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Abstract. Motion and deformation analysis of cardiac magnetic reso-
nance (CMR) imaging videos is crucial for assessing myocardial strain
of patients with abnormal heart functions. Recent advances in deep
learning-based image registration algorithms have shown promising re-
sults in predicting motion fields from routinely acquired CMR sequences.
However, their accuracy often diminishes in regions with subtle appear-
ance changes, with errors propagating over time. Advanced imaging tech-
niques, such as displacement encoding with stimulated echoes (DENSE)
CMR, offer highly accurate and reproducible motion data but require
additional image acquisition, which poses challenges in busy clinical
flows. In this paper, we introduce a novel Latent Motion Diffusion model
(LaMoD) to predict highly accurate DENSE motions from standard
CMR videos. More specifically, our method first employs an encoder from
a pre-trained registration network that learns latent motion features (also
considered as deformation-based shape features) from image sequences.
Supervised by the ground-truth motion provided by DENSE, LaMoD
then leverages a probabilistic latent diffusion model to reconstruct accu-
rate motion from these extracted features. Experimental results demon-
strate that our proposed method, LaMoD, significantly improves the ac-
curacy of motion analysis in standard CMR images; hence improving
myocardial strain analysis in clinical settings for cardiac patients. Our
code is publicly available at https://github.com/jr-xing/LaMoD.

1 Introduction

Motion and deformation analysis of CMR videos provides valuable measure-
ments to quantify myocardial strain in patients with heart disease, offering
clinically significant data for disease assessment, diagnosis, and treatment plan-
ning [17I3l2429I30]. CMR feature tracking (FT) is widely used in clinical practice
to evaluate myocardial motion, deformation, and strain functions [25J15/1819].
Such a technique employs optical flow-based algorithms [10] to track image fea-
tures or patterns within the myocardium throughout the cardiac cycle. While F'T
is convenient and integrates well into routine clinical workflows, this technique
is generally less accurate due to its limited motion tracking accuracy [1132].
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With recent advancements in deep learning, several research groups have
utilized image registration-based networks to predict myocardial motion and
strain from CMR images [15/18J31]. Existing methods incorporated new regular-
ization techniques, such as enforcing temporal consistency [18], or introducing
prior knowledge of cardiac biomechanics [213520], to achieve improved motion
prediction quality. However, these approaches still partially address the chal-
lenges of detecting motion in regions with subtle image appearance changes (i.e.,
the myocardium mid-wall motion) [1I6l16], leading to compromised accuracy of
myocardial strain measurements. To alleviate this issue, another research line
has utilized “ground-truth” data from the advanced imaging technique DENSE,
which provides highly accurate and reproducible myocardial motion data to su-
pervise the motion learning process [2728]. In contrast to conventional CMR
techniques, DENSE directly encodes tissue displacement within the imaging
data, allowing for precise quantification of myocardial motion throughout the
cardiac cycle. Despite promising progress in predicting myocardial motion for im-
proved strain analysis under the guidance of DENSE [27]28], current approaches
heavily rely on features extracted from segmented myocardial contours rather
than the underlying cardiac motions, potentially compromising strain accuracy.
Furthermore, the network training involved only DENSE contours that may not
fully generalize to standard CMR images.

To address this problem, we propose to develop a novel Latent Motion Dif-
fusion model (LaMoD) to further improve the current deep networks to predict
highly accurate DENSE motions from standard CMR videos. In particular, our
method, LaMoD, first employs an encoder from a pre-trained registration net-
work that learns latent motion features of myocardial deformations derived from
both cine and DENSE image sequences. Supervised by the ground-truth mo-
tion provided by DENSE, LaMoD then leverages a probabilistic latent diffusion
model to reconstruct accurate motion from these extracted features. Once our
model is trained, the DENSE data is no longer required in the testing phase.
Our contributions are threefold:

(i) Develop a new framework, LaMoD, that generates time-sequential myocar-
dial deformation fields from a learned latent space of motion features.

(i1) Our method is the first to leverage latent diffusion models in the motion
space to produce highly accurate myocardial strain from standard CMR
videos.

(iii) Opens promising research avenues for transferring knowledge from ad-
vanced strain imaging to routinely acquired CMR data; hence maximizing
benefits for patients with cardiac diseases.

2 Background: Registration-based Motion Deformation
Estimation

In this section, we briefly review the concept of image registration, which is a
fundamental technique for estimating motion deformation between images. We
will apply this concept to motion tracking in CMR video sequences.
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Given a source image S and a target image I, the problem of diffeomorphic
image registration is typically formulated as an energy minimization over a time-
dependent deformation fields, {¢; : ¢t € [0,1]}, i.e.,

B(¢r) = 55 Dist(S 0 67", 1) + Reg(6). (1)

Here, o denotes an interpolation operator, which deforms a source image S to
match the target I. The Dist(-,-) is a distance function that measures the dis-
similarity between images weighted by a positive parameter o, and Reg(-) is a
regularization term to enforce the smoothness of transformation fields. In this pa-
per, we use a commonly used sum-of-squared intensity differences (La-norm) [4]
as the distance function.

In our implementation, we adopt the large diffeomorphic deformation metric
mapping (LDDMM) framework [434] to generate diffeomorphic deformations,
parameterized by time-dependent velocity fields, v; : ¢t € [0, 1], i.e.,

d
% = V¢ © ¢t' (2)
A geodesic shooting algorithm [1326] has shown that the geodesic path of
deformation, ¢;, with a given initial condition, vy, can be uniquely determined
through integrating the Euler-Poincaré differential equation (EPDiff) [2[14] as

% =-K (th)T my + Dmy vy + my div vt} , (3)
where D denotes a Jacobian matrix and div is the divergence operator. The
K denotes an inverse operator of L : V' — V* which is a symmetric, positive-
definite differential operator that maps a tangent vector v € V into the dual space
m € V*. Numerous studies and applications have used the initial velocities, vg,
to represent diffeomorphic deformations in the context of motion/deformation
analysis [33//13].

3 Owur Model: LaMoD

Our model consists of two main components: (i) a pre-trained registration net-
work based on the LDDMM framework [4] to extract latent motion features
from CMR sequences, and (ii) a motion prediction model leveraging latent dif-
fusion models to reconstruct realistic and highly accurate myocardial motion,
supervised by DENSE data. An overview of our proposed framework, LaMoD,
is illustrated in Fig.

3.1 Latent Motion Feature Learning From Image Videos

Given a image sequence, {I7}I_. that includes T'+ 1 time frames covering an
entire motion cycle of myocardium. We pre-train a LDDMM-based registration
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Fig.1: An overview of our proposed network framework. (A) Registration-based
network to learn latent motion features represented by initial velocity fields. (B)
Diffusion model in latent motion spaces.

network [8] to learn the deformation fields between the initial frame I° and
each subsequent frame {I7}. This results in a number of T pairs of images, i.e.,
{1011, (1°,1%)--- , (I°, IT)}. To utilize the intrinsic spatial connections and
motion consistency across the sequence of time frames, we stack the T' pairwise
images into a 3D volume and predict the deformation fields simultaneously in
the implementation. We employ an UNet architecture [23] as our network back-
bone, featuring an encoder £ that maps the input image pairs {(I°,17)} to the
corresponding latent velocity features {z"}, and a decoder Dg that project {27}
back to the input image space, i.e., initial velocity fields {v§}. The correspond-
ing final transformation fields, {¢7}, are computed through Eq. and Eq. .
For a simplified notation, we will drop the time index in following sections, i.e.,

A A
T =¢" and vy = 7.

3.2 Diffusion Model In Latent Motion Spaces

We introduce a new latent motion diffusion module that captures the complex
distribution of latent motion features, resulting in higher quality motion recon-
struction under the supervision of DENSE ground-truth. More specifically, the
registration-based latent velocity features are first refined through a diffusion
process and then fed into a motion reconstruction network to predict the final,
highly accurate myocardial motion. This approach ensures a more precise and
realistic depiction of myocardial dynamics, demonstrating significant improve-
ments over existing methods.
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Inspired by the Denoising Diffusion Probabilistic Models (DDPM)[9122], we
formulate the model as a latent Markov chain with M steps. The framework has
a forward and reverse diffusion process. The forward process iteratively adds
random Gaussian noise to the input latent features over m € [1,2, ..., M| steps.
Similar to [11], we employ smoothed Gaussian noise ¢ in the diffusion process
to facilitate faster optimization convergence compared to normal Gaussian noise
€, i.e. € = K(e€), where € ~ N(0,I) and K(-) is a Gaussian smoothing kernel.

Defining 2(™ & {z1(m) 2(m) > T(m)1 a5 the learned latent motion fea-
tures (represented by initial velocities) for all frames at step m, our forward
diffusion process is defined as:

q(z™ |2 D) = M (2 /1 = B,,2m Y B,,1) (4)

where 3, is a time-dependent variance schedule used to parameterize the proba-
bilistic transitions. The forward process starts from the registration-based latent

feature, i.e. 2(®) = {27} = {2!,22,..., 27 }. Alternatively, the forward diffusion
process can be formulated as a single step process:
q(z™20) = N (2™ Va2, (1 — a,)I) (5)

2™ = Va2 + VI—am K(e), (6)

where @, = [[1o; & and o, =1 = Byy,.
The reverse diffusion process aims to restore the latent feature with a deep
neural network. It takes place over m steps as:

pe(é(mil) |£,(7R)) = N(ﬁ(m71)1 M@(ﬁ(m)7 m)a 29(2(m), m))) (7)

where 2 are the latent velocity features obtained from the reverse process,
Ly = \/i;m(,%(m) - \/ﬁTmeg(é(m), m)) and Xp(2™ m) = B,,1 are the mean and
variance of the transitions of the reverse process respectively.

The reverse process is implemented by training a noise-prediction network
€p that takes the noisy motion feature 2™ and the step m as input. For each

step m, the sampling in the reverse process is defined as:

L(m— 1 m ~(m
Z( 2 = 7(,2( ) — 69(z( )7m)) +0mK(7)a (8)

where v ~ N (0,1).
Noting the shared diffusion step as m, and latent features as well as the

additive noise of the n-th input sequence as 2™ and ¢’

n» respectively, the cor-
responding loss function over the whole training dataset with N sequences is

defined as

N
Laifasion = 3 Bm,ze |16, = €0(28™,m)) 2] + Acreg(6), (9)

n=1

where the function reg(-) represents network Lo weight decay regularity weighted
by Ae.
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Algorithm 1 LaMoD: Latent Motion Diffusion Model For Myocardial Strain
Generation

Input: DENSE CMR videos, {I"}, with directly encoded motion, {D7};
Output: Reconstructed myocardial motion, {®" };

Latent Motion Feature Learning
2@ =21 2Ty = &r({1°,...,1T))

Diffusion Model Inference
c e~ N(0,I)
2 = o 29 + V1= aiar K(e)
form=M,M—-1,...,1do

2D = = (2 — g (27, m) + omK(7)

end for

: {87} =Dy (2);

: return {97}

PN DG

The refined latent features z(©) are fed into to the motion decoder, Dy, to
reconstruct the accurate myocardial motion of original data resolution, i.e., b, =
{&L,82,..., 6T} = D, (2\)), where n is the motion decoder and n € {1,--- , N}
is the data mdex Wlth the supervision of DENSE ground truth, &,,, our motion
reconstruction loss is defined as

N T

1 ~
Zmotion = N Z Z HQST - QSTH% + AMreg(n)v

n=17=1

ZZ 187, — Dy (213 + Aarreg(n), (10)

2 \

where A\ is the weighting parameter of weight decay regularization term reg(-).
We jointly train the loss functions of diffusion model (Eq. @D) and the motion
reconstruction (Eq. (10)) till its convergence. We define the total loss as

Ztotal = ldiffusion + almotionv

where « is the loss weighting term. We summarize our model in Algorithm 1.

4 Experimental Evaluation

We first demonstrate the effectiveness of LaMoD on DENSE CMR videos and
then test its performance on standard cine CMRs, highlighting its clinical po-
tential. Both quantitative and visualization results are presented. Note that our
network is trained solely on the DENSE dataset and then tested on both DENSE
and CINE datasets.

The training of all our experiments is implemented on an server with AMD
EPYC 7502 CPU of 126GB memory and Nvidia GTX 3090Ti GPUs. We train
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our networks using Adam optimizer [12] with maximal 2000 epochs with the
early stop strategy. The batch size is set to 32 and weight decay weights are set
to A\e = Ay = 1E — 4. The hyper-parameters are optimized with grid search
strategy. The optimal learning rate is 1E — 4 and the optimal loss weight is
a=1F—2.

4.1 Dataset

DENSE CMR videos with directly encoded motion data. We utilize 741
DENSE CMR videos of the left ventricular (LV) myocardium collected from 284
subject, including 124 healthy volunteers and 160 patients with various types
of heart disease. Data are collected from eight centers (University of Virginia,
Charlottesville; University Hospital, Saint-Etienne, France; University of Ken-
tucky, Lexington; University of Glasgow, Scotland; St Francis Hospital, New
York; the Royal Brompton Hospital, London, England; Emory University, At-
lanta, Georgia; and Stanford University, Palo Alto, California). Each DENSE
scan was performed in 4 short-axis planes at the basal, two midventricular,
and apical levels (with temporal resolution of 17 ms, pixel size of 2.65% mm?,
and slice thickness=8mm). Other parameters include displacement encoding fre-
quency k. = 0.1 cycles/mm, flip angle 15°, and echo time = 1.08 ms.

Standard cine CMR videos. We tested our proposed model on 105 short-
axis cine CMRs slices of 40 subjects from the DENSE dataset mentioned above,
including 14 patients and 26 volunteers. All scans were acquired during repeated
breath hold covering the left ventricle (LV) (field of view, 320 x 320 to 380 x 380
mm?2; temporal resolution, 30-55 msec, depending on heart rate). Each selected
cine slice corresponds to a DENSE scan of the same patient at the same spatial
location (within +2mm), allowing the DENSE displacement field to serve as the
ground-truth motion for the cine slices.

Data Pre-processing. All cine and DENSE CMR sequences were temporally
and spatially aligned for efficient network training. In particular, the standard
cine sequences were temporally resampled to 40 frames to match the DENSE
temporal resolution. All images were resampled to a 1 mm? resolution and
cropped to 128 x 128. We ran all experiments on binary LV myocardium segmen-
tation from both cine and DENSE sequences to avoid appearance gaps between
the magnitude images, using masks manually labeled by clinical experts.

4.2 Experimental Design

We used all standard CMR and DENSE videos to train our registration network
that can effectively learn latent motion features. However, we only use DENSE
motion to train the diffusion model to reconstruct myocardial deformations. In
particular, the DENSE data set was divided into 538 samples for training, 101
for validation and 102 for testing. We employed a site-balanced splitting strat-
egy, maintaining consistent proportions from each site across all sets to ensure
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representative sampling and mitigate site-specific biases. Paired DENSE data
with cine CMR videos were used for regional segmental strain comparison in our
experimental evaluation.

Evaluate motion and strain error on DENSE data. We first evaluate the
quality of predicted motions for DENSE sequences, using pixel-wise motion field
error (i.e., end-point error (EPE)) defined as the Euclidean distance between the
predicted and ground truth motion vectors. We compare the performance of our
proposed model with three state-of-the-art deep learning-based motion/strain
prediction models — StrainNet [27], UNetR [7], 3D TransUNet [5]. All methods
are trained on the same dataset, and their best performances are reported.

We then generate strain maps from the predicted motion fields for the DENSE
input and compare it with all baseline algorithms. We performed a quantitative
analysis of strain errors on regional segmental strains. Consistent with previ-
ous studies [27I28], we divided the myocardium in each DENSE slice into six
segments, starting from the right ventricle insertion point and proceeding coun-
terclockwise. We then calculated the average absolute error for strain evaluation
in each segment.

Evaluate strain error on standard cine CMR videos. For cine sequences,
our evaluation focuses exclusively on segmental strain error due to the signifi-
cant differences between the paired DENSE contours and the collected cine CMR
myocardium contours. This is mainly due to the spatial misalignment between
the myocardium regions from input cine images and the DENSE-derived ground
truth, which are collected from separate scans, making pixel-wise error compu-
tation impractical. We apply the same segmental strain approach as used for the
DENSE data, dividing the myocardium into six segments and calculating the
average absolute strain error for each. Furthermore, we compared strain values
with those obtained using widely used commercial software (SuiteHeart version
5.0.4; NeoSoft) based on Feature Tracking (FT) in clinical settings.

4.3 Experimental Results

Fig. [2| (test on DENSE data) presents the visualizations of the predicted end-
systolic displacement fields and the circumferential (Ecc) strain maps for all
models compared to the ground truth from DENSE ground truth. To provide
a comprehensive evaluation, we include examples from both healthy volunteers
(top panel: ground A) and patients with heart failure (bottom panel: ground B),
specifically those with left bundle branch block (LBBB). The predictions gener-
ated by our method consistently show a closer resemblance to the ground truth
across all cases. These results collectively demonstrate that our method provides
more accurate and robust performance compared to the baseline models.

Similarly, the Fig. |3 (test on standard cine CMRs) visualizes the predicted
motion fields and the circumferential (Ecc) strain maps for all models com-
pared to paired DENSE dataset. Note that the DENSE myocardium contours
are slightly different from cine CMRs due to a different scanning time.
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Fig.2: Panel A (healthy volunteer) & B (heart failure patient with left bundle
branch block): exemplary comparison of end-systolic displacement and circum-
ferential strain maps (Ecc) derived from DENSE input across all methods. Left
to right: DENSE ground truth and predictions from our model vs. baselines. Top
to bottom: enlarged view of selected displacement region; full displacements; cir-
cumferential strain maps (contraction in blue vs. stretch in red).



10 F. Author et al.
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Fig.3: Panel A (healthy volunteer) & B (heart failure patient with left bundle
branch block): exemplary comparison of end-systolic displacement and circum-
ferential strain maps (Ecc) derived from standard cine MRI videos.

Fig. [ displays a quantitative comparison of displacement field EPE error
and segmental circumferential strain error between our model and all baselines.
The left two panels demonstrate the testing results on DENSE dataset, indi-
cating that our method significantly outperforms the baselines in terms of both
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Fig.4: Left to right: a comparison of displacement field EPE error on DENSE;
predicted segmental circumferential strain error on DENSE; and predicted seg-
mental circumferential strain error on standard cine CMRs from our model vs.
all baselines.

displacement and circumferential strain error. The right panel shows the testing
results on the cine CMRs dataset. It shows that our method consistently achieves
superior performance of myocardial strain quality over all baselines.
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Fig.5: A comparison of time-sequential myocardial strain generated by DENSE
vs. our model throughout the cardiac cycle.

Fig[p]illustrates a comparison between circumferential strain computed from
DENSE and our predictions across evenly sampled time frames throughout the
cardiac cycle. The visual similarity between the top and bottom rows demon-
strates that our method effectively captures the strain patterns at various phases
of cardiac motion.
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5 Conclusion

In this paper, we introduced LaMoD, a novel Latent Motion Diffusion model that
predicts highly accurate motions/strain from standard CMR videos. Our ap-
proach effectively addresses the challenges of detecting subtle myocardial move-
ments, particularly in intramyocardial regions, by leveraging a pre-trained reg-
istration network and a probabilistic latent diffusion model in the latent motion
space guided by DENSE CMRs. Experimental results demonstrate that LaMoD
outperforms existing methods in motion prediction and strain generation accu-
racy. Our work has great potential to improve cardiac disease assessment based
on strain, as well as treatment planning without requiring additional DENSE
scans; hence ultimately improving patient care. Future work will focus on fur-
ther validating the model’s generalizability across diverse patient populations
and clinical environments.
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