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ABSTRACT

Coded aperture imaging, crucial for low-light imaging in
challenging conditions, requires specific decoders for image
reconstruction. Traditional image reconstruction methods can
be complex and focus on reconstruction rather than learning
the underlying decoder. Our work introduces a one-layer
CNN network for interpretable decoder recovery, without
prior knowledge of encoding or decoding arrays. Using ob-
served detector images, the network produces reconstructed
images using a learned decoder. We train our network using
the MNIST dataset and report high accuracy in image re-
construction even for images with high signal to noise ratio.
To validate the generalizability of the method, we show that
the MNIST-trained CNN-learned decoder is able to accu-
rately reconstruct images from the grayscale FashionMNIST
dataset.

Index Terms— Coded aperture imaging, interpretable
deep learning, image reconstruction, convolutional neural
network, deep learning

1. INTRODUCTION

Deep learning has become ubiquitous in the modern world.
As deep learning models become more complex and sophis-
ticated, the need to provide explanations regarding its predic-
tions becomes more important. Interpretability and general-
izability continues to be a focus of much research in deep
learning [1]. Interpretability in deep learning extends beyond
the models themselves to encompass various facets, includ-
ing the input data and model parameters. Moreover, a rec-
ognized limitation of deep learning models lies in their abil-
ity to generalize effectively to new, unseen data. The re-
search presented specifically emphasizes the mathematical in-
terpretability and generalizability of convolutional neural net-
works within the domain of coded aperture imaging.

Coded aperture (CA) imaging emerged from the need to
increase the photon count reaching a detector in optical sys-
tems without compromising resolution, such as by enlarging
the diameter of a pinhole. The basic idea is to create a mask
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pattern that introduces a more complex point spread function
compared to that of a pinhole, leveraging this pattern to pro-
duce high-quality image reconstructions.

Significant advancements have been made in CA imaging
with the creation of Modified Uniformly Redundant Arrays
(MURAs) [2] – designed to enhance decoding capabilities
and improve image reconstruction. MURAs are mathemati-
cally tailored to increase the redundancy of the coded aperture
pattern, enabling better noise suppression, higher imaging
resolution, and more accurate scene reconstruction based on
detector array measurements. Our focus in this study will
involve studying images encoded using MURA.

Typically, when radiation emitted from a source (denoted
as S) interacts with a binary aperture mask (A), it casts a
shadow of an object. This mask is designed with a pattern
of openings that allow a significant portion of photons to
reach a position-sensitive detector, capturing spatial informa-
tion from the source. The resulting recorded image (D) is
unrecognizable as it represents a transformed version of S
and lacks resemblance to the original source structure. To be
meaningful, the observed image (D) must undergo a recon-
struction process to identify the location and intensity of each
source within the field of view, thus producing an approxima-
tion (Ŝ) of the original source image.

Coded aperture technology originated to address chal-
lenges in x-ray and gamma-ray imaging, although it has now
been widely adopted in astronomy, remote sensing, surveil-
lance systems, and biomedical imaging [3, 4, 5, ] To suc-
cessfully reconstruct images without access to the underlying
decoder, complex mathematical algorithms and computa-
tional methods, including the Maximum Entropy Method
(MEM) [6, 7], wavelet-based techniques [8, 9], and deep con-
volutional neural networks (CNNs) [10], have been used. Our
approach differs from conventional methods as our objective
is to recover the decoding function itself, rather than solely
focusing on image reconstruction.

2. PROBLEM FORMULATION

In the context of coded aperture imaging, the arrival of pho-
tons at the detector are modeled by the following process:

D = S ∗A+B
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(a) (b) (c)

Fig. 1. (a) Depiction of true decoder G. (b) Learned decoder GL. (c) Convolution A ∗GL (right).

where A ∈ {0, 1}n×n is the binary coded aperture, S ∈
Rn×n is the source signal, B ∈ Rn×n is the background
noise, D ∈ Rn×n is the observed image at the detector stage,
and ∗ denotes the convolution operator (see [2]).
The reconstruction is given by

Ŝ = D ∗G

where G ∈ Rn×n represents the mathematical function or
decoding procedure used to approximate the original source.
Our interest is recovering the decoding function given coded
observations, without knowledge of the encoding array. That
is, we seek to solve the unconstrained minimization problem:

GL = arg min
Ĝ

Φ(Ŝ,S) (1)

where we seek to adjust the weights Ĝ in order to improve
the quality of the approximate output Ŝ. The loss function Φ
is minimized using backpropagation [11].

3. METHODOLOGY

We propose to use a single convolutional layer with no ac-
tivation function and no bias with the purpose of evaluating
the potential of deep learning in obtaining an interpretable
and mathematically accurate approximation for the decod-
ing function by solving Ŝ = D ∗ GL. In doing so, we de-
velop a fully data-driven method without explicit knowledge
of the imaging system. For this reason, we do not impose
constraints on the decoding function. The output Ŝ is com-
pared to the target or source image S by letting Φ be the mean
squared error (MSE) loss function given by

Φ(Ŝ,S) =
1

|S|

|S|∑
i=1

∥Ŝi − Si∥2F (2)

where S is the dataset and |S| is its cardinality.

4. NUMERICAL EXPERIMENTS

Training Datasets. We train our method on 60, 000 images
from the MNIST dataset. MNIST is composed of 70, 000

grey-scale 28× 28 pixel images. We used 2-D modified uni-
formly redundant arrays to encode the data [2]. The size of
each MURA is defined by a prime integer p.

Testing Datasets. We evaluate our method on two datasets:
(i) MNIST and (ii) FashionMNIST. We test on the 10, 000
held-out images from MNIST. To test the generalizability of
the learned decoder, we then directly apply our trained CNN
to encoded FashionMNIST images, which consists of 10, 000
greyscale images of size 28× 28.

Performance. We trained our model exclusively on the
MNIST training data for 10 epochs, utilizing the mean
squared error (MSE) defined in Equation (2) as our loss
function. The model was tested on both MNIST and Fash-
ionMNIST datasets. The model has p2 parameters, which
represent the learned decoder. Following the reconstruction
of the images using both methods, we utilized two metrics to
assess the quality of the reconstructions: mean squared error
(MSE) and structural similarity index measure (SSIM) [12].
Metrics are calculated between the reconstructed image Ŝ
and the original image S. SSIM measures perceived changes
between images and is given by

SSIM(Ŝ,S) =
(2µŜµS + c1)(2σŜS + c2)

(µ2
Ŝ
+ µ2

S + c1)(σ2
Ŝ
+ σ2

S + c2)
(3)

where µŜ and µS represent the mean values and σŜ and σS

denote the corresponding variances of Ŝ and S, respectively.
c1 and c2 are used to stabilize the denominator.

To evaluate the learned decoder GL, we consider the two
constraints posed by Gottesman and Fenimore [2]: (1) the de-
coding function be the correlational inverse of A, i.e. A ∗
GL ≈ δ where δ is the Kronecker-delta function, and (2) the
constraint that GL be unimodular, i.e., the elements of GL

have equal magnitude. All codes are implemented in Py-
torch and available at github.com/jornelasmunoz/
coded-aperture.
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Fig. 2. Numerical experiments on 3 images from the MNIST dataset and FashionMNIST dataset at varying SNR levels. Row 1
and 5: input images D. Rows 2 and 6: Ground truth images S. Rows 3 and 7: Final reconstructions Ŝ using the learned decoder
GL. Rows 4 and 8: Final reconstructions S̃ using the true decoder G. MSE and SSIM values between Ŝ and S are presented
for each model reconstruction.
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(a) MNIST (a) FashionMNIST

Fig. 3. Box plots showing image reconstruction quality at varying Signal-to-Noise Ratio levels measured in decibels (dB) using
learned decoder with p = 23. (a) MNIST dataset and (b) FashionMNIST dataset. Dark blue shows mean squared error (MSE)
and light blue shows (SSIM).

5. RESULTS

In this section we present results from our approach. We will
evaluate the performance based on two criteria: (1) accuracy
of the learned decoder and (2) mean-squared error between
the learned decoded images and the source images.

Figure 1(b) displays the learned weights for p = 23. We
can see that the learned decoder GL is a rotated version of
the true decoder (Figure 1(a)). This makes sense mathemat-
ically since Pytorch implements a cross-correlation function
but calls it convolution for convolutional neural networks. A
cross-correlation and a convolution function are equivalent,
but the kernel is flipped [13]. Further, the learned decoder
satisfies the constraint that A ∗ GL ≈ δ (Figure 1(c)). We
observe that the elements of matrix GL exhibit unequal mag-
nitudes, attributed to the stochastic nature of gradient descent
methods. The variability introduced by stochastic gradient
descent methods, such as Adam [14], adds complexity to the
convergence process, making it challenging to reach the exact
minimum [15].

Next we turn to evaluating the reconstructions. The ex-
ample reconstructions, illustrated in Figure 2, showcase the
performance of the learned decoder across different signal-
to-noise ratios: noiseless, 10dB, and 5dB. The first and fifth
rows present the coded images, while the third and seventh
rows display the corresponding reconstructions achieved with
the learned decoder. As reference, the second and sixth row
show the ground truth images and the fourth and eighth rows
show reconstructions depicting the true decoded images.

Figure 3 presents overall MSE and SSIM on 10, 000
MNIST testing images and 10, 000 FashionMNIST testing

images for the model with p = 23. A single model was
trained on noiseless MNIST data and subsequently tested on
varying signal-to-noise (SNR) levels measured in decibels
(dB) for both MNIST and FashionMNIST data. We observe
that the pixel values of the reconstructions do not fall within
the range [0, 1], as we did not apply an activation function.
The average MSE value and average SSIM value for MNIST
noiseless data was 7.82 × 10−3 and 0.86, respectively. For
FashionMNIST noiseless data, the average MSE value was
4.10× 10−2 and the average SSIM value was 0.82.

6. CONCLUSIONS

This paper presents a one-layer convolutional neural net-
work grounded in mathematical principles for reconstructing
recorded observations obtained from a coded aperture de-
tector. In addition to reconstructing the images, the learned
weights of our one-layer CNN represent the decoder. We
demonstrate that a single model, solely trained on binary
MNIST images, exhibits robust performance when directly
applied to grayscale images from FashionMNIST with vary-
ing noise levels. Our results demonstrate the network’s ca-
pacity to generalize effectively across diverse datasets, un-
derscoring its proficiency in capturing underlying patterns
in new, unseen data obtained from coded aperture systems.
Furthermore, our investigation reveals that the learned model
weights effectively represent a decoding function that sat-
isfies requisite mathematical constraints. This validation
underscores the model’s fidelity in adhering to fundamental
principles.
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