Ryes, Rno) = 0(1).

Let us write @ to denote @ = (a(V, ... ,a(")), and let us write Rges to denote the random variable Ry
conditioned on having the outcome of a(*), ... a™ come out equal to @, and similarly for REO. Using the coupling
interpretation of total variation distance and the natural coupling between Dys and Do, we have that

(6.54) d1v(Ryes Rao) € B [d1y (R, B,
a~rlaar
so it suffices to upper bound the RHS of Equation (6.54) by o(1).
Let us say that an outcome @ = (a(V,...,a(™) € (R™)" is bad if there is a pair (t,5) € [q] x [n] such that
(a\9) - X;,)2 > 101%. Recalling that each query vector Xy, has norm at most v/n 4+ C and that each a'?) is a Haar
random unit vector scaled by 1/4/n, it is easy to show that bad outcomes of @ have very low probability:

LEMMA 6.3. Pr[a is bad] = o(1).

Proof. Fix some pair (¢,7) € [g] % [n] and let r < \/n+ C be the norm of the query vector X;.. The distribution of
a) . X,, is precisely the distribution of the first coordinate of a Haar random point drawn from the n-dimensional
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sphere of radius r/y/n. Hence, writing u ~ S"~! to denote a Haar random point from the n-dimensional unit
sphere, we have

Pr (a(j) ~Xt*)2 > = Pr

10lnn -|u1|r < v10Inn
n u~S—1 \/’ﬁ - \/’ﬁ

V10l
< Pr. ulzml
u~S"— T

[ 3vinn
51 < C < P > —
(using r < /n+C) s Projwz 7 ]

< e—(9/2) 11-171 — 1/,'19/27

4

using a standard bound on spherical caps (see Lemma 2.1). Since there are only gn < n°/* many pairs (¢, j) € [¢]x[n],

a union bound concludes the proof. 0

Fix a = (a(l), . ,g("))jo be any non-bad outcome of @. Recalling Equation (6.54), by Lemma 6.3 it suffices to
show that drv (R, Ry,) < o(1); this is our goal in the rest of the proof.
Let S € R? be the random column vector whose ¢-th entry is

ul(a(l) X )4+ un(a(”) X)) =,
and let T' € R? be the random column vector whose t-th entry is
’Ul(a(l) . Xt*)Q et ’Un((l(n) . Xt*)Q — .

The response vector Rges is determined by the orthant of R? in which S lies and the response vector R, is

determined by the orthant of R? in which T lies. So to prove a g-query monotonicity testing lower bound for
non-adaptive algorithms, it suffices to upper bound

(6.55) duo(S,T) < o(1),
where dyo is the “union-of-orthants” distance:

duo(S,T) := max {| Pr[S € O] — Pr[T € O]|: O is a union of orthants in Rq}.

In what follows, we will show that dyo(S,T) < o(1) when ¢ = O(n'/4¢). To this end, let O denote a union of
orthants such that

(6.56) duo(S,T) = |Pr[S € O] — Pr[T € O]|.

Following [Mos08, GOWZ10, CDST15], we first use the Lindeberg replacement method to bound
(6.57) |E[¥0(S)] — E[¥o(T)]],

and then apply Proposition 6.3 to bound (6.56).

For all i € {0,1...,n} we introduce the R?-valued hybrid random variable Q(i) whose t-th coordinate is

n

Q) =3 vy X+ 3 wy(a - )
j=1

j=it1

Observe that Q(O) =S and Q(") = T'. Informally, we are considering a sequence of hybrid distributions between
S and T obtained by swapping out each of the u-summands for a corresponding v-summand one by one. The
main idea is to bound the difference in expectations

(6.58) |E[\IJ0(Q(i_1))] - E[\IIO(Q(i))}‘ for each 1,
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since summing (6.58) over all ¢ € [n] gives an upper bound on
|E[To(S)] - E[To(T)]| = [E[To(Q")] - E[¥0(Q™)]| < Z [E[To(Q)] - E[Wo(QY)]]

using the triangle inequality.
To bound (6.58), we define the R%-valued random variable R_; whose t-th coordinate is

n

1—1
(6.59) Roi)e = v;(aP - 2.)%+ > uj(a? - x,,)%
j=1

j=i+1

Writing @ (v;,a”) to denote the random vector in RY whose t-th coordinate is v;(a®) - X.,)? and likewise for
®(u;,a™), we have that

[E[o(Q")] - E[¥o(Q)]] = [E[¥o(R-; + ®(v;,a"))] - E¥o(R-; + (u;,a))]].
Truncating the Taylor expansion of Uy at the ¢-th term (Fact 6.1), we get
E[Vo(R_; + ®(v;,a Z ik { 8) (R-y) - (‘ﬁ(vi,a(i)))q
|J]<e

s e+1 [ O (R T (vi,a (z)))({)(vz,a(i)))q
|J]=0+1 '

(6.60)

where 7 is a random variable uniformly distributed on the interval [0, 1] (so the very last expectation is with
respect to T, v; and R_;). Writing the analogous expression for E[Un(R_; + ®(v;,a))], we observe that by
Propositions 6.1 and 6.2 the first sums are equal term by term, i.e. we have

3 j E[\IJ(J)(R ) - (@(ui,a<i>))1] -y j E[\I/(J)(R R (<I>(ui,a(“))‘]]

[J|<e |J|<e

for each |J| < h. Thus we may cancel all but the last terms to obtain

BEo(Q )~ Bo@D)] < 3 S (B (@, a)[] + B [|(@(ui,a@)]).

|J|=£+1

Observe that there are [{J € N?: |J| = £+ 1}| = O(¢’T!) many terms in this sum. Recalling that each value of
(a9 - X,,)? is at most 101% (because a is not bad), that both u; and v; are supported on at most ¢ + 1 real
values that depend only on ¢ (by Propositions 6.1 and 6.2), and Proposition 6.4, we have that for any 7 > 0 (we
will choose a value for 7 soon),

+1 (+1)/2
o i 10logn

(6.61) |E[Yo(Q" )]~ E[¥o(Q™)]] = 0:(1) - (3) : ( = > :
Summing over all ¢ € [n] costs us a factor of n and so we get

41 £4+1)/2

10log n)“+1)/
(6.62) |E[¥o(S)] ~ E[¥o(T)]| = 0:(1) (q) Q0en)
T n

Equation (6.62) gives us the desired bound on Equation (6.57); it remains only to apply Proposition 6.3 to
finish the argument. To do this, let

B ={X € O:|X;| < for some i € [q]}
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(B, corresponds to the region A\ A;, of Proposition 6.3). Since both v and u are supported on values of
magnitude Oy(1), using the one-dimensional Berry-Esseen inequality (Theorem 6.2) and a union bound across the
q coordinates we get that

(6.63) Pr[S € B,],Pr[T € B,] < 04(qr) + O¢(q//n).
So by applying Proposition 6.3, we get that

41
10logn)(+1)/2
doo(S.T) < Ou(qm) + Onlavi) + 0 - (1) LU

Choosing 7 = 1 /nl/ 4 and recalling that ¢ is the smallest odd integer that is at least 1/c, we get that for
q = O(n'/*=¢) the RHS above is O;((10logn)“*1/2n=¢). This is o(1) for any constants ¢ > 0,¢ € N, and the
proof of Theorem 1.3 is complete.

Acknowledgements

X.C. is supported by NSF grants I1S-1838154, CCF-2106429, and CCF-2107187. A.D. is supported by NSF grants
CCF-1910534 and CCF0-2045128. S.N. is supported by NSF grants CCF-2106429, CCF-2211238, CCF-1763970,
and CCF-2107187. R.A.S. is supported by NSF grants CCF-2106429 and CCF-2211238. E.W. is supported by NSF
grant CCF-2337993.

This work was partially completed while a subset of the authors were visiting the Simons Institute for the
Theory of Computing.

References

[B+97] Keith Ball et al. An elementary introduction to modern convex geometry. Flavors of geometry, 31(1-58):26, 1997.
1,7

[Bal93] K. Ball. The Reverse Isoperimetric Problem for Gaussian Measure. Discrete and Computational Geometry,
10:411-420, 1993. 1, 8

[Ban10] Nikhil Bansal. Constructive algorithms for discrepancy minimization. In IEEE 51st Annual Symposium on
Foundations of Computer Science (FOCS), pages 3—-10, 2010. 2

[BB16] A. Belovs and E. Blais. A polynomial lower bound for testing monotonicity. In Proceedings of the 48th ACM
Symposium on Theory of Computing (STOC), pages 1021-1032, 2016. 3, 4

[BB20] Eric Blais and Abhinav Bommireddi. On testing and robust characterizations of convexity. In Approzimation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, pages 18:1-18:15,
2020. 6

[BBB20] Aleksandrs Belovs, Eric Blais, and Abhinav Bommireddi. Testing convexity of functions over finite domains. In
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 20302045, 2020. 6

[BBH24] Hadley Black, Eric Blais, and Nathaniel Harms. Testing and learning convex sets in the ternary hypercube. In
15th Innovations in Theoretical Computer Science Conference, ITCS, pages 15:1-15:21, 2024. 6

[BF18] Omri Ben-Eliezer and Eldar Fischer. Earthmover resilience and testing in ordered structures. In 33rd Computational
Complexity Conference, CCC, pages 18:1-18:35, 2018. 6

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems. Journal of
Computer and System Sciences, 47:549-595, 1993. 1, 2

[BMR16] Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. The Power and Limitations of Uniform Samples
in Testing Properties of Figures. In 86th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), pages 45:1-45:14, 2016. 6

[BMR19] Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Testing convexity of figures under the uniform
distribution. Random Struct. Algorithms, 54(3):413-443, 2019. 6

[BMR22] Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Tolerant testers of image properties. ACM
Trans. Algorithms, 18(4):37:1-37:39, 2022. 6

[Bor75] C. Borell. The Brunn-Minkowski inequality in Gauss space. Invent. Math., 30:207-216, 1975. 1

[Bor03] Christer Borell. The Ehrhard inequality. Comptes Rendus. Mathématique, 337(10):663-666, 2003. 1

[Bor08] C. Borell. Inequalities of the Brunn—Minkowski type for Gaussian measures. Probability Theory and Related Fields,
140:195-205, 2008. 1

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

485



Downloaded 05/22/25 to 128.59.18.124 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[BRY14a] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. L,-testing. In Symposium on Theory of
Computing, STOC 2014, pages 164-173, 2014. 6

[BRY14b] Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for testing properties of functions
over hypergrid domains. In IEEE 29th Conference on Computational Complexity, CCC 2014, pages 309-320, 2014. 6

[CDL*24] Xi Chen, Anindya De, Yuhao Li, Shivam Nadimpalli, and Rocco A Servedio. Mildly exponential lower bounds
on tolerant testers for monotonicity, unateness, and juntas. In Proceedings of the 2024 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 4321-4337. STAM, 2024. 3, 4, 5, 28, 30

[CDS19] Eshan Chattopadhyay, Anindya De, and Rocco A. Servedio. Simple and efficient pseudorandom generators from
gaussian processes. In Amir Shpilka, editor, 84th Computational Complexity Conference (CCC), volume 137 of LIPIcs,
pages 4:1-4:33. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019. 1

[CDST15] X. Chen, A. De, R. Servedio, and L.-Y. Tan. Boolean Function Monotonicity Testing Requires (Almost) n'/?
Non-adaptive Queries. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, pages 519-528, 2015. 5, 6, 33, 34, 35, 38

[CEFMO04] Dario Cordero-Erausquin, Matthieu Fradelizi, and Bernard Maurey. The (b) conjecture for the gaussian measure
of dilates of symmetric convex sets and related problems. Journal of Functional Analysis, 214(2):410-427, 2004. 1

[CFSS17] X. Chen, A. Freilich, R. Servedio, and T. Sun. Sample-based high-dimensional convexity testing. In Proceedings
of the 17th Int. Workshop on Randomization and Computation (RANDOM), pages 37:1-37:20, 2017. 1, 2, 3, 6

[CS13] Deeparnab Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean functions over the hypercube. In
Proceedings of the 45th ACM Symposium on Theory of Computing, pages 411-418, 2013. 2

[CST14] Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for testing monotonicity. In
Proceedings of the 55th IEEE Symposium on Foundations of Computer Science, pages 286—295, 2014. 2, 3

[CWX17] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond Talagrand functions: new lower bounds for testing monotonicity
and unateness. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages
523-536, 2017. 3, 4

[DMN19] Anindya De, Elchanan Mossel, and Joe Neeman. Is your function low dimensional? In Alina Beygelzimer and
Daniel Hsu, editors, Conference on Learning Theory, COLT 2019, 25-28 June 2019, Phoeniz, AZ, USA, volume 99 of
Proceedings of Machine Learning Research, pages 979-993. PMLR, 2019. 1

[DMN21] Anindya De, Elchanan Mossel, and Joe Neeman. Robust testing of low dimensional functions. In Samir
Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, Virtual FEvent, Italy, June 21-25, 2021, pages 584-597. ACM, 2021. 1

[DNS21] Anindya De, Shivam Nadimpalli, and Rocco A. Servedio. Quantitative correlation inequalities via semigroup
interpolation. In 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, volume 185 of LIPIcs,
pages 69:1-69:20, 2021. 3

[DNS22] Anindya De, Shivam Nadimpalli, and Rocco A. Servedio. Convex influences. In Mark Braverman, editor, 13th
Innovations in Theoretical Computer Science Conference, ITCS, volume 215 of LIPIcs, pages 53:1-53:21, 2022. 3

[DNS23] Anindya De, Shivam Nadimpalli, and Rocco A. Servedio. Testing Convex Truncation. In Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 4050-4082. 2023. 1

[DNS24] Anindya De, Shivam Nadimpalli, and Rocco A. Servedio. Gaussian Approximation of Convex Sets by Intersections
of Halfspaces. In Proceedings of the 65th IEEE Symposium on Foundations of Computer Science (FOCS), 2024. To
appear. 3, 4, 8

[Durl9] Rick Durrett. Probability: Theory and Ezamples. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, 5 edition, 2019. 7

[Eld22] Ronen Eldan. Second-order bounds on correlations between increasing families. Combinatorica, 42:1099-1118, 2022.
2

[Fel68] William Feller. An introduction to probability theory and its applications, volume 1. Wiley, 3rd edition, 1968. 34

[GGLT00] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. Testing monotonicity. Combinatorica,
20(3):301-337, 2000. 2

[Glu89] Efim Davydovich Gluskin. Extremal properties of orthogonal parallelepipeds and their applications to the geometry
of banach spaces. Mathematics of the USSR-Sbornik, 64(1):85, 1989. 2

[GOWZ10] P. Gopalan, R. O’Donnell, Y. Wu, and D. Zuckerman. Fooling functions of halfspaces under product distributions.
In IEEE Conf. on Computational Complezity (CCC), pages 223-234, 2010. 38

[GR11] Oded Goldreich and Dana Ron. On proximity-oblivious testing. SIAM Journal on Computing, 40(2):534-566, 2011.
2

[GR16] Oded Goldreich and Dana Ron. On sample-based testers. ACM Trans. Comput. Theory, 8(2):7:1-7:54, 2016. 2

[GW93] P. M. Gruber and J. M. Wills, editors. Handbook of Conver Geometry. Elsevier, 1993. 1

[HSSV22] Daniel J. Hsu, Clayton Hendrick Sanford, Rocco A. Servedio, and Emmanouil-Vasileios Vlatakis-Gkaragkounis.
Near-optimal statistical query lower bounds for agnostically learning intersections of halfspaces with gaussian marginals.
In Po-Ling Loh and Maxim Raginsky, editors, Conference on Learning Theory, 2-5 July 2022, London, UK, volume

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

486



Downloaded 05/22/25 to 128.59.18.124 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

178 of Proceedings of Machine Learning Research, pages 283—-312. PMLR, 2022. 1

[HW20] Daniel Hug and Wolfgang Weil. Lectures on Conver Geometry. Springer Graduate Texts in Mathematics, 2020. 1

[HY22] Nathaniel Harms and Yuichi Yoshida. Downsampling for testing and learning in product distributions. In 49th
International Colloquium on Automata, Languages, and Programming, (ICALP), pages 71:1-71:19, 2022. 6

[JohO1] Iain M. Johnstone. Chi-square oracle inequalities. In State of the art in probability and statistics, pages 399-418.
Institute of Mathematical Statistics, 2001. 34

[Kan1l] D. M. Kane. The Gaussian Surface Area and Noise Sensitivity of Degree-d Polynomial Threshold Functions.
Computational Complexity, 20(2):389-412, 2011. 1

[Kan12] D. Kane. A Structure Theorem for Poorly Anticoncentrated Gaussian Chaoses and Applications to the Study
of Polynomial Threshold Functions. In 58rd Annual IEEE Symposium on Foundations of Computer Science, FOCS
2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 91-100, 2012. 1

[Kan14] D. Kane. A Pseudorandom Generator for Polynomial Threshold Functions of Gaussian with Subpolynomial Seed
Length. In IEEFE 29th Conference on Computational Complexity, CCC 2014, Vancouwver, BC, Canada, June 11-183,
201/, pages 217-228, 2014. 1

[Kan15] D. M. Kane. A Polylogarithmic PRG for Degree 2 Threshold Functions in the Gaussian Setting. In 30th Conference
on Computational Complezity, CCC 2015, June 17-19, 2015, Portland, Oregon, USA, pages 567-581, 2015. 1

[KK14] A. R. Klivans and P. Kothari. Embedding Hard Learning Problems Into Gaussian Space. In Approzimation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, pages
793-809, 2014. 1

[KMS18] Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperimetric-type theorems.
SIAM J. Comput., 47(6):2238-2276, 2018. 2

[KNOW14] Pravesh Kothari, Amir Nayyeri, Ryan O’Donnell, and Chenggang Wu. Testing surface area. In Chandra
Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014.
SIAM, 2014. 1

[KOS08] A. Klivans, R. O’Donnell, and R. Servedio. Learning geometric concepts via Gaussian surface area. In Proc. 49th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 541-550, 2008. 1, 2, 3, 8

[Lat02] Rafat Latala. On some inequalities for gaussian measures. In Proceedings of the ICM, volume 2, pages 813-822,
2002. 1

[LL15] I. E. Leonard and J. E. Lewis. Geometry of Convex Sets. Wiley, 2015. 1

[LMO00] B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. Annals of Statistics,
28(5):1302-1338, 2000. 7

[LM15] Shachar Lovett and Raghu Meka. Constructive discrepancy minimization by walking on the edges. SIAM Journal
on Computing, 44(5):1573-1582, 2015. 2

[LO99] Rafal Latata and Krzysztof Oleszkiewicz. Gaussian measures of dilatations of convex symmetric sets. The Annals
of Probability, 27(4):1922-1938, 10 1999. 1

[LOO05] Rafal Latala and Krzysztof Oleszkiewicz. Small ball probability estimates in terms of width. Studia Mathematica,
169(3):305-314, 2005. 1

[LRR17] Avi Levy, Harishchandra Ramadas, and Thomas Rothvoss. Deterministic discrepancy minimization via the
multiplicative weight update method. In International Conference on Integer Programming and Combinatorial
Optimization (IPCO), pages 380-391, 2017. 2

[McD89] C. McDiarmid. On the method of bounded differences. In Surveys in Combinatorics 1989, pages 148-188. London
Mathematical Society Lecture Notes, 1989. 13

[MOO03] Elchanan Mossel and Ryan O’Donnell. On the noise sensitivity of monotone functions. Random Structures &
Algorithms, 23(3):333-350, 2003. 5

[MORS10] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio. Testing halfspaces. SIAM J. on Comput., 39(5):2004—
2047, 2010. 1

[Mos08] Elchanan Mossel. Gaussian bounds for noise correlation of functions and tight analysis of long codes. FOCS, pages
156-165, 2008. 38

[Naz03] F. Nazarov. On the maximal perimeter of a convex set in R™ with respect to a Gaussian measure. In Geometric
aspects of functional analysis (2001-2002), pages 169-187. Lecture Notes in Math., Vol. 1807, Springer, 2003. 1, 3, 8

[OSTK21] Ryan O’Donnell, Rocco A. Servedio, Li-Yang Tan, and Daniel Kane. Fooling Gaussian PTFs via local
hyperconcentration. Preliminary version in STOC 2020. Revised version includes an appendix by Daniel Kane, 2021. 1

[OWO07] Ryan O’Donnell and Karl Wimmer. Approximation by DNF: examples and counterexamples. In International
Colloquium on Automata, Languages, and Programming, pages 195-206. Springer, 2007. 5

[PRRO3] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. On testing convexity and submodularity. SIAM J. Comput.,
32(5):1158-1184, 2003. 6

[PRRO6] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance approximation. J.
Comput. Syst. Sci., 72(6):1012-1042, 2006. 3

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

487



Downloaded 05/22/25 to 128.59.18.124 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[PRV18] Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Nithin Varma. Parameterized property testing of
functions. ACM Trans. Comput. Theory, 9(4):17:1-17:19, 2018. 6

[PRW22] R. Pallavoor, S. Raskhodnikova, and E. Waingarten. Approximating the distance to monotonicity of Boolean
functions. Random Struct. Algorithms, 60(2):233-260, 2022. 3, 4, 5

[Ras03] Sofya Raskhodnikova. Approximate testing of visual properties. In 6th International Workshop on Approzi-
mation Algorithms for Combinatorial Optimization Problems, APPROX 2003 and 7th International Workshop on
Randomization and Approzimation Techniques in Computer Science, RANDOM 2003, pages 370-381, 2003. 6

[Rot17] Thomas Rothvoss. Constructive discrepancy minimization for convex sets. SIAM Journal on Computing, 46(1):224—
234, 2017. 2

[Rot23] Thomas Rothvoss. Lattices: CSE 599S—Winter 2023 Lecture Notes, 2023. URL: https://sites.math.washington.
edu/~rothvoss/599-winter-2023/lattices.pdf. 2

[Roy14] Thomas Royen. A simple proof of the Gaussian correlation conjecture extended to multivariate gamma distributions.
2014. arXiv:1408.1028. 1

[RR23a] Victor Reis and Thomas Rothvoss. The subspace flatness conjecture and faster integer programming. In IEEE
64th Annual Symposium on Foundations of Computer Science (FOCS), pages 974-988, 2023. 2

[RR23b] Victor Reis and Thomas Rothvoss. Vector balancing in lebesgue spaces. Random Structures € Algorithms,
62(3):667-688, 2023. 2

[RS96] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to program testing. SIAM
Journal on Computing, 25:252-271, 1996. 1

[RSD24] Oded Regev and Noah Stephens-Davidowitz. A reverse Minkowski theorem. Annals of Mathematics, 199(1):1-49,
2024. 2

[RV05] Luis Rademacher and Santosh Vempala. Testing geometric convexity. In FSTTCS 2004: Foundations of Software
Technology and Theoretical Computer Science: 24th International Conference, 2004, pages 469480, 2005. 6

[Tal96] M. Talagrand. How much are increasing sets positively correlated? Combinatorica, 16(2):243-258, 1996. 4, 5

[Tkol8] Tomasz Tkocz. Asymptotic Convex Geometry Lecture Notes, 2018. URL: https://www.math.cmu.edu/~ttkocz/
teaching/1819/asympt-conv-geom-notes.pdf. 1

[Trol8] Joel A. Tropp. Lectures on convex geometry. 2018. URL: https://tropp.caltech.edu/notes/
Trol8-Lectures-Convex-LN.pdf. 1

[Vem10] Santosh S. Vempala. Learning convex concepts from gaussian distributions with PCA. In 51th Annual IEEE
Symposium on Foundations of Computer Science, FOCS, pages 124—130. IEEE Computer Society, 2010. 1

[Verl8] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science, volume 47.
Cambridge University Press, 2018. 16, 22

[Wail5] M. Wainwright. Basic tail and concentration bounds, 2015. URL: www.stat.berkeley.edu/~mjwain/stat210b/
Chap2_TailBounds_Jan22_2015.pdf. 7

[Wik23] Wikipedia contributors. Chi-squared distribution. Wikipedia, The Free Encyclopedia, Accessed on September 27,
2023. URL: https://en.wikipedia.org/wiki/Chi-squared_distribution. 7

[Wilo5] R Willink. Bounds on the bivariate normal distribution function. Communications in Statistics-Theory and
Methods, 33(10):2281-2297, 2005. 31

[Yao77] A. Yao. Probabilistic computations: Towards a unified measure of complexity. In Proc. Seventeenth Annual
Symposium on Foundations of Computer Science (STOC), pages 222-227, 1977. 8

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

488



	Introduction
	Our Results and Discussion
	Techniques
	The Nazarov Body
	One-Sided Adaptive Lower Bound
	Two-Sided Non-Adaptive Tolerant Lower Bound
	Two-Sided Non-Adaptive Bound

	Related Work

	Preliminaries
	Geometry
	Gaussian and Chi-Squared Random Variables
	Property Testing and Tolerant Property Testing

	Nazarov's Body
	Useful Estimates

	One-Sided Adaptive Lower Bound
	The distribution Dno of far-from-convex sets
	Setup
	The distribution Dno

	Sets in Dno are far from convex
	Proof of Theorem 1.1
	Proof of lem:reject-and-3
	Proof of lem:ev1
	Proof of lem:ev3


	A Mildly-Exponential Lower Bound for Non-Adaptive Tolerant Testers
	The Dyes and Dno Distributions
	Distance to Convexity
	Proof of Theorem 1.2
	Setup and Outline of Argument
	Indistinguishability of Dyes and Dno
	Proof of lem:xynear


	Two-Sided Non-Adaptive Lower Bound
	Setup
	Distributions with Matching Moments
	Mollifiers, CLTs, Tail Bounds and Other Tools
	Clipping

	The Yes- and No- Distributions
	Distance to Convexity

	Proof of Theorem 1.3


