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ABSTRACT: With the rise of new DNA part libraries and
technologies for assembling DNA, synthetic biologists are
increasingly constructing and screening combinatorial libraries to
optimize their biological designs. As combinatorial libraries are
used to generate data on design performance, new rules for
composing biological designs will emerge. Most formal frameworks
for combinatorial design, however, do not yet support formal
comparison of design composition, which is needed to facilitate
automated analysis and machine learning in massive biological
design spaces. To address this need, we introduce a combinatorial
design framework called GOLDBAR. Compared with existing
frameworks, GOLDBAR enables synthetic biologists to intersect
and merge the rules for entire classes of biological designs to extract
common design motifs and infer new ones. Here, we demonstrate the application of GOLDBAR to refine/validate design spaces for
TetR-homologue transcriptional logic circuits, verify the assembly of a partial nif gene cluster, and infer novel gene clusters for the
biosynthesis of rebeccamycin. We also discuss how GOLDBAR could be used to facilitate grammar-based machine learning in
synthetic biology.
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1. INTRODUCTION

Many engineered biological systems such as genetic circuits
and biosynthetic pathways lack highly accurate mechanistic
models to predict their behavior and performance from their
structure and environmental context. To work around this gap
in modeling, synthetic biologists are increasingly constructing
and screening combinatorial libraries that vary the structural
organization of system parts to find combinations that perform
well.1−9 This combinatorial approach to engineering biological
systems has been fueled by the development of new libraries of
DNA parts10−22 and new techniques and technologies for
assembling DNA parts into libraries of DNA constructs.23−37

Despite these advancements in laboratory techniques and
technology, the adoption of formal frameworks and software
tools for combinatorial biological design has lagged behind. In
particular, several frameworks and tools for combinatorial
design have been developed in the past decade, including those
based on constraints,38 regular grammars,39 and context-free
grammars,40 but none of them have risen to the level of a
standard within the greater synthetic biology community.
Possible explanations for this trend include the di6culty in
developing easy-to-use software for biological design and the
relative immaturity of standardization in synthetic biology as a
whole.41 Another possible explanation is that current frame-

works and tools for combinatorial design do not yet address
some of the most pressing challenges facing synthetic
biologists, including the refinement of massive combinatorial
biological design spaces, the inference of rules for biological
design, and the sharing and storage of these spaces and rules.
As combinatorial libraries continue to be used to generate

data on which designs perform well and which do not, new
rules for biological design will continue to emerge.42 In many
laboratories, however, the state of the art in combinatorial
design still involves specifying libraries as collections of files
adhering to legacy bioinformatics formats such as FASTA and
GenBank, from which it can be di6cult to infer the existence
of shared design motifs and common design rules without
significant preprocessing of the data (for example, with
algorithms such as BLAST). To the extent that rules exist to
describe library structure, they are commonly documented
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with prose in methods section of a manuscript or they are
implicitly encoded as entries in an electronic spreadsheet. For
example, a spreadsheet might contain lists of parts from which
a designer intends to select individual entries and concatenate
them into di<erent permutations to design a library of
constructs. Unfortunately, neither of these encodings tends
to facilitate the direct application of software for automated
design and machine learning.
Biological design rules must be formally encoded for several

reasons. First, formal encoding enables design rules to be
shared unambiguously. Second, formally encoded design rules
can be consistently reasoned over and used in proofs for the
refinement and validation of existing designs and the
composition of new designs. Finally, formally encoded rules
can be more directly processed and modified by computers in
an automated manner and can be used to structure or generate
features for machine learning models. Automation is critical for
navigating and learning from biological design spaces given
that even a modest DNA parts library of five promoters, five
ribosome binding sites (RBSs), five coding sequences (CDSs),
and five terminators can implement over six billion possible 5-
gene cluster designs when selecting parts without replacement
and composing them in di<erent orders and orientations (54 ×

44 × 34 × 24 × 14 × 25). In order for a framework to e<ectively
support automation and machine learning for combinatorial
biological design, we believe that it should exhibit at least three
characteristics.
First, it should be representative of synthetic biology. In

other words, the framework should be capable of representing

structural motifs commonly found in biological designs such as
transcriptional units (TUs), operons, and gene clusters. It
should also be capable of representing concepts common to
engineering design in general, such as abstract design templates
that can be filled in and refined. Representation impacts the
class of designs that a user can generate and validate within a
framework. Second, the specifications for design motifs within
the framework should be compact. That is, they should
summarize patterns found across multiple designs without
requiring the same amount of memory to individually encode
the said designs. Compactness can impact the ease with which
specifications are written in the framework. Third, di<erent
specifications made using the same framework should be
comparable to each other. Ideally, the framework should
provide methods for intersecting, merging, and otherwise
comparing specified motifs in order to determine which
designs they have in common and to infer new designs based
on their similarity. Comparability is a key enabler for
standardization and fundamental applications to support the
reuse of designs including design composition, refinement, and
validation.
At present, there is no design framework for synthetic

biology that exhibits all three of these characteristics to the
degree that we believe is necessary to support automation and
machine learning for combinatorial design. In particular, there
exist frameworks based on constraints38,43 and context-free
grammars40 that can compactly specify a wide range of
biological design motifs, but these frameworks do not support
formal comparison of said motifs. For example, the

Figure 1. (A) Examples of sets of concrete parts represented using colored glyphs from the Synthetic Biology Open Language (SBOL) Visual 2
standard.45 Shown here is a set containing the concrete promoter pTet. Also shown is a set of concrete RBS parts P1, P2, and P3. (B) Examples of
two concrete designs for single TU constructs. In these designs, each SBOL Visual glyph represents a single concrete part rather than a set of parts.
(C) Graph representation of a concrete construct space that encodes these concrete designs. Green nodes are “start” nodes, and red nodes are
“accept” nodes. Each edge is labeled with an SBOL Visual glyph that represents a set of concrete parts. Designs encoded by this graph are obtained
by enumerating valid paths through the graph from a start node to an accept node and concatenating one part from each edge of a path. For
example, the dashed path encodes the design for the orange TU construct with a ribozyme. (D) Examples of sets of abstract parts represented using
black glyphs from the SBOL Visual 2 standard.45 Shown here is a set containing an abstract promoter. Also shown is a set containing an abstract
promoter, ribozyme, and terminator. (E) Examples of abstract designs for monocistronic TU and polycistronic TU architectures. Each SBOL Visual
glyph in these designs represents a single abstract part. (F) Graph representation of an abstract architecture space that encodes these abstract
designs. For example, the dashed path encodes the design for the polycistronic TU architecture. (G) Examples of abstract designs for TU
constructs containing single copies of the rebO CDS. (H) Graph representation of an abstract rule space that encodes both of these abstract designs
in accordance with the rule “contains at least one copy of the rebO CDS.”.
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combinatorial extension of the synthetic biology open language
(SBOL)38,43 permits users to specify combinatorial designs as
templates with constraints between typed subcomponents
(promoter, terminator, etc.) and di<erent options for replacing
these subcomponents to derive an individual design. This
standard for representing combinatorial designs, however, does
not include operators for intersecting or merging them in order
to compare them or generate novel motifs. Previously, we
developed a framework based on regular grammar that
supported the intersection of biological design spaces,39 but
even this framework was incapable of directly representing
certain engineering concepts adopted by synthetic biology,
most notably abstraction. Without abstraction, it is impossible
to refer to abstract parts that exist outside of a known library
(e.g., “any promoter”), which prohibits more generalized
composition and validation of design spaces.
In order to support automation and machine learning for

combinatorial biological design, we present a formal framework
called GOLDBAR (Grammars for cOmbinatoriaL Design and
Bio-Assembly Revision). We have enhanced the expressiveness
of GOLDBAR compared to that of our previous framework for
combinatorial biological design by adding the ability to
represent abstract designs. This has involved adding a new
tolerance parameter to the AND operator to enable control
over how abstract design spaces are intersected. In addition, we
have extended GOLDBAR with a new MERGE operator to
merge design spaces such that they encode novel designs based
on their structural similarity. We demonstrate the utility of
these new operators by applying them to case studies involving
the combinatorial design of genetic circuits and the
combinatorial design and assembly of biosynthetic gene
clusters. We have implemented GOLDBAR in two open-
source software tools (Constellation1 and Knox2) and
demonstrated the exchange of combinatorial design informa-
tion between them using the SBOL 2 standard.44 Finally, we
have also developed an open-source software tool (GOLDBAR
Generator3) for users to quickly generate GOLDBAR
specifications based on known principles of genetic design.
These tools are freely available to the public and can be
integrated into existing design-build-test workflows alongside
synthetic biology’s major software o<erings.

2. RESULTS

2.1. Case Studies. The following case studies focus on the
application of GOLDBAR to three common scenarios in
biological design specification: specifying a library of biological
designs for testing, validating whether designs can be
assembled from available parts, and inferring novel designs
based on previous specifications. In particular, the first case
study demonstrates the application of the AND operator to
refine and validate a library of genetic circuit designs. The
second use case then demonstrates the application of the AND
operator to verify whether polycistronic TUs can be assembled
for nitrogen fixation gene cluster designs. Finally, the third use
case shows the application of the MERGE operator to infer
novel biosynthetic gene cluster designs.
Before we describe these case studies in detail, we first define

the following terms to motivate a more informal description of
their contents (see also Figure 1)
2.1.1. Design Space. A design space is a possibly infinite set

of DNA designs, each one consisting of a sequence of DNA
parts. Design spaces have multiple possible representations
(see Section B in Supporting Information), but they are

represented as directed graphs in the use cases that follow.
Figure 1C shows an example of a simple design space that
encodes several di<erent TU designs.
2.1.2. Level of Abstraction. Parts, designs, and design

spaces can be described as concrete or abstract. As explained in
the last set of definitions, the level of abstraction of a design
space has implications for whether the AND operator and
MERGE operator can be applied to the design space.
A concrete part has an ID that uniquely identifies it within

some namespace (such as a part database or the World Wide
Web), a DNA sequence, and one or more roles (see Figure
1A).
A concrete design contains only concrete parts (see Figure

1B).
A concrete design space encodes only concrete designs (see

Figure 1C).
An abstract part has one or more roles but no ID and no

sequence (see Figure 1D).
An abstract design contains at least one abstract part (see

Figure 1E,1G).
An abstract design space encodes at least one abstract

design (see Figure 1F,1H).
2.1.3. Types of Design Spaces. There are di<erent types of

design spaces that are useful for di<erent applications.
A construct space is a concrete or abstract design space that

encodes designs adhering to a known construct architecture,
such as one or more transcription units (TUs) or operons (see
Figure 1C). Construct spaces are typically used to specify
libraries of related designs that can be selected and built for
testing.
An architecture space is an abstract design space that

encodes all possible designs adhering to a known construct
architecture (see Figure 1F). An architecture space is typically
used with the AND operator to refine a construct space by
removing all designs that do not adhere to the architecture.
Doing so also validates whether at least one design encoded by
the construct space adheres to the architecture.
A rule space is a concrete or abstract design space that

typically encodes many designs adhering to a small number of
rules (see Figure 1H). These designs may or may not adhere to
a known construct architecture. A rule space is typically used
with the AND operator to refine a construct space by removing
designs that do not follow the rule. Doing so also validates
whether at least one design encoded by the construct space
follows the rule.
2.1.4. AND and MERGE Operators. The AND operator

now has a tolerance parameter that can range from 0 to 2. This
parameter controls the criteria for matching edges of design
space graphs, with values greater than 0 permitting matches
based on part roles in addition to part IDs (for a detailed
description, see Section 4). The levels of abstraction for the
inputs and outputs of the MERGE operator, along with each
tolerance of the AND operator are provided in Table 1.

Table 1. Input and Output Level of Abstraction (AND and
MERGE Operators)

AND0 AND1 AND2 MERGE

inputs concrete concrete or
abstract

concrete or
abstract

concrete

output concrete concrete concrete or
abstract

concrete
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The AND0 operator takes two concrete design spaces as
input and outputs a new concrete design space that encodes
the intersection of their designs. The AND0 operator is
typically used to compare two construct spaces or to refine or
validate a construct space against a rule space.
The AND1 operator takes two concrete or abstract design

spaces as input and outputs a new concrete design space that
encodes the intersection of their designs. The AND1 operator
is typically used to refine or validate a construct space against a
rule space or to compose two construct spaces.
The AND2 operator takes two concrete or abstract design

spaces as input and outputs a new concrete or abstract design
space that encodes the intersection of their designs. The AND2
operator is typically used to refine or validate a construct space
with an architecture space or to compose two construct spaces.
The AND2 operator can also be used to compare two
architecture spaces or validate a rule space against an
architecture space.
The MERGE operator takes two concrete design spaces as

input and outputs a new concrete design space that encodes a
merger of their designs. The MERGE operator is typically used
to infer novel designs from two structurally similar construct
spaces.
2.1.5. ApplyingAND to Refine/Validate Genetic Circuits.

Our first case study demonstrates the application of GOLD-

BAR’s AND operator to a design-for-test workflow similar to
that applied to the output of genetic circuit design tools such
as Cello.46 These tools typically assign the genetic logic gates
needed to realize a target logic function but then require that
their gate assignments be mapped to libraries of genetic circuit
designs with di<erent architectures (i.e., TU ordering and
orientation) for compilation to linear DNA sequences for
testing.47 Designs for di<erent circuit architectures often need
to be generated since layout-dependent e<ects are often not
captured by the models used by circuit design tools for gate
assignment; hence, these e<ects must be determined
empirically.
The purpose of this case study is to show how the AND

operator is su6ciently general to be applied to all three main
steps in the genetic circuit design-for-test workflow: design
composition, refinement, and validation. Each of these steps
makes use of the AND operator with a di<erent level of
tolerance. We will describe these steps in order of increasing
tolerance of the AND operator used rather than the order in
which these steps appear in the workflow. Thus, we will begin
with design refinement using the AND0 operator before
continuing with design validation using the AND1 operator.
For design composition using the AND2 operator, see Section
A in the Supporting Information.

Figure 2. Application of the AND0 operator to (A) the construct space for an AND circuit and (B) rule spaces for the CDS copy number. Each
colored glyph represents a set of concrete parts with a role from the Sequence Ontology48 as specified by the SBOL Visual 2 standard.45 The
exceptions are the glyphs labeled “Cello” followed by a slash and a part ID. Each one of these glyphs represents the set of all parts in the Cello
library, except the part following the slash. (C) Result of applying the AND0 operator to these design spaces is a construct space for the AND circuit
in which each design contains exactly one copy of each TU. (D) Examples of AND circuit designs encoded by the final construct space. Each
colored glyph in these designs represents a single concrete part rather than a set. (E) Line graph showing the relationship between graph size and
the number of concrete designs encoded in the graph, as cumulative constraints are introduced via the application of the AND operator. The
number of concrete designs containing 3−4 TUs is reported instead of the total number of concrete designs in order to better distinguish between
graphs encoding infinitely many designs.
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Figure 2 illustrates the refinement of the construct space for
a Cello-designed AND circuit by applying the AND0 operator
to this space and a set of rule spaces to constrain the CDS copy
number. (Note that the AND logic of the circuit has nothing to
do with our use of the AND operator). The goal of this
refinement is to produce a smaller construct space that is more
feasible for testing but still captures interesting structural
variation. The input circuit construct space is concrete and
encodes every possible ordering and copy number for the TUs
that make up the AND circuit. Each rule space is also concrete
and fixes the copy number of a specific CDS in the AND
circuit to exactly one (exactly one copy of SrpR, one copy of
AmtR, and one copy of PhlF). Because all input design spaces
are concrete, we applied the AND0 operator. The output of this
AND0 operation is a concrete construct space that encodes
only AND circuit designs containing exactly one copy of each
TU in any order. Libraries of designs like this construct space
are commonly used to determine the e<ect of TU order on
design performance.
This example can be considered a refinement of the original

construct space for the AND circuit since the number of
encoded designs decreases from infinitely many to just 12 = 1
× (2 × 1 + 1 × 2) + 2 × (1 × 1 + 1 × 1) + 1 × (1 × 2 + 2 ×

1). Designs that have more TUs than the AND circuit,
however, may have many more possible structural layouts

(generally scaling as N!, where N is the number of TUs). Since
the size of the graph encoding every possible ordering of single
copy TUs also scales factorially, additional refinement via the
AND operator is required for larger designs to disallow certain
TU orderings and thus produce a computationally tractable
construct space. This requirement is not inherently a
disadvantage of the GOLDBAR framework since additional
refinement is typically also desirable from the perspective of
designing experiments. In particular, it is often not feasible or
necessary to build and test all possible TU orderings in order
to learn about the relationship between a design’s structural
layout and its performance. As we will discuss later on, while
the expressive power of GOLDBAR could be increased to
more compactly specify this type of design space, it would also
become much more di6cult to formally compare design spaces
in general.
Next, Figure 3 demonstrates validation of the previously

refined construct space for the AND circuit by using the AND1
operator and a single rule space that disallows specific tandem
promoter orderings. Similar to the previous refinement step,
the goal of validation is to refine the construct space and
remove designs that do not follow the rule encoded by the rule
space. The di<erence is that, whereas the previous refinement
step primarily omitted designs in order to obtain a finite,
tractable design space for testing, the validation step seeks to

Figure 3. Application of the AND1 operator to the (A) refined construct space for an AND circuit and (B) a rule space prohibiting promoter
roadblocking. Each colored glyph represents a set of concrete parts with a role from the Sequence Ontology48 as specified by the SBOL Visual 2
standard.45 Each black glyph represents a set of a single abstract part. The pink promoter glyph labeled “Cello promoter 2” represents a set of
concrete promoters that are identified to its right. (C) Result of applying the AND1 operator to these design spaces is a construct space for the
AND circuit in which designs positioning pSrpR as the second promoter in the PhlF TU have been omitted. (D) Examples of AND circuit designs
encoded by the final construct space. Each colored glyph in these designs represents a single concrete part rather than a set. (E) Line graph showing
the relationship between graph size and the number of concrete designs containing 3−4 TUs encoded in the graph, as cumulative constraints are
introduced via the application of the AND operator. Since both the input and output construct spaces for the AND circuit in this example are finite,
the number of concrete designs containing 3−4 TUs is equivalent to the total number of concrete designs encoded in the graph.
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remove designs that are likely to fail based on knowledge
gained via prior experimentation. In this example, the goal is to
omit AND circuit designs that contain tandem promoter
orderings known to cause “roadblocking,” a phenomenon in
which transcriptional repression of a TU’s second promoter
inhibits transcription from its first promoter.42

The rule space used in this example is partially abstract and
allows one or more TUs that each contain a promoter,
ribozyme, RBS, CDS, and terminator. If there is a second
promoter in a TU, however, then it must be selected from a

finite set of promoters that have been experimentally shown to
not exhibit significant roadblocking. Note that this rule space
could be concrete instead of abstract and specify exactly which
parts are allowed in a TU (in which case the AND0 operator
could be used), but one benefit of being abstract is that this
rule space can be reused to query or validate against future
design spaces containing parts that did not exist when this rule
space was specified.
The result of applying the AND1 operator to the

roadblocking rule space and the construct space for the fixed

Figure 4. Application of the AND2 operator to (A) the construct spaces for multiplexed pools of TU variants for nifH and nifD. (B) Result of
applying the AND2 operator to these construct spaces is to obtain the space of possible construct assemblies. (C) Target construct space for
polycistronic TU variants of nifHD and nif DH. (D) Result of applying the AND1 operator to the assembly space and target construct space to
verify that the latter can be assembled from the former. (E) Examples of polycistronic TU variants for nifHD encoded by the final construct space.
(F) Line graph showing the relationship between graph size and the number of concrete designs encoded in the graph, as cumulative constraints are
introduced.
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copy number AND circuit produces a new construct space
with just 6 designs instead of 12. This is because the pSrpR
promoter in PhlF TU is roadblocking. By fixing the order of
these promoters to prevent pSrpR from occurring in the
second position, the application of AND1 halves the total
number of designs encoded by the construct space. Thus, the
designer can be confident that their tested AND circuits will
not include layouts that are more likely to exhibit poor
performance due to known promoter roadblocking.
This concludes our demonstration of applying the AND

operator to specify the design of a genetic AND circuit. To
summarize, we have shown that the AND0 operator can be
used to refine a concrete construct space against rule spaces to
constrain TU copy number for subsequent building and testing
and that the AND1 operator can be used to validate a concrete
construct space against a rule space to remove designs likely to
exhibit known promoter roadblocking.
2.1.6. Applying AND to Verify nif Gene Cluster Assembly.

Our second case study demonstrates the application of
GOLDBAR’s AND operator to help verify the combinatorial
assembly of a partial nitrogen fixation gene cluster.
Combinatorial assembly is an important tool for implementing
construct libraries to test and optimize the function of genetic
designs with complex functions such as nitrogen fixation.2

The purpose of this use case is to show how the AND
operator can be used to verify whether a target construct space
or library can be combinatorially assembled from available
parts. In doing so, we illustrate how GOLDBAR can be used to

formally connect the design and build steps of synthetic
biology workflows. Connecting design to build within a formal
framework like GOLDBAR is important because it enables us
to quickly generalize existing rules for combinatorial design
and assembly to new synthetic biology parts with new
functions, and it helps us ensure consistency in moving from
the design step to the build step. In the future, as frameworks
like GOLDBAR are extended with quantitative weights for
di<erent combinations of parts, we will also be able to verify
whether a target construct space can be assembled from part
combinations that have been empirically associated with a
successful assembly.
Figure 4A,B illustrates the results of applying the AND2

operator to the input construct spaces for the genes nifH and
nif D. These input construct spaces are partially abstract and
represent multiplexed pools of parts27 (specifically, TU
variants) that can be assembled in di<erent orders and
orientations. The only requirement for their assembly is that
they have matching overhangs. Generally speaking, all levels of
the AND operator’s tolerance parameter can be used to match
overhangs in this way. In this example, however, we apply the
AND2 operator because it also intersects the abstract portions
of the input construct spaces with each other, thus preserving
the ability of the output assembly space to be further
assembled with construct spaces encoding new part pools.
After assembling the construct spaces for the nifH and nif D

part pools, we apply the AND1 operator to intersect the
resulting assembly space (Figure 4B) with a target construct

Figure 5. Application of the MERGE operator to (A) the construct space for a rebeccamycin gene cluster with natural operons and (B) the
construct space for a rebeccamycin gene cluster with synthetic operons. (C) Result of applying the MERGE operator to these design spaces is a
construct space that encodes designs for a rebeccamycin gene cluster with operons that exhibit both natural and synthetic characteristics. (D)
Examples of gene cluster designs encoded by the final construct space. (E) Line graph showing the relationship between graph size and the number
of concrete designs encoded in the graph, as cumulative constraints are introduced via the application of the MERGE operator.
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space for possible polycistronic variants of nifHD (Figure 4C).
This enables us to determine which polycistronic gene
orderings can be assembled from available part pools. The
reason that we apply the AND1 operator is 2-fold. Number
one, because all designs encoded by our input construct spaces
are partially abstract, is that we must apply AND1 or AND2 in
order to get any matches at all. Number two, by applying
AND1, we permit only concrete designs in the final output
design space, which removes any designs that cannot be
completely implemented via assembly from the available TU
part pools.
In conclusion, while this case study focused on assembly via

matching overhangs generated via Gibson or Golden Gate
methods, GOLDBAR can be used to verify assembly via other
methods, as well. Generally speaking, GOLDBAR should be
applicable to any method in which assembly depends on
matches between sequence overhangs or similar features,
provided that these matches can be abstracted as matches
between feature IDs or roles rather than feature nucleotide
sequences.
2.1.7. Applying MERGE to Infer Novel Biosynthetic Gene

Clusters. Our third case study demonstrates the application of
GOLDBAR’s MERGE operator to the construct spaces for a
pair of related gene clusters for the biosynthesis of
rebeccamycin, an antitumor antibiotic. The first of these
construct spaces encodes a gene cluster based on natural
operons found in Saccharothrix aerocolonigenes, while the
second contains codon-optimized versions of the same genes
organized into synthetic operons that are controlled with T7
promoters and insulated with ribozymes.49,50

The goal of merging the construct spaces for these gene
clusters is to produce a new construct space that contains novel
designs with motifs that exhibit characteristics of both clusters.
In doing so, we can explore new architectures to produce the
same target molecule (e.g., for optimizing biosynthesis) as well
as architectures that can produce new molecules in the same
chemical neighborhood. The MERGE operator accomplishes
this task based on a fairly simple strategy: if two designs share a
part, then whatever comes after that part in the first design can
come after that part in the second design (and vice versa). Part
of the power of the MERGE operator is that it applies this
strategy to every design encoded by the input design spaces. In
other words, the MERGE operator does not selectively apply

this strategy due to bias or rules outside of those encoded by
the input design spaces.
Figure 5 shows the result of the application of the MERGE

operator to the construct spaces for the biosynthesis of
rebeccamycin. Compared to these input construct spaces, the
output construct space encodes infinitely many gene cluster
designs instead of just two, and the designs it encodes exhibit
greater diversity in terms of their architecture. Figure 5D shows
two examples of gene cluster designs. The first design is for a
gene cluster that is more similar to the input cluster with
natural operons (the “natural” cluster) than the input cluster
with synthetic operons (the “synthetic” cluster). In this case,
the new gene cluster gained rmlA and galK (enzymes that help
with the glycosylation of rebeccamycin in Escherichia coli) and
lost rebU (a redundant rebeccamycin transporter). In other
words, the MERGE operator e<ectively inferred some of the
smallest changes needed to make the natural cluster more like
the synthetic cluster. The second design is for a gene cluster
that is more similar to the synthetic cluster since its operons
are controlled with T7 promoters and insulated with
ribozymes. In this case, however, the new gene cluster has a
large rebODCP operon. That is, the MERGE operator has
e<ectively inferred that splitting the rebODCP operon in two
may be optional for synthetic operons.
Returning to the output construct space as a whole, the

reason why this space encodes infinitely many designs is due to
a property of the MERGE operator that emerges when input
design spaces share at least two parts in di<erent relative
orders. For example, rebO comes before rebF in the natural
cluster design, but it comes after rebF in the synthetic cluster
design. Thus, the basic assumption of the MERGE operator
produces a construct space that contains infinitely many gene
cluster designs, each one with a di<erent number of alternating
copies of rebO and rebF. While this highly repetitive design
motif can be desirable for some use cases (such as varying
operator sites in synthetic promoters for CHO cell engineer-
ing51), for others, it can be removed via subsequent application
of the AND operator and rule spaces to constrain part copy
number. This use of the AND operator is the same as that in
the previous use case of refining the design space for a genetic
AND circuit in Section 2.1.5.

2.2. GOLDBAR Software Ecosystem. We have developed
two complementary open-source software tools that imple-
ment GOLDBAR and together enable the specification,

Figure 6. GOLDBAR software ecosystem. Constellation takes as input a GOLDBAR specification for a design space that is encoded by using
JavaScript Object Notation (JSON). Alternatively, Constellation can take as input an SBOL specification for a design space. Constellation then
produces as output a design space encoded using SBOL or a collection of designs encoded using JSON. The SBOL design spaces produced by
Constellation can be imported by Knox and other SBOL-compatible tools that support combinatorial design, such as SBOL Designer.52 Knox takes
as input a SBOL specification for a design space and can output a collection of designs encoded using CSV. Knox can also take as input a SBOL or
CSV specification for a collection of designs to convert to a design space.
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storage, visualization, manipulation, and sampling of combina-
torial biological design spaces: Constellation4 and Knox5.
Here, we describe these tools and the results of benchmarking
them with the use cases presented in Section 2.1.
2.2.1. Constellation. Constellation is a design specification

tool that can ingest both GOLDBAR and SBOL to produce
equivalent design space graphs and enumerate designs from
them. It is available as a web application6 and a standalone
Node.js package7. An example of a Constellation workflow is
as follows: first, a user provides their GOLDBAR specification,
part categories encoded using JavaScript Object Notation
(JSON), and additional parameters for design enumeration
(such as the number of designs and depth of cycles).
Constellation then automatically converts this input to a
design space graph and enumerates a list of designs obtained
by traversing the graph. Constellation also generates an SBOL
representation of the design space that can be downloaded as
an XML file using the web application. This SBOL XML file
can then be uploaded to Knox for storage and subsequent
manipulation of its encoded design space, reuploaded to
Constellation for design enumeration, or uploaded to another
SBOL-compatible tool that supports the combinatorial design,
such as SBOL Designer52 (see Figure 6).
The Constellation API exposes three public functions: sbol,

goldbar, and symbolic. The first two functions, as their names
suggest, take as input a SBOL document or GOLDBAR
specification, respectively. Both functions return a design space
graph and a list of designs enumerated from this graph, and the
goldbar function also returns an SBOL document. The symbolic
function, on the other hand, only takes as input a GOLDBAR
specification and returns only a list of enumerated designs. In
order to parse the GOLDBAR specifications, Constellation
relies on imparse8 library.
Table 2 reports metrics for design space graph construction

and design enumeration when Constellation is applied to the
use cases in Section 2.1. For graph construction, runtime is
weakly correlated with the output graph size (nodes plus
edges). This is because some of the genetic circuit use cases
involve the application of multiple graph product operators,
and in these cases, the intermediate graphs generated by
Constellation can be larger than the final output graph. In
addition, because Constellation does not store intermediate
graphs, the GOLDBAR specifications for the use cases that are
later in the genetic circuit workflow must include the
specifications for the use cases that are earlier in the workflow,
which can cause their graph construction runtimes to be larger.
For example, the runtime for the genetic circuit (AND1) use
case is larger than the runtime for the genetic circuit (AND0)
use case despite having a similar output graph size. This is

because the specification for the AND1 use case includes the
specification for the AND0 use case.
For design enumeration, runtime is mostly correlated with

the number of designs enumerated. This is why the runtime for
the MERGE use case (103 designs enumerated) is 1 to 2 orders
of magnitude larger than the runtimes for the genetic circuit
(AND0) and genetic circuit (AND1) use cases (12 and 6
designs enumerated, respectively). However, in general, the
runtime for design enumeration can also be a<ected by the
structure of the design space graph and the graph traversal
algorithm used.
2.2.2. Knox. Knox is a database for storing and manipulating

biological design spaces. Knox is available as a full-stack
desktop application built on the Java Spring framework and
Neo4j graph database platform. A modular web interface that
exercises Knox’s API is also included in the same Git
repository. Lastly, a Docker container with the Knox
application and a fresh database is also available for easy
installation. An example of a Knox workflow is as follows: a
user first imports SBOL specifications for design spaces
generated with Constellation or another tool for combinatorial
design into the database. The user can then enumerate designs
from these spaces or apply GOLDBAR operators to these
spaces and enumerate designs from the results.
The Knox API exposes a variety of functions for

manipulating design space graphs stored in its database
including one function per GOLDBAR operator. Each one
of the GOLDBAR operator functions takes as input the IDs for
two or more design space graphs in the database. The AND
operator function also requires a tolerance parameter (an
integer between 0 and 2, inclusive) that controls how these
input design space graphs are intersected. Knox then produces
an output design space graph that is the result of applying the
corresponding GOLDBAR operator to the input design space
graphs and stores the results in the database. Lastly, the Knox
API also exposes functions for importing SBOL and CSV,
exporting JSON for a D39 graph visualization, and
enumerating designs from graphs.
Table 2 reports metrics for design space graph construction

and design enumeration when Knox is applied to the use cases
in Section 2.1. Again, graph construction runtime weakly
correlates with output graph size since some of the AND use
cases involve the application of multiple graph product
operators, and the intermediate graphs can be larger than the
final output graphs. Since Knox stores these intermediate
graphs, its graph construction runtimes are faster than those for
Constellation. Another reason for Knox’s increased speed over
Constellation for graph construction is that Knox omits
unnecessary edges that Constellation instead attempts to
remove during a postprocessing step.

Table 2. Constellation and Knox Metrics

graph construction design enumeration

use case nodes + edges runtime (ms) designs runtime (ms)

genetic circuit (AND0) (Constellation) 227 1142 12 6

genetic circuit (AND1) (Constellation) 215 13,275 6 1

nif cluster (AND2 + AND1) (Constellation) 26 443,596 400 6

biosynthetic cluster (MERGE) (Constellation) 77 476 103 92

genetic circuit (AND0) (Knox) 136 807 12 616

genetic circuit (AND1) (Knox) 124 277 6 731

nif cluster (AND2 + AND1) (Knox) 23 406 400 143

biosynthetic cluster (MERGE) (Knox) 65 157 103 386
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For design enumeration, Knox’s runtimes are, on the whole,
1 to 2 orders of magnitude larger than Constellation’s
runtimes. This is primarily due to the fact that Knox must
reload design spaces from Neo4j prior to design enumeration,
whereas Constellation enumerates designs from graphs directly
after their construction while they are still in memory.

3. DISCUSSION

We believe that frameworks for biological design should ideally
permit specifications that are representative of synthetic
biology, compact in size, and formally comparable in their
specified structures. With respect to all three of these
characteristics, it is natural to ask questions about the
expressive power of a given design framework. For example,
does the framework permit the specification of some design
motifs and patterns but not others? Do these constraints
impact the size of specifications within the framework or the
ability to compare their specified structures? In this section, we
discuss the characteristics of GOLDBAR’s expressive power
and connect them to the addition of GOLDBAR’s MERGE
operator and the extension of its AND operator. We also
discuss several ways in which GOLDBAR could enable
grammar-based machine learning in synthetic biology.
In the case of GOLDBAR, it can readily be shown that its

expressive power with respect to formal language theory is
limited to that of a regular grammar.39 In practice, this means
that GOLDBAR can be used to specify biological motifs with
copy numbers that are variable and unbounded (Figure 2), but
it cannot be used to specify relationships between these copy
numbers. More specifically, GOLDBAR cannot be used to
specify variable, unbounded palindromes or patterns like AnBn,
where the variable, unbounded copy number of motif A is
equal to that of motif B. Examples of biological design motifs
that match the second pattern are those involving paired DNA
parts such as recombination sites or a TF CDS and its cognate
promoter.
Practically speaking, this limitation on the expressive power

of GOLDBAR has a greater impact on the compactness of its
specifications than it does on its representation of synthetic
biology. Many synthetic biological systems do not have
multiple copies of paired parts since systems containing
these motifs can be prone to unwanted homologous
recombination or cross-talk in regulation. If a designer still
wants to specify such a system in GOLDBAR, then they can
apply the OR operator to a set of design spaces in which paired
parts have various copy numbers, starting with a copy number
of zero or one and ending with the largest feasible copy
number. The primary disadvantage of specifying paired-part
relationships in this way is that it can be less concise than
specifying them in a more expressive framework (e.g., one with
expressive power equal to or greater than that of context-free
grammars).
While a context-free grammar would be capable of

representing unbounded, paired DNA parts, it has also
previously been noted by Cai et al.40 that there exist natural
biological motifs such as overlapping genes, introns, and
splicing sites that would require an even more expressive
indexed grammar to represent them. These types of motifs are
much less common in synthetic biology; however, overlapping
features make it even more di6cult to model the relationship
between the structure and function of a design. Still, these
features present a boundary in terms of what can be
represented by using GOLDBAR.

The primary advantage of restricting the expressive power of
GOLDBAR to that of a regular grammar is that doing so
enables one to formally compare any two specifications written
in GOLDBAR and determine whether they specify the same
set of designs.53 This is built upon the known result that
comparing two regular grammars to determine whether they
encode the same language is a decidable problem54,55 (e.g., in
contrast to the undecidable general problem of comparing two
context-free grammars). This result is also critical for our
definition of GOLDBAR’s AND and MERGE operators since
they are predicated on exhaustively matching between the
structures of their input design space graphs. If GOLDBAR
had greater expressive power, then its specified design space
graphs could potentially be infinite in size, thus precluding
their complete intersection or merger in a finite amount of
time.
Ultimately, our decision to limit the expressive power of

GOLDBAR is a trade-o< between its representation of
synthetic biology and the compactness and comparability of
its design spaces. We have chosen a degree of expressiveness
that maximizes the comparability of design spaces specified
with GOLDBAR because we see a need in synthetic biology
for frameworks that enable new designs to be inferred in an
interpretable manner based on the structure of existing designs
rather than deduced from first principles. This need is rooted
in the observation that synthetic biology still largely lacks
accurate mechanistic models to predict di<erences in the
function of designs based on di<erences in their structural
layout. We believe that our addition of a MERGE operator to
GOLDBAR helps to satisfy this need by providing a means to
exhaustively compare two design spaces and infer new designs
based on their shared motifs.
One more aspect that can a<ect a design framework’s

representation of synthetic biology is its degree of abstraction,
which has more than one possible interpretation in the context
of biological design. For instance, degree of abstraction can
refer to how abstract is an individual element’s representation
of the design. In other words, a DNA part can have both a
sequence and a functional role or can just have a functional
role if its precise sequence has not yet been defined.
GOLDBAR supports this notion of abstraction by permitting
the specification of parts with roles but no ID or DNA
sequence. Our extension of GOLDBAR’s AND operator
enables design spaces containing abstract parts to be
intersected, which in turn supports the definition of general
rule spaces that can be used to validate or query future designs
containing parts that do not yet exist (see Figure 3). Perhaps
more importantly, this extension also permits the representa-
tion of combinatorial DNA assembly and design using a single
formal framework that supports their unified comparison and
validation. In other words, GOLDBAR can now be used to
answer questions such as “what is the set of assembly-
compatible designs that are structurally valid (and vice versa)?”
(see Figure 4) without requiring integration across multiple
formalisms and software tools.
Second, the degree of abstraction can also refer to a

framework’s ability to compactly encode multiple design
elements as a single element, which can in turn be abstracted
in a similar manner. For example, a promoter followed by a
RBS, CDS, and terminator can be encoded as a TU, and a
series of TUs can be encoded as a gene cluster. This notion of
abstraction can have the practical e<ect of simplifying
specifications for human interpretation and increasing the
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e6ciency of their comparison when they contain the same
composite parts. GOLDBAR currently does not directly
support this degree of abstraction, but it can be indirectly
implemented by applying the OR operator to specifications of
the same design space at di<erent levels of abstraction. Of
course, this implementation increases rather than decreases the
size of specifications written in GOLDBAR.
Going forward, GOLDBAR (and, more generally, the

combinatorial design specification for synthetic biology)
could move in several new directions. These include increasing
expressive power beyond that of context-free grammars to
enable the representation of structural relationships between
paired and overlapping DNA parts. For GOLDBAR, this
increase in expressive power must be balanced against the
ability to define algorithmic (as opposed to heuristic)
operators for intersecting and merging design spaces.
Another direction for GOLDBAR is the addition of numeric

weights to the edges of its design space graphs. This extension
would enable the application of stochastic grammar induction
techniques to learn common biological design motifs, such as
rules for genetic circuit design. A stochastic grammar induced
in this way could be used to generate new designs or predict
how likely a new design adheres to its encoded rules (and thus
potentially exhibits similar functional properties to its encoded
designs). These types of grammar-based models would also be
interpretable, unlike black-box models based on neural
networks. This is an important consideration for use cases in
which genetic design via generative models may be subject to
regulation, as interpretable models provide the best possible
description of how a generated design was derived from a
model’s input. In addition, interpretable models can be more
easily inspected for insight into the biological basis for high-
performing designs. For example, merging design space graphs
for genetic circuits that have been weighted according to a
performance metric and inspecting the result can provide
insight into which biological design motifs are unique to high-
performing circuits.
Alternatively, weighted design space graphs could be used to

generate better input features for deep learning to predict the
functional performance of biological designs from their
structure. These graphs could also serve as the structural
basis for hybrid models such as neural network grammars,
which have exhibited gains in learning e6ciency and accuracy
over traditional neural networks in the natural language
domain.56

In these ways, a design framework such as GOLDBAR could
facilitate grammar-based machine learning in synthetic biology.
Before this can happen, however, new tools and software
libraries are needed to tackle practical problems in
combinatorial design and engineering for synthetic biology.
With this work, we have demonstrated why we think
GOLDBAR is a suitable formal foundation for developing
these tools in terms of its expressive power (for representing
designs across a range of applications), its operators for
intersecting and merging design spaces (for comparing design
motifs and generating new ones), and its compatibility with
existing community standards such as SBOL (for enabling
interoperability).

4. METHODS

The GOLDBAR framework and its associated software
libraries and tools rely on a mathematically rigorous
foundation (Supporting Information). This includes formal

definitions of the syntax and semantics of GOLDBAR
specifications (including detailed definitions of the AND and
MERGE operator variants), as well as design space graph
construction rules that are accompanied by soundness and
completeness theorems. In particular, for a GOLDBAR
specification e subject to certain constraints and a design
space graph D constructed from e using the construction rules,
it is proven that (1) every design permitted by specification e
appears as a path in design space graph D and (2) every path in
design space graph D is a design that is permitted by
specification e. It is further demonstrated that these theorems
do not apply when a specification e contains instances of the
AND1, AND2, and MERGE operators, thus providing some
guidance to users of the GOLDBAR framework and associated
tools on how they should understand the capabilities and
limitations of these operators for exploring new design spaces
(e.g., using these operators on semantically equivalent but
syntactically distinct specifications may lead to distinct design
spaces).

■ ASSOCIATED CONTENT

*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssynbio.4c00296.

An additional example of applying the AND2 operator to
compose the starting construct space for the AND
circuit featured in Section 2.1.5; formal definitions of the
syntax and semantics of GOLDBAR, as well as proofs
concerning the equivalence of its di<erent representa-
tions; a brief description of the GOLDBAR Generator
software, which can be used to quickly create GOLD-
BAR specifications for design spaces that encode known
principles of genetic design (PDF)

■ AUTHOR INFORMATION

Corresponding Author

Nicholas Roehner − RTX BBN Technologies, Cambridge,
Massachusetts 02138, United States; orcid.org/0000-
0003-4957-1552; Email: nicholas.roehner@rtx.com

Authors

James Roberts − Biological Design Center, Boston University,
Boston, Massachusetts 02215, United States; Department of
Biomedical Engineering, Boston University, Boston,
Massachusetts 02215, United States; orcid.org/0000-
0003-3462-5183

Andrei Lapets − Reity, Boston, Massachusetts 02215, United
States

Dany Gould − Hariri Institute for Computing, Boston
University, Boston, Massachusetts 02215, United States

Vidya Akavoor − Hariri Institute for Computing, Boston
University, Boston, Massachusetts 02215, United States

Lucy Qin − Hariri Institute for Computing, Boston University,
Boston, Massachusetts 02215, United States

D. Benjamin Gordon − The Foundry, Cambridge,
Massachusetts 02142, United States; Broad Institute of MIT
and Harvard, Cambridge, Massachusetts 02142, United
States; Synthetic Biology Center, Department of Biological
Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, United States

Christopher Voigt − The Foundry, Cambridge, Massachusetts
02142, United States; Broad Institute of MIT and Harvard,

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.4c00296
ACS Synth. Biol. 2024, 13, 2899−2911

2909

https://pubs.acs.org/doi/suppl/10.1021/acssynbio.4c00296/suppl_file/sb4c00296_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssynbio.4c00296?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.4c00296/suppl_file/sb4c00296_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicholas+Roehner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4957-1552
https://orcid.org/0000-0003-4957-1552
mailto:nicholas.roehner@rtx.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="James+Roberts"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3462-5183
https://orcid.org/0000-0003-3462-5183
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrei+Lapets"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dany+Gould"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vidya+Akavoor"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lucy+Qin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="D.+Benjamin+Gordon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Christopher+Voigt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.4c00296?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Cambridge, Massachusetts 02142, United States; Synthetic
Biology Center, Department of Biological Engineering,
Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, United States; orcid.org/0000-
0003-0844-4776

Douglas Densmore − Biological Design Center, Boston
University, Boston, Massachusetts 02215, United States;
Department of Electrical and Computer Engineering, Boston
University, Boston, Massachusetts 02215, United States;
orcid.org/0000-0002-7666-6808

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssynbio.4c00296

Author Contributions

N.R. designed the GOLDBAR framework and developed the
Knox software. J.R. developed the GOLDBAR Generator
software. A.L. led the development of the Constellation
software and wrote formal definitions for the syntax and
semantics of GOLDBAR. D.G., V.A., and L.Q. developed the
Constellation software. D.B.G., C.V., and D.D. led the project.
N.R., J.R., A.L., and D.D. wrote the manuscript.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank Swapnil Bhatia for developing the original design
space formalism on which GOLDBAR is based. The authors
are also grateful to Glenn Xavier, Shirene Cao, and Frederick
Jansen from Boston University, and Evan Bowman, Erika
Schwartz, and Melissa Garcia for their software development
contributions. The development of Knox and Constellation
was supported by DARPA Living Foundries award HR0011-
15-C-0084 and the NIH Training Program in Quantitative
Biology & Physiology (QBP) 1T32GM145455-01. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Defense Advanced
Research Projects Agency (DARPA), the Department of
Defense, the National Institutes of Health (NIH), or the
United States Government. This document does not contain
technology or technical data controlled under either the U.S.
International Tra6c in Arms Regulations or the U.S. Export
Administration Regulations.

■ ADDITIONAL NOTES
1https://github.com/CIDARLAB/constellation-js
2https://github.com/CIDARLAB/knox
3https://github.com/CIDARLAB/goldbar-generator
4https://github.com/CIDARLAB/constellation-js
5https://github.com/CIDARLAB/knox
6www.constellationcad.org
7https://www.npmjs.com/package/constellation-js
8http://imparse.org/
9https://d3js.org/

■ REFERENCES

(1) Du, J.; Yuan, Y.; Tong, S.; Lian, J.; Zhao, H. Customized
optimization of metabolic pathways by combinatorial transcriptional
engineering. Nucleic Acids Res. 2012, 40 (2), No. e142.
(2) Smanski, M. J.; Bhatia, S.; Zhao, D.; Park, Y. J.; Woodruff, L. B.
A.; Giannoukos, G.; Ciulla, D.; Busby, M.; Calderon, J.; Nicol, R.;
Gordon, D. B.; Densmore, D.; Voigt, C. A. Functional optimization of

gene clusters by combinatorial design and assembly. Nat. Biotechnol.
2014, 32, 1241−1249.
(3) Jones, J. A.; Vernacchio, V. R.; Lachance, D. M.; Lebovich, M.;
Fu, L.; Shirke, A. N.; Schultz, V. L.; Cress, B.; Linhardt, R. J.; Koffas,
M. A. G. epathoptimize: A combinatorial approach for transcriptional
balancing of metabolic pathways. Sci. Rep. 2015, 5, No. 11301.
(4) Freestone, T. S.; Zhao, H. Combinatorial pathway engineering
for optimized production of the anti-malarial FR900098. Biotechnol.
Bioeng. 2016, 113 (2), 384−392.
(5) Coussement, P.; Bauwens, D.; Maertens, J.; Mey, M. D. Direct
combinatorial pathway optimization. ACS Synth. Biol. 2017, 6 (2),
224−232.
(6) Jeschek, M.; Gerngross, D.; Panke, S. Combinatorial pathway
optimization for streamlined metabolic engineering. Curr. Opin.
Biotechnol. 2017, 47, 142−151.
(7) Carbonell, P.; Jervis, A. J.; Robinson, C. J.; Yan, C.; Dunstan, M.;
Swainston, N.; Hollywood, K. A.; Vinaixa, M.; Currin, A.; Rattray, N.
J. W.; Taylor, S.; Spiess, R.; Sung, R.; Williams, A. R.; Fellows, D.;
Stanford, N. J.; Mulherin, P.; Feuvre, R. L.; Barran, P.; Goodacre, R..;
Turner, N. J.; Goble, C.; Chen, G. G.; Kell, D. B.; Micklefield, J.;
Breitling, R.; Takano, E.; Faulon, J.-L.; Scrutton, N. S. An automated
design-build-test-learn pipeline for enhanced microbial production of
fine chemicals. Commun. Biol. 2018, 1, No. 66.
(8) Naseri, G.; Behrend, J.; Rieper, L.; Mueller-Roeber, B. Compass
for rapid combinatorial optimization of biochemical pathways based
on artificial transcription factors. Nat. Commun. 2019, 10, No. 2615.
(9) Taylor, G. M.; Heap, J. T. Design and Implementation of Multi-
Protein Expression Constructs and Combinatorial Libraries Using
Start-Stop Assembly. In DNA Cloning and Assembly of Methods in
Molecular Biology; Chandran, S.; George, K., Eds.; Humana: New
York, NY, 2020; Vol. 2205.
(10) Pfleger, B. F.; Pitera, D. J.; Smolke, C. D.; Keasling, J. D.
Combinatorial engineering of intergenic regions in operons tunes
expression of multiple genes. Nat. Biotechnol. 2006, 24, 1027−1032.
(11) Salis, H. M.; Mirsky, E. A.; Voigt, C. A. Automated design of
synthetic ribosome binding sites to control protein expression. Nat.
Biotechnol. 2009, 27, 946−950.
(12) Chen, Y.-J.; Liu, P.; Nielsen, A. A. K.; Brophy, J. A. N.; Clancy,
K.; Peterson, T.; Voigt, C. A. Characterization of 582 natural and
synthetic terminators and quantification of their design constraints.
Nat. Methods 2013, 10, 659−664.
(13) Curran, K. A.; Morse, N. J.; Markham, K. A.; Wagman, A. M.;
Gupta, A.; Alper, H. S. Short synthetic terminators for improved
heterologous gene expression in yeast. ACS Synth. Biol. 2015, 4, 824−
832.
(14) Redden, H.; Hal, S. A. The development and characterization
of synthetic minimal yeast promoters. Nat. Commun. 2015, 6,
No. 7810.
(15) Guo, Y.; Dong, J.; Zhou, T.; Auxillos, J.; Li, T.; Zhang, W.;
Wang, L.; Shen, Y.; Luo, Y.; Zheng, Y.; Lin, J.; Chen, G.-Q.; Wu, Q.;
Cai, Y.; Dai, J. YeastFab: the design and construction of standard
biological parts for metabolic engineering in Saccharomyces
cerevisiae. Nucleic Acids Res. 2015, 43 (13), No. e88.
(16) Lee, M. E.; DeLoache, W. C.; Cervantes, B.; Dueber, J. E. A
highly characterized yeast toolkit for modular, multipart assembly.
ACS Synth. Biol. 2015, 4 (10), 975−986.
(17) Moore, S. J.; Lai, H.-E.; Kelwick, R. J. R.; Chee, S. M.; Bell, D.
J.; Polizzi, K. M.; Freemont, P. S. EcoFlex: A multifunctional MoClo
kit for E. coli synthetic biology. ACS Synth. Biol. 2016, 5 (10), 1059−
1069.
(18) Iverson, S. V.; Haddock, T. L.; Beal, J.; Densmore, D. M.
CIDAR MoClo: Improved MoClo assembly standard and new E. coli
part library enable rapid combinatorial design for synthetic and
traditional biology. ACS Synth. Biol. 2016, 5 (10), 99−103.
(19) Zong, Y.; Zhang, H. M.; Lyu, C.; Ji, X.; Hou, J.; Guo, X.;
Ouyang, Q.; Lou, C. Insulated transcriptional elements enable precise
design of genetic circuits. Nat. Commun. 2017, 8, No. 52.
(20) Naseri, G.; Balazadeh, S.; Machens, F.; Kamranfar, I.;
Messerschmidt, K.; Mueller-Roeber, B. Plant-derived transcription

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.4c00296
ACS Synth. Biol. 2024, 13, 2899−2911

2910

https://orcid.org/0000-0003-0844-4776
https://orcid.org/0000-0003-0844-4776
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Douglas+Densmore"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7666-6808
https://orcid.org/0000-0002-7666-6808
https://pubs.acs.org/doi/10.1021/acssynbio.4c00296?ref=pdf
https://github.com/CIDARLAB/constellation-js
https://github.com/CIDARLAB/knox
https://github.com/CIDARLAB/goldbar-generator
https://github.com/CIDARLAB/constellation-js
https://github.com/CIDARLAB/knox
https://www.npmjs.com/package/constellation-js
http://imparse.org/
https://d3js.org/
https://doi.org/10.1093/nar/gks549
https://doi.org/10.1093/nar/gks549
https://doi.org/10.1093/nar/gks549
https://doi.org/10.1038/nbt.3063
https://doi.org/10.1038/nbt.3063
https://doi.org/10.1038/srep11301
https://doi.org/10.1038/srep11301
https://doi.org/10.1002/bit.25719
https://doi.org/10.1002/bit.25719
https://doi.org/10.1021/acssynbio.6b00122?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.6b00122?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.copbio.2017.06.014
https://doi.org/10.1016/j.copbio.2017.06.014
https://doi.org/10.1038/s42003-018-0076-9
https://doi.org/10.1038/s42003-018-0076-9
https://doi.org/10.1038/s42003-018-0076-9
https://doi.org/10.1038/s41467-019-10224-x
https://doi.org/10.1038/s41467-019-10224-x
https://doi.org/10.1038/s41467-019-10224-x
https://doi.org/10.1038/nbt1226
https://doi.org/10.1038/nbt1226
https://doi.org/10.1038/nbt.1568
https://doi.org/10.1038/nbt.1568
https://doi.org/10.1038/nmeth.2515
https://doi.org/10.1038/nmeth.2515
https://doi.org/10.1021/sb5003357?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/sb5003357?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/ncomms8810
https://doi.org/10.1038/ncomms8810
https://doi.org/10.1093/nar/gkv464
https://doi.org/10.1093/nar/gkv464
https://doi.org/10.1093/nar/gkv464
https://doi.org/10.1021/sb500366v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/sb500366v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.6b00031?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.6b00031?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.5b00124?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.5b00124?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.5b00124?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-017-00063-z
https://doi.org/10.1038/s41467-017-00063-z
https://doi.org/10.1021/acssynbio.7b00094?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.4c00296?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


factors for orthologous regulation of gene expression in the yeast
Saccharomyces cerevisiae. ACS Synth. Biol. 2017, 6 (9), 1742−1756.
(21) Machens, F.; Balazadeh, S.; Mueller-Roeber, B.; Messerschmidt,
K. Synthetic promoters and transcription factors for heterologous
protein expression in Saccharomyces cerevisiae. Front. Bioeng.
Biotechnol. 2017, 5, No. 63.
(22) Dossani, Z. Y.; Apel, A. R.; Szmidt-Middleton, H.; Hillson, N.
J.; Deutsch, S.; Keasling, J. D.; Mukhopadhyay, A. A combinatorial
approach to synthetic transcription factor-promoter combinations for
yeast strain engineering. Yeast 2018, 35 (3), 273−280.
(23) Werner, S.; Engler, C.; Weber, E.; Gruetzner, R.; Marillonnet,
S. Fast track assembly of multigene constructs using golden gate
cloning and the MoClo system. Bioengineered 2012, 3 (1), 38−43.
(24) Coussement, P.; Maertens, J.; Beauprez, J.; Van Bellegem, W.;
De Mey, M. One step dna assembly for combinatorial metabolic
engineering. Metab. Eng. 2014, 23, 70−77.
(25) Zhang, S.; Zhao, X.; Tao, Y.; Lou, C. A novel approach for
metabolic pathway optimization: Oligo-linker mediated assembly
(OLMA) method. J. Biol. Eng. 2015, 9, No. 23.
(26) Mitchell, L. A.; Chuang, J.; Agmon, N.; Khunsriraksakul, C.;
Phillips, N. A.; Cai, Y.; Truong, D. M.; Veerakumar, A.; Wang, Y.;
Mayorga, M.; Blomquist, P.; Sadda, P.; Trueheart, J.; Boeke, J. D.
Versatile genetic assembly system (VEGAS) to assemble pathways for
expression in S. cerevisiae. Nucleic Acids Res. 2015, 43 (13), 6620−
6630.
(27) Woodruff, L. B. A.; Gorochowski, T. E.; Roehner, N.;
Mikkelsen, T. S.; Gordon, D. B.; Densmore, D.; Nicol, R.; Voigt, C.
A. Registry in a tube: Multiplexed pools of retrievable parts for genetic
design space exploration. Nucleic Acids Res. 2016, 45 (3), 1553−1565.
(28) Yuan, Y.; Andersen, E.; Zhao, H. Flexible and versatile strategy
for the construction of large biochemical pathways. ACS Synth. Biol.
2016, 5 (1), 46−52.
(29) Jin, P.; Ding, W.; Du, G.; Chen, J.; Kang, Z. DATEL: a scarless
and sequence-independent DNA assembly method using thermo-
stable exonucleases and ligase. ACS Synth. Biol. 2016, 5 (9), 1028−
1032.
(30) Basitta, P.; Westrich, L.; Rösch, M.; Kulik, A.; Gust, B.; Apel, A.
K. AGOS: a plug-and-play method for the assembly of artificial gene
operons into functional biosynthetic gene clusters. ACS Synth. Biol.
2017, 6 (5), 817−825.
(31) van Dolleweerd, C. J.; Kessans, S. A.; Van de Bittner, K. C.;
Bustamante, L. Y.; Bundela, R.; Scott, B.; Nicholson, M. J.; Parker, L.
Y. MIDAS: A modular dna assembly system for synthetic biology.
ACS Synth. Biol. 2018, 7 (4), 1018−1029.
(32) Wu, Y.; Zhu, R.-Y.; Mitchell, L. A.; Ma, L.; Liu, R.; Zhao, M.;
Jia, B.; Xu, H.; Yang, Y.-X.; Li, Z.-M.; Li, Y.; Ma, X.; Liu, H.; Liu, D.;
Xiao, W.-H.; Zhou, X.; Li, B.-Z.; Yuan, Y.-J.; Boeke, J. D. In vitro
DNA SCRaMbLE. Nat. Commun. 2018, 9, No. 1935.
(33) Kang, Z.; Ding, W.; Jin, P.; Du, G.; Chen, J. DNA assembly
with the DATEL method. In Synthetic Biology: Methods and Protocols;
Braman, J. C., Ed.; Methods in Molecular Biology; Humana Press:
New York, NY, 2018; Vol. 1772.
(34) Taylor, G. M.; Mordaka, P. M.; Heap, J. T. Start-Stop
Assembly: a functionally scarless DNA assembly system optimized for
metabolic engineering. Nucleic Acids Res. 2019, 47 (3), No. e17.
(35) Ma, X.; Liang, H.; Cui, X.; Liu, Y.; Lu, H.; Ning, W.; Poon, N.
Y.; Ho, B.; Zhou, K. A standard for near-scarless plasmid construction
using reusable DNA parts. Nat. Commun. 2019, 10, No. 3294.
(36) Liu, S.; Xiao, H.; Zhang, F.; Lu, Z.; Zhang, Y.; Deng, A.; Li, Z.;
Yang; Wen, T. A seamless and iterative DNA assembly method
named PS-Brick and its assisted metabolic engineering for threonine
and 1-propanol production. Biotechnol. Biofuels 2019, 12, No. 180.
(37) Fero, M. J.; Craft, J. K.; Vu, T.; Hillson, N. J. Combinatorial-
Hierarchical DNA Library Design Using the Teselagen DESIGN
Module with j5. In DNA Cloning and Assembly; Chandran, S.; George,
K., Eds.; Humana: New York, NY, 2020; Vol. 2205.
(38) Bilitchenko, L.; Liu, A.; Cheung, S.; Weeding, E.; Xia, B.;
Leguia, M.; Anderson, J. C.; Densmore, D. Eugene - a domain specific

language for specifying and constraining synthetic biological parts,
devices, and systems. PLoS One 2011, 6 (4), No. e18882.
(39) Bhatia, S. P.; Smanski, M. J.; Voigt, C. A.; Densmore, D. M.
Genetic design via combinatorial constraint specification. ACS Synth.
Biol. 2017, 6 (11), 2130−2135.
(40) Cai, Y.; Hartnett, B.; Gustafsson, C.; Peccoud, J. A syntactic
model to design and verify synthetic genetic constructs derived from
standard biological parts. Bioinformatics 2007, 23 (20), 2760−2767.
(41) Decoene, T.; Paepe, B. D.; Maertens, J.; Coussement, P.;
Peters, G.; Maeseneire, S. L. D.; Mey, M. D. Standardization in
synthetic biology: An engineering discipline coming of age. Crit. Rev.
Biotechnol. 2018, 38 (5), 647−656.
(42) Brophy, J. A. N.; Voigt, C. A. Principles of genetic circuit
design. Nat. Methods 2014, 11 (5), 508−520.
(43) Roehner, N.; Bartley, B.; Beal, J.; McLaughlin, J.; Pocock, M.;
Zhang, M.; Zundel, Z.; Myers, C. J. Specifying combinatorial designs
with the Synthetic Biology Open L anguage (SBOL). ACS Synth. Biol.
2019, 8 (7), 1519−1523.
(44) Roehner, N.; Beal, J.; Clancy, K.; Bartley, B.; Misirli, G.;
Grünberg, R.; Oberortner, E.; Pocock, M.; Bissell, M.; Madsen, C.;
Nguyen, T.; Zhang, M.; Zhang, Z.; Zundel, Z.; Densmore, D.;
Gennari, J. H.; Wipat, A.; Sauro, H. M.; Myers, C. J. Sharing structure
and function in biological design with SBOL 2.0. ACS Synth. Biol.
2016, 5, 498−506.
(45) Beal, J.; Nguyen, T.; Gorochowski, T. E.; Goni-Moreno, A.;
Scott-Brown, J.; Madsen, C.; McLaughlin, J. A.; Aleritsch, B.; Bartley,
B.; Bhakta, S.; Bissell, M.; Clancy, K.; Castillo Hair, S.; Luna, A.;
Novere, N. L.; Palchick, Z.; Pocock, M.; Sauro, H.; Sexton, J. T.;
Tabor, J. J.; Voigt, C. A.; Zundel, Z.; Myers, C.; Wipat, A.
Communicating structure and function in synthetic biology diagrams.
ACS Synth. Biol. 2019, 8 (8), 1818−1825.
(46) Nielsen, A. A. K.; Der, B.; Shin, J.; Vaidyanathan, P.; Paralanov,
V.; Strychalski, E. A.; Ross, D.; Densmore, D.; Voigt, C. A. Genetic
circuit design automation. Science 2016, 352 (6261), No. aac7341.
(47) Vaidyanathan, P.; Der, B. S.; Bhatia, S.; Roehner, N.; Silva, R.;
Voigt, C. A.; Densmore, D. A framework for genetic logic synthesis.
Proc. IEEE 2015, 103 (11), 2196−2207.
(48) Eilbeck, K.; Eilbeck, S. E.; Mungall, C. J.; Yandell, M.; Stein, L.;
Durbin, R.; Ashburner, M. The Sequence Ontology: A tool for the
unification of genome annotations. Genome Biol. 2005, 6, No. R44.
(49) Sánchez, C.; Butovich, I. A.; Braña, A. F.; Rohr, J.; Mendéz, C.;
Sálas, J. A. The biosynthetic gene cluster for the antitumor
rebeccamycin: Characterization and generation of indolocarbazole
derivatives. Chem. Biol. 2018, 9, 519−531.
(50) Casini, A.; Chang, F. Y.; Eluere, R.; et al. A pressure test to
make 10 molecules in 90 days: External evaluation of methods to
engineer biology. J. Am. Chem. Soc. 2018, 140, 4302−4316.
(51) Brown, A. J.; Sweeney, B.; Mainwaring, D. O.; James, D. C.
Synthetic promoters for CHO cell engineering. Biotechnol. Bioeng.
2014, 111, 1638−1647.
(52) Zhang, M.; McLaughlin, J. A.; Wipat, A.; Myers, C. J.
SBOLDesigner 2: An intuitive tool for structural genetic design. ACS
Synth. Biol. 2017, 6, 1150−1160.
(53) Almeida, M.; Moreira, N.; Reis, R. In Testing the Equivalence of
Regular Languages, Proceedings Eleventh International Workshop on
Descriptional Complexity of Formal Systems, DCFS 2009, Magde-
burg, Germany, July 6−9, 2009, volume 3 of EPTCS; Dassow, J.;
Pighizzini, G.; Truthe, B., Eds.; 2009; pp 47−57.
(54) Hunt, H. B.; Rosenkrantz, D. J.; Szymanski, T. G. On the
equivalence, containment, and covering problems for the regular and
context-free languages. J. Comput. Syst. Sci. 1976, 12 (2), 222−268.
(55) Hopcroft, J. E.; Motwani, R.; Ullman, J. D. Introduction to
Automata Theory, Languages, and Computation, 3rd ed.; Addison-
Wesley Longman Publishing Co., Inc.: USA, 2006.
(56) Dyer, C.; Kuncoro, A.; Ballesteros, M.; Smith, N. A. Recurrent
neural network grammars 2016, arXiv:1602.07776. arXiv:physics/
0402096. https://arxiv.org/abs/1602.07776.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.4c00296
ACS Synth. Biol. 2024, 13, 2899−2911

2911

https://doi.org/10.1021/acssynbio.7b00094?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.7b00094?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3389/fbioe.2017.00063
https://doi.org/10.3389/fbioe.2017.00063
https://doi.org/10.1002/yea.3292
https://doi.org/10.1002/yea.3292
https://doi.org/10.1002/yea.3292
https://doi.org/10.4161/bbug.3.1.18223
https://doi.org/10.4161/bbug.3.1.18223
https://doi.org/10.1016/j.ymben.2014.02.012
https://doi.org/10.1016/j.ymben.2014.02.012
https://doi.org/10.1186/s13036-015-0021-0
https://doi.org/10.1186/s13036-015-0021-0
https://doi.org/10.1186/s13036-015-0021-0
https://doi.org/10.1093/nar/gkv466
https://doi.org/10.1093/nar/gkv466
https://doi.org/10.1093/nar/gkw1226
https://doi.org/10.1093/nar/gkw1226
https://doi.org/10.1021/acssynbio.5b00117?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.5b00117?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.6b00078?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.6b00078?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.6b00078?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.6b00319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.6b00319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.7b00363?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-018-03743-6
https://doi.org/10.1038/s41467-018-03743-6
https://doi.org/10.1093/nar/gky1182
https://doi.org/10.1093/nar/gky1182
https://doi.org/10.1093/nar/gky1182
https://doi.org/10.1038/s41467-019-11263-0
https://doi.org/10.1038/s41467-019-11263-0
https://doi.org/10.1186/s13068-019-1520-x
https://doi.org/10.1186/s13068-019-1520-x
https://doi.org/10.1186/s13068-019-1520-x
https://doi.org/10.1371/journal.pone.0018882
https://doi.org/10.1371/journal.pone.0018882
https://doi.org/10.1371/journal.pone.0018882
https://doi.org/10.1021/acssynbio.7b00154?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/bioinformatics/btm446
https://doi.org/10.1093/bioinformatics/btm446
https://doi.org/10.1093/bioinformatics/btm446
https://doi.org/10.1080/07388551.2017.1380600
https://doi.org/10.1080/07388551.2017.1380600
https://doi.org/10.1038/nmeth.2926
https://doi.org/10.1038/nmeth.2926
https://doi.org/10.1021/acssynbio.9b00092?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.9b00092?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.5b00215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.5b00215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.9b00139?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.aac7341
https://doi.org/10.1126/science.aac7341
https://doi.org/10.1109/JPROC.2015.2443832
https://doi.org/10.1186/gb-2005-6-5-r44
https://doi.org/10.1186/gb-2005-6-5-r44
https://doi.org/10.1016/s1074-5521(02)00126-6
https://doi.org/10.1016/s1074-5521(02)00126-6
https://doi.org/10.1016/s1074-5521(02)00126-6
https://doi.org/10.1021/jacs.7b13292?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.7b13292?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.7b13292?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/bit.25227
https://doi.org/10.1021/acssynbio.6b00275?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0022-0000(76)80038-4
https://doi.org/10.1016/S0022-0000(76)80038-4
https://doi.org/10.1016/S0022-0000(76)80038-4
https://arxiv.org/abs/1602.07776
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.4c00296?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

