
Nature Microbiology | Volume 10 | January 2025 | 185–201 185

nature microbiology

https://doi.org/10.1038/s41564-024-01841-4Article

Metabolic rearrangement enables 
adaptation of microbial growth rate to 
temperature shifts
 

Benjamin D. Knapp1, Lisa Willis2, Carlos Gonzalez3, Harsh Vashistha4, 
Joanna Jammal-Touma4, Mikhail Tikhonov    5, Jeffrey Ram6, Hanna Salman    4, 
Josh E. Elias    7 & Kerwyn Casey Huang    1,2,7,8 

Temperature is a key determinant of microbial behaviour and survival in the 
environment and within hosts. At intermediate temperatures, growth rate 
varies according to the Arrhenius law of thermodynamics, which describes  
the effect of temperature on the rate of a chemical reaction. However, the  
mechanistic basis for this behaviour remains unclear. Here we use single-cell  
microscopy to show that Escherichia coli exhibits a gradual response to tempe
rature upshifts with a timescale of ~1.5 doublings at the higher temperature. 
The response was largely independent of initial or final temperature and 
nutrient source. Proteomic and genomic approaches demonstrated that 
adaptation to temperature is independent of transcriptional, translational or 
membrane fluidity changes. Instead, an autocatalytic enzyme network model 
incorporating temperature-sensitive Michaelis–Menten kinetics recapitulates 
all temperature-shift dynamics through metabolome rearrangement, resulting 
in a transient temperature memory. The model successfully predicts alterations 
in the temperature response across nutrient conditions, diverse E. coli strains 
from hosts with different body temperatures, soil-dwelling Bacillus subtilis 
and fission yeast. In sum, our model provides a mechanistic framework for 
Arrhenius-dependent growth.

While growth is critically dependent on the environmental tempera-
ture, microbes are unable to regulate intracellular temperature. Enteric 
bacteria face temperature changes across minute to hour or day time-
scales when colonizing hosts, while environmental species are exposed 
to daily and seasonal fluctuations. Despite these fundamental con-
nections, the mechanistic underpinnings of how temperature affects 
microbial behaviour remain unclear.

Most studies on the cellular effects of temperature have focused on 
the regulatory systems that enable survival under heat and cold stress, 

during which molecular chaperones assist in the folding and unfolding 
of proteins and RNA1,2. While growth rate decreases at extreme, 
stress-response-inducing temperatures3, there is typically a temperature 
range over which growth rate increases with temperature in approximate 
agreement with the Arrhenius Law of equilibrium thermodynamics4,5. 
The Arrhenius Law is an equation that describes the impact of tempera-
ture on the rate k  of a chemical reaction (lnk ∝ 1/T), wherein the natural 
logarithm of growth rate depends approximately linearly on the inverse 
of the absolute temperature, with a negative slope that can be interpreted 
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samples of hosts with different body temperatures (Supplementary 
Table 1)24,25. All strains exhibited similar temperature sensitivity pro-
files, with Arrhenius behaviour between 27 °C and 37 °C (Extended 
Data Fig. 1a,b) and activation energies (10–15 kcal mol−1) of growth 
(Extended Data Fig. 1c–e) consistent with a null model in which growth is 
determined by a single rate-limiting enzyme. The curves exhibit slightly 
nonlinear behaviour in Arrhenius plots (Extended Data Fig. 1c–e), which 
is predicted in some models of temperature-dependent kinetics as a 
result of additional factors (for example, proteome stability7, molecu-
lar transition-state theory26, enthalpic changes in core enzymes27). 
Single-cell growth rates correlated with bulk growth rates from liquid 
culture across the Arrhenius range (Fig. 1a, right, and Supplementary 
Fig. 1), with liquid-culture measurements exhibiting a small bias towards 
higher growth rates probably due to challenges in accurate optical 
density blank subtraction (Methods)28. These data suggest that the 
thermodynamic properties of E. coli growth are conserved and that 
host body temperature does not dictate the temperature sensitivity 
of enteric bacteria.

To identify the mechanisms underlying the temperature sen-
sitivity of bacterial growth, we used single-cell tracking with a 
microscopy-compatible temperature controller29. For the null model 
in which growth depends on a single rate-limiting enzyme, growth 
rate would adapt immediately to the steady-state value dictated by 
the new temperature, and the response timescale would match that 
of the temperature shift. To test this model, we monitored the growth 
of single E. coli cells on LB agarose pads during 10 °C temperature 
shifts within the Arrhenius range (Methods and Supplementary 
Fig. 2).

A rapid downshift from 37 °C to 27 °C resulted in a rapid decrease 
in growth rate with a timescale quantitatively similar to that of the 
temperature shift (Fig. 1b and Supplementary Fig. 3), nearly reaching 
the steady-state growth rate at 27 °C, and then slowly decelerating 
towards the new steady state (Fig. 1b). In contrast, temperature 
upshifts from 27 °C to 37 °C resulted in a slow response, with an initial 
‘spike’ that peaked at ~3 min post shift and subsequent linear accelera-
tion until reaching the 37 °C steady-state growth rate at ~40 min post 
shift (Fig. 1c), a response time substantially longer than the doubling 
time at 37 °C (~22 min). To identify whether initial temperature affects 
the response to upshifts, we shifted E. coli from steady-state growth 
on LB at 27 °C to 30 °C, 33 °C or 37 °C. In each case, the upshift caused 
an initial spike and subsequent linear acceleration up to the 
steady-state growth rate at 37 °C (Fig. 1c,d). However, the timescale 
of the overall response depended on the final temperature, with longer 
response times observed for lower final temperatures (despite the 
smaller difference in steady-state growth rates between the initial and 
final temperature, Fig. 1d). By normalizing time t by the doubling time 
at the final temperature (τD) (Fig. 1e) and the change in growth rate to 
span from 0 to 1, all trajectories collapsed onto a single curve. The 
response time was 1.6 ± 0.2 doublings at the final temperature (Fig. 1f), 
even for temperatures outside the Arrhenius range (Extended Data 
Fig. 2) and across growth media (Fig. 1g,h), indicating that the response 
is largely determined by the growth rate at the elevated final 
temperature.

Temperature upshift responses were largely unaffected by the 
presence of oxygen (Extended Data Fig. 3a,b) or chaperones (Extended 
Data Fig. 3c–e). Under nutrient limitation, the enzymes SpoT and 
RelA produce the alarmone ppGpp, which signals large-scale tran-
scriptional reprogramming known as the stringent response that 
regulates metabolism30–32. During an upshift from 27 °C to 37 °C, the 
response time of a ΔspoT ΔrelA mutant was longer than the parent 
strain’s (Extended Data Fig. 3f,g), and an upshift from 27 °C to 42 °C 
caused ΔspoT ΔrelA cells to rapidly decelerate from 0.8 h−1 to 0.4 h−1 
(Extended Data Fig. 3h). Thus, the impact of the stringent response 
on growth under temperature upshifts suggests that the response 
timescale is related to metabolism.

as an activation energy for growth (Ea, equivalent to the barrier for 
enzyme kinetics)6. This temperature-dependent behaviour is highly 
conserved across diverse bacteria, archaea, yeast and mammalian cells6, 
with each species exhibiting its own Arrhenius range of optimal growth 
temperatures and activation energy.

While theoretical work has suggested that proteome stability 
sets the upper bound for the growth rate of a given bacterial species 
across temperatures7, there is no correlation between permissible 
(optimal) growth temperatures and Ea across bacteria4, indicating that 
Ea is probably influenced by factors other than proteome stability. In 
Escherichia coli, the Arrhenius range is between 23 °C and 37 °C and Ea 
is ~13 kcal mol−1 (refs. 5,7), similar to the free energy released from ATP 
hydrolysis (12–16 kcal mol−1)8, suggesting that there may be a single 
rate-limiting enzyme for growth. On the other hand, theoretical work 
on cyclical enzyme networks has suggested that Ea arises from the aver-
age activation energies over all reactions within the network9,10, as the 
Ea for most biological enzymes is constrained between 5–20 kcal mol−1 
(refs. 6,11,12). However, the factor(s) that limit growth across Arrhenius 
temperatures and determine Ea for a given species remain unknown.

Most previous studies of growth in the Arrhenius range have 
focused on steady-state growth. An early study of 133 proteins in  
E. coli showed that the concentration of most proteins was maintained 
across Arrhenius temperatures, suggesting that the proteome may 
be largely temperature insensitive5. However, other studies found 
transient changes in the synthesis of transfer (t)RNA synthetases after 
temperature increases13, and a decrease from 37 °C to 28 °C resulted in 
significant changes to ~9% of the E. coli transcriptome14, indicating a 
role for other environmental variables15. A few studies have examined 
growth rate response to temperature shifts; E. coli growth rate was 
shown to respond almost immediately upon temperature shifts within 
the Arrhenius range13,16, while others report much longer timescales 
that scale with the final temperature17.

Many factors could determine the timescale of temperature 
adaptation. E. coli cells tightly maintain membrane fluidity across all 
growth-permissible temperatures by regulating membrane compo-
sition18. Increased membrane fluidity allows for higher respiratory 
metabolic rates19, but how fluidity impacts growth rate during tem-
perature shifts is unknown. Growth rate across nutrients correlates 
with ribosome concentration, which is optimized through competition 
between protein and autocatalytic ribosome synthesis20,21. As a result, 
many models of growth focus on translation as a key growth-limiting 
factor22. However, this framework is likely inappropriate for under-
standing growth rate variations across temperatures, as ribosome 
concentration is constant across Arrhenius temperatures5,23.

Here we demonstrate that E. coli cells exhibit an asymmetric 
growth-rate response to temperature shifts within the Arrhenius 
range and that these responses do not result from proteome or 
membrane reconfiguration, or from transcriptional regulation. We 
develop an autocatalytic enzyme network model that incorporates 
temperature-sensitive Michaelis–Menten kinetics into chained reac-
tions. The model quantitatively captures temperature upshift and down-
shift responses, the effects of carbon source-dependent changes in 
activation energy and changes in substrate availability. These findings 
suggest that metabolome rearrangement largely drives the adaptation of 
growth rate to temperature shifts. This behaviour was conserved across 
diverse Escherichia strains and the Gram-positive Bacillus subtilis. The 
model also captured the distinct response of the fission yeast Schizosac-
charomyces pombe, reflecting the conserved nature of metabolome rear-
rangement in facilitating growth adaptation to different temperatures.

Results
Steady-state growth rate determines temperature upshift 
response
To determine temperature sensitivity across strains of a single spe-
cies, we measured the growth of 12 E. coli strains isolated from faecal 

http://www.nature.com/naturemicrobiology


Nature Microbiology | Volume 10 | January 2025 | 185–201 187

Article https://doi.org/10.1038/s41564-024-01841-4

0 1 2

Thermal time
(potential doublings)

0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 g
ro

w
th

 ra
te

30→37 °C

25→37 °C
23→37 °C

33→37 °C

23→30 °C

27→37 °C

27→33 °C
27→30 °C

d e f

b c

Steady­state
growth rate at

final temperature
gss

Doubling time
In(2)
gss

gss – g(0)
g(t) – g(0)

τd =
Time

t

Normalized
growth rate

0 20 40 60

Time after shift (min)

0.5

1.0

1.5

2.0

G
ro

w
th

 ra
te

 (h
–1

)

27 °C

30 °C

33 °C

37 °C

–20 0 20 40 60
0.5

1.0

1.5

2.0

10 min
20 min
30 min 25 °C

37 °C

Steady state

G
ro

w
th

 ra
te

 (h
–1

)
i

Time after shift
back to 37 °C (min)

0 50 100 150

Time after shift (min)

0

0.5

1.0

1.5

2.0

G
ro

w
th

 ra
te

 (h
–1

)

–1 0 1 2 3

0

0.5

1.0
27 °C 37 °C

LB
Casamino acids (46 mM)

Glucose (11 mM)
Glycerol (22 mM)

Glucose (11 mM) 
+ L­Glutamate (5 mM)

Thermal time
(potential doublings)

N
or

m
al

iz
ed

 g
ro

w
th

 ra
te

g h
LB

Casamino acids (46 mM)

Glucose (11 mM)

Glycerol (22 mM)

Glucose (11 mM) 
+ L­Glutamate (5 mM)

27 °C 37 °C

a

3.1 3.2 3.3 3.4
–2

–1

0

1
47 °C 37 °C 25 °C 18 °C

1,000/T (K–1)

Ea = 14.8 ± 0.7 kcal mol−1
lo

g(
gr

ow
th

 ra
te

)

0.5 1.0 1.5 2.0
0.5

1.0

1.5

2.0

r = 0.996
P = 2 × 10–5

25 °C

37 °C

Li
qu

id
­c

ul
tu

re
 g

ro
w

th
 ra

te
 (h

–1
)

Single­cell growth rate (h–1)

0 20 40 60

Time (min)

0.5

1.0

1.5

2.0

25

30

35

40

Te
m

pe
ra

tu
re

 (°
C

) G
row

th rate (h
–1)Temperature

upshiftE. coli (LB)

Spike
Linear

acceleration

0 20 40 60

Time (min)

0.5

1.0

1.5

2.0

25

30

35

40

Te
m

pe
ra

tu
re

 (°
C

) G
row

th rate (h
–1)

Temperature
downshift

E. coli (LB)

Thermal time
(potential doublings) =

=

t
τd

Fig. 1 | E. coli responds asymmetrically to temperature shifts, and upshift 
dynamics are determined by the steady-state growth rate at the final 
temperature. a, Left: Arrhenius plot illustrating that the natural logarithm of 
E. coli MG1655 maximal growth rate for temperatures between 25 °C and 37 °C 
varies linearly with the inverse absolute temperature, with a negative slope 
whose magnitude is the activation energy (Ea). Right: liquid-culture and single-
cell growth rates were highly correlated for temperatures in the Arrhenius range 
between 25 °C and 37 °C (data from Extended Data Fig. 1c,e). Weighted linear 
regression was performed on growth rates between 25 °C and 37 °C, with error 
bars representing the 95% confidence interval of the fitted slope. b, Single-cell 
growth rate (blue) of E. coli MG1655 throughout a temperature (black) downshift 
from 37 °C to 27 °C in rich growth medium (LB) (n = 253 cells). The curve and the 
shaded region represent the growth rate mean ± 1 standard error of the mean 
(s.e.m.). Growth rate responds quickly to the downshift. c, Single-cell growth rate 
(red) of E. coli MG1655 throughout a temperature (black) upshift from 27 °C to 
37 °C in LB (n = 792 cells). The curve and the shaded region represent the growth 
rate mean ± 1 s.e.m. Growth rate initially spikes (dark red), followed by linear 
acceleration (green) to the new steady-state value over ~35 min. d, Single-cell 
growth rate of E. coli MG1655 throughout a temperature upshift from 27 °C to 
30 °C (blue, n = 253 cells), 33 °C (purple, n = 754 cells) or 37 °C (red, n = 904 cells) 
in LB. Vertical dashed lines indicate the time at which the growth rate reached 
its steady-state value at the higher temperature. Curves and the shaded regions 
represent the growth rate mean ± 1 s.e.m. e, The thermal time is defined as the 

time (t) measured in units of doubling times (τd) of steady-state growth at the 
higher temperature. The normalized growth rate is defined as the difference 
between the growth rate at time t (g(t)) and the growth rate at the temperature 
shift (g(0)) divided by the difference between the steady-state growth rate at 
the higher temperature (gss) and the initial temperature (g(0)). f, Normalized 
single-cell growth rate of E. coli MG1655 grown in LB exhibits a characteristic 
response with respect to thermal time for shifts between two temperatures in 
the Arrhenius range 23 °C–37 °C (n = 253–904 cells). Curves represent the mean 
and error bars have been omitted for ease of viewing. g, Single-cell growth rate 
of E. coli MG1655 throughout a temperature upshift from 27 °C to 37 °C in LB 
(red, n = 792 cells), casamino acids (green, n = 270 cells), glucose (blue, n = 353 
cells), glucose + glutamate (orange, n = 220 cells) or glycerol (purple, n = 520 
cells). Curves and the shaded regions represent the growth rate mean ± 1 s.e.m. 
h, Despite the wide variation in absolute growth-rate responses (g), normalized 
growth rate followed an approximately conserved trajectory versus thermal time 
across nutrient environments. i, Single-cell growth rates of E. coli MG1655 in LB 
grown to steady state at 37 °C and then subjected to pulses at 25 °C for 10 min 
(red, n = 1,015 cells), 20 min (orange, n = 1,022 cells) or 30 min (purple, n = 586 
cells). Vertical dashed lines represent the times at which cells were subjected to 
the downshift to 25 °C for the 10- and 20-min pulses. The upshift from steady-
state growth at 25 °C to 37 °C is also shown for comparison (blue, n = 773 cells). 
Curves and the shaded regions represent the growth rate mean ± 1 s.e.m.
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Downshift pulses reveal a temperature memory
Since adaptation to an upshift requires longer than the doubling time at 
the final temperature, it is likely that a component that limits growth is 
produced to attain the steady-state growth rate at the higher tempera-
ture. In the absence of rapid degradation, after a temperature down-
shift, the level of such a limiting component would represent memory 
of the growth state at the higher temperature until it is slowly diluted 
by growth down to its steady-state value at the lower temperature. To 
evaluate this hypothesis, we monitored E. coli MG1655 cells during 
temperature downshift pulses from 37 °C to 25 °C and back to 37 °C 
of varying duration. As hypothesized, after a short (10 min) interval at 
25 °C, instantaneous growth rate quickly (within <10 min) recovered 
back to the 37 °C steady state (Fig. 1i and Extended Data Fig. 4a), accom-
panied by a larger spike than for cells starting from steady-state growth 
at 25 °C (Fig. 1i and Extended Data Fig. 4a). For the longest interval at 
25 °C (30 min), the response time after the upshift back to 37 °C was still 
faster (~25 min, Fig. 1i and Extended Data Fig. 4a) than the steady-state 
response (~40 min), indicating that cells had not fully equilibrated to 
25 °C. Furthermore, cells shifted back to an intermediate temperature 
(30 °C rather than 37 °C) after 5 min at 23 °C were able to reach the new 
steady-state growth rate almost immediately (Extended Data Fig. 4b). 
Short pulses (5–10 min) at extreme temperatures (<20 °C or >42 °C) 
from 37 °C generally induced rapid deceleration (Extended Data Fig. 5), 

but cells rapidly exited these pulses with large spike responses and 
re-achieved steady-state growth at 37 °C within 10–20 min (Extended 
Data Fig. 5b,c,e). These results suggest that a growth-limiting compo-
nent is slowly diluted at the lower temperature, as cells can respond 
quickly to temperature fluctuations.

The E. coli proteome is mostly invariant across temperatures 
in the Arrhenius range
Within a model in which growth rate and ribosome concentration are 
directly coupled22,33–35, the rapid response to temperature downshifts 
and the history dependence of growth rate during downshift pulses 
might be due to proteins limiting for growth at higher temperatures 
being overly abundant during the downshift, while the slow response 
to upshift would be due to the need for proteome reallocation36–38. 
To test this hypothesis, we performed untargeted proteomics (liquid 
chromatography with tandem mass spectrometry (LC–MS/MS)) on 
E. coli MG1655 during steady-state growth on three media (LB or mini-
mal media supplemented with glucose or glycerol) at 25 °C, 30 °C and 
37 °C (Fig. 2a and Supplementary Fig. 4a–c). As expected, at 37 °C the 
ribosomal protein fraction was positively correlated with the growth 
rate in each medium (Fig. 2b, light blue), while energy and metabolism 
fractions were negatively correlated with growth rate (Fig. 2c, light 
blue). However, the fraction associated with each functional group was 
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Fig. 2 | The delayed response to a temperature upshift is not due to 
proteome rearrangement. a, The E. coli proteome at 37 °C varies across media. 
Functional proteomic sectors (pie chart) were annotated according to the COG 
classification (Methods). b, Ribosomal protein fraction increased with growth 
rate across media (MOPS + glycerol, MOPS + glucose, LB), independent of 
growth temperature. c, Energy and metabolism protein fraction decreased with 
growth rate across media (MOPS + glycerol, MOPS + glucose, LB), independent 
of growth temperature. d, The E. coli proteome in LB is largely invariant across 
temperatures in the Arrhenius range (25 °C–37 °C). e, The proteome fraction 
accounted for by each functional category was approximately constant in LB 

across Arrhenius temperatures. Colours correspond to the functions in the 
legend in a. f, Temperature-upshift (27 °C–37 °C) responses of individual deletion 
mutants of the four most abundant of the proteins whose relative abundance 
scaled with temperature across all media conditions (blue, parent strain wild-
type BW25113, n = 710 cells; purple, ∆nemA, n = 1,052 cells; red, ∆stpA, n = 588 
cells; orange, ∆gcd, n = 814 cells; green, ∆ompT, n = 324 cells). Curves and shaded 
regions show the growth rate mean ± 1 s.e.m. g, Normalized growth rate followed 
an approximately conserved trajectory versus thermal time across the mutant 
growth data in f.
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constant across Arrhenius temperatures in each medium (Fig. 2d,e and 
Supplementary Fig. 4d,e). We only observed notable changes for tem-
peratures outside the Arrhenius range (16 °C, 43 °C), which is consistent 
with known stress-response pathways, including for the cold-shock 
protein CspA and major heat-shock protein DnaK (Supplementary 
Fig. 4d,f,g)7,39. Thus, ribosome fraction is unlikely to drive growth rate 
changes across temperatures.

Most individual protein fractions were constant across tempera-
tures; only 13 proteins exhibited a >2-fold change between 25 °C and 
37 °C independent of growth medium (Supplementary Fig. 5). The 
DNA-binding StpA40 protein increased most, ~14-fold between 25 °C and 
37 °C (Supplementary Fig. 5a); however, ∆stpA cells exhibited a similar 
response to a 25 °C to 37 °C upshift as wild-type cells (Fig. 2f,g), as did 
individual knockouts of the three next most-temperature-dependent 
proteins (Fig. 2f,g and Supplementary Fig. 5). Thus, the E. coli proteome 
is largely insensitive to temperature at steady state, and proteins with 
the largest abundance changes across Arrhenius temperatures do not 
impact the growth-rate response to temperature upshifts.

No single gene drives the temperature upshift response
We next explored whether specific genes drive the response to tem-
perature shift. We performed a genome-wide, time-resolved screen 
using a pooled, randomly barcoded transposon mutant library in 
E. coli BW25113 (ref. 41), whereby the relative abundance of each 
mutant was quantified during temperature shifts between 25 °C 
and 37 °C (Fig. 3a and Supplementary Fig. 6a–c,f,g). No gene disrup-
tions were consistently identified across biological replicates with a 

significant fitness defect specific to the temperature upshift (Fig. 3b,c 
and Supplementary Fig. 6c–e). The only gene of significance from our 
screen was uup (Fig. 3d and Supplementary Fig. 6g), which encodes 
an ABC-F protein42. ∆uup cells exhibited slight growth defects at 
both 27 °C and 37 °C (Fig. 3e), in contrast to other ABC-F mutants 
(Supplementary Fig. 6h,i), and the response time after a tempera-
ture upshift was substantially longer (~2.7 doublings versus ~1.6 for 
wild type) (Fig. 3f), probably due to defects in ribosome assembly43. 
Taken together, this screen suggests that none of the non-essential 
genes are singly responsible for the delayed growth-rate response 
to temperature upshifts.

To investigate the role of essential genes during temperature 
upshifts, we treated E. coli cells with a variety of antibiotics that target 
essential processes at sub-minimum inhibitory concentration (MIC) 
levels44 and subjected them to temperature upshifts from 27 °C to 
37 °C on LB (Supplementary Fig. 7). Response times remained at ~1.5 
doublings for treatment with antibiotics that target the ribosome 
(Fig. 3g,h and Supplementary Fig. 7a,b), DNA replication and transcrip-
tion, despite large impacts on growth rate in some cases (Supplemen-
tary Fig. 7c,d). Only high concentrations of fusidic acid (50 μg ml−1), 
which disrupts translational translocation and ribosome disassembly45, 
caused a significant decrease in response times (~0.2 doublings; Sup-
plementary Fig. 7f,g). We observed similar effects in knockouts of 
genes responsible for tRNA modification (tusA, tusB)46 (Supplementary 
Fig 7f,g), suggesting that severely impaired translational capacity 
under high amino acid availability causes a mismatch, allowing for 
fast response times.
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Fig. 3 | Response time is unaffected by almost all genetic and chemical 
perturbations. a, Schematic of temperature-shift experiments screening 
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(Methods). The library was initially grown in a 50-ml volume at 37 °C, then diluted 
and grown to steady state at the initial target temperature (25 °C or 37 °C) before 
shifting to 25 °C or 37 °C at time t = 0. The optical density was monitored at each 
sampling time point (~10-min intervals). The fitness of each mutant is defined as 
the log2(relative abundance compared to t = 0) (Methods). This experiment was 
carried out twice. b, Trajectories of mutant fitness during a shift from 25 °C to 
37 °C (grey vertical bar denotes timing of the shift). Mutants with fitness <−1 when 
averaged over time points are highlighted in red. c, Trajectories of mutant fitness 
during steady-state growth at 25 °C. Mutants with fitness <−1 when averaged  
over time points are highlighted in blue. b and c are from the same experiment, 
and outlier mutants in the upshift (b) were also outliers in the control (c).  

d, Trajectories of log2(relative abundance) during steady-state growth at 25 °C 
compared with those at 37 °C. A single gene, uup, had fitness <−1 when averaged 
over time points. e, Single-cell growth rate of Δuup (red, n = 609 cells) and its 
parent BW25113 (blue, n = 734 cells) throughout a temperature shift from 27 °C  
to 37 °C. Curves and shaded regions show the growth rate mean ± 1 s.e.m.  
f, Normalized growth rate versus thermal time for each trajectory in e shows 
that ∆uup cells respond more slowly to an upshift. g, Single-cell growth rates of 
E. coli MG1655 in LB treated with 0.1 μg ml−1 chloramphenicol (orange, n = 264 
cells), 0.5 μg ml−1 chloramphenicol (dark red, n = 382 cells) or 2.5 ng ml−1 triclosan 
(green, n = 266 cells) throughout a shift from 27 °C to 37 °C. The untreated 
control is also shown for comparison (blue, n = 792 cells). Curves and shaded 
regions show the growth rate mean ± 1 s.e.m. h, Normalized growth rate followed 
a similar trajectory versus thermal time as the control for the chloramphenicol 
treatment data in g, while triclosan slightly delayed the growth-rate response.
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Membrane fluidity is exquisitely regulated in E. coli across temper-
atures: the fraction of unsaturated fatty acids decreases with increas-
ing temperature to maintain viscosity18,19. Triclosan, which targets 
membrane synthesis, increased the response time to ~2.5 doublings 
(Fig. 3g,h), suggesting that the delay in growth rate might be due to 
the need to alter membrane composition. However, disruptions to 
the regulation of fabB, which encodes the major β-ketoacyl-[acyl car-
rier protein] synthase responsible for elongating unsaturated fatty 
acids47,48, had little effect on upshift response times, despite significant 
changes to membrane fluidity (Extended Data Fig. 6a–e). Increased 
membrane fluidity conferred a growth advantage at 37 °C (Extended 
Data Fig. 6f); however, it negatively affected cell growth and survival at 
temperatures >42 °C (Extended Data Fig. 6g,h). Thus, while membrane 
fluidity does not determine the timescale of upshift responses, its 
regulation is critical for cell integrity at high temperatures.

A temperature-sensitive enzyme network model captures 
response dynamics
As our proteomic, genetic and chemical screens did not uncover a key 
molecular regulator of the response, we developed an autocatalytic 
network model of growth9,10 to interrogate alternative mechanisms.

To model growth, we incorporated three general classes of reac-
tions: (1) import, (2) metabolite production and (3) volume expansion 
(Fig. 4a). Each reaction obeys Michaelis–Menten kinetics, such that 
metabolite ci is consumed by enzyme ei to produce the next metabolite 
ci+1  in the network, as in equation (1), with * representing an 
intermediate:

ci + ei ⇌ (ciei)
∗ ⟶ ci+1 + ei. (1)

In a linear network (no branching), the dynamics of each interme-
diate metabolite are dictated by

dci
dt

= ki−1ei−1ci−1
Ki−1 + ci−1

− kieici
Ki + ci

− cig, (2)

where the first two terms on the right-hand side reflect enzymatic pro-
duction and consumption of ci and the last term accounts for dilution 
via growth at the rate g  (Supplementary Text). ei is the concentration 
of the ith enzyme, ki is its catalytic rate and Ki is its Michaelis–Menten 
constant. Importantly, we consider the possibility that both ki and Ki 
are temperature dependent with Arrhenius behaviour (Fig. 4a and 
Supplementary Text), consistent with experimental measurements  
of several enzymes49–51. After the final step of a reaction network of  
size N, an enzyme eN  consumes cN  to expand cell volume at a rate 

g = γ0
kNeNcN
KN+cN

, where γ0 is an efficiency factor assumed to be constant 

in a given environment, reflecting the conversion of cN  to a structural 
component of the cell envelope (Supplementary Text). From physical 
considerations of glucose uptake and growth rate constraints (Sup-
plementary Text), we estimated that γ0 is ~0.03 mM−1. We refer to these 
equations as a temperature-sensitive enzyme network (TSEN) model.

Since the proteome is largely maintained across temperatures 
(Fig. 2e and Supplementary Fig. 4d), we assumed constant concentra-
tions of each enzyme during any temperature shift. We first considered 
a simple model with two intermediate metabolites (minimal TSEN), 
identical kinetic parameters across reactions and a high (saturating) 
concentration of the external substrate (c0 ≫ K0, Fig. 4a).

We simulated the model to reach a steady state at 27 °C and then 
shifted the temperature to 37 °C. The system exhibited a non-zero 
response time to reach the steady-state growth rate at 37 °C (Fig. 4b). 
The timescale for growth rate to increase by 98% of the difference 
between steady states was ~2 doublings (Fig. 4b), similar to our experi-
mental observations (Fig. 1f,h). Variations in kinetic parameters largely 
maintained response times of 1–2 doublings (Extended Data Fig. 7a,b), 

as long as the Ea for the catalytic rate of the import reaction was above 
that of the other catalytic rates (production, growth) (Extended Data 
Fig. 7b). However, if the activation energy for all Michaelis–Menten 
constants (Ki) is 0, then the growth rate response is also immediate 
(Fig. 4b), highlighting the importance of temperature sensitivity of Ki. 
The version of the minimal TSEN without an intermediate reaction 
(‘production-less’ TSEN, Supplementary Text) is analytically tractable 
and predicts an upshift response time (Extended Data Fig. 7c–f) in 
reasonable agreement with our measurements (Fig. 1f,h). The minimal 
TSEN produces an Arrhenius-like growth rate (Extended Data Fig. 7g), 
in agreement with observations4,6 (Fig. 1a, Supplementary Fig. 1 and 
Extended Data Fig. 1).

For a reaction network with N intermediates, the analytical solu-
tion of steady-state growth rate (Supplementary Text) is

g =
k0e0c0
K0+c0

1
γ0
+∑N

i=1ci
, (3)

which is set by the import rate k0e0c0
K0+c0

, growth efficiency factor γ0 (con-

stant) and the total intracellular metabolite concentration ∑N
i=1ci. Since 

import changes instantaneously with temperature, the response time-
scale is associated with rearrangement of the metabolome. Equation 
(3) also reflects that growth comes at the cost of storing metabolic 
intermediates ci (Supplementary Text). Many central-carbon reactions 
operate near their Michaelis constant KM

52, suggesting that bottlenecks 
are highly likely. Within the minimal model, introducing a 
substrate-binding bottleneck into the production reaction character-
ized by a large and temperature-sensitive KM (KM (T = 37 ∘C) = 20mM, 
Ea = 22.5 kcal mol−1) produced strikingly physiological behaviour: an 
initial spike similar to our experimental observations and a response 
time of ~2 doublings (Fig. 4b). Moreover, when the bottleneck was 
embedded within a pathway involving multiple production reactions 
(five intermediate reactions, bottleneck in the centre), the spike broad-
ened, and the acceleration dynamics were quantitatively similar to our 
experimental measurements (Fig. 4c). The TSEN model readily predicts 
asymmetric behaviour between upshifts and downshifts (Fig. 4d)6. In 
addition, after the initial large decrease in growth rate upon a downshift, 
the multiple-reaction model predicts a slow deceleration towards the 
slower steady-state growth rate (Fig. 4d, dark blue), similar to our 
experimental observations (Fig. 1b and Supplementary Fig. 3). Thus, 
the observed behaviours emerge from only a few simple assumptions 
about the network.

Since many core reactions in cells are reversible, we examined the 
effect of adding a single reversible (bottleneck) enzymatic reaction to 
the TSEN model (Supplementary Text). We found that the spike behav-
iour was preserved only by bottlenecking in both directions (Extended 
Data Fig. 8a), suggesting that such enzymes bind substrate and prod-
uct similarly (that is, large and highly temperature-sensitive KM). This 
finding indicates that the TSEN model’s predictions of both the spike 
and physiological responses are compatible with reversible reactions.

Spike and response time dictated by metabolome 
rearrangement
In our model, metabolites after the bottleneck undergo a transient 
decrease in concentration after a temperature upshift (Fig. 4e) that 
agrees with the timescale of the spike response (Fig. 4d). This sug-
gests that spikes are caused by rapid consumption of post-bottleneck 
metabolites. Meanwhile, metabolites before the bottleneck gradually 
build up, as do the post-bottleneck metabolites after the spike, until 
metabolome rearrangement has stabilized (Fig. 4e). As a result, final 
growth rate (which scales with temperature) dictates the thermally 
limited response time necessary to rearrange the metabolome. Simu-
lations of our model captured the near invariance of the normalized 
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Fig. 4 | A TSEN model recapitulates temperature-shift behaviours through 
metabolome rearrangement. a, Left: in the TSEN model, the import reaction 
(blue), production reactions (dark red) and volume growth reaction (green) are 
chained Michaelis–Menten reactions. Right: the rate equation for each 
intermediate metabolite (ci) involves enzymatic production from ci−1 by enzyme 
ei−1 (blue), enzymatic consumption by enzyme ei (red) and dilution by volume 
growth g (green). The final intermediate cN is translated into volume growth with 
an efficiency factor γ0 (green box). Each kinetic parameter is assumed to be 
temperature sensitive according to an Arrhenius equation with activation energy 
Ea (yellow box). A minimal TSEN model (TSENminimal) has a single intermediate 
production reaction (red), such that the network has only 2 intermediate 
metabolites (c1, c2; grey box). b, Normalized growth rate versus thermal time from 
simulations of a minimal TSEN model with (blue) and without (black) a 
temperature-sensitive Michaelis–Menten constant (KM) throughout a 
temperature shift from 27 °C to 37 °C. All other model parameters are identical 
and are defined in the panel inset. The TSEN with a temperature-sensitive KM 
results in a non-zero response time (blue). A TSEN model with a bottleneck (dark 
red, KM = 20 mM, Ea = 22.5 kcal mol−1) produces an initial spike. c, A TSEN model 
with a single bottleneck (red, P3) embedded within a 7-reaction chain produces a 
quantitatively similar response to an upshift from 27 °C to 37 °C as E. coli MG1655 
cells on LB (purple, n = 792 cells; shaded region represents ±1 s.e.m.). All other 
reactions have parameters identical to the minimal model without a bottleneck 
(blue) in b. d, Normalized growth rate in simulations of the bottlenecked TSEN 
model in c throughout an upshift (dark red) or downshift (light blue) between 

27 °C and 37 °C. In contrast to the spike and slow response to the upshift, the 
downshift results in immediate deceleration to a growth rate close to the 
steady-state value at 27 °C, followed by slow deceleration to a new steady-state 
value. Overlaid are the normalized growth rates of E. coli MG1655 subjected to an 
upshift (red, 27 °C to 37 °C, n = 792 cells) or downshift (blue, 37 °C to 27 °C, n = 253 
cells). Shaded error bars represent ±1 s.e.m. e, The TSEN model in c predicts that 
metabolites upstream of the bottleneck (c1,2,3) will have lower concentrations 
than those after the bottleneck (c4,5,6) and increase slowly on the timescale of 
growth after an upshift. Post-bottleneck metabolites undergo transient 
decreases immediately after the temperature upshift over a time interval 
corresponding to the spike (red box). After this initial period, all metabolites 
increase to new values corresponding to the steady state at the higher 
temperature. f, The TSEN model in c predicts highly similar responses of 
normalized growth rate with thermal time for upshifts from 27 °C to 30 °C (blue), 
33 °C (purple) or 37 °C (red). g, Over a broad range of final temperatures, the 
absolute upshift response time (time to reach 98% of the difference between 
steady-state growth rates) has linear scaling with the doubling time at the final 
temperature. Each line represents simulations from a given initial temperature to 
temperatures up to 37 °C. h, Experimental estimates of absolute response time 
follow a linear scaling with doubling time at the final temperature, similar to 
simulations in g. Shown are data for upshifts involving initial and final 
temperatures ranging between 23 °C and 37 °C (data from Fig. 1f–h). Weighted 
linear regression was performed, with error bars representing the 95% 
confidence interval of the fitted slope.
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response time across initial and final temperatures (Fig. 4f) as repre-
sented by linear scaling of absolute response time with doubling time 
at the higher temperature (Fig. 4g). This scaling was consistent with 
our experimental measurements (Fig. 2e), which exhibited a slope of 
1.4 ± 0.3 (Fig. 4h) and the range of normalized response times meas-
ured across temperatures and growth media (Fig. 1f,h), with potential 
saturation at longer doubling times (>45 min).

Recent studies have shown that the metabolome is highly dynamic 
under nutrient perturbations53,54, similar to the effect of temperature 
perturbations predicted by our TSEN model (Fig. 4e). An extension of 

our bottlenecked TSEN model (Fig. 4c,e) predicts that a large nutrient 
pulse from a low-nutrient condition should induce an increase in both 
growth rate and intracellular metabolite concentrations, coincident 
with semi-linear consumption of the external nutrient (Extended Data 
Fig. 8b), in qualitative agreement with glucose pulse experiments 
involving E. coli53. Simulations of the bottlenecked TSEN model shifted 
from a starvation state (c0 = 0.01  mM) to excess nutrients 
(c0 = 100 mM) induced a smooth increase in metabolite concentra-
tions over 30–60 min (Extended Data Fig. 8c), quantitatively similar 
to metabolite dynamics during starvation exit in E. coli54. These results 
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Fig. 5 | The TSEN model predicts changes to upshift response during growth 
on simple sugars, after a downshift pulse and at low nutrient concentration. 
a, The bottlenecked TSEN model in Fig. 4c predicts that spike height after a 
temperature upshift will decrease with the activation energy of import. The 
activation energies of all other reactions were set to 15 kcal mol−1 (grey circle). 
b, Increasing the activation energy of import to Ea = 30 kcal mol−1 on the basis of 
our experimental measurements of the activation energy of growth in glucose 
(Extended Data Fig. 9f) dramatically reduced the spike height (green) compared 
with our default Ea = 15 kcal mol−1 (red) without affecting the response time, 
similar to our experimental measurements of the normalized growth-rate 
response on glucose (green data, same as in Fig. 1h). c, The bottlenecked TSEN 
model predicts that short downshift pulses from 37 °C to 27 °C (purple, red, 
orange) will cause larger spikes and faster recovery to the steady-state growth 
rate at 37 °C than an upshift from steady state at 27 °C to 37 °C (blue), similar to 
our experimental observations (Fig. 1i). d,e, The bottlenecked TSEN model in  
Fig. 4c predicts that the response time decreases for downshift pulses of duration 
of <1 doubling at the higher temperature (d) and that the spike height remains 
high for pulses of duration of multiple doublings at the higher temperature 
(e). f–h, The bottlenecked TSEN model in Fig. 4c predicts that response time 
decreases (f), spike height increases (g) and growth activation energy decreases 

(h) when nutrient concentration is reduced from above (saturated, red circle)  
to below (unsaturated, purple circle) the KM for import (grey vertical bar).  
i, Simulations of the bottlenecked TSEN model in Fig. 4c throughout an upshift 
from 27 °C to 37 °C for high (c0 = 5 mM, red) or low (c0 = 0.5 mM, purple) external 
substrate concentration (KM

(import) = 1 mM). The absolute spike height is similar 
in magnitude at both concentrations, but the steady-state growth rate at 
37 °C is much lower for lower external substrate concentration (purple) and 
is reached more quickly after the upshift than for higher concentration (red). 
j, The normalized growth rate calculated from simulations in h has a larger 
spike and a faster normalized response (<1 doubling) for low external substrate 
concentration (purple) compared with the TSEN model at saturation (red). 
k,l, Growth rate throughout an upshift from 27 °C to 37 °C of E. coli MG1655 
grown on MOPS + 46 mM casamino acids (red, n = 116 cells) or 4.6 mM casamino 
acids (purple, n = 261 cells) exhibits similar dynamics in both absolute (k) and 
normalized (l) terms as the simulations in i and j. Curves and shaded regions 
represent growth rate mean ± 1 s.e.m. The response time at low casamino acid 
concentration is much shorter (purple, ~0.25 doublings) compared with that  
at saturation (red, ~1.4 doublings) and is accompanied by a larger relative  
spike height.
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indicate that the TSEN model is capable of recapitulating metabolomic 
trajectories under nutrient perturbation.

The TSEN model predicts spike dependence on nutrient type
Bacterial growth rate depends on nutrient concentration c in a manner 
remarkably similar to Michaelis–Menten enzyme kinetics55, with growth 
rate g  saturating at gmax when c≫ KM:

g = gmaxc
KM + c . (4)

This relationship (known as the Monod equation) is highly  
similar to the steady-state growth prediction from the TSEN model 
(equation (3)), which predicts that gmax and the Michaelis constant KM 
are largely determined by import. We measured gmax and KM at various 
temperatures across a variety of media (Extended Data Fig. 9a–c and 
Methods), and found that the activation energy for gmax was substan-
tially larger for growth on simple sugars (12–25 kcal mol−1) compared 
with amino acids (3–15 kcal mol−1, Extended Data Fig. 9c–g).

While the normalized response time for an upshift was highly 
similar across nutrients (Fig. 1h), as predicted by our TSEN model, the 
spike was much smaller or non-existent in glucose (Fig. 1h). We probed 
the behaviour of our TSEN model when changing the activation energy 
of the catalytic rate of the import reaction. Our model predicts that 
spike height should decrease sharply when the activation energy of 
import is >15 kcal mol−1 (Fig. 5a), while the response time increases by 
only ~0.1 doubling (Fig. 5b). Thus, the model predicts that activation 
energy differences between nutrient types (Extended Data Fig. 9f,g) are 
sufficient to explain differences in the initial spike behaviour observed 
across growth media (Fig. 1g,h).

The TSEN model predicts metabolically encoded temperature 
memory
While growth rate rapidly decreases after a downshift in our model 
(Fig. 4d), the concentration of metabolites requires dilution to equili-
brate, which takes place on the timescale of growth (Supplementary 
Text, production-less TSEN). Thus, during a transient downshift pulse, 
the cell gradually transitions from the high temperature to the low 
temperature metabolic state, despite rapid growth deceleration. 
Indeed, simulations of the bottlenecked TSEN model (Fig. 4c) during 
a downshift pulse from 37 °C to 27 °C back to 37 °C, with variable dura-
tion at 27 °C, resulted in faster upshift responses than from the steady 
state at 27 °C (Fig. 5c). More than a doubling at 27 °C was required for 
recovery of the upshift response time (Fig. 5d) and the spike height 
remained higher than for an upshift from steady state for pulses of 
multiple doublings (Fig. 5e), again collectively consistent with our 
experimental data (Fig. 1i and Extended Data Fig. 4). These findings 
highlight the ability of our model to reproduce nearly all observed 
temperature-shift responses with reasonable quantitative agreement, 
underscoring the importance of the temperature sensitivity of import 
and metabolome rearrangement in upshift responses.

The TSEN model predicts upshift response at low substrate 
concentration
As nutrient concentrations are low in many environments, we next 
simulated our model in a low-nutrient regime with external concentra-
tions below the KM for import (that is, c0 < K0) for a temperature upshift 
from 27 °C to 37 °C. At c0 < K0, the relative spike height increased sub-
stantially, and the normalized response time decreased with decreas-
ing concentration (Fig. 5f–j). This decrease in response time occurred 
because the increase in import rate after a temperature upshift is 
smaller when c0 ≤ K0 compared with c0 ≥ K0 (ref. 6), despite an identi-
cal increase in catalytic rates (ki) that consume the imported metabo-
lite. The activation energy for growth was also predicted to decrease 
with decreasing nutrient concentration (Fig. 5h), in agreement with 

our experimental measurements of growth on amino acids (Extended 
Data Fig. 9g).

To test these low-nutrient predictions, we shifted E. coli MG1655 
cells from 27 °C to 37 °C during growth on different concentrations 
of casamino acids (CAA; Methods). With 4.6 mM CAA, a concentra-
tion near the KM (Extended Data Fig. 9c), growth rate increased from 
the steady-state value at 27 °C (~0.5 h−1) to that at 37 °C (~0.8 h−1) after 
only 25 min, corresponding to 0.25 doubling times at 37 °C (Fig. 5k,l). 
Moreover, the spike peaked at a growth rate close to that of the 37 °C 
steady state (Fig. 5k). These dynamics were in reasonable agreement 
with the predictions of our model (Fig. 5i,j), indicating that the response 
to temperature shift can be modulated by nutrient concentration, 
owing to the properties of the import KM.

The TSEN model captures distinct temperature shift responses 
in fission yeast compared with multiple bacteria
Diverse bacterial species, including E. coli from host organisms with 
distinct temperature-dependent evolutionary histories (turtle, 
seagull, human) and the soil-dwelling Gram-positive Bacillus subti-
lis, exhibited similar responses to upshifts as E. coli MG1655 (Fig. 6a,b 
and Extended Data Fig. 10), suggesting a general behaviour across the 
bacterial kingdom.

We then determined whether single-celled eukaryotes similarly 
responded to temperature shifts. The fission yeast Schizosaccharo-
myces pombe grows optimally at 32 °C and possesses an Arrhenius 
range between 22 °C and 32 °C, with Ea ~ 8 kcal mol−1 in rich media56. 
During a 22 °C to 32 °C upshift on the rich medium YE5S, cells exhibited 
a large growth-rate spike from 0.17 h−1 to 0.44 h−1, overshooting the 
steady-state 32 °C growth rate(Fig. 6c). This was followed by decel-
eration to 0.02 h−1, then rapid acceleration to the 32 °C steady-state 
growth rate (~0.4 h−1) (Fig. 6c). The entire response dynamics lasted 
~100 min, corresponding to a normalized response time of ~1.1 dou-
blings (Fig. 6d). Thus, despite transiently decelerating to near growth 
halting, S. pombe cells were able to reach the steady-state growth rate 
at the higher temperature more quickly than any bacteria tested at 
saturating nutrient concentration.

We then tested whether these behavioural differences were con-
sistent with our TSEN model. By systematically varying parameters, 
we found that enzyme networks exhibited a faster normalized response 
time when the Ea of the bottleneck KM was increased to >30 kcal mol−1 
and the bottleneck enzymatic rate was greater than those of import 
and growth. Moreover, a TSEN composed of 5 bottlenecked intermedi-
ate reactions resulted in a more pronounced spike and deceleration 
(Fig. 6d), similar to our experimental measurements (Fig. 6c,d). The 
large spike and deceleration were due to rapid consumption of the 
network’s final metabolite (c6), which could only be replenished by 
upstream bottlenecked metabolites (Fig. 6e). The overall faster 
response time was captured by the model and was due to the decrease 
in steady-state concentration of c6 at higher temperature caused by 
the large Ea of KM (Fig. 6e), leading c6 (which is limiting for growth) to 
stabilize more quickly.

With the same set of parameters, this TSEN model also predicted 
an undershooting to below the new steady-state growth rate upon 
a temperature decrease from 32 °C to 22 °C (Fig. 6f), a non-intuitive 
behaviour we confirmed experimentally (Fig. 6f). These findings sug-
gest that the qualitatively distinct characteristics of the S. pombe tem-
perature shift responses can be captured in a TSEN model by increasing 
the magnitude of KM parameters and the number of bottleneck reac-
tions. More generally, they show that the growth network can be tuned 
to alter the balance between certain trade-offs to accelerate responses 
at the cost of temporary growth stalling.

Discussion
Here we used high-precision temperature control and single-cell 
analyses to show that bacteria exhibit a characteristic growth-rate 
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response to temperature shifts within the Arrhenius range (Figs. 1c and 
6a), with adaptation to an upshift requiring ~1.5 doublings at the final 
steady-state growth rate. The maintenance of the proteome across 
temperatures (Fig. 2) and the conservation of response dynamics 
during upshifts across mutants (Fig. 2g and Supplementary Fig. 6i) 
and antibiotic treatments (Fig. 3h and Extended Data Fig. 3f,g) col-
lectively argue against the existence of a single regulator of growth 
rate across Arrhenius temperatures. Nonetheless, specific factors, 
including ppGpp production (Supplementary Fig. 7f,g), regulation of 
protein folding by DnaK (Extended Data Fig. 3d,e), fatty acid synthesis 
(Fig. 3h) and putative ribosome-dependent action by Uup (Fig. 3f), are 
necessary for fast and efficient upshift responses, probably indicat-
ing regulatory contributions that will need to be elucidated in future 
studies. Revealing these potential regulatory factors required detailed 
single-cell analysis, as their effects on temperature-shift responses 
were too subtle to emerge in genetic screens or required the deletion 
of multiple genes (ppGpp).

Ultimately, the ability of our TSEN model to recapitulate nearly all 
observed behaviours (Figs. 4 and 5, and Extended Data Fig. 7) indicates 

that temperature sensitivity of growth is largely a collective prop-
erty of the metabolic network, which encodes a memory of tempera-
ture states (Figs. 1i and 5c, and Extended Data Fig. 4). Furthermore, a  
simplified version of the model predicts that the timescale of response 
to temperature upshifts should be ~1.4 doublings at the final steady- 
state growth rate (Supplementary Text and Extended Data Fig. 7c–f), 
regardless of details about the kinetics of import and growth. At steady 
state, the TSEN model predicts that growth depends only on substrate 
import kinetics and the total intracellular metabolite pool (equation (3)),  
providing a simple framework that connects concentration-dependent 
growth directly to measured transporter kinetics57. Thus, our  
work establishes a mechanism for how Arrhenius-like growth arises 
across organisms4 (Fig. 1a, Extended Data Figs. 1 and 7g, and Supple-
mentary Fig. 1).

A key feature of the TSEN model is the temperature dependence 
of KM, which provides a straightforward mechanism for the asymmetry 
between upshift and downshift responses (Fig. 6g): if the substrate 
concentration of a reaction is near the KM at 27 °C (Fig. 6g, blue cir-
cle), an upshift to 37 °C will be accompanied by a small instantaneous 
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Fig. 6 | Temperature upshift response features are generally conserved across 
microbes and can be captured by the TSEN model. a, Growth-rate response to a 
temperature upshift on LB of laboratory-evolved E. coli (light and dark blue, 
n = 773–1,279 cells) and natural isolates from various hosts (orange to red, 
n = 389–547 cells), Escherichia fergusonii (purple, n = 997 cells) and Bacillus 
subtilis (green, n = 236 cells). All upshifts were from 25 °C to 37 °C, except for  
B. subtilis (27 °C to 37 °C). Curves and shaded regions represent growth rate 
mean ± 1 s.e.m. b, Normalized growth rate followed a similar trajectory versus 
thermal time across all strains/species for the data in a. c, A temperature upshift 
from 22 °C to 32 °C on the rich growth medium YE5S caused the growth rate of the 
fission yeast Schizosaccharomyces pombe to initially spike close to the steady-
state value at 32 °C, then decelerate to below the steady-state value at 22 °C, then 
accelerate back to the new steady-state value within less than a doubling 
(~100 min) (red, n = 333 cells). Curves and shaded regions represent growth rate 
mean ± 1 s.e.m. d, A TSEN model with 5 intermediate reactions, each with a large 
(20 mM) and highly temperature-sensitive KM (E(M)a  = 22.5 kcal mol−1), produces 
similar normalized growth rate dynamics with thermal time (black) as the  
S. pombe data in c (red), characterized by a large spike, deceleration to <0 and fast 
recovery within <1 doubling. e, The TSEN model in d, composed entirely of 
bottlenecks, predicts that a temperature upshift results in a rapid, large decrease 
in the final intermediate metabolite concentration (c6), followed by a slower 
increase to the new steady-state, which is lower than that at lower temperature. 

All other metabolite concentrations (c1−5) increase monotonically towards  
their steady-state levels at rates that depend inversely on their network depth 
(that is, c5 increases more slowly than c1). f, An extended TSEN model with five 
intermediate reactions, each with a large (20 mM) and highly temperature-
sensitive (Ea = 22.5 kcal mol−1) KM, predicts a temporary undershoot (black) upon 
a downshift to growth rates below the steady-state value at the lower 
temperature. The fission yeast Schizosaccharomyces pombe exhibited an 
undershoot during a downshift from 32 °C to 22 °C on rich medium (YE5S) (blue, 
n = 54 cells) similar to model predictions. Experimental data are the 
mean ± 1 s.e.m. (shaded region) at each time point. g, Asymmetry in growth-rate 
response to temperature up- and downshifts is caused by the temperature 
sensitivity of KM. If substrate concentration is near the KM and E(M)a > 0, an upshift 
causes a small initial increase in growth rate, followed by a slow increase in 
substrate concentration to the new KM via production (red). Conversely, a 
downshift causes a comparatively larger initial decrease in growth rate, followed 
by a slow decrease in substrate concentration to the new KM via dilution (blue).  
h, Intracellular metabolite concentrations are generally much higher than the KM 
of their production enzyme for E. coli grown on glucose (data from ref. 68). 
However, some metabolites have concentrations near or below the KM of their 
production, and potential bottlenecks (dashed region, red points) are those with 
KM > 1 mM and substrate concentration c < KM.
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growth rate increase since KM is higher at 37 °C versus 27 °C; vice versa, 
a downshift from the KM at 37 °C (Fig. 6g, red circle) will result in a larger 
instantaneous change in growth rate (Fig. 6g). Each of these instanta-
neous changes is then followed by an increase (upshift) or decrease 
(downshift) in the substrate concentration, and thus the growth rate 
(Fig. 6g), as predicted by the TSEN model (Fig. 4e and Supplementary 
Text). The temperature upshift response is predicted to be largely 
insensitive to the KM of import at substrate saturation (Fig. 5f), suggest-
ing that temperature-shift responses are independent of the details 
of import kinetics. A temperature-sensitive KM predicts that the Ea of 
growth rate decreases with substrate concentration6 (Fig. 5h), consist-
ent with our measurements of growth on amino acids (Extended Data 
Fig. 9g). Such a decrease in temperature sensitivity at low substrate 
concentration is predicted by the TSEN model to decrease the response 
time and increase the relative spike height (Fig. 5f,g,i,j), consistent 
with our experimental observations that decreases in amino acid con-
centrations resulted in faster responses to temperature upshifts and 
larger relative spikes (Fig. 5k,l). Thus, microorganisms confronting 
nutrient-poor environments may exhibit less temperature sensitivity 
of growth, somewhat paradoxically owing to the temperature sensitiv-
ity of KM values.

To produce the observed initial spike in growth rate, a bottleneck 
reaction with a large and highly temperature-sensitive KM was required 
(Fig. 4c). Previous measurements of intracellular metabolite dynam-
ics in E. coli grown on glucose showed that reactions in central carbon 
metabolism are largely unsaturated and many reactions can exhibit 
large KM values (>1 mM)52 (Fig. 6h), indicating that the existence of 
such bottlenecks is highly likely. There are many potential bottleneck 
enzymes (Fig. 6h); those with the largest substrate concentrations are 
involved in aspartate consumption for amino acid (aspC) and pyrimi-
dine (pyrB) biosynthesis, while those with the largest KM are involved in 
threonine (ilvA) and serine (sdaA, ydfG) degradation. As several of these 
reactions are essential, elucidating which reactions are true bottlenecks 
will probably require a combination of CRISPRi manipulation of gene 
expression, direct measurements of intracellular metabolite concen-
trations52 and biochemical characterization across temperatures.

In addition, the TSEN model was able to explain qualitatively dis-
tinct temperature shift responses in the fission yeast S. pombe, which 
responded to an upshift with overshooting and deceleration (Fig. 6c), 
but which ultimately reached its steady-state growth rate faster than 
bacteria (Fig. 6d). The TSEN model predicted that large coupled bot-
tleneck reactions account for this behaviour (Fig. 6d,e), and such a 
model predicted the undershoot response to a temperature downshift 
(Fig. 6f). In this scenario, faster temperature-shift responses come at 
the cost of increasing the activation energy of growth (Fig. 6c,f), sug-
gesting trade-offs between fast steady-state growth across tempera-
tures and the ability to respond quickly to shifts between temperatures.

Taken together, these findings suggest that metabolite flux rather 
than proteome rearrangement underlies growth rate adaptation across 
Arrhenius temperatures. As a result, cells adapt to temperature fluc-
tuations without additional protein synthesis, resulting in transient 
memory of previously experienced temperatures (Figs. 1i and 5c–e, 
and Extended Data Figs. 4 and 5). Increasing protein concentrations is 
metabolically expensive and simulations of our TSEN model explicitly 
including protein synthesis confirmed that enzyme concentrations 
remain virtually constant throughout temperature shifts (Supple-
mentary Fig. 8), similar to previous models of responses to nutrient 
perturbations58. The conservation of growth rate responses across 
organisms (Fig. 6a–d) and the ability of the TSEN model to capture 
diverse responses to temperature shifts (Figs. 4–6) suggest an evo-
lutionary pressure to adopt this strategy. The ability of E. coli cells 
to withstand fluctuations across a large range of temperatures, even 
short pulses at heat- and cold-shock temperatures (Extended Data 
Fig. 5b,c,e), indicates a robustness that may be particularly important 
in the context of host colonization and infection-induced fevers, and 

our findings indicate that investigations of temperature adaptation 
can provide key insight into the metabolic factors limiting growth.

Methods
Culturing conditions and bacterial strains
E. coli wild-type and isolate strains were grown directly from 25% glyc-
erol stocks stored at −80 °C in target media without selection. In typical 
temperature upshift experiments, cells were grown initially at 37 °C 
from frozen stocks overnight until saturation, then diluted 1:200 into 
fresh media at 37 °C until log phase (1.5–2 h in LB, ~4 h in MOPS + glu-
cose). Cells were then diluted 1:10 into fresh media and grown for at 
least 3 doublings at the lower, target temperature before performing 
a temperature upshift.

Most mutants (for example, Keio collection knockouts) were 
grown from frozen stocks in target media with antibiotic selection. 
The ppGpp null strain (spoT::cat, relA::kan) was grown on LB plates 
with 10 µg ml−1 chloramphenicol and 25 µg ml−1 kanamycin overnight at 
37 °C, and individual colonies were selected for further liquid culturing 
under selection to avoid suppressor mutations.

To evaluate growth kinetics on various media, E. coli MG1655 was 
first grown with shaking overnight at 37 °C in MOPS minimal medium 
(Teknova) adjusted to pH 7.2 and supplemented with 0.2% (w/v) 
d-glucose. To measure growth at lower temperatures (25 °C, 30 °C), 
cells were then diluted 1:200 in fresh MOPS + glucose and grown with 
shaking until saturation for an initial passage at the target temperature. 
One millilitre of cells was washed in MOPS buffer (pH 7.2) at room 
temperature and 1 μl was added to 200 μl of target medium in 96-well 
plates for generating growth curves at the target temperature in a 
plate reader.

All strains used in this study are listed in Supplementary Table 1.

Liquid growth curves and analysis
Growth curves were measured using a protocol developed for accurately 
determining growth rates at low optical density28. Briefly, 200 μl of 
medium (without bacteria) were placed into each well of a transparent 
96-well plate (Greiner Bio-One) and sealed with a transparent film (Excel 
Scientific) with holes for gas exchange cut above each well using a laser 
cutter (Epilog). Optical density (OD) was measured with a BioTek Epoch 
2 microplate spectrophotometer (Agilent) for at least 15 min to obtain 
blank values for each well at the target temperature. The seal was then 
removed, bacterial samples were added into each well and the plate was 
sealed with a fresh laser-cut transparent film. Linear and orbital shaking 
were conducted between OD readings, which were taken every ~7 min. 
The OD was corrected for nonlinearity (linear range = 0–0.6) via a serial 
dilution of concentrated cells and performing a polynomial fit to obtain 
general fit parameters28. For each well, the well-specific blank OD value 
determined before addition of cells was subtracted from the OD at each 
time point, which was then used to compute growth rate as a moving 
linear regression of the logarithm of the blanked OD.

E. coli natural isolates
E. coli strains from non-human hosts were previously isolated24,25,59 from 
faecal samples (collected from a variety of sources, including park and 
pet store animals and domestic pets), which were grown on Colilert-18 
medium (IDEXXE) for selection of presumptive E. coli colonies25. Isolate 
identities were confirmed by beta-glucuronidase activity and subse-
quent sequencing of the corresponding gene, uidA25. The strains were 
grown overnight in a rich medium (LB) at 37 °C, diluted 1:200 in fresh LB 
and grown for 24 h across temperatures from 27 °C–47 °C to measure 
activation energies.

Temperature-controlled single-cell imaging
The temperature control platform, named single-cell temperature 
controller (SiCTeC), was designed and described previously29. Briefly, a 
ring-shaped Peltier module (TE Technology) was adhered to a glass slide, 
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and the sample temperature was monitored on the coverslip and con-
trolled using a micro-Arduino with a proportional-integral-derivative 
(PID) algorithm. Sample temperature was monitored and visualized 
in real time using the open-source software ‘Processing’60. Agarose 
hydrogels were prepared by boiling 3% ultrapure agarose (Sigma 
Aldrich) in the target medium, and 200 μl of the mixture were pipet-
ted onto a 9-mm-diameter silicone gasket (Grace Bio-Labs) onto the 
temperature-controlled glass slide. An additional slide was placed on 
the gasket to compress the hydrogel, which then cooled and solidi-
fied at the initial temperature of the experiment. After removing the 
additional compressing slide, 1 μl of cells was pipetted onto the solidi-
fied hydrogel and dried briefly (<1 min) at the initial temperature of  
the experiment.

Imaging was performed on a Ti-Eclipse microscope in phase- 
contrast mode using a ×40 Ph2 air objective (NA 0.95) (Nikon) with a 
×1.5 tube lens. The air objective was used to avoid heatsink issues with 
oil-immersion objectives. Images were captured every 30 s on a Zyla 
4.2 sCMOS (Andor Technology), Neo 5.5 sCMOS (Andor Technology) 
or PCO Panda 4.2 (Excelitas) scientific camera. The microscope system 
was integrated using μManager v.1.41 (ref. 61).

Image analysis
To extract cell morphology information throughout the experi-
ment, subpixel-resolution cellular contours were obtained through 
a combination of deep learning-based and traditional image seg-
mentation software29,62. Briefly, we first aligned the images using the 
template-matching plugin in FIJI63,64, then each image was processed 
with a fully convolutional neural network model, ‘DeepCell’62. Separate 
neural networks were trained for E. coli rich medium, E. coli minimal 
medium and S. pombe rich medium, with >200 cells manually annotated 
in each condition29,62,65. Outputs from the DeepCell classification were 
used to extract cellular contours using Morphometrics v.1.1 in MATLAB 
(MathWorks)66. Custom MATLAB scripts were used to track individual 
cells and measure cellular geometry65.

Single-cell growth rate measurements
Cellular trajectories were filtered on the basis of the number of frames 
and the quality. Each trajectory was required to be ≥10 frames, over 
which cell length was smoothed twice with a window of four frames for 
rich media and 10 frames for minimal media. Instantaneous growth rate 
was computed by performing a windowed linear fit to the logarithm 
of cell length over four frames for rich media or 10 frames for mini-
mal media, a procedure that resulted in ~1% error when recalculating 
expected cell lengths (Supplementary Fig. 2). Trajectories were then 
removed if they contained growth-rate outliers (>3 h−1 or <−0.1 h−1), as 
such outliers probably indicated tracking errors. The filtered trajecto-
ries were binned at each time point to evaluate single-cell growth-rate 
behaviours at the population level, and the error at each time point was 
defined as the standard error of the mean.

Rapid temperature downshifts
To increase the rate of temperature change during downshifts from pre-
vious experiments performed using ambient temperature as the cool-
ing sink, which required ~5 min from 37 °C to 27 °C (ref. 29), we used dry 
ice (solid CO2) to rapidly cool samples. During a downshift, the SiCTeC 
device was powered off and a 250-ml beaker with dry ice was used to 
pour sublimating dry ice directly onto the sample on the glass slide. 
For downshifts to temperatures above ambient, when the temperature 
was ~1 °C above the target downshift temperature, the SiCTeC device 
was powered back on and the PID algorithm restarted control of the 
sample temperature. The sample temperature was closely monitored 
and adjusted accordingly for undershooting. This method enabled 
stabilization at the lower temperature within <1 min. For downshifts 
to temperatures below ambient, dry ice was continuously poured onto 
the sample at intervals necessary to maintain the target temperature. 

Temperature upshifts back to 37 °C were performed by turning the 
SiCTeC device back on.

Anaerobic growth
To perform temperature shifts in anerobic conditions, E. coli MG1655 
was inoculated from a frozen stock into LB and grown overnight in an 
anaerobic chamber (Coy Laboratory), then diluted 1:200 and grown 
until saturation in pre-reduced LB (that is, kept in the chamber for >48 h 
before culturing). Cells were diluted 1:200 in pre-reduced LB and grown 
at 37 °C until log phase (~2 h), then diluted 1:10 and grown at 27 °C for 
3 h. From log phase at 27 °C, 1 μl was pipetted on a SiCTeC glass slide for 
temperature shifts (all components pre-reduced) and imaged inside 
the chamber using a Ti-Eclipse inverted microscope (Nikon) with a Neo 
5.5 sCMOS (Andor Technology). The SiCTeC platform was controlled 
by a laptop inside the chamber.

Quantification of response time
The steady-state growth rate (gss) at the final temperature was deter-
mined by measuring the average of the growth rates across the time 
points after which growth rate had stabilized (determined by visual 

inspection). The growth rate was then normalized according to g(t)−g(0)
gss−g(0)

, 

where g(0) is the growth rate immediately before the temperature shift 
(Fig. 1e). The time was also converted to a ‘thermal time’ (Fig. 1e), 
wherein the time was divided by the doubling time at the final 
steady-state growth rate (τD =

ln(2)
gss

). A weighted linear fit was then 

performed over the linear portion of the upshift response (25–95% of 
gss), and the response time (τR) was defined as the point at which the 
linear fit equalled one (g (τR) = gss). The error in the response time was 
generated from the 95% confidence interval of the fitted slope.

Antibiotic treatment during single-cell temperature shifts
Aliquots (500 μl) of growth medium + 3% ultrapure agarose were 
melted at 95 °C, then mixed with 0.5 μl of 1,000× target concentration 
antibiotic stock solution, and 150 μl was immediately used to make a 
hydrogel for the sample as described above. The short time exposure 
to higher temperatures (~30 s) probably only moderately impacted  
the minimum inhibitory concentration, as antibiotic efficacies against 
E. coli are unaffected by long-term (30 min) treatment at 56 °C, with 
many drugs unaffected by autoclaving (121 °C)67.

Liquid-culture samples for proteome extraction
E. coli MG1655 was grown at 37 °C overnight in MOPS buffer (Teknova) 
adjusted to pH 7.2 and supplemented with 0.2% (w/v) of carbon source 
(glucose or glycerol) (Sigma Aldrich) or LB (Thermo Fisher), then 
diluted in duplicate and grown for at least 4 doublings at the target 
temperature (25 °C, 30 °C or 37 °C). Growth at additional tempera-
tures (16 °C, 43 °C) was assayed for LB. Cultures were grown to log 
phase (OD600 ≈ 0.2) in 50-ml Falcon tubes, and 15 ml were collected 
and washed with 1 ml PBS via centrifugation at 4 °C. Supernatant was 
removed and the pellet was snap frozen with liquid nitrogen.

Proteome extraction
Extraction was performed as previously described68. Briefly, samples 
were thawed and lysed using a bead-beating procedure, then superna-
tant was reduced and alkylated with dithiothreitol and iodoacetamide, 
respectively. Peptides were then washed, digested and eluted using 
S-trap tubes (Protifi) and desalted with C18 solid-phase extraction 
(Sep-Pak Waters). Finally, peptides were dried by vacuum centrifuga-
tion and quantified for normalization (Nanodrop ND-1000).

Proteomic analysis via LC–MS/MS and database searching
Peptide quantification was performed following previous work68. 
Dried peptides were diluted in 0.2% formic acid to a final concentra-
tion of 0.5 μg ml−1, and 1 µl was loaded onto an in-house laser-pulled 
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100-μm (inner diameter) nanospray column packed to ~22 cm with 
ReproSil-Pur C18-AQ 3.0-µm resin (Dr. Maisch). Peptides were sepa-
rated by reversed-phase chromatography (Dionex Ultimate 3000 
HPLC, Thermo Fisher); buffer A of the mobile phase contained 0.1% for-
mic acid in HPLC-grade water and buffer B contained 0.1% formic acid 
in acetonitrile. HPLC used a two-step linear gradient with 4–25% buffer 
B for 135 min, followed by 25–45% buffer B for 15 min at 0.300 μl min−1. 
Peptides were then directed to an LTQ Orbitrap Elite mass spectrometer 
(Thermo Fisher) in data-dependent mode, with full MS scans acquired 
in the mass analyser with a resolution of 60,000 and m/z range of 
340–1,600. The top 20 most abundant ions with intensity thresholds 
>500 counts and charge state >2 were selected for fragmentation using 
collision-induced dissociation (CID) with an isolation window of 2 m/z, 
normalized collision energy of 35%, activation Q of 0.25 and activation 
time of 5 ms. CID fragments were analysed in the ion trap with rapid scan 
rate, and dynamic exclusion was enabled with a repeat count of 1 and 
exclusion duration of 20 s. The AGC target was set to 1,000,000 and 
50,000 for full FTMS and ITMSn scans, respectively, and the maximum 
injection time was set to 250 ms and 100 ms for full FTMS and ITMSn 
scans, respectively.

Mass spectra were searched against the UniProt canonical E. coli 
FASTA database using the SEQUEST algorithm of Proteome Discoverer 
2.2.0.388. The search was performed against the UniProt canonical 
E. coli FASTA database, along with a database containing common 
preparatory contaminants. The precursor mass range was set to 350–
3,000 Da, mass error tolerance to 10 ppm and fragment mass error 
tolerance to 0.6 Da. Enzyme specificity was set to trypsin, and carbami-
domethylation of cysteines (57.021) was set as a variable modification. 
Oxidation of methionines (+15.995) and protein N-terminal acetylation 
(+42.011) were considered as variable modifications. Peptides were 
filtered using Percolator, with the protein false discovery rate set to 1%. 
Protein abundance was based on precursor ion peak areas.

Proteome data analysis and annotation using Clusters of 
Orthologous Groups (COG)
Protein functional annotation was performed using the COG database69. 
UniProt accession codes were mapped to the COG database down-
loaded from https://ftp.ncbi.nih.gov/pub/COG/COG2014/data/. After 
removing non-bacterial groups, COGs were reduced to 9 functional 
groups: ribosomal protein (RP), non-RP translational, transcription, 
DNA replication, cell division, cell envelope structure, post-translational 
modification, energy and metabolism, and other. The corresponding 
gene of each protein was annotated using the gene association table 
from EcoCyc (https://ecoliwiki.org/gaf/gene_association.ecocyc.gz)70.

Relative protein abundance (that is, proteome fraction) within 
each sample was calculated by normalizing across all protein abun-
dances from the sample, and the mean relative protein abundance was 
then calculated across biological replicates. Proteins were excluded 
if they were only detected in one of the biological replicates. The sig-
nificance threshold for changes in mean relative abundance of a single 
protein was defined as 2-fold, and hits were excluded if the relative 
difference between replicates was greater than the mean relative dif-
ference between replicates across all proteins (14–20% across samples).

E. coli transposon library temperature shifts
One millilitre of a pooled library of E. coli BW25113 transposon insertion 
mutants with random DNA barcodes41 was thawed, diluted into 50 ml 
of LB + 25 μg ml−1 kanamycin (Sigma Aldrich) in a 250-ml Erlenmeyer 
flask (Pyrex) and grown with shaking overnight at 37 °C. A volume of 
0.5 ml of the stationary-phase library cultures was diluted into 50 ml 
of LB in technical replicates at 25 °C and 37 °C.

The 25 °C culture was grown for 3 h to early log phase (OD600 ≈ 0.15) 
and 6 ml were diluted into each of two flasks containing 50 ml fresh LB 
pre-warmed at 25 °C, then grown for another 3 h in an air-heated shaker 
(New Brunswick Scientific). The temperature upshift from 25 °C to 

37 °C was performed by placing one of the 25 °C flasks into a heated 
water shaker at 37 °C. The control sample was left at 25 °C. Samples 
were collected in 1.5-ml aliquots and flash frozen using liquid nitrogen 
every 10 min at timepoints of −10, 0, 10, 20, 30, 40, 60, 90 min relative 
to the shift (control samples without temperature shifts were also taken 
at the same time points).

The 37 °C culture was grown for 2 h until mid- to late-log phase 
(OD600 ≈ 0.3) and 1.5 ml were diluted into each of two flasks containing 
50 ml of fresh LB pre-warmed at 37 °C, then grown for ~1 h in a heated 
water shaker. For the temperature downshift from 37 °C to 25 °C, one 
of the flasks was first placed into a room-temperature water bath for 
6 min for faster cooling, then transferred to an air-heated shaker at 
25 °C. The other flask was maintained at 37 °C as a control.

Each set of downshift/upshift experiments was performed twice, 
and all samples were flash frozen and immediately stored at −80 °C. 
Optical density was monitored at each time point for all experiments 
with a Genesys 20 spectrophotometer (Thermo Fisher). The timescale 
of the temperature upshift was estimated to be ~3.5 min using a virtual 
experiment with 50 ml of water in a flask, whose temperature was 
directly monitored during a shift from 25 °C to 37 °C using the SiCTeC 
device thermistor reading. A similar test was performed for the 37 °C 
to 25 °C downshift by placing a 37 °C flask with 50 ml of water into a 
stationary water bath at room temperature, giving an estimate of ~6 min 
to complete the temperature shift.

E. coli transposon mutant library sequencing and analysis
Barcode sequencing (BarSeq) was performed as previously described41. 
Briefly, genomic DNA was extracted using the DNeasy 96 Blood and 
Tissue kit (Qiagen) and quantified using the Quant-iT dsDNA BR Assay 
kit (Qiagen). BarSeq PCR was performed using 200 ng of genomic 
DNA template in 150-μl reaction volumes with Q5 polymerase (with 
enhancer) (New England Biolabs), 20 μM forward P5 primer and 20 μM 
reverse P7 primers (Supplementary Table 2) with 6-bp TruSeq indices 
that are automatically demultiplexed by Illumina software. PCR prod-
ucts were checked for completion using gel electrophoresis, and 10 μl 
of each reaction product were pooled and purified using the Zymo DNA 
Clean and Concentrator kit (Zymo). Sequencing was performed at the 
Chan Zuckerberg BioHub facility on an Illumina NextSeq 550 platform 
in high output mode.

BarSeq analysis was performed as previously detailed41, with rel-
evant scripts available at https://genomics.lbl.gov/supplemental/
rbarseq/. Briefly, barcode reads were mapped to their corresponding 
genomic loci using sequencing of the transposon insertions in the  
E. coli library, and genes were filtered for those with ≥10 barcodes in 
the central (10–90%) portion of the gene. Temperature-shift samples 
were analysed along with their corresponding unshifted control sam-
ples, with the time-zero sample corresponding to when the library was 
shifted (t = 0 sample). The fitness of each mutant was measured as the 
log2fold-change in its relative abundance, and further analysis was 
performed using custom MATLAB scripts. Significance was defined as 
≥2-fold difference in relative abundance during a temperature shift.

FRAP measurements
E. coli cultures were grown overnight from frozen stocks at 37 °C in 
LB, with 25 µg ml−1 kanamycin selection for ΔfabR and ΔfadR mutants, 
and then diluted 1:200 into fresh LB and grown until log phase at 
37 °C (~2 h). Cultures were then diluted 1:10 into fresh LB, and 2 µl 
of 0.5 mg ml−1 MitoTracker Green (Thermo Fisher) were added. The 
culture was grown at the target temperature for 30 min to enable 
sufficient membrane labelling. Stained cells (500 µl) were washed via 
centrifugation (30 s at 7,000 g) in fresh LB at the target temperature 
(37 °C or 27 °C). One microlitre of washed culture was placed on an LB 
3% agarose hydrogel and prepared for imaging using the standard glass 
slide technique. Imaging was performed with a Zeiss LSM 880 confo-
cal microscope with an environmental chamber for monitoring and 
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controlling temperature (37 °C) and integrated with the ZEN software 
suite (Zeiss). Temperature upshift experiments were performed by 
placing the sample into the heated environmental chamber for 5 min 
before imaging. Fluorescence recovery after photobleaching (FRAP) 
of individual cells was performed with excitation at 488 nm using the 
ZEN software by choosing a photobleaching region near cell tips cover-
ing 1/4 to 1/3 of the cell. The entire cell was imaged at minimum frame 
intervals (150–300 ms) to image fluorescence recovery.

FRAP analysis and viscosity estimate
Individual regions of interest were manually delineated for the pho-
tobleached cell tips and the entire cell in FIJI64, and the total fluores-
cence of each area was quantified at each time point. These data were 
imported for further analysis in MATLAB. The fluorescence recovery 
in each photobleached region was corrected by the rate of photobleach-
ing in the entire cell, and the recovery curve was normalized and fit to 

the exponential function (1 − e−
t
τD ). The time constant (τD) was used to 

estimate a diffusion coefficient (D) via solution to Gaussian pho-
tobleaching in a plane, τD =

r2

4D
 (that is, modelling the cell tip as a disk 

of radius r on the membrane)71. Viscosity (η) was calculated using the 
Stokes–Einstein equation (η = kBT

6πRD
), where R is the radius of the fluo-

rophore (estimated as 2 nm).

Schizosaccharomyces pombe culturing
S. pombe WT972 h- was grown from a frozen stock on YE5S plates (5 g l−1 
yeast extract, 30 g l−1 glucose, 225 mg l−1 each of adenine, histidine, 
leucine, uracil and lysine hydrochloride, 2% Difco Bacto Agar). A single 
colony was grown at 22 °C or 32 °C in liquid YE5S overnight until satura-
tion, then diluted 1:100 and grown until log phase (OD600 ≈ 0.3–0.5). 
One microlitre of log-phase cells was placed on a 3% agarose YE5S pad 
at the initial temperature of the experiment for imaging.

Estimate of LB molarity
LB is largely composed of free amino acids, and measurements of  
E. coli auxotrophy and direct HPLC quantification70 have provided an 
estimate of ~122 g mol−1 for its free amino acid content. The molar mass 
of tryptone is reported by the manufacturer to be 71.08 g mol−1 (Thermo 
Fisher). As LB is composed of 10 g tryptone and 5 g yeast extract dis-
solved in 1 l H2O, we estimate that the concentration of metabolizable 
free amino acids in LB is ~182 mM. Note that the accuracy of this esti-
mate is not critical for any of our conclusions; the value simply enables 
plotting of LB concentrations on the same plot as other substrates such 
as casamino acids.

Measurements of KM

E. coli MG1655 was grown overnight until saturation in MOPS 
buffer + 0.2% (w/v) glucose at the target temperature (25 °C, 30 °C, 
37 °C), then washed twice in MOPS buffer before being diluted 1:200 
in the target medium at the target temperature. Liquid-culture growth 
curves were obtained as described above. OD was measured using a 
microplate reader and maximal growth rate was quantified as the peak 
of the derivative of ln(background-subtracted OD)28. A weighted fit was 
performed on the growth rate versus concentration curve using the 
Monod equation (equation (4)) to extract an estimate of KM with a stand-
ard error. We note that it was challenging to obtain growth rates at low 
concentration for simple sugars (for example, glucose, fructose) due to 
both the low KM and generally low growth rate (<0.2 h−1) (Extended Data 
Fig. 9a–c). In succinate, the relationship between ln(growth rate) and 
1/T appeared bilinear, thus a linear fit produced an estimate of Ea with 
very large standard error (19 ± 14 kcal mol−1) (Extended Data Fig. 9f).

Evaluation of the quality of growth rate measurements
The cell length corresponding to each filtered growth-rate trajectory 
was predicted by integrating the computed growth rate, g, as follows:

g = 1
L
dL
dt

⇒∫
L(t)

L(0)

dL
L
= ∫

t

0
g (t′)dt′ = G(t)

⇒ Le (t) = L(0)eG(t).

(5)

By computing G(t) at each timepoint, t, the expected length, Le(t), 
can be predicted from the trajectory’s initial cell length, L(0). The error 
of the expected length over time, E (t), is defined as the relative differ-
ence from the measured cell length, Lm(t):

E (t) = |Lm (t) − Le (t)|
Lm (t)

. (6)

We found that the predicted cell lengths were extremely highly cor-
related with measured cell lengths throughout temperature-shift 
experiments (r = 0.999, Supplementary Fig. 2c), with <1% error that 
depends on the growth rate (r = 0.58, Supplementary Fig. 2d).

Sensitivity analysis of the functional genetic screen
To determine the difference in response time of a mutant relative to 
wild type sufficient to produce a 2-fold difference in relative abundance 
after a temperature upshift (Fig. 3), we assumed that the upshift 
response is approximately linear (Fig. 1f). In this case, the biomass, B, 
varies with growth rate, g , as

g =
d (ln (B))

dt
. (7)

Upon a temperature upshift, the growth rate varies from gi to gf  
over a time τR, and the experiment is carried out over a time tf > τR. 
Hence,

∫
ln(B2)

ln(B1)
d (ln (B)) = ∫

τR

0
(gi +

gf−gi
τR
t)dt +∫

tf

τR
gfdt

⇒ ln ( B2
B1
) = gftf −

1
2
(gf − gi) τR.

(8)

Consider a mutant that has the same initial and final growth rates 
as wild type (that is, the mutant is present in the mutant pool at both 
temperatures), but possesses a different response time, τ′R. Then its 
final biomass, B′2, after an upshift will be

ln (
B′2
B1
) = gftf −

1
2 (gf − gi) τ

′
R . (9)

The difference in biomass between the mutant and wild type will 
then be

ln (B2B′2
) = 1

2 (gf − gi) (τ
′
R − τR) . (10)

Since we defined the significance threshold for our screen as a 
2-fold difference in biomass and the wild-type response time is ~1.5-fold 
the doubling time, τD, a longer response time implies that

ln (2) = 1
2 (gf − gi) (τ

′
R − 1.5τD) . (11)

By setting τ′R = fτR and using the relation τD =
ln(2)
gf

,

ln (2) = 1
2
(gf − gi) ( f − 1) 1.5 ln (2) /gf

⇒ f = 1 + 4

3(1− gi
gf
)
. (12)
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The ratio of gi/gf  for E. coli in rich medium is ~0.7/2.0 (Fig. 1a,b), 
hence f ≈ 3. This set of calculations indicates that a >2-fold difference 
in biomass at tf > τ′R > τR  requires at least a 3-fold increase in the 
response time. While the ΔdnaK and ppGppnull mutants exhibited  
some lag or increase in response time (Extended Data Fig. 3d–g), direct 
integration of the mean growth rate trajectories during a temperature 
upshift predicted biomass differences of ~1.5-fold, less than our trans-
poson screen cut-off. Thus, our screening results are consistent with 
the small differences in growth-rate dynamics observed with the ∆dnaK 
mutant; the ppGppnull mutant is a double mutant and hence is not  
represented by a mutant in the transposon library.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Imaging datasets used to generate growth rate analyses are available 
from the corresponding author upon request. Processed and analysed 
imaging data sets of growth trajectories and FRAP measurements, liq-
uid growth measurements, processed transposon sequencing and pro-
cessed proteomics data are all available at the Harvard Dataverse72. Raw 
transposon sequencing data have been deposited in NCBI’s Sequence 
Read Archive (SRA) under project accession identifier PRJNA1138713. 
Mass spectrometry proteomics data have been deposited in the Pro-
teomeXchange Consortium via the PRIDE73 partner repository with 
data set identifier PXD048941.

Code availability
Codes for generating single-cell trajectories74 and for analysing 
single-cell growth rates75 are available in GitHub. Simulation code for 
the TSEN model is available in GitHub76.
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temperatures of diverse E. coli strains from various animal hosts (Methods). Each 
strain is labeled with its laboratory accession number (Supplementary Table 1), 
host source, and estimated host body temperature. Each data point represents 
the mean of eight biological replicates, with error bars representing the standard 
deviation. b) Arrhenius plots of growth rates from (a). The natural logarithm 
of maximal growth rate is plotted against the inverse absolute temperature for 
temperatures between 27 °C and 37 °C, along with weighted linear fits for each 
strain. c) Activation energies measured as the slope of the linear fit to the data 
in (b) for each E. coli strain, with errors reported as the standard error of the 

mean (SEM) from the weighted fit. Each strain is grouped according to host body 
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d) Steady-state maximum growth rates in rich medium (LB) of E. coli BW25113, 
CS109, and BL21 between 18 °C and 47 °C (Methods). Each maximal growth rate 
is reported as the mean±1 standard deviation of eight biological replicates. 
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Extended Data Fig. 3 | Effect of chaperones, oxygen, and the stringent 
response on temperature upshift responses. a) Single-cell growth rates of  
E. coli MG1655 on rich medium (LB) undergoing a temperature upshift from 25 °C 
to 37 °C in aerobic (blue, n=773 cells) or anaerobic (orange, n=319 cells) conditions. 
Data are the mean±1 SEM (shaded region) at each time point. b) Normalized 
growth rate versus thermal time for each trajectory in (a). c) Single-cell growth 
rates of ΔdnaK (red, n=433 cells) and its parent BW25113 (blue, n=1011 cells) on 
rich medium (LB) undergoing a temperature upshift from 37 °C to 42 °C. Data 
are the mean±1 SEM (shaded region) at each time point. d) Single-cell growth 
rates of ΔdnaK (red, n=318 cells) and its parent BW25113 (blue, n=734 cells) on 

rich medium (LB) undergoing a temperature upshift from 27 °C to 37 °C. Data 
are the mean±1 SEM (shaded region) at each time point. e) Normalized growth 
rate versus thermal time for each trajectory in (d). f) Single-cell growth rates of a 
ppGppnull strain (ΔrelA ΔspoT) (purple, n=648 cells) and its parent MG1655 (blue, 
n=792 cells) on rich medium (LB) undergoing a temperature upshift from 27 °C to 
37 °C. Data are the mean±1 SEM (shaded region) at each time point. g) Normalized 
growth rate versus thermal time for each trajectory in (f). h) Single-cell growth 
rates of ppGppnull (purple, n=47 cells) and its parent MG1655 (blue, n=474 cells) on 
rich medium (LB) undergoing a temperature upshift from 27 °C to 42 °C. Data are 
the mean±1 SEM (shaded region) at each time point.
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Extended Data Fig. 4 | Downshift pulses reveal temperature history. a) Single-
cell growth rates of E. coli MG1655 on rich medium (LB) starting at 37 °C subjected 
to 27 °C pulses for 2 min (red, n=519 cells), 5 min (purple, n=397 cells), 12 min 
(green, n=451 cells), or 17 min (dark red, n=422 cells). Dotted lines represent the 
time at which cells were subjected to a 27 °C downshift. The shift from steady-
state growth at 27 °C to 37 °C is also shown for comparison (blue, n=773 cells). 

Data are the mean±1 SEM (shaded region). b) Single-cell growth rates of E. coli 
MG1655 on rich medium (LB) starting at 37 °C subjected to a 23 °C pulse for  
5 min before an upshift to the intermediate temperature 30 °C (red, n=330 cells). 
The vertical dashed line indicates the start of cooling, which required ~2 min to 
reach 23 °C. The shift from steady-state growth at 23 °C to 30 °C is also shown for 
comparison (blue, n=396 cells).
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Extended Data Fig. 5 | E. coli growth rate responds rapidly to heat-shock  
and cold-shock pulses. a) Single-cell growth rates of E. coli MG1655 on rich 
medium (LB) undergoing temperature upshifts from 37 °C to 40 °C (purple, 
n=479 cells), 42 °C (orange, n=1249 cells), 43 °C (red, n=819 cells), or 47 °C (dark red, 
n=474 cells). Data are the mean±1 SEM (shaded region) at each time point.  
b) Single-cell growth rates of E. coli MG1655 on rich medium (LB) starting at 
37 °C and subjected to heat-shock pulses at 47 °C for 5 min (orange, n=381 cells) 
or 35 min (dark red, n=474 cells). Vertical dashed lines represent the times at 
which cells were shifted back to 37 °C. Data are the mean±1 SEM (shaded region) 
at each time point. c) Single-cell growth rates of E. coli MG1655 on rich medium 
(LB) starting at 37 °C and subjected to ~10-min cold-shock pulses at 18 °C (light 
blue, n=361 cells) or 12 °C (dark blue, n=390 cells). Data are the mean±1 SEM 

(shaded region) at each time point. d) Temperature readout of a 5-min pulse at 
0 °C (Methods) starting from 37 °C. t=0 is when cells were shifted back to 37 °C. 
e) Single-cell growth rates of E. coli MG1655 on rich medium (LB) starting at 37 °C 
and subjected to a 5-min cold-shock pulse at 0 °C (purple, n=283 cells) shown 
in (d). Horizontal dashed line represents cell shrinkage defined as growth rate 
<0 h−1. Data are the mean±1 SEM (shaded region) at each time point. f) Images of 
E. coli MG1655 on rich medium (LB) during a 10-min pulse at 0 °C starting from 
37 °C. At 37 °C, cells exhibited normal morphologies and growth (top). At 0 °C, 
cells shrank, as exemplified by the cell whose length at t=-10 min represented by 
a double-arrowed line extends beyond the cell boundary at t=0 (middle). Growth 
resumed quickly after the sample was heated back to 37 °C, without loss in cell 
viability (bottom).
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of E. coli BW25113 cells after an upshift at t=0 from 27 °C to 37 °C in LB (Methods). 
Points are estimates from a best fit (Methods) and error bars represent 1 standard 
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the shaded region represents ±1 standard deviation. d) Growth rate responses of 
E. coli BW25113 (blue, n=686 cells), ΔfabR (red, n=924 cells), and ΔfadR (purple, 
n=409 cells) to a temperature upshift from 27 °C to 37 °C in LB. Curves show mean 
growth rate and shaded regions represent ±1 SEM. e) Normalized growth rate 

followed a similar trajectory versus thermal time among the mutants and parent 
for the data in (d). f) Growth curves of wild-type (BW25113) (blue) and ΔfabR (red) 
cells grown in LB at 37 °C (n=3 replicates). Optical density (OD) was corrected for 
non-linearity at high OD values (Methods). Maximum growth rates are the mean 
across replicates and the error is ±1 standard deviation. g) Growth rate response 
to a temperature upshift from 37 °C to 42 °C in E. coli BW25113 (blue, n=1011 
cells) and ΔfabR (red, n=554 cells). Both strains exhibited an initial decrease in 
growth rate followed by recovery to the steady-state growth rate at 37 °C, but 
recovery was more delayed for the high-fluidity ΔfabR mutant. Curves show 
mean growth rate and shaded regions represent ±1 SEM. h) (Left) Representative 
images of ΔfabR cells throughout a temperature upshift from 37 °C to 44 °C. 
At 37 °C, morphology and growth were wild-type-like (top left). Growth halted 
immediately after the shift to 44 °C (top right), with loss of turgor and cell 
death occurring within 30–40 min after the shift (bottom left, right). (Right) 
Representative images of wild-type MG1655 cells before and after an upshift from 
37 °C to 44 °C. Cells maintained growth and shape.
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Extended Data Fig. 7 | Effects of changes in TSEN model parameters on 
temperature-shift response dynamics. a) Increasing the catalytic rate (ki) for 
each reaction in a bottlenecked minimal TSEN model (gray box) from 1 min−1 to 
1000 min−1 has virtually no effect on the response. b) Effect of model parameters 
on the normalized response time to a temperature upshift from 27 °C to 37 °C in 
the minimal TSEN model (gray box) for each reaction (import, production, 
growth). The definitions of each parameter are provided in Fig. 4a. All other 
parameters were set to default values (vertical gray bars) in each simulation. 
Notably, increases in the activation energy of the KM  of the production reaction 
produced the largest increase in response times across all activation energies 
(right). c) The analytically tractable production-less TSEN model (gray box, 

Supplementary Text) predicts a non-zero response time. The simulation used 
default parameters (ki= 1 min−1, KM  = 1 mM, Ecata  = 15 kcal/mol, EMa = 15 kcal/mol), 
with the exception of the Michaelis-Menten constant of the second reaction  
K1= 20 mM. d) Normalized response time increases with increased activation energy 
of K1 in the production-less TSEN model (gray box). e) Normalized response  
time increases with increased K1 in the production-less TSEN model (gray box).  
f) Normalized response time was between 1 and 2 doublings when the cutoff  
used to define the adaptation was increased from 95% to 99% of the steady- 
state growth rate difference in the production-less TSEN model (gray box).  
g) Arrhenius plot of steady-state growth rate across temperatures predicted  
by the minimal TSEN model (gray box) exhibits slightly non-linear behavior.
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Extended Data Fig. 8 | TSEN model is compatible with reversible enzyme 
kinetics and predicts nutrient perturbation responses. a) Predictions  
of the minimal TSEN (3 total reactions, single intermediate) with a reversible 
intermediate reaction for a temperature upshift from 27 °C to 37 °C 
(Supplementary Text). Simulations are shown for various values of the 
Michaelis-Menten constants for the reversible reaction. The standard 
bottleneck is defined as KM = 20 mM, which has an activation energy of 
Ea = 22.5 kcal/mol. Standard reactions have KM = 1 mM and Ea = 15 kcal/mol. 
Simulations were conducted with saturating external nutrients (c0 = 100 mM). 
Other parameters of the minimal TSEN can be found in Fig. 4a, b. Green: with a 
forward bottleneck only, described by a very large reverse KM = 1000 mM. Red: 
with bottlenecks in both the forward and reverse reactions. Blue: with a forward 
bottleneck and standard reverse reaction. Purple: with forward and reverse 
reactions both possessing standard KM  values. b) The TSEN model responds to 
a nutrient pulse from a steady state with low nutrient concentration through 
increased metabolite production. The full TSEN (5 intermediate reactions) with 
a single bottleneck (standard kinetic values in black, bottleneck values in red on 
left) was simulated under sub-saturating, low-nutrient conditions (c0 =0.1 mM) 

until steady state was reached, and then an instantaneous nutrient pulse  
of 28 mM was added at t = 0 min, with no nutrients subsequently provided. 
Simulations were performed in a 1 L container. Left: growth rate dynamics 
predicted by the bottlenecked TSEN after the nutrient pulse. Standard (black) 
and bottleneck (red) parameter values are shown. Middle: predicted 
intracellular metabolite concentrations, colored by location in network during 
the nutrient pulse and subsequent depletion. Dynamics depend on network 
position. Right: External nutrient concentration throughout the simulation.  
c) The TSEN model responds to starvation exit through slow metabolite 
production. The full TSEN (5 intermediate reactions) with a single bottleneck 
(standard kinetic values in black, bottleneck values in red on left) was simulated 
under starvation-like conditions (c0 =0.01 mM) until steady state was reached, 
and then the nutrient concentration was shifted to a saturating condition (c0 =
100 mM) at t = 0 min. Left: growth rate dynamics after the nutrient shift 
predicted by the bottlenecked TSEN. Standard (black) and bottleneck (red) 
parameter values are shown. Right: intracellular metabolite concentrations, 
colored by position in network, during the shift.
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Extended Data Fig. 9 | E. coli exhibits Michaelis-Menten kinetics across 
substrates. a) Left: Liquid-culture growth rates of E. coli MG1655 grown on a 
variety of substrates at 37 °C (Methods). Data are the mean of the maximum 
growth rate extracted from three biological replicate growth curves and error 
bars represent ±1 standard deviation (SD). Right: Expanded view of growth rates 
versus concentration from the outlined box on the left. b) Liquid-culture growth 
rates of E. coli MG1655 in MOPS minimal medium supplemented with various 
concentrations of D-glucose at 25 °C (blue), 30 °C (black), or 37 °C (red). Data are 
the mean of the maximum growth rate extracted from three biological replicate 
growth curves and error bars represent ±1 SD. c) Michaelis-Menten constants 
(KM) of E. coli MG1655 growth rates across growth media and temperatures.  
Data are estimates from a non-linear weighted fit and error bars represent ±1 SEM.  
d) Arrhenius plots of ln(growth rate) versus 1/(absolute temperature) for E. coli 
MG1655 grown in MOPS minimal medium supplemented with glucose at 
concentrations between 0.17 mM and 11 mM (blue-to-red). Data are the mean 

across three biological replicates and error bars represent ±1 SD. Weighted linear 
fits were performed for each concentration. e) Arrhenius plots of ln(growth rate) 
versus 1/(absolute temperature) for E. coli MG1655 grown in MOPS minimal 
medium supplemented with casamino acids at concentrations between 0.9 mM 
and 923 mM (blue-to-red). Data are the mean across three biological replicates 
and error bars represent ±1 SD. Weighted linear fits were performed for each 
concentration. f) Activation energy versus substrate concentration of E. coli 
MG1655 grown in minimal media without amino acids supplemented with 
glucose, fructose, acetate, succinate, or maltose. Activation energies are 
estimates from a linear weighted fit of Arrhenius plots and error bars represent ±1 
SEM. g) Activation energy versus substrate concentration of E. coli grown in LB 
(red) or MOPS minimal medium supplemented with casamino acids (green). 
Activation energies are estimates from a linear weighted fit of Arrhenius plots 
and error bars represent ±1 SEM.
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Extended Data Fig. 10 | Growth rate response to a temperature downshift 
is rapid across organisms. Single-cell growth rate response to a temperature 
downshift on rich medium (LB) of laboratory-evolved (blue, CS109, n=911 cells) 
and naturally isolated E. coli strains (orange to red, n=417-1186 cells), Escherichia 

fergusonii (purple, n=902 cells), and Bacillus subtilis (green, n=117 cells). All 
downshifts were from 37 °C to 25 °C, except for B. subtilis (37 °C to 27 °C). Data are 
the mean±1 SEM (shaded region) at each time point.
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