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Temperatureis a key determinant of microbial behaviour and survivalin the

environment and within hosts. At intermediate temperatures, growthrate
variesaccording to the Arrhenius law of thermodynamics, which describes
the effect of temperature on the rate of achemical reaction. However, the
mechanistic basis for this behaviour remains unclear. Here we use single-cell
microscopy to show that Escherichia coli exhibits a gradual response to tempe-
rature upshifts with atimescale of -1.5 doublings at the higher temperature.
Theresponse was largely independent of initial or final temperature and
nutrient source. Proteomic and genomic approaches demonstrated that
adaptation to temperature isindependent of transcriptional, translational or
membrane fluidity changes. Instead, an autocatalytic enzyme network model

incorporating temperature-sensitive Michaelis—-Menten kinetics recapitulates
alltemperature-shift dynamics through metabolome rearrangement, resulting
inatransient temperature memory. The model successfully predicts alterations

inthe temperature response across nutrient conditions, diverse E. coli strains
fromhosts with different body temperatures, soil-dwelling Bacillus subtilis
and fission yeast. In sum, our model provides a mechanistic framework for
Arrhenius-dependent growth.

While growth is critically dependent on the environmental tempera-
ture, microbes are unable toregulate intracellular temperature. Enteric
bacteriaface temperature changes across minute to hour or day time-
scales when colonizing hosts, while environmental species are exposed
to daily and seasonal fluctuations. Despite these fundamental con-
nections, the mechanistic underpinnings of how temperature affects
microbial behaviour remain unclear.

Most studies onthe cellular effects of temperature have focused on
theregulatory systems that enable survival under heat and cold stress,

during which molecular chaperones assistin the folding and unfolding
of proteins and RNA"%. While growth rate decreases at extreme,
stress-response-inducing temperatures’, thereis typically atemperature
range over whichgrowthrateincreases with temperature inapproximate
agreement with the Arrhenius Law of equilibrium thermodynamics**.
The Arrhenius Law isanequation that describes the impact of tempera-
tureontherate k ofachemical reaction (Ink « 1/T), wherein the natural
logarithm of growth rate depends approximately linearly ontheinverse
oftheabsolute temperature, with anegative slope that canbeinterpreted
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as an activation energy for growth (E,, equivalent to the barrier for
enzyme kinetics)®. This temperature-dependent behaviour is highly
conserved across diverse bacteria, archaea, yeast and mammalian cells®,
with each species exhibiting its own Arrhenius range of optimal growth
temperatures and activation energy.

While theoretical work has suggested that proteome stability
sets the upper bound for the growth rate of a given bacterial species
across temperatures’, there is no correlation between permissible
(optimal) growth temperatures and F, across bacteria®, indicating that
E, is probably influenced by factors other than proteome stability. In
Escherichiacoli,the Arrhenius range is between 23 °Cand 37 °Cand £,
is 13 kcal mol™ (refs. 5,7), similar to the free energy released from ATP
hydrolysis (12-16 kcal mol™)®, suggesting that there may be a single
rate-limiting enzyme for growth. On the other hand, theoretical work
oncyclical enzyme networks has suggested that £, arises from the aver-
age activation energies over all reactions within the network®®, as the
E,for most biological enzymes is constrained between 5-20 kcal mol™
(refs. 6,11,12). However, the factor(s) that limit growth across Arrhenius
temperatures and determine E, for a given species remain unknown.

Most previous studies of growth in the Arrhenius range have
focused on steady-state growth. An early study of 133 proteins in
E. colishowed that the concentration of most proteins was maintained
across Arrhenius temperatures, suggesting that the proteome may
be largely temperature insensitive’. However, other studies found
transient changesin the synthesis of transfer (t)RNA synthetases after
temperatureincreases”, and a decrease from 37 °Cto 28 °Cresulted in
significant changes to ~-9% of the E. coli transcriptome’, indicating a
role for other environmental variables®. A few studies have examined
growth rate response to temperature shifts; . coli growth rate was
shownto respond almostimmediately upon temperature shifts within
the Arrhenius range™'®, while others report much longer timescales
that scale with the final temperature".

Many factors could determine the timescale of temperature
adaptation. E. coli cells tightly maintain membrane fluidity across all
growth-permissible temperatures by regulating membrane compo-
sition’®. Increased membrane fluidity allows for higher respiratory
metabolic rates’, but how fluidity impacts growth rate during tem-
perature shifts is unknown. Growth rate across nutrients correlates
with ribosome concentration, whichis optimized through competition
between protein and autocatalytic ribosome synthesis?>*. As aresult,
many models of growth focus on translation as a key growth-limiting
factor®. However, this framework is likely inappropriate for under-
standing growth rate variations across temperatures, as ribosome
concentration is constant across Arrhenius temperatures™>,

Here we demonstrate that E. coli cells exhibit an asymmetric
growth-rate response to temperature shifts within the Arrhenius
range and that these responses do not result from proteome or
membrane reconfiguration, or from transcriptional regulation. We
develop an autocatalytic enzyme network model that incorporates
temperature-sensitive Michaelis-Menten kinetics into chained reac-
tions. Themodel quantitatively captures temperature upshift and down-
shift responses, the effects of carbon source-dependent changes in
activation energy and changes in substrate availability. These findings
suggest that metabolome rearrangement largely drives the adaptation of
growthrateto temperature shifts. This behaviour was conserved across
diverse Escherichia strains and the Gram-positive Bacillus subtilis. The
modelalso captured the distinct response of the fission yeast Schizosac-
charomyces pombe, reflecting the conserved nature of metabolomerear-
rangementin facilitating growth adaptation to different temperatures.

Results

Steady-state growth rate determines temperature upshift
response

To determine temperature sensitivity across strains of a single spe-
cies, we measured the growth of 12 £. coli strains isolated from faecal

samples of hosts with different body temperatures (Supplementary
Table 1)**%, All strains exhibited similar temperature sensitivity pro-
files, with Arrhenius behaviour between 27 °C and 37 °C (Extended
Data Fig. 1a,b) and activation energies (10-15 kcal mol™) of growth
(Extended Data Fig. 1c-e) consistent withanullmodelinwhich growthis
determined by asingle rate-limiting enzyme. The curves exhibit slightly
nonlinear behaviour in Arrhenius plots (Extended DataFig.1c-e), which
is predicted in some models of temperature-dependent kinetics as a
result of additional factors (for example, proteome stability’, molecu-
lar transition-state theory®®, enthalpic changes in core enzymes®).
Single-cell growth rates correlated with bulk growth rates from liquid
culture across the Arrhenius range (Fig. 1a, right, and Supplementary
Fig.1), withliquid-culture measurements exhibiting asmall bias towards
higher growth rates probably due to challenges in accurate optical
density blank subtraction (Methods)*. These data suggest that the
thermodynamic properties of E. coli growth are conserved and that
host body temperature does not dictate the temperature sensitivity
of enteric bacteria.

To identify the mechanisms underlying the temperature sen-
sitivity of bacterial growth, we used single-cell tracking with a
microscopy-compatible temperature controller®. For the nullmodel
in which growth depends on a single rate-limiting enzyme, growth
rate would adapt immediately to the steady-state value dictated by
the new temperature, and the response timescale would match that
of the temperature shift. To test this model, we monitored the growth
of single E. coli cells on LB agarose pads during 10 °C temperature
shifts within the Arrhenius range (Methods and Supplementary
Fig.2).

Arapid downshift from37 °Cto 27 °Cresultedin arapid decrease
in growth rate with a timescale quantitatively similar to that of the
temperature shift (Fig. 1b and Supplementary Fig. 3), nearly reaching
the steady-state growth rate at 27 °C, and then slowly decelerating
towards the new steady state (Fig. 1b). In contrast, temperature
upshifts from27 °Cto 37 °Cresulted ina slow response, with an initial
‘spike’ that peaked at -3 min post shift and subsequent linear accelera-
tionuntil reachingthe 37 °C steady-state growth rate at ~40 min post
shift (Fig. 1c), aresponse time substantially longer than the doubling
time at 37 °C (-22 min). To identify whether initial temperature affects
the response to upshifts, we shifted E. coli from steady-state growth
onLBat27°Cto30°C,33°Cor37°C.Ineachcase, the upshift caused
an initial spike and subsequent linear acceleration up to the
steady-state growth rate at 37 °C (Fig. 1c,d). However, the timescale
ofthe overall response depended on the final temperature, with longer
response times observed for lower final temperatures (despite the
smaller difference in steady-state growth rates between the initial and
final temperature, Fig. 1d). By normalizing time ¢ by the doubling time
atthefinal temperature (7p) (Fig. 1e) and the change in growth rate to
span from O to 1, all trajectories collapsed onto a single curve. The
response timewas 1.6 + 0.2 doublings at the final temperature (Fig. 1),
even for temperatures outside the Arrhenius range (Extended Data
Fig.2) and across growth media (Fig. 1g,h), indicating that the response
is largely determined by the growth rate at the elevated final
temperature.

Temperature upshift responses were largely unaffected by the
presence of oxygen (Extended Data Fig. 3a,b) or chaperones (Extended
Data Fig. 3c-e). Under nutrient limitation, the enzymes SpoT and
RelA produce the alarmone ppGpp, which signals large-scale tran-
scriptional reprogramming known as the stringent response that
regulates metabolism®° 2, During an upshift from 27 °C to 37 °C, the
response time of a AspoT ArelA mutant was longer than the parent
strain’s (Extended Data Fig. 3f,g), and an upshift from 27 °C to 42 °C
caused AspoT ArelA cells to rapidly decelerate from 0.8 h™ t0 0.4 h™*
(Extended Data Fig. 3h). Thus, the impact of the stringent response
on growth under temperature upshifts suggests that the response
timescale is related to metabolism.
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Fig. 1| E. coliresponds asymmetrically to temperature shifts, and upshift
dynamics are determined by the steady-state growth rate at the final
temperature. a, Left: Arrhenius plot illustrating that the natural logarithm of

E. coliMG1655 maximal growth rate for temperatures between 25 °C and 37 °C
varies linearly with the inverse absolute temperature, with a negative slope
whose magnitude is the activation energy (£,). Right: liquid-culture and single-
cell growth rates were highly correlated for temperatures in the Arrhenius range
between 25 °C and 37 °C (data from Extended Data Fig. 1c,e). Weighted linear
regression was performed on growth rates between 25 °C and 37 °C, with error
bars representing the 95% confidence interval of the fitted slope. b, Single-cell
growthrate (blue) of E. coliMG1655 throughout a temperature (black) downshift
from37°Cto 27 °Cinrich growth medium (LB) (n =253 cells). The curve and the
shaded region represent the growth rate mean + 1 standard error of the mean
(s.e.m.). Growth rate responds quickly to the downshift. ¢, Single-cell growth rate
(red) of E. coliMG1655 throughout a temperature (black) upshift from 27 °C to
37°CinLB (n=792cells). The curve and the shaded region represent the growth
rate mean +1s.e.m. Growth rate initially spikes (dark red), followed by linear
acceleration (green) to the new steady-state value over ~35 min. d, Single-cell
growth rate of E. coliMG1655 throughout a temperature upshift from 27 °C to

30 °C (blue, n =253 cells), 33 °C (purple, n = 754 cells) or 37 °C (red, n = 904 cells)
inLB. Vertical dashed lines indicate the time at which the growth rate reached

its steady-state value at the higher temperature. Curves and the shaded regions
represent the growth rate mean +1s.e.m. e, The thermal time is defined as the

Thermal time
(potential doublings)

Time after shift
back to 37 °C (min)
time (¢) measured in units of doubling times (7,) of steady-state growth at the
higher temperature. The normalized growth rate is defined as the difference
between the growth rate at time ¢ (g(¢)) and the growth rate at the temperature
shift (g(0)) divided by the difference between the steady-state growth rate at
the higher temperature (g;) and the initial temperature (g(0)). f, Normalized
single-cell growth rate of E. coliMG1655 grown in LB exhibits a characteristic
response with respect to thermal time for shifts between two temperatures in
the Arrhenius range 23 °C-37 °C (n = 253-904 cells). Curves represent the mean
and error bars have been omitted for ease of viewing. g, Single-cell growth rate
of E. coliMG1655 throughout a temperature upshift from 27 °Cto 37 °Cin LB
(red, n=792cells), casamino acids (green, n =270 cells), glucose (blue, n =353
cells), glucose + glutamate (orange, n = 220 cells) or glycerol (purple, n = 520
cells). Curves and the shaded regions represent the growth rate mean + 1s.e.m.
h, Despite the wide variation in absolute growth-rate responses (g), normalized
growth rate followed an approximately conserved trajectory versus thermal time
across nutrient environments. i, Single-cell growth rates of £. coliMG1655 in LB
grown to steady state at 37 °C and then subjected to pulses at 25 °C for 10 min
(red, n=1,015 cells), 20 min (orange, n =1,022 cells) or 30 min (purple, n =586
cells). Vertical dashed lines represent the times at which cells were subjected to
the downshift to 25 °C for the 10- and 20-min pulses. The upshift from steady-
state growth at 25 °Cto 37 °Cis also shown for comparison (blue, n = 773 cells).
Curves and the shaded regions represent the growth rate mean +1s.e.m.
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Fig.2| The delayed response to a temperature upshift is not due to
proteome rearrangement. a, The £. coli proteome at 37 °C varies across media.
Functional proteomic sectors (pie chart) were annotated according to the COG
classification (Methods). b, Ribosomal protein fraction increased with growth
rate across media (MOPS + glycerol, MOPS + glucose, LB), independent of
growth temperature. ¢, Energy and metabolism protein fraction decreased with
growth rate across media (MOPS + glycerol, MOPS + glucose, LB), independent
of growth temperature.d, The E. coli proteome in LB is largely invariant across
temperatures in the Arrhenius range (25 °C-37 °C). e, The proteome fraction
accounted for by each functional category was approximately constant in LB

across Arrhenius temperatures. Colours correspond to the functions in the
legend ina. f, Temperature-upshift (27 °C-37 °C) responses of individual deletion
mutants of the four most abundant of the proteins whose relative abundance
scaled with temperature across all media conditions (blue, parent strain wild-
type BW25113, n = 710 cells; purple, AnemA, n =1,052 cells; red, AstpA, n = 588
cells; orange, Agcd, n = 814 cells; green, AompT, n =324 cells). Curves and shaded
regions show the growth rate mean +1s.e.m. g, Normalized growth rate followed
an approximately conserved trajectory versus thermal time across the mutant
growth datainf.

Downshift pulses reveal a temperature memory

Since adaptation to an upshift requireslonger than the doubling time at
the final temperature, it is likely thatacomponent that limits growth s
producedto attain the steady-state growth rate at the higher tempera-
ture. Inthe absence of rapid degradation, after a temperature down-
shift, thelevel of such alimiting component would represent memory
of the growth state at the higher temperature until it is slowly diluted
by growth down to its steady-state value at the lower temperature. To
evaluate this hypothesis, we monitored E. coli MG1655 cells during
temperature downshift pulses from 37 °C to 25 °C and back to 37 °C
ofvarying duration. As hypothesized, after ashort (10 min) interval at
25°C, instantaneous growth rate quickly (within <10 min) recovered
backtothe37 °Csteady state (Fig. 1i and Extended Data Fig. 4a), accom-
panied by alarger spike thanfor cells starting from steady-state growth
at 25 °C (Fig. 1i and Extended Data Fig. 4a). For the longest interval at
25°C (30 min), the response time after the upshift back to 37 °C was still
faster (-25 min, Fig. 1iand Extended Data Fig. 4a) than the steady-state
response (~40 min), indicating that cells had not fully equilibrated to
25°C.Furthermore, cells shifted back to anintermediate temperature
(30 °Crather than 37 °C) after 5 minat 23 °C were able toreach the new
steady-state growth rate almostimmediately (Extended DataFig. 4b).
Short pulses (5-10 min) at extreme temperatures (<20 °C or >42 °C)
from 37 °Cgenerally induced rapid deceleration (Extended DataFig. 5),

but cells rapidly exited these pulses with large spike responses and
re-achieved steady-state growth at 37 °C within 10-20 min (Extended
DataFig.5b,c,e). These results suggest that agrowth-limiting compo-
nent is slowly diluted at the lower temperature, as cells can respond
quickly to temperature fluctuations.

TheE. coli proteome is mostly invariant across temperatures
inthe Arrhenius range

Withina model in which growth rate and ribosome concentration are
directly coupled®** *, the rapid response to temperature downshifts
and the history dependence of growth rate during downshift pulses
might be due to proteins limiting for growth at higher temperatures
being overly abundant during the downshift, while the slow response
to upshift would be due to the need for proteome reallocation®3%,
To test this hypothesis, we performed untargeted proteomics (liquid
chromatography with tandem mass spectrometry (LC-MS/MS)) on
E. coliMG1655 during steady-state growth on three media (LB or mini-
mal media supplemented with glucose or glycerol) at25°C,30 °Cand
37 °C (Fig. 2a and Supplementary Fig. 4a-c). As expected, at 37 °C the
ribosomal protein fraction was positively correlated with the growth
ratein eachmedium (Fig. 2b, light blue), while energy and metabolism
fractions were negatively correlated with growth rate (Fig. 2c, light
blue). However, the fraction associated with each functional group was
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Fig. 3| Response time is unaffected by almost all genetic and chemical
perturbations. a, Schematic of temperature-shift experiments screening
apooled library of E. coli BW25113 randomly barcoded transposon mutants
(Methods). The library was initially grown in a 50-ml volume at 37 °C, then diluted
and grown to steady state at the initial target temperature (25 °C or 37 °C) before
shifting to 25 °C or 37 °Cat time ¢ = 0. The optical density was monitored at each
sampling time point (-10-minintervals). The fitness of each mutant is defined as
thelog,(relative abundance compared to ¢ = 0) (Methods). This experiment was
carried out twice. b, Trajectories of mutant fitness during a shift from 25 °C to
37 °C (grey vertical bar denotes timing of the shift). Mutants with fitness <-1when
averaged over time points are highlighted in red. ¢, Trajectories of mutant fitness
during steady-state growth at 25 °C. Mutants with fitness <-1when averaged
over time points are highlighted in blue. b and c are from the same experiment,
and outlier mutants in the upshift (b) were also outliers in the control (c).
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d, Trajectories of log,(relative abundance) during steady-state growth at 25 °C
compared with those at 37 °C. A single gene, uup, had fitness <-1when averaged
over time points. e, Single-cell growth rate of Auup (red, n= 609 cells) and its
parent BW25113 (blue, n = 734 cells) throughout a temperature shift from 27 °C
to 37 °C. Curves and shaded regions show the growth rate mean +1s.e.m.
f, Normalized growth rate versus thermal time for each trajectory in e shows
that Auup cells respond more slowly to an upshift. g, Single-cell growth rates of
E.coliMG1655in LB treated with 0.1 pg ml™ chloramphenicol (orange, n = 264
cells), 0.5 pg ml™ chloramphenicol (dark red, n = 382 cells) or 2.5 ng ml™ triclosan
(green, n=266 cells) throughout a shift from 27 °C to 37 °C. The untreated
control is also shown for comparison (blue, n =792 cells). Curves and shaded
regions show the growth rate mean +1s.e.m. h, Normalized growth rate followed
asimilar trajectory versus thermal time as the control for the chloramphenicol
treatment dataing, while triclosan slightly delayed the growth-rate response.

constantacross Arrhenius temperatures in each medium (Fig.2d,eand
Supplementary Fig.4d,e). We only observed notable changes for tem-
peratures outside the Arrhenius range (16 °C, 43 °C), whichis consistent
with known stress-response pathways, including for the cold-shock
protein CspA and major heat-shock protein DnaK (Supplementary
Fig.4d,f,g)"*. Thus, ribosome fractionis unlikely to drive growth rate
changes across temperatures.

Most individual protein fractions were constant across tempera-
tures; only 13 proteins exhibited a >2-fold change between 25 °C and
37 °Cindependent of growth medium (Supplementary Fig. 5). The
DNA-binding StpA*® protein increased most, ~14-fold between 25 °C and
37 °C(Supplementary Fig. 5a); however, AstpA cells exhibited a similar
response to a 25 °C to 37 °C upshift as wild-type cells (Fig. 2f,g), as did
individual knockouts of the three next most-temperature-dependent
proteins (Fig. 2f,g and Supplementary Fig.5). Thus, the E. coli proteome
islargely insensitive to temperature at steady state, and proteins with
thelargest abundance changes across Arrhenius temperatures do not
impact the growth-rate response to temperature upshifts.

No single gene drives the temperature upshift response

We next explored whether specific genes drive the response to tem-
perature shift. We performed a genome-wide, time-resolved screen
using a pooled, randomly barcoded transposon mutant library in
E. coliBW25113 (ref. 41), whereby the relative abundance of each
mutant was quantified during temperature shifts between 25 °C
and 37 °C (Fig. 3a and Supplementary Fig. 6a-c,f,g). No gene disrup-
tions were consistently identified across biological replicates witha

significant fitness defect specific to the temperature upshift (Fig. 3b,c
and Supplementary Fig. 6¢c-e). The only gene of significance from our
screenwas uup (Fig. 3d and Supplementary Fig. 6g), which encodes
an ABC-F protein*’. Auup cells exhibited slight growth defects at
both 27 °C and 37 °C (Fig. 3e), in contrast to other ABC-F mutants
(Supplementary Fig. 6h,i), and the response time after a tempera-
ture upshift was substantially longer (-2.7 doublings versus ~1.6 for
wild type) (Fig. 3f), probably due to defects in ribosome assembly*.
Taken together, this screen suggests that none of the non-essential
genes are singly responsible for the delayed growth-rate response
to temperature upshifts.

To investigate the role of essential genes during temperature
upshifts, we treated E. coli cells with a variety of antibiotics that target
essential processes at sub-minimum inhibitory concentration (MIC)
levels** and subjected them to temperature upshifts from 27 °C to
37°Con LB (Supplementary Fig. 7). Response times remained at ~1.5
doublings for treatment with antibiotics that target the ribosome
(Fig.3g,hand Supplementary Fig. 7a,b), DNA replication and transcrip-
tion, despite largeimpacts ongrowthrate in some cases (Supplemen-
tary Fig. 7¢,d). Only high concentrations of fusidic acid (50 pg ml™),
whichdisrupts translational translocation and ribosome disassembly*,
caused asignificant decrease in response times (~0.2 doublings; Sup-
plementary Fig. 7f,g). We observed similar effects in knockouts of
genesresponsible for tRNA modification (tusA, tusB)*® (Supplementary
Fig 7f,g), suggesting that severely impaired translational capacity
under high amino acid availability causes a mismatch, allowing for
fast response times.
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Membrane fluidity is exquisitely regulated in £. coli across temper-
atures: the fraction of unsaturated fatty acids decreases with increas-
ing temperature to maintain viscosity'®". Triclosan, which targets
membrane synthesis, increased the response time to ~2.5 doublings
(Fig. 3g,h), suggesting that the delay in growth rate might be due to
the need to alter membrane composition. However, disruptions to
the regulation of fabB, which encodes the major 3-ketoacyl-[acyl car-
rier protein] synthase responsible for elongating unsaturated fatty
acids**¢ hadlittle effect on upshiftresponse times, despite significant
changes to membrane fluidity (Extended Data Fig. 6a-e). Increased
membrane fluidity conferred a growth advantage at 37 °C (Extended
DataFig. 6f); however, it negatively affected cell growth and survival at
temperatures >42 °C (Extended DataFig. 6g,h). Thus, while membrane
fluidity does not determine the timescale of upshift responses, its
regulationis critical for cell integrity at high temperatures.

A temperature-sensitive enzyme network model captures
response dynamics
Asour proteomic, geneticand chemical screens did not uncover akey
molecular regulator of the response, we developed an autocatalytic
network model of growth™ to interrogate alternative mechanisms.
To model growth, we incorporated three general classes of reac-
tions: (1) import, (2) metabolite production and (3) volume expansion
(Fig. 4a). Each reaction obeys Michaelis-Menten kinetics, such that
metabolite c;is consumed by enzyme e; to produce the next metabolite
¢4 in the network, as in equation (1), with * representing an
intermediate:

ci+e = (ce) — Cyate 0
Inalinear network (no branching), the dynamics of eachinterme-
diate metabolite are dictated by

de; _ kiieiacin ke

= —cg, 2
at " Katoa Kt 8 @

where the first two terms on the right-hand side reflect enzymatic pro-
ductionand consumption of ¢;and the last term accounts for dilution
viagrowth attherate g (Supplementary Text). e; is the concentration
oftheithenzyme, k;isits catalyticrate and K;is its Michaelis—-Menten
constant. Importantly, we consider the possibility that both k; and K;
are temperature dependent with Arrhenius behaviour (Fig. 4a and
Supplementary Text), consistent with experimental measurements
of several enzymes* ', After the final step of a reaction network of
size N, an enzyme ey consumes cy to expand cell volume at a rate
g=Yo % where y, is an efficiency factor assumed to be constant
inagiven environment, reflecting the conversion of ¢ to astructural
component of the cell envelope (Supplementary Text). From physical
considerations of glucose uptake and growth rate constraints (Sup-
plementary Text), we estimated that y,is ~0.03 mM™. Werefer to these
equations as atemperature-sensitive enzyme network (TSEN) model.

Since the proteome is largely maintained across temperatures
(Fig.2e and Supplementary Fig. 4d), we assumed constant concentra-
tions of each enzyme during any temperature shift. We first considered
a simple model with two intermediate metabolites (minimal TSEN),
identical kinetic parameters across reactions and a high (saturating)
concentration of the external substrate (¢ > K, Fig. 4a).

We simulated the model to reach a steady state at 27 °C and then
shifted the temperature to 37 °C. The system exhibited a non-zero
response time to reach the steady-state growth rate at 37 °C (Fig. 4b).
The timescale for growth rate to increase by 98% of the difference
between steady states was -2 doublings (Fig. 4b), similar to our experi-
mental observations (Fig. 1f,h). Variations in kinetic parameters largely
maintained response times of 1-2 doublings (Extended Data Fig. 7a,b),

aslongasthe £, for the catalytic rate of the import reaction was above
that of the other catalytic rates (production, growth) (Extended Data
Fig. 7b). However, if the activation energy for all Michaelis-Menten
constants (K;) is O, then the growth rate response is also immediate
(Fig.4b), highlighting theimportance of temperature sensitivity of K;.
The version of the minimal TSEN without an intermediate reaction
(‘production-less’ TSEN, Supplementary Text) is analytically tractable
and predicts an upshift response time (Extended Data Fig. 7c-f) in
reasonable agreement with our measurements (Fig. 1f,h). The minimal
TSEN produces an Arrhenius-like growthrate (Extended DataFig. 7g),
in agreement with observations*® (Fig. 1a, Supplementary Fig.1and
Extended Data Fig.1).

For areaction network with Nintermediates, the analytical solu-
tion of steady-state growth rate (Supplementary Text) is

koeoco
Ko+c
8= 10—?\,, (3)
% + Z,’:]CI
whichissetbytheimportrate ’;{"e—fcco growth efficiency factor y, (con-
0TCo

stant) and the total intracellular metabolite concentration Z?’zlci. Since
import changesinstantaneously with temperature, the response time-
scale is associated with rearrangement of the metabolome. Equation
(3) also reflects that growth comes at the cost of storing metabolic
intermediates c; (Supplementary Text). Many central-carbon reactions
operate near their Michaelis constant K, ”, suggesting that bottlenecks
are highly likely. Within the minimal model, introducing a
substrate-binding bottleneck into the production reaction character-
ized by alarge and temperature-sensitive Ky, (Ky (T = 37°C) = 20 mM,
E,=22.5kcal mol™) produced strikingly physiological behaviour: an
initial spike similar to our experimental observations and a response
time of -2 doublings (Fig. 4b). Moreover, when the bottleneck was
embedded within a pathway involving multiple production reactions
(fiveintermediate reactions, bottleneckin the centre), the spike broad-
ened, and the acceleration dynamics were quantitatively similar to our
experimental measurements (Fig. 4c). The TSEN model readily predicts
asymmetric behaviour between upshifts and downshifts (Fig. 4d)°. In
addition, after theinitial large decrease in growth rate uponadownshift,
the multiple-reaction model predicts aslow deceleration towards the
slower steady-state growth rate (Fig. 4d, dark blue), similar to our
experimental observations (Fig. 1b and Supplementary Fig. 3). Thus,
the observed behaviours emerge from only a few simple assumptions
about the network.

Since many core reactions in cells are reversible, we examined the
effect of adding asingle reversible (bottleneck) enzymaticreaction to
the TSEN model (Supplementary Text). We found that the spike behav-
iour was preserved only by bottlenecking in both directions (Extended
DataFig. 8a), suggesting that such enzymes bind substrate and prod-
uct similarly (that s, large and highly temperature-sensitive K},). This
finding indicates that the TSEN model’s predictions of both the spike
and physiological responses are compatible with reversible reactions.

Spike and response time dictated by metabolome
rearrangement

In our model, metabolites after the bottleneck undergo a transient
decrease in concentration after a temperature upshift (Fig. 4e) that
agrees with the timescale of the spike response (Fig. 4d). This sug-
geststhat spikes are caused by rapid consumption of post-bottleneck
metabolites. Meanwhile, metabolites before the bottleneck gradually
build up, as do the post-bottleneck metabolites after the spike, until
metabolome rearrangement has stabilized (Fig. 4e). As a result, final
growth rate (which scales with temperature) dictates the thermally
limited response time necessary to rearrange the metabolome. Simu-
lations of our model captured the near invariance of the normalized
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Fig. 4| A TSEN model recapitulates temperature-shift behaviours through
metabolome rearrangement. a, Left: in the TSEN model, the import reaction
(blue), production reactions (dark red) and volume growth reaction (green) are
chained Michaelis-Menten reactions. Right: the rate equation for each
intermediate metabolite (c;) involves enzymatic production fromc;_, by enzyme
e, (blue), enzymatic consumption by enzyme e; (red) and dilution by volume
growth g (green). The final intermediate c, is translated into volume growth with
an efficiency factor y, (green box). Each kinetic parameter is assumed to be
temperature sensitive according to an Arrhenius equation with activation energy
E, (yellow box). A minimal TSEN model (TSEN,,;ima) has a single intermediate
productionreaction (red), such that the network has only 2 intermediate
metabolites (¢, c,; grey box). b, Normalized growth rate versus thermal time from
simulations of aminimal TSEN model with (blue) and without (black) a
temperature-sensitive Michaelis—-Menten constant (Ky,) throughout a
temperature shift from 27 °Cto 37 °C. All other model parameters are identical
and are defined in the panelinset. The TSEN with a temperature-sensitive Ky,
results in anon-zero response time (blue). ATSEN model with a bottleneck (dark
red, Ky, =20 mM, £, =22.5 kcal mol™) produces aninitial spike. ¢, ATSEN model
withasingle bottleneck (red, P;) embedded within a 7-reaction chain produces a
quantitatively similar response to an upshift from 27 °Cto 37 °C as E. coli MG1655
cellsonLB (purple, n=792 cells; shaded region represents +1s.e.m.). All other
reactions have parameters identical to the minimal model without a bottleneck
(blue)inb. d, Normalized growth rate in simulations of the bottlenecked TSEN
modelin cthroughout an upshift (dark red) or downshift (light blue) between

Doubling time (min)

Doubling time (min)

27 °Cand 37 °C.In contrast to the spike and slow response to the upshift, the
downshift results inimmediate deceleration to agrowth rate close to the
steady-state value at 27 °C, followed by slow deceleration to a new steady-state
value. Overlaid are the normalized growth rates of E. coli MG1655 subjected to an
upshift (red, 27 °Cto 37 °C, n = 792 cells) or downshift (blue, 37 °C to 27 °C, n = 253
cells). Shaded error bars represent +1s.e.m. e, The TSEN modelin ¢ predicts that
metabolites upstream of the bottleneck (c, , ;) will have lower concentrations
than those after the bottleneck (c, 5 ;) and increase slowly on the timescale of
growth after an upshift. Post-bottleneck metabolites undergo transient
decreasesimmediately after the temperature upshift over atime interval
corresponding to the spike (red box). After thisinitial period, all metabolites
increase to new values corresponding to the steady state at the higher
temperature. f, The TSEN model in ¢ predicts highly similar responses of
normalized growth rate with thermal time for upshifts from 27 °C to 30 °C (blue),
33 °C (purple) or 37 °C (red). g, Over abroad range of final temperatures, the
absolute upshift response time (time to reach 98% of the difference between
steady-state growth rates) has linear scaling with the doubling time at the final
temperature. Eachline represents simulations from a given initial temperature to
temperatures up to 37 °C. h, Experimental estimates of absolute response time
follow a linear scaling with doubling time at the final temperature, similar to
simulations in g. Shown are data for upshifts involving initial and final
temperatures ranging between 23 °C and 37 °C (data from Fig. 1f-h). Weighted
linear regression was performed, with error bars representing the 95%
confidence interval of the fitted slope.
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a, The bottlenecked TSEN model in Fig. 4c predicts that spike height after a
temperature upshift will decrease with the activation energy ofimport. The
activation energies of all other reactions were set to 15 kcal mol™ (grey circle).

b, Increasing the activation energy of import to £, = 30 kcal mol™ on the basis of
our experimental measurements of the activation energy of growth in glucose
(Extended Data Fig. 9f) dramatically reduced the spike height (green) compared
with our default £, = 15 kcal mol™ (red) without affecting the response time,
similar to our experimental measurements of the normalized growth-rate
response on glucose (green data, same as in Fig. 1h). ¢, The bottlenecked TSEN
model predicts that short downshift pulses from 37 °Cto 27 °C (purple, red,
orange) will cause larger spikes and faster recovery to the steady-state growth
rate at 37 °C than an upshift from steady state at 27 °C to 37 °C (blue), similar to
our experimental observations (Fig. 1i). d,e, The bottlenecked TSEN model in
Fig. 4c predicts that the response time decreases for downshift pulses of duration
of <l1doubling at the higher temperature (d) and that the spike height remains
high for pulses of duration of multiple doublings at the higher temperature
(e).f-h, The bottlenecked TSEN modelin Fig. 4c predicts that response time
decreases (f), spike height increases (g) and growth activation energy decreases
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i, Simulations of the bottlenecked TSEN model in Fig. 4c throughout an upshift
from 27 °C to 37 °C for high (¢, =5 mM, red) or low (¢, = 0.5 mM, purple) external
substrate concentration (K,,"™°" = 1 mM). The absolute spike height is similar
inmagnitude at both concentrations, but the steady-state growth rate at

37 °Cis much lower for lower external substrate concentration (purple) and
isreached more quickly after the upshift than for higher concentration (red).

Jj, The normalized growth rate calculated from simulationsinh has alarger
spike and a faster normalized response (<1 doubling) for low external substrate
concentration (purple) compared with the TSEN model at saturation (red).

k.1, Growth rate throughout an upshift from 27 °C to 37 °C of E. coli MG1655
grown on MOPS +46 mM casamino acids (red, n =116 cells) or 4.6 mM casamino
acids (purple, n =261 cells) exhibits similar dynamics in both absolute (k) and
normalized (I) terms as the simulations ini andj. Curves and shaded regions
represent growth rate mean +1s.e.m. The response time at low casamino acid
concentration is much shorter (purple, -0.25 doublings) compared with that
atsaturation (red, -1.4 doublings) and is accompanied by a larger relative

spike height.

response time across initial and final temperatures (Fig. 4f) as repre-
sented by linear scaling of absolute response time with doubling time
at the higher temperature (Fig. 4g). This scaling was consistent with
our experimental measurements (Fig. 2e), which exhibited a slope of
1.4 + 0.3 (Fig. 4h) and the range of normalized response times meas-
ured across temperatures and growth media (Fig. 1f,h), with potential
saturation at longer doubling times (>45 min).

Recentstudies have shown that the metabolomeis highly dynamic
under nutrient perturbations®**, similar to the effect of temperature
perturbations predicted by our TSEN model (Fig. 4€). An extension of

our bottlenecked TSEN model (Fig. 4c,e) predicts that alarge nutrient
pulse from alow-nutrient condition should induce anincreaseinboth
growth rate and intracellular metabolite concentrations, coincident
with semi-linear consumption of the external nutrient (Extended Data
Fig. 8b), in qualitative agreement with glucose pulse experiments
involving E. coli**. Simulations of the bottlenecked TSEN model shifted
from a starvation state (co = 0.01 mM) to excess nutrients
(co = 100 mM) induced a smooth increase in metabolite concentra-
tions over 30-60 min (Extended Data Fig. 8c), quantitatively similar
to metabolite dynamics during starvation exitin E. coli**. These results
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indicate that the TSEN modelis capable of recapitulating metabolomic
trajectories under nutrient perturbation.

The TSEN model predicts spike dependence on nutrient type
Bacterial growth rate depends on nutrient concentration cinamanner
remarkably similar to Michaelis—-Menten enzyme kinetics™, with growth
rate g saturating at g, when ¢ > Ky

_ 8maxC€
T Ku+c “

This relationship (known as the Monod equation) is highly
similar to the steady-state growth prediction from the TSEN model
(equation (3)), which predicts that g,.x and the Michaelis constant Ky,
arelargely determined by import. We measured g,,,.,and K at various
temperatures across a variety of media (Extended Data Fig. 9a-c and
Methods), and found that the activation energy for g, was substan-
tially larger for growth on simple sugars (12-25 kcal mol™) compared
with amino acids (3-15 kcal mol™, Extended Data Fig. 9c-g).

While the normalized response time for an upshift was highly
similar across nutrients (Fig. 1h), as predicted by our TSEN model, the
spike was much smaller or non-existent inglucose (Fig.1h). We probed
the behaviour of our TSEN model when changing the activation energy
of the catalytic rate of the import reaction. Our model predicts that
spike height should decrease sharply when the activation energy of
importis >15 kcal mol™ (Fig. 5a), while the response time increases by
only ~0.1 doubling (Fig. 5b). Thus, the model predicts that activation
energy differences between nutrient types (Extended Data Fig. 9f,g) are
sufficient to explain differencesin theinitial spike behaviour observed
across growth media (Fig. 1g,h).

The TSEN model predicts metabolically encoded temperature
memory

While growth rate rapidly decreases after a downshift in our model
(Fig.4d), the concentration of metabolites requires dilution to equili-
brate, which takes place on the timescale of growth (Supplementary
Text, production-less TSEN). Thus, during a transient downshift pulse,
the cell gradually transitions from the high temperature to the low
temperature metabolic state, despite rapid growth deceleration.
Indeed, simulations of the bottlenecked TSEN model (Fig. 4c) during
adownshift pulsefrom37 °Cto27 °Cback to 37 °C, with variable dura-
tionat 27 °C, resulted in faster upshift responses than from the steady
state at 27 °C (Fig. 5¢). More than a doubling at 27 °C was required for
recovery of the upshift response time (Fig. 5d) and the spike height
remained higher than for an upshift from steady state for pulses of
multiple doublings (Fig. 5e), again collectively consistent with our
experimental data (Fig. 1i and Extended Data Fig. 4). These findings
highlight the ability of our model to reproduce nearly all observed
temperature-shift responses with reasonable quantitative agreement,
underscoring theimportance of the temperature sensitivity ofimport
and metabolome rearrangement in upshift responses.

The TSEN model predicts upshift response at low substrate
concentration

As nutrient concentrations are low in many environments, we next
simulated our modelin alow-nutrient regime with external concentra-
tionsbelow the K, forimport (thatis, ¢y < K) for atemperature upshift
from27°Cto37°C.At ¢, < Ky, therelative spike heightincreased sub-
stantially, and the normalized response time decreased with decreas-
ing concentration (Fig. 5f-j). This decrease in response time occurred
because the increase in import rate after a temperature upshift is
smaller when ¢, < Kycompared with ¢, > K, (ref. 6), despite anidenti-
calincreasein catalytic rates (k;) that consume the imported metabo-
lite. The activation energy for growth was also predicted to decrease
with decreasing nutrient concentration (Fig. 5h), in agreement with

our experimental measurements of growth on amino acids (Extended
DataFig. 9g).

To test these low-nutrient predictions, we shifted E. coli MG1655
cells from 27 °C to 37 °C during growth on different concentrations
of casamino acids (CAA; Methods). With 4.6 mM CAA, a concentra-
tion near the Ky, (Extended Data Fig. 9¢), growth rate increased from
the steady-state value at 27 °C (-0.5 h™) to that at 37 °C (0.8 h™) after
only 25 min, corresponding to 0.25 doubling times at 37 °C (Fig. 5k,1).
Moreover, the spike peaked at a growth rate close to that of the 37 °C
steady state (Fig. 5k). These dynamics were in reasonable agreement
withthe predictions of our model (Fig. 5i,j), indicating that the response
to temperature shift can be modulated by nutrient concentration,
owingto the properties of the import K.

The TSEN model captures distinct temperature shift responses
infission yeast compared with multiple bacteria

Diverse bacterial species, including E. coli from host organisms with
distinct temperature-dependent evolutionary histories (turtle,
seagull, human) and the soil-dwelling Gram-positive Bacillus subti-
lis, exhibited similar responses to upshifts as £. coli MG1655 (Fig. 6a,b
and Extended DataFig.10), suggesting a general behaviour across the
bacterial kingdom.

We then determined whether single-celled eukaryotes similarly
responded to temperature shifts. The fission yeast Schizosaccharo-
myces pombe grows optimally at 32 °C and possesses an Arrhenius
range between 22 °C and 32 °C, with £, - 8 kcal mol™ in rich media®.
Duringa22 °Cto32 °Cupshift onthe rich medium YESS, cells exhibited
alarge growth-rate spike from 0.17 h™ to 0.44 h™, overshooting the
steady-state 32 °C growth rate(Fig. 6¢). This was followed by decel-
eration to 0.02 h™, then rapid acceleration to the 32 °C steady-state
growth rate (-0.4 h™) (Fig. 6¢). The entire response dynamics lasted
~100 min, corresponding to a normalized response time of ~1.1 dou-
blings (Fig. 6d). Thus, despite transiently decelerating to near growth
halting, S. pombe cells were able to reach the steady-state growth rate
at the higher temperature more quickly than any bacteria tested at
saturating nutrient concentration.

We then tested whether these behavioural differences were con-
sistent with our TSEN model. By systematically varying parameters,
we found that enzyme networks exhibited a faster normalized response
time when the E, of the bottleneck K\, was increased to >30 kcal mol™
and the bottleneck enzymatic rate was greater than those of import
and growth. Moreover, a TSEN composed of Sbottlenecked intermedi-
ate reactions resulted in a more pronounced spike and deceleration
(Fig. 6d), similar to our experimental measurements (Fig. 6¢,d). The
large spike and deceleration were due to rapid consumption of the
network’s final metabolite (cy), which could only be replenished by
upstream bottlenecked metabolites (Fig. 6e). The overall faster
response time was captured by the model and was due to the decrease
in steady-state concentration of ¢4 at higher temperature caused by
the large E, of Ky, (Fig. 6e), leading c4 (Which is limiting for growth) to
stabilize more quickly.

With the same set of parameters, this TSEN model also predicted
an undershooting to below the new steady-state growth rate upon
atemperature decrease from 32 °C to 22 °C (Fig. 6f), a non-intuitive
behaviour we confirmed experimentally (Fig. 6f). These findings sug-
gest that the qualitatively distinct characteristics of the S. pombe tem-
perature shift responses canbe capturedina TSEN model by increasing
the magnitude of K, parameters and the number of bottleneck reac-
tions. More generally, they show that the growth network can be tuned
toalter the balance between certaintrade-offstoaccelerate responses
atthe cost of temporary growth stalling.

Discussion
Here we used high-precision temperature control and single-cell
analyses to show that bacteria exhibit a characteristic growth-rate
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Fig. 6 | Temperature upshift response features are generally conserved across
microbes and canbe captured by the TSEN model. a, Growth-rate response toa
temperature upshift on LB of laboratory-evolved £. coli (light and dark blue,
n=773-1,279 cells) and natural isolates from various hosts (orange tored,
n=389-547 cells), Escherichia fergusonii (purple, n = 997 cells) and Bacillus
subtilis (green, n =236 cells). All upshifts were from 25 °C to 37 °C, except for

B. subtilis (27 °C to 37 °C). Curves and shaded regions represent growth rate
mean +1s.e.m.b, Normalized growth rate followed a similar trajectory versus
thermal time across all strains/species for the datain a. ¢, Atemperature upshift
from 22 °Cto 32 °C on the rich growth medium YESS caused the growth rate of the
fission yeast Schizosaccharomyces pombe to initially spike close to the steady-
state value at 32 °C, then decelerate to below the steady-state value at 22 °C, then
accelerate back to the new steady-state value within less than a doubling

(-100 min) (red, n =333 cells). Curves and shaded regions represent growth rate
mean +1s.e.m.d, ATSEN model with Sintermediate reactions, each with alarge
(20 mM) and highly temperature-sensitive Ky, (EgM) =22.5kcal mol™), produces
similar normalized growth rate dynamics with thermal time (black) as the
S.pombe datain c (red), characterized by alarge spike, deceleration to <0 and fast
recovery within <1doubling. e, The TSEN modelind, composed entirely of
bottlenecks, predicts that atemperature upshift results in arapid, large decrease
inthe final intermediate metabolite concentration (c,), followed by a slower
increase to the new steady-state, which is lower than that at lower temperature.

All other metabolite concentrations (c;_s) increase monotonically towards

their steady-state levels at rates that depend inversely on their network depth
(thatis, csincreases more slowly than c;). f, An extended TSEN model with five
intermediate reactions, each with alarge (20 mM) and highly temperature-
sensitive (E, = 22.5 kcal mol™) Ky, predicts atemporary undershoot (black) upon
adownshift to growth rates below the steady-state value at the lower
temperature. The fission yeast Schizosaccharomyces pombe exhibited an
undershoot during a downshift from 32 °C to 22 °C on rich medium (YESS) (blue,
n=54cells) similar to model predictions. Experimental data are the

mean +1s.e.m. (shaded region) at each time point. g, Asymmetry in growth-rate
response to temperature up- and downshifts is caused by the temperature
sensitivity of K. If substrate concentration is near the Ky, and Ef,M) > 0, anupshift
causes asmallinitial increase in growth rate, followed by a slow increase in
substrate concentration to the new K}, via production (red). Conversely, a
downshift causes acomparatively larger initial decrease in growth rate, followed
by aslow decrease in substrate concentration to the new Ky, viadilution (blue).

h, Intracellular metabolite concentrations are generally much higher than the Ky,
of their production enzyme for E. coli grown on glucose (data fromref. 68).
However, some metabolites have concentrations near or below the Ky, of their
production, and potential bottlenecks (dashed region, red points) are those with
Ky >1mM and substrate concentration ¢ < Ky,.

response to temperature shifts within the Arrhenius range (Figs. 1cand
6a), with adaptation to an upshift requiring ~1.5 doublings at the final
steady-state growth rate. The maintenance of the proteome across
temperatures (Fig. 2) and the conservation of response dynamics
during upshifts across mutants (Fig. 2g and Supplementary Fig. 6i)
and antibiotic treatments (Fig. 3h and Extended Data Fig. 3f,g) col-
lectively argue against the existence of a single regulator of growth
rate across Arrhenius temperatures. Nonetheless, specific factors,
including ppGpp production (Supplementary Fig. 7f,g), regulation of
proteinfolding by DnaK (Extended DataFig. 3d,e), fatty acid synthesis
(Fig.3h) and putative ribosome-dependent action by Uup (Fig. 3f), are
necessary for fast and efficient upshift responses, probably indicat-
ing regulatory contributions that will need to be elucidated in future
studies. Revealing these potential regulatory factors required detailed
single-cell analysis, as their effects on temperature-shift responses
were too subtle to emerge in genetic screens or required the deletion
of multiple genes (ppGpp).

Ultimately, the ability of our TSEN model to recapitulate nearly all
observedbehaviours (Figs. 4 and 5, and Extended Data Fig. 7) indicates

that temperature sensitivity of growth is largely a collective prop-
erty of the metabolic network, which encodes a memory of tempera-
ture states (Figs. 1i and 5c, and Extended Data Fig. 4). Furthermore, a
simplified version of the model predicts that the timescale of response
to temperature upshifts should be ~1.4 doublings at the final steady-
state growth rate (Supplementary Text and Extended Data Fig. 7c-f),
regardless of details about the kinetics ofimport and growth. At steady
state, the TSEN model predicts that growth depends only onsubstrate
importkineticsandthetotalintracellular metabolite pool (equation (3)),
providing asimple framework that connects concentration-dependent
growth directly to measured transporter kinetics®. Thus, our
work establishes a mechanism for how Arrhenius-like growth arises
across organisms* (Fig. 1a, Extended Data Figs. 1 and 7g, and Supple-
mentary Fig.1).

A key feature of the TSEN model is the temperature dependence
of Ky, which provides astraightforward mechanism for the asymmetry
between upshift and downshift responses (Fig. 6g): if the substrate
concentration of a reaction is near the Ky, at 27 °C (Fig. 6g, blue cir-
cle), an upshift to 37 °C will be accompanied by a small instantaneous
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growthrateincrease since Ky is higher at37 °Cversus 27 °C; vice versa,
adownshift fromthe K}, at 37 °C (Fig. 6g, red circle) will resultin alarger
instantaneous change in growth rate (Fig. 6g). Each of these instanta-
neous changes is then followed by an increase (upshift) or decrease
(downshift) in the substrate concentration, and thus the growth rate
(Fig. 6g), as predicted by the TSEN model (Fig. 4e and Supplementary
Text). The temperature upshift response is predicted to be largely
insensitive to the Ky, ofimport at substrate saturation (Fig. 5f), suggest-
ing that temperature-shift responses are independent of the details
of import kinetics. A temperature-sensitive Ky, predicts that the £, of
growthrate decreases with substrate concentration® (Fig. 5h), consist-
ent with our measurements of growth onamino acids (Extended Data
Fig. 9g). Such a decrease in temperature sensitivity at low substrate
concentrationis predicted by the TSEN model to decrease the response
time and increase the relative spike height (Fig. 5f,g,i,j), consistent
with our experimental observations that decreasesin amino acid con-
centrations resulted in faster responses to temperature upshifts and
larger relative spikes (Fig. 5k,I). Thus, microorganisms confronting
nutrient-poor environments may exhibit less temperature sensitivity
of growth, somewhat paradoxically owing to the temperature sensitiv-
ity of Ky, values.

To produce the observed initial spike ingrowth rate, abottleneck
reaction withalarge and highly temperature-sensitive Ky, was required
(Fig. 4c). Previous measurements of intracellular metabolite dynam-
icsinE. coligrown on glucose showed that reactionsin central carbon
metabolism are largely unsaturated and many reactions can exhibit
large K,, values (>1 mM)* (Fig. 6h), indicating that the existence of
suchbottlenecksis highly likely. There are many potential bottleneck
enzymes (Fig. 6h); those with the largest substrate concentrations are
involved in aspartate consumption for amino acid (aspC) and pyrimi-
dine (pyrB) biosynthesis, while those with the largest K, are involvedin
threonine (ilvA) and serine (sdaA, ydfG) degradation. As several of these
reactionsare essential, elucidatingwhichreactions are true bottlenecks
will probably require acombination of CRISPRi manipulation of gene
expression, direct measurements of intracellular metabolite concen-
trations®* and biochemical characterization across temperatures.

In addition, the TSEN model was able to explain qualitatively dis-
tinct temperature shift responses in the fission yeast S. pombe, which
responded to an upshift with overshooting and deceleration (Fig. 6¢),
but which ultimately reached its steady-state growth rate faster than
bacteria (Fig. 6d). The TSEN model predicted that large coupled bot-
tleneck reactions account for this behaviour (Fig. 6d,e), and such a
model predicted the undershoot response to atemperature downshift
(Fig. 6f). In this scenario, faster temperature-shift responses come at
the cost of increasing the activation energy of growth (Fig. 6¢,f), sug-
gesting trade-offs between fast steady-state growth across tempera-
tures and the ability to respond quickly to shifts between temperatures.

Taken together, these findings suggest that metabolite flux rather
than proteome rearrangement underlies growth rate adaptation across
Arrhenius temperatures. As a result, cells adapt to temperature fluc-
tuations without additional protein synthesis, resulting in transient
memory of previously experienced temperatures (Figs. 1i and 5c-e,
and Extended DataFigs. 4 and 5). Increasing protein concentrationsis
metabolically expensive and simulations of our TSEN model explicitly
including protein synthesis confirmed that enzyme concentrations
remain virtually constant throughout temperature shifts (Supple-
mentary Fig. 8), similar to previous models of responses to nutrient
perturbations®®. The conservation of growth rate responses across
organisms (Fig. 6a-d) and the ability of the TSEN model to capture
diverse responses to temperature shifts (Figs. 4-6) suggest an evo-
lutionary pressure to adopt this strategy. The ability of E. coli cells
to withstand fluctuations across a large range of temperatures, even
short pulses at heat- and cold-shock temperatures (Extended Data
Fig.5b,c,e),indicates arobustness that may be particularly important
in the context of host colonization and infection-induced fevers, and

our findings indicate that investigations of temperature adaptation
can provide key insight into the metabolic factors limiting growth.

Methods

Culturing conditions and bacterial strains

E. coliwild-type andisolate strains were grown directly from 25% glyc-
erol stocks stored at—80 °C in target media without selection. Intypical
temperature upshift experiments, cells were grown initially at 37 °C
fromfrozen stocks overnight until saturation, then diluted 1:200 into
fresh media at 37 °C until log phase (1.5-2 hin LB, ~4 h in MOPS + glu-
cose). Cells were then diluted 1:10 into fresh media and grown for at
least 3 doublings at the lower, target temperature before performing
atemperature upshift.

Most mutants (for example, Keio collection knockouts) were
grown from frozen stocks in target media with antibiotic selection.
The ppGpp null strain (spoT::cat, relA::kan) was grown on LB plates
with10 pg ml™ chloramphenicol and 25 pg ml™ kanamycin overnight at
37 °C,andindividual colonies were selected for further liquid culturing
under selection to avoid suppressor mutations.

To evaluate growth kinetics on various media, E. coli MG1655 was
first grown with shaking overnight at 37 °C in MOPS minimal medium
(Teknova) adjusted to pH 7.2 and supplemented with 0.2% (w/v)
D-glucose. To measure growth at lower temperatures (25 °C, 30 °C),
cellswere then diluted 1:200 in fresh MOPS + glucose and grown with
shaking until saturation for aninitial passage at the target temperature.
One millilitre of cells was washed in MOPS buffer (pH 7.2) at room
temperature and 1 pl was added to 200 pl of target mediumin 96-well
plates for generating growth curves at the target temperatureina
platereader.

Allstrains used in this study are listed in Supplementary Table 1.

Liquid growth curves and analysis

Growth curves were measured usinga protocol developed for accurately
determining growth rates at low optical density®®. Briefly, 200 pl of
medium (without bacteria) were placed into each well of atransparent
96-well plate (Greiner Bio-One) and sealed with atransparent film (Excel
Scientific) with holes for gas exchange cut above each well using alaser
cutter (Epilog). Optical density (OD) was measured with a BioTek Epoch
2microplate spectrophotometer (Agilent) for atleast 15 min to obtain
blank values for each well at the target temperature. The seal was then
removed, bacterial samples were added into each well and the plate was
sealed withafreshlaser-cut transparent film. Linear and orbital shaking
were conducted between OD readings, which were taken every ~7 min.
The OD was corrected for nonlinearity (linear range = 0-0.6) viaa serial
dilution of concentrated cells and performing a polynomial fit to obtain
general fit parameters®. For each well, the well-specific blank OD value
determined before addition of cellswas subtracted from the OD ateach
time point, which was then used to compute growth rate as a moving
linear regression of the logarithm of the blanked OD.

E. colinatural isolates

E.colistrains from non-human hosts were previously isolated*** from
faecal samples (collected froma variety of sources, including park and
pet store animals and domestic pets), which were grown on Colilert-18
medium (IDEXXE) for selection of presumptive E. coli colonies®. Isolate
identities were confirmed by beta-glucuronidase activity and subse-
quent sequencing of the corresponding gene, uidA*. The strains were
grownovernightinarichmedium (LB) at37 °C, diluted1:200in fresh LB
and grown for 24 h across temperatures from 27 °C-47 °C to measure
activation energies.

Temperature-controlled single-cell imaging

The temperature control platform, named single-cell temperature
controller (SiCTeC), was designed and described previously”. Briefly, a
ring-shaped Peltier module (TE Technology) was adhered toaglassslide,

Nature Microbiology | Volume 10 | January 2025 | 185-201

195


http://www.nature.com/naturemicrobiology

Article

https://doi.org/10.1038/s41564-024-01841-4

and thesample temperature was monitored on the coverslip and con-
trolled using a micro-Arduino with a proportional-integral-derivative
(PID) algorithm. Sample temperature was monitored and visualized
in real time using the open-source software ‘Processing®’. Agarose
hydrogels were prepared by boiling 3% ultrapure agarose (Sigma
Aldrich) in the target medium, and 200 pl of the mixture were pipet-
ted onto a 9-mm-diameter silicone gasket (Grace Bio-Labs) onto the
temperature-controlled glass slide. An additional slide was placed on
the gasket to compress the hydrogel, which then cooled and solidi-
fied at the initial temperature of the experiment. After removing the
additional compressing slide, 1 pl of cells was pipetted onto the solidi-
fied hydrogel and dried briefly (<1 min) at the initial temperature of
the experiment.

Imaging was performed on a Ti-Eclipse microscope in phase-
contrast mode using a x40 Ph2 air objective (NA 0.95) (Nikon) with a
x1.5tubelens. The air objective was used to avoid heatsink issues with
oil-immersion objectives. Images were captured every 30 son a Zyla
4.2 sCMOS (Andor Technology), Neo 5.5 sCMOS (Andor Technology)
or PCO Panda4.2 (Excelitas) scientific camera. The microscope system
was integrated using pManager v.1.41 (ref. 61).

Image analysis

To extract cell morphology information throughout the experi-
ment, subpixel-resolution cellular contours were obtained through
a combination of deep learning-based and traditional image seg-
mentation software®”®. Briefly, we first aligned the images using the
template-matching plugin in FIJI®***, then each image was processed
witha fully convolutional neural network model, ‘DeepCell®. Separate
neural networks were trained for E. coli rich medium, E. coli minimal
mediumandS. pomberichmedium, with>200 cells manually annotated
in each condition®**>%, Qutputs from the DeepCell classification were
used to extract cellular contours using Morphometrics v.1.1in MATLAB
(MathWorks)®®. Custom MATLAB scripts were used to track individual
cells and measure cellular geometry®.

Single-cell growth rate measurements

Cellulartrajectories were filtered on the basis of the number of frames
and the quality. Each trajectory was required to be =10 frames, over
which celllength was smoothed twice with awindow of four frames for
rich mediaand 10 frames for minimal media. Instantaneous growth rate
was computed by performing a windowed linear fit to the logarithm
of cell length over four frames for rich media or 10 frames for mini-
mal media, a procedure that resulted in ~1% error when recalculating
expected cell lengths (Supplementary Fig. 2). Trajectories were then
removed ifthey contained growth-rate outliers (>3 h™ or<-0.1h™), as
such outliers probably indicated tracking errors. Thefiltered trajecto-
rieswerebinned at each time point to evaluate single-cell growth-rate
behaviours at the populationlevel, and the error at each time point was
defined as the standard error of the mean.

Rapid temperature downshifts

Toincrease therate of temperature change during downshifts from pre-
vious experiments performed using ambient temperature as the cool-
ingsink, whichrequired -5 minfrom 37 °Cto 27 °C (ref. 29), we used dry
ice (solid CO,) torapidly cool samples. During adownshift, the SiCTeC
device was powered off and a 250-ml beaker with dry ice was used to
pour sublimating dry ice directly onto the sample on the glass slide.
For downshifts to temperatures above ambient, when the temperature
was -1 °C above the target downshift temperature, the SiCTeC device
was powered back on and the PID algorithm restarted control of the
sample temperature. The sample temperature was closely monitored
and adjusted accordingly for undershooting. This method enabled
stabilization at the lower temperature within <1 min. For downshifts
totemperatures below ambient, dryice was continuously poured onto
thesample atintervals necessary to maintain the target temperature.

Temperature upshifts back to 37 °C were performed by turning the
SiCTeC device back on.

Anaerobic growth

To perform temperature shifts in anerobic conditions, £. coli MG1655
was inoculated from a frozen stock into LB and grown overnightinan
anaerobic chamber (Coy Laboratory), then diluted 1:200 and grown
until saturationinpre-reduced LB (thatis, keptin the chamber for>48 h
before culturing). Cellswere diluted 1:200 in pre-reduced LB and grown
at37 °Cuntil log phase (-2 h), then diluted 1:10 and grown at 27 °C for
3 h.Fromlogphaseat27°C,1 plwas pipetted on aSiCTeC glass slide for
temperature shifts (all components pre-reduced) and imaged inside
the chamber using a Ti-Eclipse inverted microscope (Nikon) withaNeo
5.5sCMOS (Andor Technology). The SiCTeC platform was controlled
by alaptopinside the chamber.

Quantification of response time

The steady-state growth rate (g.,) at the final temperature was deter-
mined by measuring the average of the growth rates across the time
points after which growth rate had stabilized (determined by visual

inspection). The growth rate was then normalized according to i%gg((g,

where g(0)isthe growth rateimmediately before the temperature shift
(Fig. 1e). The time was also converted to a ‘thermal time’ (Fig. 1e),
wherein the time was divided by the doubling time at the final
steady-state growth rate (1p = l;ﬁ). A weighted linear fit was then

performed over the linear portion of the upshift response (25-95% of
g.,), and the response time (7z) was defined as the point at which the
linear fitequalled one (g (tR) = ;). Theerrorinthe response time was
generated from the 95% confidence interval of the fitted slope.

Antibiotic treatment during single-cell temperature shifts
Aliquots (500 pl) of growth medium + 3% ultrapure agarose were
melted at 95 °C, then mixed with 0.5 pl of 1,000x target concentration
antibiotic stock solution, and 150 pl was immediately used to make a
hydrogel for the sample as described above. The short time exposure
to higher temperatures (-30 s) probably only moderately impacted
the minimuminhibitory concentration, as antibiotic efficacies against
E. coli are unaffected by long-term (30 min) treatment at 56 °C, with
many drugs unaffected by autoclaving (121°C)“’.

Liquid-culture samples for proteome extraction
E.coliMG1655was grown at 37 °C overnightin MOPS buffer (Teknova)
adjusted to pH7.2 and supplemented with 0.2% (w/v) of carbon source
(glucose or glycerol) (Sigma Aldrich) or LB (Thermo Fisher), then
diluted in duplicate and grown for at least 4 doublings at the target
temperature (25 °C, 30 °C or 37 °C). Growth at additional tempera-
tures (16 °C, 43 °C) was assayed for LB. Cultures were grown to log
phase (OD¢g, = 0.2) in 50-ml Falcon tubes, and 15 ml were collected
and washed with 1 ml PBS via centrifugation at 4 °C. Supernatant was
removed and the pellet was snap frozen with liquid nitrogen.

Proteome extraction

Extraction was performed as previously described®®. Briefly, samples
were thawed and lysed using abead-beating procedure, then superna-
tantwasreduced and alkylated with dithiothreitol and iodoacetamide,
respectively. Peptides were then washed, digested and eluted using
S-trap tubes (Protifi) and desalted with C18 solid-phase extraction
(Sep-Pak Waters). Finally, peptides were dried by vacuum centrifuga-
tion and quantified for normalization (Nanodrop ND-1000).

Proteomic analysis via LC-MS/MS and database searching

Peptide quantification was performed following previous work®.
Dried peptides were diluted in 0.2% formic acid to a final concentra-
tion of 0.5 pg mI™, and 1 pl was loaded onto an in-house laser-pulled
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100-pm (inner diameter) nanospray column packed to -22 cm with
ReproSil-Pur C18-AQ 3.0-um resin (Dr. Maisch). Peptides were sepa-
rated by reversed-phase chromatography (Dionex Ultimate 3000
HPLC, Thermo Fisher); buffer A of the mobile phase contained 0.1% for-
micacidin HPLC-grade water and buffer B contained 0.1% formic acid
inacetonitrile. HPLC used a two-step linear gradient with 4-25% buffer
B for135 min, followed by 25-45% buffer B for 15 minat 0.300 pl min™.
Peptides were thendirected toanLTQ Orbitrap Elite mass spectrometer
(ThermoFisher) indata-dependent mode, with fullMS scans acquired
in the mass analyser with a resolution of 60,000 and m/z range of
340-1,600. The top 20 most abundant ions with intensity thresholds
>500 counts and charge state >2 were selected for fragmentation using
collision-induced dissociation (CID) with anisolation window of 2 m/z,
normalized collision energy of 35%, activation Q of 0.25 and activation
time of 5 ms. CID fragments were analysed in theion trap with rapid scan
rate, and dynamic exclusion was enabled with a repeat count of 1and
exclusion duration of 20 s. The AGC target was set to 1,000,000 and
50,000 for full FTMS and ITMSn scans, respectively, and the maximum
injection time was set to 250 ms and 100 ms for full FTMS and ITMSn
scans, respectively.

Mass spectra were searched against the UniProt canonical £. coli
FASTA database using the SEQUEST algorithm of Proteome Discoverer
2.2.0.388. The search was performed against the UniProt canonical
E. coli FASTA database, along with a database containing common
preparatory contaminants. The precursor mass range was set to 350~
3,000 Da, mass error tolerance to 10 ppm and fragment mass error
toleranceto 0.6 Da. Enzyme specificity was set to trypsin, and carbami-
domethylation of cysteines (57.021) was set as a variable modification.
Oxidation of methionines (+15.995) and protein N-terminal acetylation
(+42.011) were considered as variable modifications. Peptides were
filtered using Percolator, with the protein false discovery rate set to 1%.
Protein abundance was based on precursor ion peak areas.

Proteome data analysis and annotation using Clusters of
Orthologous Groups (COG)
Protein functional annotation was performed using the COG database®.
UniProt accession codes were mapped to the COG database down-
loaded from https://ftp.ncbi.nih.gov/pub/COG/C0OG2014/data/. After
removing non-bacterial groups, COGs were reduced to 9 functional
groups: ribosomal protein (RP), non-RP translational, transcription,
DNA replication, cell division, cell envelope structure, post-translational
modification, energy and metabolism, and other. The corresponding
gene of each protein was annotated using the gene association table
from EcoCyc (https://ecoliwiki.org/gaf/gene_association.ecocyc.gz)’.
Relative protein abundance (that is, proteome fraction) within
each sample was calculated by normalizing across all protein abun-
dancesfromthe sample, and the meanrelative protein abundance was
then calculated across biological replicates. Proteins were excluded
if they were only detected in one of the biological replicates. The sig-
nificance threshold for changes in mean relative abundance of asingle
protein was defined as 2-fold, and hits were excluded if the relative
difference between replicates was greater than the mean relative dif-
ference between replicates across all proteins (14-20% across samples).

E. colitransposon library temperature shifts

Onemillilitre of apooled library of E. coliBW25113 transposon insertion
mutants with random DNA barcodes* was thawed, diluted into 50 ml
of LB + 25 pg ml™ kanamycin (Sigma Aldrich) in a 250-ml Erlenmeyer
flask (Pyrex) and grown with shaking overnight at 37 °C. A volume of
0.5 ml of the stationary-phase library cultures was diluted into 50 ml
of LBintechnical replicates at 25°Cand 37 °C.

The 25 °C culture was grown for 3 hto early log phase (0D, = 0.15)
and 6 mlwere diluted into each of two flasks containing 50 mlfresh LB
pre-warmed at25 °C, thengrown for another 3 hinan air-heated shaker
(New Brunswick Scientific). The temperature upshift from 25 °C to

37 °C was performed by placing one of the 25 °C flasks into a heated
water shaker at 37 °C. The control sample was left at 25 °C. Samples
were collected in1.5-ml aliquots and flash frozen using liquid nitrogen
every 10 minattimepoints of-10, 0,10, 20, 30,40, 60,90 minrelative
to the shift (control samples without temperature shifts were also taken
at the same time points).

The 37 °C culture was grown for 2 h until mid- to late-log phase
(ODg¢g0 = 0.3) and 1.5 mlwere diluted into each of two flasks containing
50 ml of fresh LB pre-warmed at 37 °C, then grown for -1 hin a heated
water shaker. For the temperature downshift from 37 °Cto 25 °C, one
of the flasks was first placed into a room-temperature water bath for
6 min for faster cooling, then transferred to an air-heated shaker at
25°C.The other flask was maintained at 37 °C as a control.

Each set of downshift/upshift experiments was performed twice,
and all samples were flash frozen and immediately stored at =80 °C.
Optical density was monitored at each time point for all experiments
with a Genesys 20 spectrophotometer (Thermo Fisher). The timescale
ofthe temperature upshift was estimated tobe ~3.5 min using a virtual
experiment with 50 ml of water in a flask, whose temperature was
directly monitored during a shift from 25 °C to 37 °C using the SiCTeC
device thermistor reading. A similar test was performed for the 37 °C
to 25 °C downshift by placing a 37 °C flask with 50 ml of water into a
stationary water bathat roomtemperature, giving an estimate of ~6 min
to complete the temperature shift.

E. colitransposon mutant library sequencing and analysis
Barcode sequencing (BarSeq) was performed as previously described*.
Briefly, genomic DNA was extracted using the DNeasy 96 Blood and
Tissue kit (Qiagen) and quantified using the Quant-iT dsDNA BR Assay
kit (Qiagen). BarSeq PCR was performed using 200 ng of genomic
DNA template in 150-pl reaction volumes with Q5 polymerase (with
enhancer) (New England Biolabs), 20 pM forward P5 primer and 20 pM
reverse P7 primers (Supplementary Table 2) with 6-bp TruSeqindices
thatare automatically demultiplexed by llluminasoftware. PCR prod-
ucts were checked for completion using gel electrophoresis,and 10 pl
ofeachreaction product were pooled and purified using the Zymo DNA
Cleanand Concentrator kit (Zymo). Sequencing was performed at the
ChanZuckerberg BioHub facility on an Illumina NextSeq 550 platform
in high output mode.

BarSeq analysis was performed as previously detailed”, with rel-
evant scripts available at https://genomics.Ibl.gov/supplemental/
rbarseq/. Briefly, barcode reads were mapped to their corresponding
genomic loci using sequencing of the transposon insertions in the
E. colilibrary, and genes were filtered for those with >10 barcodes in
the central (10-90%) portion of the gene. Temperature-shift samples
were analysed along with their corresponding unshifted control sam-
ples, with the time-zero sample corresponding to when the library was
shifted (¢ = 0 sample). The fitness of each mutant was measured as the
log,fold-change in its relative abundance, and further analysis was
performed using custom MATLAB scripts. Significance was defined as
>2-fold difference in relative abundance during a temperature shift.

FRAP measurements

E. coli cultures were grown overnight from frozen stocks at 37 °C in
LB, with 25 pg ml™ kanamycin selection for AfabR and AfadR mutants,
and then diluted 1:200 into fresh LB and grown until log phase at
37 °C (-2 h). Cultures were then diluted 1:10 into fresh LB, and 2 pl
of 0.5 mg mI™ MitoTracker Green (Thermo Fisher) were added. The
culture was grown at the target temperature for 30 min to enable
sufficient membrane labelling. Stained cells (500 pl) were washed via
centrifugation (30 s at 7,000 g) in fresh LB at the target temperature
(37 °Cor 27 °C). One microlitre of washed culture was placed onan LB
3% agarose hydrogel and prepared forimaging using the standard glass
slide technique. Imaging was performed with a Zeiss LSM 880 confo-
cal microscope with an environmental chamber for monitoring and
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controlling temperature (37 °C) and integrated with the ZEN software
suite (Zeiss). Temperature upshift experiments were performed by
placing the sample into the heated environmental chamber for 5 min
before imaging. Fluorescence recovery after photobleaching (FRAP)
of individual cells was performed with excitation at 488 nm using the
ZEN software by choosing a photobleaching region near cell tips cover-
ing1/4to1/3 of the cell. The entire cell was imaged at minimum frame
intervals (150-300 ms) to image fluorescence recovery.

FRAP analysis and viscosity estimate

Individual regions of interest were manually delineated for the pho-
tobleached cell tips and the entire cell in FIJI**, and the total fluores-
cence of each areawas quantified at each time point. These datawere
imported for further analysis in MATLAB. The fluorescence recovery
ineach photobleached region was corrected by the rate of photobleach-
inginthe entire cell, and the recovery curve was normalized and fit to

the exponential function (1 - e » ). The time constant (z,) was used to
estimate a diffusion coefficient (D) via solution to Gaussian pho-
tobleachinginaplane, 7, = f—D (thatis, modelling the cell tip as a disk
of radius ron the membrane)”.. Viscosity (1) was calculated using the

Stokes-Einstein equation (7 = 6’ZRTD), where Ris the radius of the fluo-
rophore (estimated as2 nm).

Schizosaccharomyces pombe culturing

S.pombe WT972 h- was grown froma frozenstock on YESS plates (5 g 1™
yeast extract, 30 g 1" glucose, 225 mg I each of adenine, histidine,
leucine, uracil and lysine hydrochloride, 2% Difco Bacto Agar). Asingle
colonywas grownat 22 °Cor 32 °Cinliquid YESS overnight until satura-
tion, then diluted 1:100 and grown until log phase (OD¢, = 0.3-0.5).
One microlitre of log-phase cells was placed on a3% agarose YES5S pad
attheinitial temperature of the experiment for imaging.

Estimate of LB molarity

LB is largely composed of free amino acids, and measurements of
E. coli auxotrophy and direct HPLC quantification” have provided an
estimate of ~122 g mol™for its free amino acid content. The molar mass
oftryptoneisreported by the manufacturer to be 71.08 g mol™ (Thermo
Fisher). As LB is composed of 10 g tryptone and 5 g yeast extract dis-
solvedin11H,0, we estimate that the concentration of metabolizable
free amino acids in LB is ~182 mM. Note that the accuracy of this esti-
mateisnot critical for any of our conclusions; the value simply enables
plotting of LB concentrations on the same plot as other substrates such
as casamino acids.

Measurements of K\,

E. coli MG1655 was grown overnight until saturation in MOPS
buffer + 0.2% (w/v) glucose at the target temperature (25 °C, 30 °C,
37 °C), then washed twice in MOPS buffer before being diluted 1:200
inthetarget medium at the target temperature. Liquid-culture growth
curves were obtained as described above. OD was measured using a
microplate reader and maximal growth rate was quantified as the peak
of the derivative of In(background-subtracted OD)*. A weighted fit was
performed on the growth rate versus concentration curve using the
Monod equation (equation (4)) to extract an estimate of K, with astand-
ard error. We note that it was challenging to obtain growth rates at low
concentration for simple sugars (for example, glucose, fructose) dueto
both the low Ky, and generally low growth rate (<0.2 h™) (Extended Data
Fig.9a-c).Insuccinate, therelationship between In(growth rate) and
1/T appeared bilinear, thus a linear fit produced an estimate of E, with
very large standard error (19 + 14 kcal mol™) (Extended Data Fig. 9f).

Evaluation of the quality of growth rate measurements

_1d

&=l
L(0) ¢

= "L—‘ = f g(t)de =G ®)
L(0) 0

= L. () = L(0)e%®,

By computing G(¢)at each timepoint, ¢, the expected length, L.(¢),
canbe predicted fromthe trajectory’sinitial cell length, L(0). The error
of the expected length over time, £ (¢), is defined as the relative differ-
ence from the measured cell length, L, (¢):

L (O = Le O]

EO=""T1

(6)

We found that the predicted cell lengths were extremely highly cor-
related with measured cell lengths throughout temperature-shift
experiments (r=0.999, Supplementary Fig. 2c), with <1% error that
depends on the growthrate (r= 0.58, Supplementary Fig. 2d).

Sensitivity analysis of the functional genetic screen

To determine the difference in response time of a mutant relative to
wild type sufficient to produce a2-fold differenceinrelative abundance
after a temperature upshift (Fig. 3), we assumed that the upshift
response is approximately linear (Fig. 1f). In this case, the biomass, B,
varies with growthrate, g, as

d(In(B
g dn®)

de - @

Upon a temperature upshift, the growth rate varies from g; to g
over atime 1y, and the experiment is carried out over a time ¢; > 7.
Hence,

In(B,)

T &
/ d(In(B)) = / (g,» + @t) dt+/ gde
In(B,) 0 T ™)

=> ln(i—:) =gty — % (gr—8) -

(8)

Consider amutant that has the same initial and final growth rates
as wild type (that is, the mutant is present in the mutant pool at both
temperatures), but possesses a different response time, .. Then its

finalbiomass, B,, after an upshift willbe

B’Z 1 '
In{g =8t =5 (& 8) - )

The difference in biomass between the mutant and wild type will
thenbe

B\ 1 ,
In(B—z>= E(g -8) (1 — ). 10)

Since we defined the significance threshold for our screen as a
2-fold difference in biomass and the wild-type response time is ~1.5-fold
the doubling time, 1, alonger response time implies that

InQ) = % (gr— &) (1, — 151p). (1n
@

By setting 7, = fry and using the relation 7, = -
of

Ine) = ; (gr—8)(f-1)15In(2) /g

4 12)
The celllength corresponding to each filtered growth-rate trajectory =>f=1+ E
was predicted by integrating the computed growth rate, g, as follows: &
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The ratio of g;/gs for E. coli in rich medium is ~0.7/2.0 (Fig. 1a,b),
hence f~ 3. Thissetof calculations indicates that a>2-fold difference
in biomass at ¢ > 1, > 1z requires at least a 3-fold increase in the
response time. While the Adnak and ppGpp™" mutants exhibited
somelagorincreaseinresponse time (Extended DataFig.3d-g), direct
integration of the mean growth rate trajectories during atemperature
upshift predicted biomass differences of ~1.5-fold, less than our trans-
poson screen cut-off. Thus, our screening results are consistent with
the small differencesin growth-rate dynamics observed with the Adnak
mutant; the ppGpp™" mutant is a double mutant and hence is not
represented by amutantin the transposon library.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Imaging datasets used to generate growth rate analyses are available
fromthe corresponding author uponrequest. Processed and analysed
imaging data sets of growth trajectories and FRAP measurements, lig-
uid growth measurements, processed transposon sequencing and pro-
cessed proteomics dataareall available at the Harvard Dataverse’. Raw
transposon sequencing data have been deposited in NCBI's Sequence
Read Archive (SRA) under project accession identifier PRINA1138713.
Mass spectrometry proteomics data have been deposited in the Pro-
teomeXchange Consortium via the PRIDE” partner repository with
datasetidentifier PXD048941.

Code availability

Codes for generating single-cell trajectories’™ and for analysing
single-cell growth rates” are available in GitHub. Simulation code for
the TSEN modelis available in GitHub™.
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Extended Data Fig. 1| E. coli exhibits robust Arrhenius behavior with ahighly
conserved activation energy. a) Liquid-culture maximal growth rates across
temperatures of diverse E. coli strains from various animal hosts (Methods). Each
strainis labeled with its laboratory accession number (Supplementary Table1),
host source, and estimated host body temperature. Each data point represents
the mean of eight biological replicates, with error bars representing the standard
deviation. b) Arrhenius plots of growth rates from (a). The natural logarithm

of maximal growth rate is plotted against the inverse absolute temperature for
temperatures between 27 °C and 37 °C, along with weighted linear fits for each
strain. ¢) Activation energies measured as the slope of the linear fit to the data

in (b) for each E. colistrain, with errors reported as the standard error of the

mean (SEM) from the weighted fit. Each strain is grouped according to host body
temperature (blue: Ectothermic, green: Mammalian, red: Avian, gray: Laboratory
(MG1655,BW25113)). Each bar represents the mean of eight biological replicates.
d) Steady-state maximum growth rates in rich medium (LB) of E. coli BW25113,
CS109, and BL21 between 18 °C and 47 °C (Methods). Each maximal growth rate
isreported as the meant1standard deviation of eight biological replicates.

e) Arrhenius plot of growth rates from (d). The natural logarithm of maximal
growth rate is plotted against the inverse absolute temperature. Growth rates
measured at temperatures between 25 °C and 37 °C were used for measuring the
activation energy (slope, E,).
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Extended Data Fig. 2| Temperature upshifts to mild heat-shock temperatures 40 °C (purple, n=278 cells), or 42 °C (red, n=474 cells). Data are the mean+1 SEM
are characterized by slower final growth rates but similar normalized (shaded region) at each time point. b) Normalized growth rate versus thermal
response times. a) Single-cell growth rates of £. coli MG1655 on rich medium time follows acommon trajectory for each upshiftin (a).

(LB) undergoing temperature upshifts from 27 °C to 37 °C (blue, n=792 cells),
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Extended DataFig. 3 | Effect of chaperones, oxygen, and the stringent
response on temperature upshift responses. a) Single-cell growth rates of

E. coliMG1655 on rich medium (LB) undergoing a temperature upshift from 25 °C
to 37 °Cinaerobic (blue, n=773 cells) or anaerobic (orange, n=319 cells) conditions.
Data are the mean+1SEM (shaded region) at each time point. b) Normalized
growth rate versus thermal time for each trajectoryin (a). ) Single-cell growth
rates of Adnak (red, n=433 cells) and its parent BW25113 (blue, n=1011 cells) on
richmedium (LB) undergoing a temperature upshift from 37 °C to 42 °C. Data
are the mean+1SEM (shaded region) at each time point. d) Single-cell growth
rates of Adnak (red, n=318 cells) and its parent BW25113 (blue, n=734 cells) on

1
Thermal time

Time after shift (min)
(potential doublings)

rich medium (LB) undergoing a temperature upshift from 27 °C to 37 °C. Data

are the mean+1 SEM (shaded region) at each time point. e) Normalized growth
rate versus thermal time for each trajectoryin (d). f) Single-cell growth rates of a
ppGpp™'strain (ArelA AspoT) (purple, n=648 cells) and its parent MG1655 (blue,
n=792 cells) on rich medium (LB) undergoing a temperature upshift from 27 °C to
37 °C.Dataare the mean+1SEM (shaded region) at each time point. g) Normalized
growth rate versus thermal time for each trajectory in (f). h) Single-cell growth
rates of ppGpp™" (purple, n=47 cells) and its parent MG1655 (blue, n=474 cells) on
rich medium (LB) undergoing a temperature upshift from27 °Cto 42 °C. Dataare
the mean+1 SEM (shaded region) at each time point.
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Extended Data Fig. 4 | Downshift pulses reveal temperature history. a) Single-
cell growth rates of E. coliMG1655 on rich medium (LB) starting at 37 °C subjected
to 27 °C pulses for 2 min (red, n=519 cells), 5 min (purple, n=397 cells), 12 min
(green, n=451cells), or 17 min (dark red, n=422 cells). Dotted lines represent the
time at which cells were subjected to a 27 °C downshift. The shift from steady-
state growth at 27 °C to 37 °Cis also shown for comparison (blue, n=773 cells).
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Data are the mean+1 SEM (shaded region). b) Single-cell growth rates of E. coli
MG1655 on richmedium (LB) starting at 37 °C subjected to a23 °C pulse for
5min before an upshift to the intermediate temperature 30 °C (red, n=330 cells).
The vertical dashed line indicates the start of cooling, which required -2 min to
reach 23 °C. The shift from steady-state growth at 23 °C to 30 °Ciis also shown for
comparison (blue, n=396 cells).
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Extended DataFig. 5| E. coli growth rate responds rapidly to heat-shock

and cold-shock pulses. a) Single-cell growth rates of £. coliMG1655 on rich
medium (LB) undergoing temperature upshifts from 37 °Cto 40 °C (purple,
n=479 cells), 42 °C (orange, n=1249 cells), 43 °C (red, n=819 cells), or 47 °C (dark red,
n=474 cells). Data are the mean+1 SEM (shaded region) at each time point.

b) Single-cell growth rates of E. coliMG1655 on rich medium (LB) starting at

37 °C and subjected to heat-shock pulses at 47 °C for 5min (orange, n=381 cells)
or35min (darkred, n=474 cells). Vertical dashed lines represent the times at
which cells were shifted back to 37 °C. Data are the mean+1SEM (shaded region)
at each time point. c) Single-cell growth rates of E. coli MG1655 on rich medium
(LB) starting at 37 °C and subjected to ~10-min cold-shock pulses at 18 °C (light
blue, n=361cells) or 12 °C (dark blue, n=390 cells). Data are the mean+1 SEM

(shaded region) at each time point. d) Temperature readout of a 5-min pulse at

0 °C (Methods) starting from 37 °C. t=0 is when cells were shifted back to 37 °C.
e) Single-cell growth rates of E. coliMG1655 on rich medium (LB) starting at 37 °C
and subjected to a 5-min cold-shock pulse at O °C (purple, n=283 cells) shown

in (d). Horizontal dashed line represents cell shrinkage defined as growth rate
<0 h'. Data are the mean+1 SEM (shaded region) at each time point. f) Images of
E. coliMG1655 on rich medium (LB) during a10-min pulse at O °C starting from
37 °C. At 37 °C, cells exhibited normal morphologies and growth (top). At 0 °C,
cells shrank, as exemplified by the cell whose length at t=-10 min represented by
adouble-arrowed line extends beyond the cell boundary at =0 (middle). Growth
resumed quickly after the sample was heated back to 37 °C, without loss in cell
viability (bottom).
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Extended Data Fig. 6 | Changes in membrane fluidity do not alter the response
to temperature upshift butincrease lysis at high temperatures. a) FRAP
recovery dynamics of the membrane dye MitoTracker in the parent strain
BW25113 (blue, n=19 cells), the high-fluidity mutant AfabR (red, n=15 cells), and
the low-fluidity mutant AfadR (purple, n=14 cells) grown on LB (Methods). Curves
show the mean recovery and shaded regions represent +1 SEM. b) Membrane
viscosity (Methods) was significantly lower and higher in AfabR and AfadR,
respectively, compared with the parent. Significance was determined using a
two-sample t-test (two-sided); *: p=0.013, **: p<1.8x1078, ¢) Membrane viscosity
of E. coliBW25113 cells after an upshift at t=0 from 27 °C to 37 °Cin LB (Methods).
Points are estimates from abest fit (Methods) and error bars represent 1 standard
error. Dotted line is the mean viscosity from steady-state measurements (b), and
the shaded region represents +1standard deviation. d) Growth rate responses of
E. coliBW25113 (blue, n=686 cells), AfabR (red, n=924 cells), and AfadR (purple,
n=409 cells) to atemperature upshift from 27 °C to 37 °Cin LB. Curves show mean
growthrate and shaded regions represent +1 SEM. e) Normalized growth rate

followed a similar trajectory versus thermal time among the mutants and parent
for the datain (d).f) Growth curves of wild-type (BW25113) (blue) and AfabR (red)
cellsgrowninLBat 37 °C (n=3 replicates). Optical density (OD) was corrected for
non-linearity at high OD values (Methods). Maximum growth rates are the mean
acrossreplicates and the erroris +1standard deviation. g) Growth rate response
to atemperature upshift from 37 °C to 42 °Cin E. coli BW25113 (blue, n=1011

cells) and AfabR (red, n=554 cells). Both strains exhibited an initial decrease in
growth rate followed by recovery to the steady-state growth rate at 37 °C, but
recovery was more delayed for the high-fluidity AfabR mutant. Curves show
mean growth rate and shaded regions represent +1SEM. h) (Left) Representative
images of AfabR cells throughout a temperature upshift from 37 °C to 44 °C.

At 37 °C, morphology and growth were wild-type-like (top left). Growth halted
immediately after the shift to 44 °C (top right), with loss of turgor and cell

death occurring within 30-40 min after the shift (bottom left, right). (Right)
Representative images of wild-type MG1655 cells before and after an upshift from
37 °Cto 44 °C. Cells maintained growth and shape.
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Extended Data Fig. 7 | Effects of changes in TSEN model parameters on
temperature-shift response dynamics. a) Increasing the catalytic rate (k;) for
eachreaction in abottlenecked minimal TSEN model (gray box) from1min~to
1000 minhas virtually no effect on the response. b) Effect of model parameters
onthe normalized response time to a temperature upshift from27°Cto 37 °Cin
the minimal TSEN model (gray box) for each reaction (import, production,
growth). The definitions of each parameter are provided in Fig. 4a. All other
parameters were set to default values (vertical gray bars) in each simulation.
Notably, increases in the activation energy of the K, of the production reaction
produced the largest increase in response times across all activation energies
(right). ¢) The analytically tractable production-less TSEN model (gray box,

Supplementary Text) predicts anon-zero response time. The simulation used
default parameters (k;=1min™, K),=1mM, E5% =15kcal/mol, E¥=15kcal/mol),
with the exception of the Michaelis-Menten constant of the second reaction
K;=20 mM. d) Normalized response time increases withincreased activation energy
of Kyinthe production-less TSEN model (gray box). e) Normalized response
timeincreases with increased K; in the production-less TSEN model (gray box).
f) Normalized response time was between 1and 2 doublings when the cutoff
used to define the adaptation was increased from 95% to 99% of the steady-
state growth rate difference in the production-less TSEN model (gray box).

g) Arrhenius plot of steady-state growth rate across temperatures predicted
by the minimal TSEN model (gray box) exhibits slightly non-linear behavior.
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Extended Data Fig. 8 | TSEN model is compatible with reversible enzyme
kinetics and predicts nutrient perturbation responses. a) Predictions

of the minimal TSEN (3 total reactions, single intermediate) with areversible
intermediate reaction for atemperature upshift from 27 °C to 37 °C
(Supplementary Text). Simulations are shown for various values of the
Michaelis-Menten constants for the reversible reaction. The standard
bottleneck is defined as Ky, = 20 mM, which has an activation energy of

E, = 22.5kcal/mol. Standard reactions have K}, = 1lmMand E, = 15kcal/mol.
Simulations were conducted with saturating external nutrients (co = 100 mM).
Other parameters of the minimal TSEN can be found in Fig. 4a, b. Green: with a
forward bottleneck only, described by a very large reverse K;, = 1000 mM. Red:
with bottlenecks in both the forward and reverse reactions. Blue: with a forward
bottleneck and standard reverse reaction. Purple: with forward and reverse
reactions both possessing standard K, values. b) The TSEN model responds to
anutrient pulse from a steady state with low nutrient concentration through
increased metabolite production. The full TSEN (5 intermediate reactions) with
asingle bottleneck (standard kinetic values in black, bottleneck valuesinred on
left) was simulated under sub-saturating, low-nutrient conditions (¢y =0.1 mM)

Time after exit
from starvation (min)

until steady state was reached, and then an instantaneous nutrient pulse

of 28 mM was added at ¢ =0 min, with no nutrients subsequently provided.
Simulations were performedin alL container. Left: growth rate dynamics
predicted by the bottlenecked TSEN after the nutrient pulse. Standard (black)
and bottleneck (red) parameter values are shown. Middle: predicted
intracellular metabolite concentrations, colored by location in network during
the nutrient pulse and subsequent depletion. Dynamics depend on network
position. Right: External nutrient concentration throughout the simulation.

c) The TSEN model responds to starvation exit through slow metabolite
production. The full TSEN (5 intermediate reactions) with a single bottleneck
(standard kinetic values in black, bottleneck values in red on left) was simulated
under starvation-like conditions (¢, =0.01 mM) until steady state was reached,
and then the nutrient concentration was shifted to a saturating condition (co =
100 mM) at ¢ = 0 min. Left: growth rate dynamics after the nutrient shift
predicted by the bottlenecked TSEN. Standard (black) and bottleneck (red)
parameter values are shown. Right: intracellular metabolite concentrations,
colored by position in network, during the shift.
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Extended DataFig. 9| E. coli exhibits Michaelis-Menten kinetics across
substrates. a) Left: Liquid-culture growth rates of E. coli MG1655 grown ona
variety of substrates at 37 °C (Methods). Data are the mean of the maximum
growth rate extracted from three biological replicate growth curves and error
bars represent +1standard deviation (SD). Right: Expanded view of growth rates
versus concentration from the outlined box on the left. b) Liquid-culture growth
rates of E. coliMG1655 in MOPS minimal medium supplemented with various
concentrations of D-glucose at 25 °C (blue), 30 °C (black), or 37 °C (red). Dataare
the mean of the maximum growth rate extracted from three biological replicate
growth curves and error bars represent +1SD. ¢) Michaelis-Menten constants
(Kyy) of E. coliMG1655 growth rates across growth media and temperatures.

Data are estimates from a non-linear weighted fit and error bars represent +1SEM.
d) Arrhenius plots of In(growth rate) versus 1/(absolute temperature) for E. coli
MG1655 grown in MOPS minimal medium supplemented with glucose at
concentrations between 0.17 mM and 11 mM (blue-to-red). Data are the mean

across three biological replicates and error bars represent +1SD. Weighted linear
fits were performed for each concentration. e) Arrhenius plots of In(growth rate)
versus 1/(absolute temperature) for E. coli MG1655 grown in MOPS minimal
medium supplemented with casamino acids at concentrations between 0.9 mM
and 923 mM (blue-to-red). Data are the mean across three biological replicates
and error bars represent +1SD. Weighted linear fits were performed for each
concentration. f) Activation energy versus substrate concentration of £. coli
MG1655 grown in minimal media without amino acids supplemented with
glucose, fructose, acetate, succinate, or maltose. Activation energies are
estimates from a linear weighted fit of Arrhenius plots and error bars represent +1
SEM. g) Activation energy versus substrate concentration of E. coligrown in LB
(red) or MOPS minimal medium supplemented with casamino acids (green).
Activation energies are estimates from a linear weighted fit of Arrhenius plots
and error bars represent +1SEM.
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Extended Data Fig. 10 | Growth rate response to a temperature downshift fergusonii (purple, n=902 cells), and Bacillus subtilis (green, n=117 cells). All
is rapid across organisms. Single-cell growth rate response to a temperature downshifts were from 37 °C to 25 °C, except for B. subtilis (37 °Cto 27 °C). Dataare
downshift on rich medium (LB) of laboratory-evolved (blue, CS109, n=911 cells) the mean+1 SEM (shaded region) at each time point.

and naturally isolated £. coli strains (orange to red, n=417-1186 cells), Escherichia
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analysis.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Imaging datasets used for growth rate analyses are available from the corresponding author upon reasonable request. Processed and analyzed imaging datasets of




growth trajectories, liquid growth data, and transposon sequencing data will be made available on the Stanford Digital Repository before publication. Proteomics
data will be deposited to the ProteomeXchange Consortium via the PRIDE database before publication.
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Sample size In microscopy experiments, sample size is the number of cells. In liquid culture optical density measurements, sample number is the number
of growth curve replicates. In both the proteomics experiments and pooled mutant screen, sample size is the number of biological replicates.

Data exclusions  Single cell trajectories were excluded based on cell tracking errors (incorrect cell assignment) and a minimum trajectory length. Peptides and
proteins were filtered according to a false discovery rate of 1% (a standard process). In barcode sequencing analysis, reads were excluded if
they corresponded to an insertion that was not within the central 10-90% of the coding region (a standard process).

Replication Replication of wild-type responses to temperature shifts was performed at least twice for each condition. Liquid culture optical density
measurements were carried out in replicates of at least 3. Proteomics and pooled mutant screens had 2 biological replicates for each sample.
All replications were successful for these experiments. Some single-cell microscopy experiments reported were not replicated, due to either
null results or if they comprised a larger trend in the dataset.

Randomization  Control groups in this study were unperturbed cell samples. Cellular populations were divided randomly by mixing before splitting into control
and experimental groups.

Blinding Blinding was not relevant to our study, as clonal cell populations could not be discriminated. Additionally, experiments performed in this study
were targeted perturbations, requiring detailed knowledge of the cellular system's growth state, which was monitored frequently.
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