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ABSTRACT 1 INTRODUCTION

Ensuring fairness in machine learning (ML) is vital, especially as
these models are increasingly used in socially critical financial
decision-making processes such as credit scoring, loan approvals,
and fraud detection. Fairness verification aims to provide formal
guarantees of fairness in ML models. In this work, we introduce
FairNNV, a tool that leverages the Neural Network Verification
(NNV) framework to verify individual and counterfactual fairness
using reachability analysis techniques. FairNNV introduces the
Verified Fairness (VF) score to quantify fairness. Additionally, we
compare the verification process of models before and after ap-
plying adversarial debiasing techniques to assess the impact of
bias mitigation. We demonstrate FairNNV’s effectiveness on sev-
eral fairness benchmark datasets, including Adult Census, German
Credit, and Bank Marketing, with a focused analysis on the impact
of adversarial debiasing on Adult Census classifiers. Experimental
results show differences between empirical fairness improvements
using adversarial debiasing and fairness verification scores with
FairNNV, indicating a need for integrating formal verification into
the evaluation process to guide model selections when assessing
fairness.
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Formal verification has become a tool in various high-stakes do-
mains, such as financial technology systems. Verification ensures
that systems operate correctly and safely under all possible condi-
tions by mathematically proving the correctness of the system’s
design. Formal verification techniques such as model checking, the-
orem proving, and abstract interpretation have been widely adopted
to guarantee the reliability of systems where failure could lead to
significant consequences. This includes applications in blockchain
protocols, smart contracts, and cryptographic protocols, with tools
like Imandra, Tamarin, and Mythril offering robust and comprehen-
sive validation of system correctness [7, 26, 27]. Formal verification
provides a level of assurance that traditional testing and validation
cannot. Unlike empirical testing, which can only examine a finite set
of scenarios, formal verification exhaustively explores all potential
system states, thereby offering a certification of correctness.

As artificial intelligence (AI) and machine learning (ML) increas-
ingly influence critical decision-making processes, ensuring these
models make equitable and fair decisions is paramount. Neural
networks (NNs), often utilized in high-stakes scenarios due to their
capacity to learn intricate patterns from data, pose significant chal-
lenges for verifying their behavior, particularly their fairness. In
domains such as finance, the judicial system, and healthcare, the
implications of biased Al systems are profound [3, 6]. NNs and Al
play a critical role in the financial domain, being utilized for tasks
such as credit scoring and loan approval. For instance, credit scor-
ing models assess the creditworthiness of individuals by analyzing
various financial data points, while loan approval systems deter-
mine the eligibility of applicants based on predictive algorithms [4].
Ensuring the fairness of these models is vital not only for regulatory
compliance but also for maintaining public trust and preventing
economic discrimination.

Currently, the predominant methods for designing and testing
the fairness of ML models rely on empirical approaches [23]. How-
ever, these approaches exhibit notable limitations. They lack formal
guarantees of fairness and remain vulnerable to the very biases
they seek to detect and mitigate. Although empirical methods offer
valuable insights, they fail to provide the level of assurance required
for socially critical applications [16].
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To address this gap, we present FairNNV!, which utilizes the
Neural Network Verification (NNV) tool created by [31] to formally
verify fairness for different classification models. Our approach
evaluates models based on definitions of individual and counterfac-
tual fairness and utilizes verification methods commonly applied in
adversarial robustness. FairNNV differs from other approaches that
use SMT solvers by utilizing reachability analysis. By leveraging
NNV and reachability analysis, FairNNV provides a Verified Fair-
ness (VF) score for models, offering a practical and reliable measure
of fairness within a reasonable time frame.

We apply FairNNV to several fairness benchmark datasets, in-
cluding Adult Census, German Credit, and Bank Marketing, with a
focused analysis on the impact of adversarial debiasing on Adult
Census classifiers. This approach allows us to assess how verifica-
tion performs before and after bias mitigation, providing insights
into the effectiveness of adversarial debiasing in improving model
fairness.

The contributions of our work are as follows:

(1) Leveraging the NNV tool to certify both individual and coun-
terfactual fairness of models.

(2) Providing a Verfied Fairness (VF) score to facilitate model
evaluation of fairness.

(3) Evaluating FairNNV on varying model architectures for the
Adult Census, German Credit, and Bank Marketing classifi-
cation tasks.

(4) Comparing the verification results of the original versus
debiased models after applying adversarial debiasing on the
Adult Census models.

2 FAIRNESS

In this section, we discuss the field of fairness in machine learning,
formalize the definitions for individual and counterfactual fairness,
and describe a key mitigation technique, adversarial debiasing.

2.1 Fairness Definitions

The concept of fairness in ML originates from legal and ethical stan-
dards, aiming to prevent biases and discrimination in automated
decisions. Translating these principles into mathematical formula-
tions for ML algorithms involves defining fairness in measurable
and enforceable terms. Fairness definitions in ML can be categorized
into group fairness and individual fairness. Group fairness ensures
similar outcomes across different groups, while individual fairness
ensures similar treatment for similar individuals. This research fo-
cuses on individual fairness and counterfactual fairness. Individual
fairness addresses fairness at the level of individual predictions,
making it a stronger notion than group fairness. Counterfactual
fairness evaluates fairness by considering hypothetical changes to
sensitive attributes and ensuring that predictions remain consistent.

2.1.1 Individual Fairness. Individual fairness, as defined by Kus-
ner et al. [21], states that an algorithm is fair if it gives similar
predictions to similar individuals.

Definition 2.1 (Individual Fairness). Formally, given a metric
d(-,+), if individuals i and j are similar under this metric (i.e., d(i, j)
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is small), then their predictions should be similar:
f/(X(i),A(i)) ~ )}(X(J'),A(j)) (1)

Where A is the set of sensitive attributes, X is the set of non-senstive
attributes, and Y is the output of interest.

For example, consider the Adult Census dataset, where the task is
to predict whether an individual’s income exceeds $50,000 per year.
Under individual fairness, two individuals with similar education,
work experience, and other non-sensitive attributes should receive
similar predictions about their income level, regardless of their
sensitive attributes like race or gender.

2.1.2  Counterfactual Fairness. Counterfactual fairness, as defined
by Kusner et al. [21], ensures that the prediction for an individual
remains the same in a hypothetical scenario where the individual’s
sensitive attributes are altered.

Definition 2.2 (Counterfactual Fairness). A predictor ¥ is counter-
factually fair for an individual i if given the non-sensitive attributes
X and sensitive attributes A, the predicted outcome Y is the same
regardless of the sensitive attribute value. Formally, this means:

Y(x®,a) = ¥(xD,a)
for any value a,a’ € Ast.a# d’.

Again, consider the Adult Census example. Suppose an individual
is predicted to earn over $50,000 a year. If we alter the individual’s
gender while keeping all other attributes the same, the model should
still predict the same income level if it is counterfactually fair.

2.2 Adversarial Debiasing

Various strategies have been proposed to mitigate and reduce bias
in machine learning models, categorized into pre-processing, in-
processing, and post-processing techniques. However, due to its
similarity to adversarial training for robustness verification, we
focus on adversarial debiasing in this study.

Adversarial debiasing is an in-processing technique for mitigat-
ing biases in machine learning models by incorporating adversarial
training methods. The goal is to reduce discrimination against sen-
sitive attributes such as race, gender, or age, thereby improving
fairness [22, 34].

Input Data

O A
@

[
©--00

Prediction Model
La

Liotar = Lp + ALy

Figure 1: The adversarial debiasing process where the predic-
tion model and the adversary model are trained together to
reduce bias in predictions.

The adversarial debiasing process, as illustrated in Figure 1, in-
volves the following steps:


https://zenodo.org/records/13910015

FairNNV: The Neural Network Verification Tool For Certifying Fairness

(1) Adversary Training: An adversary is trained to predict the
sensitive attribute A from the model’s intermediate predic-
tions Z, which is the output of the primary classification
model. The adversary’s objective is to detect biases in the
primary model’s predictions.

(2) Model Training: The primary model is trained to minimize
the total loss Liota] = Lp + AL4, where Lp is the primary loss
(e.g., classification error) and Ly is the adversarial loss. The
adversarial loss penalizes the primary model when the ad-
versary can successfully predict the sensitive attribute, thus
reducing the correlation between Z and A and mitigating
bias.

Adversarial debiasing provides a framework for addressing fair-
ness in machine learning models. However, empirical methods for
improving fairness are not always sufficient, as demonstrated by
[16]. Therefore, we can consider formal verification to quantify and
compare the effectiveness of these methods.

3 VERIFICATION

In this section, we introduce and formalize the necessary informa-
tion for defining verification. We discuss the problem domain and
the field of verification, particularly neural network verification.

3.1 Neural Networks

Neural Networks (NNs) are composed of neurons organized in
layers: an input layer, multiple hidden layers, and an output layer.
Formally, an NN model M : R® — R™ is defined by its layers
Ly, Ly, ..., Lg, where L; is the input layer with n neurons, and Ly, is
the output layer with m neurons. Each layer L; contains s neurons,
denoted as vil, viz, e vf.

In this research, we focus on fully connected networks, where

the value of each neuron 0{ in layer L; is computed as:

t J
Z Wijt 01+ bi)
t

Here, NL is a non-linear activation function, w;, j,t are the weights
connecting the t-th neuron in the (i — 1)-th layer to the j-th neuron

o/ =NL

in the i-th layer, and b{ is the bias associated with neuron U;.I . These
weights and biases are learned during the training phase and remain
constant in a trained NN. In our models, we specifically utilize the
ReLU activation function for the hidden layers and the Softmax
activation function for the output layer to facilitate multi-class
classification tasks.

3.2 Neural Network Verification

NN verification involves assessing whether a given NN model M :
R"™ — R™ satisfies a specific property P : R**™ — {T, F}. Formally,
the verification problem seeks to determine whether there exist
values x € R" and y € R™ such that both M(x) = y and P(x,y)
hold true. If such x and y can be found, the verification query (M, P)
is considered satisfiable (SAT), indicating that a counterexample
exists and the property P is falsified. Conversely, if no such x and
y exist, the query is deemed unsatisfiable (UNSAT), meaning the
property P is verified.
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There are many emerging approaches for neural network verifi-
cation, reflecting the growing need for formal guarantees of cor-
rectness. The VNN-COMP meta-report provides a comprehensive
overview of the first four years of the International Verification
of Neural Networks Competition (VNN-COMP) [11]. This compe-
tition highlights various tools and techniques developed for NN
verification, such as Reluplex [18], Alpha-Beta-CROWN [20], and
nnenum [5]. These approaches employ different methods, including
SMT solvers, abstract interpretation, and reachability analysis, to
verify neural network properties.

The NNV tool is a MATLAB-based application designed for the
formal verification of neural network models and is the focus of this
work. It verifies neural network specifications through sophisticated
reachability analysis techniques [31]. Unlike Alpha-Beta-CROWN,
which uses approximation techniques to bound neural network
properties, our approach with NNV performs exact reachability
analysis around input samples. This exact verification of the net-
work’s behavior in the specific region of interest provides sound
and complete guarantees that approximation-based methods can-
not offer. NNV supports a variety of neural network types, but we
focus on fully connected feed-forward neural networks in this work.
NNV uses star-set state-space representations and reachability al-
gorithms to assess specifications. The tool provides one of three
outcomes for each verification task: Holds, Violated, or Unknown.

3.2.1 Adversarial Robustness. A common domain for neural net-
work verification is evaluating whether neural networks exhibit
resilience to evolving adversarial threats. The resilience—or ro-
bustness—of the network is measured by validating a verification
property, such as ensuring that the classification accurately predicts
samples even when they are subjected to modifications, such as
adversarial attacks. The robustness property below can be used to
validate the network’s resilience to adversarial perturbations.

Definition 3.1 (Robustness Against Perturbations). Given a neural
network model that maps a benign input x to the output y and
produces an output y’ given an adversarial input x’, let || - ||, be the
function to calculate the L, norm distance. The robustness property
® against any adversarial perturbation within the scope of Ay is
defined as follows:

@ (ryxye) S (-], <€) = (y=v)

This means that if the distance between the benign input x and the
adversarial input x” is within a threshold €*, the outputs y and y’
should be identical. A classifier is said to be certifiably robust if,
for any input x, there is a guarantee that the classifier’s prediction
remains unchanged within a certain set around x [24].

We extend these concepts of adversarial robustness to the domain
of fairness verification. By modeling our fairness specifications af-
ter robustness verification criteria, we aim to ensure that neural
network models provide equitable decisions across different demo-
graphic groups. This involves defining and verifying properties that
reflect both individual and counterfactual fairness, modeled after
robustness properties in adversarial settings.
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4 APPROACH

In this section, we introduce our FairNNV approach for performing
fairness verification, which encompasses three main components.
First, we detail our fairness specifications, derived from the defi-
nitions for both individual and counterfactual fairness. Next, we
describe the FairNNV pipeline, outlining how we utilize the NNV
tool to verify fairness. Finally, we present the Verified Fairness (VF)
score, which quantifies the degree of fairness in models.

4.1 Specifications

4.1.1  Individual Fairness Specification. The model M is individually
fair if, for any two inputs x and x’ that are similar in their non-
sensitive attributes but differ in sensitive attributes, the outputs y
and y” should also be similar. Formally, this can be expressed as:

O (x,x", 4,4, €) déf(Xx - Xy < € ANAy € alter(Ay))
- y=y) ©)

Where X represents the set of non-sensitive attributes, and A
represents the set of sensitive attributes. The term Xy — X,» < €
indicates that the difference between the non-sensitive attributes
of inputs x and x” should be small, i.e., less than or equal to €. The
function alter(Ay) denotes the set of possible values obtained by
altering the sensitive attribute Ay. The outputs y and y’ are the
predictions of the model M for inputs x and x’, respectively.

For regression models, which are not the focus of this study,
the similarity between y and y’ is quantified by their numerical
difference being less than or equal to §. However, in this study, we
focus on classification models in which the similarity of y and ¢’ is
denoted by their belonging to the same class.

4.1.2  Counterfactual Fairness Specification. The model M is coun-
terfactually fair if, for any input x and its counterfactual x’, where
the non-sensitive attributes are identical but the sensitive attributes
are altered, the outputs y and y” should be the same. Formally, this
can be expressed as:

Oyr (x,x",y.y) def (Xx = Xy» =0 A Ay € alter(Ay))
- (y=yv) 3)

Where the term Xy — X, = 0 indicates that the non-sensitive
attributes of inputs x and x” are identical.

4.2 FairNNV

4.2.1 Verification Pipeline. The overview of the verification strat-
egy using the FairNNV tool is illustrated in Figure 2. The process
begins with ONNX files representing the trained neural network
models, which are fed into the NN Constructor within the Com-
putation Engine. The NN Constructor adapts the models to ensure
compatibility with the NNV framework, enabling them to be pro-
cessed for the verification task.

Once the models are adapted, the input samples are perturbed
to simulate individual fairness (IF) and counterfactual fairness (CF).
This process is similar to testing for adversarial robustness, where
the model is exposed to varying perturbations to assess its stability.
The perturbations enable FairNNV to evaluate whether the model
satisfies the specifications for CF and IF.

Tumlin et al.
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Figure 2: Verification pipeline of the FairNNV tool.

4.2.2  Counterfactual Fairness Perturbations. To test for counter-
factual fairness, we perturb the sensitive attributes (such as race
or sex) of a sample while keeping all other attributes unchanged.
Specifically, we alter the sensitive attribute to its complementary
value. For instance, if a sample is labeled as male, this feature is
changed to female before performing verification. The model is
considered fair if it produces the same output label both before and
after this alteration.

4.2.3 Individual Fairness Perturbations. To test for individual fair-
ness, we introduce slight perturbations to simulate small differences
between similar individuals. After altering sensitive attributes (such
as race or sex), slight perturbations € are applied to non-sensitive
numerical attributes, ensuring the samples remain similar within a
distance of €. The model is considered fair if it produces the same
output label both before and after this alteration.

Once the input perturbations are applied, the samples and models
are passed to the reachability solvers, which compute the reachable
sets, the set of all potential outputs the neural network can pro-
duce, given the input specifications. NNV utilizes exact reachability
analysis through its star-set-based solver. For a comprehensive
explanation of the underlying theory and methodology, we refer
readers to [30]. Star sets are an efficient and scalable set representa-
tion used in the formal verification of neural networks. They allow
more efficient computation of affine mappings and intersections
compared to polyhedra-based methods. The star-set method in
NNV enables the computation of exact reachable sets with sound
and complete guarantees.

Finally, the reachable sets are fed into the verifier, which com-
pares them against the predefined fairness specifications for IF
and CF. By evaluating the reachable sets, the verifier determines
whether the model violates any fairness properties. If violations
are detected, the model is flagged as not fair.

The final output from the verifier provides one of three results:

e Fair: The model satisfies the fairness specifications, i.e.,
drp A Ocp — fair

o Not Fair: The model violates the fairness specifications.
e Unknown: The verification could not be completed within
the given time constraints or computational limits.

4.3 Verified Fairness Score

We introduce the Verified Fairness (VF) score to measure the pro-
portion of inputs for which a model is certifiably fair according
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to our specifications. Like the Certifiable Robustness score in ro-
bustness verification, VF is calculated as the ratio of inputs from
the verification set that meet our fairness specifications to the total
number of samples. The VF score is defined as follows:

n . .
1 1 if CF A IF — fair
VF = — Z F; where F;= )
n & 0 otherwise

where n is the total number of samples in the verification set and
F; is an indicator function. F; equals 1 if FairNNV verifies that both
CF and IF are certified fair based on the specification properties of
CF and IF for the input x;, and 0 otherwise.

5 EXPERIMENT

In this section, we first outline the three datasets we use as bench-
marks. Then, we discuss the experimental setup used for collecting
the results presented in Section 6.

5.1 Benchmarks

For this study, we focused on three datasets: the Adult Census
Income, German Credit, and Bank Marketing datasets.

5.1.1 Adult Census. The Adult Census dataset [12] includes de-
mographic information from the 1994 U.S. Census. The task is to
predict whether an individual’s income exceeds $50,000 per year,
revealing potential biases in predictions based on race, gender, and
other sensitive features.

5.1.2 German Credit. The German Credit dataset [13] contains
financial and personal information about individuals applying for
credit. The task is to classify applicants as good or bad credit risks,
revealing fairness challenges in credit scoring that disproportion-
ately affect certain demographic groups.

5.1.3  Bank Marketing. The Bank Marketing dataset [25] comprises
information from a Portuguese bank, including demographic and
previous campaign data. The task is to predict whether a client will
subscribe to a term deposit, revealing potential biases in marketing
strategies and customer outreach.

For this research, we focus on gender as the primary sensitive
attribute for our experiments with the Adult Census and German
Credit models, and age for the Bank Marketing models. We selected
three models with varying architectures to evaluate the scalability
of the verification on various sizes of models. An overview of the
varying model architectures can be seen in Table 1. These models
were sourced from [9].

5.2 Experiment Setup

These experiments were conducted on a Dell OptiPlex 7050 (07A1)
with an Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz processor. Our
experiment pipeline involved several steps:

5.2.1 Model Training. We collect and train off-the-shelf models,
as described in [9]. The model training is implemented in Python
using TensorFlow. These models are then saved as ONNX files.

5.2.2  Adversarial Debiasing. To evaluate the effectiveness of ad-
versarial debiasing, we focus on the Adult Census models, similar
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Table 1: Model architectures for different classifiers.

Dataset Model Name #Layers #Neurons Accuracy(%)
Adult Census AC-1 3 26 84.69
AC-2 2 52 84.77
AC-3 3 202 84.53
German Credit GC-1 2 52 76.00
GC-2 2 102 74.66
GC-3 2 11 74.00
Bank Marketing BM-1 3 34 88.99
BM-2 3 20 88.83
BM-3 3 130 88.69

to the approach taken by [34]. We implement adversarial debias-
ing following the method outlined in the AIF360 toolkit [1]. To
achieve this, we incrementally adjust the hyperparameter A, aiming
to balance minimizing the classification loss and the adversarial
loss. Through this process, the model is trained to make predictions
that are less influenced by sensitive attributes, thereby enhancing
fairness. The adversarial training is also conducted in Python using
TensorFlow. The debiased models are subsequently saved as ONNX
files.

5.2.3 Fairness Results Collection. We collect fairness results from
both the original and debiased Adult Census models. Metrics such
as disparate impact (DI), equal opportunity difference (EOD), and
average odds difference (AOD) are calculated to evaluate fairness:
(1) Disparate Impact (DI): Measures the ratio of favorable out-
comes received by the unprivileged group to those received

by the privileged group:
P(Y=1A=
pr= 2 =14=0
P(Y=1]A=1)

where Y is the predicted outcome, and A is the sensitive
attribute with 0 and 1 representing the unprivileged and
privileged groups, respectively.

(2) Equal Opportunity Difference (EOD): Measures the dif-
ference in true positive rates (TPR) between the privileged
and unprivileged groups:

EOD = TPR(A = 1) — TPR(A = 0)

(3) Average Odds Difference (AOD): The average of the dif-
ferences in false positive rates (FPR) and true positive rates
(TPR) between the privileged and unprivileged groups:

AOD = % [(TPR(A = 1) — TPR(A = 0))+

(FPR(A = 1) — FPR(A = 0))]
These results are used to assess the impact of the adversarial debi-
asing process.

5.24  Fairness Verification. We utilize FairNNV to verify the mod-
els for individual fairness and counterfactual fairness. This verifi-
cation process is conducted using MATLAB. To test for counter-
factual and individual fairness, we modify the primary sensitive
attribute—gender for the Adult Census and German Credit models,
and age for the Bank Marketing models. Additionally, for individual
fairness, we perturb the similarity between individuals for various
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Figure 3: Verification of individual fairness across classifier models, demonstrating the Verified Fairness (VF) score for varying

perturbations of similarity € between samples.

values of € set to 0.02, 0.03, 0.05, 0.07, and 0.1. For each tested model,
the verification set consists of randomly selected samples from the
dataset. We evaluate all our models on 100 inputs. The average
time metric represents the average wall-clock time taken to verify
all 100 samples. We present our results for each model across the
various datasets.

5.2.5 Original vs. Debiased Results. Finally, we compare the orig-
inal and debiased Adult Census models based on the collected
accuracy results, VF scores, and total verification time to evalu-
ate the overall impact of the adversarial debiasing and verification
processes.

6 RESULTS

In this section, we present the results of our FairNNV approach.
First, we demonstrate the capability of our verification method
across the benchmark datasets: Adult Census, German Credit, and
Bank Marketing. Next, we evaluate the effectiveness of our adver-
sarial debiasing method. Finally, we compare the verification results
between the debiased models and their original counterparts.

6.1 Verification Results

To demonstrate the verification capability of our approach regard-
ing individual fairness, we show the VF scores for various models
across different similarity values (€) in Figure 3. As € increases,
VF scores decrease as expected, though some models demonstrate
a more gradual decline. For example, the German Credit models
maintain higher VF scores as the dissimilarity between individuals
increases, whereas the Adult Census models experience a more
pronounced reduction in VF scores as € increases.

For counterfactual fairness, Table 2 presents the VF percentages
and total verification times for each classifier model. The high
VF scores suggest that the models effectively maintain fairness
when only the sensitive attribute is altered. The verification process
remains computationally efficient, with fast verification times due
to the constrained perturbation space.

Table 2: Verification of counterfactual fairness across classi-
fier models, demonstrating the Verified Fairness (VF) score
and total verification time.

Dataset Model VF (%) Total Time (s)
AC-1 89.0 0.617
Adult Census AC-2 87.0 0.556
AC-3 88.0 0.681
GC-1 74.0 0.677
German Credit GC-2 77.0 0.839
GC-3 74.0 0.555
BM-1 89.0 0.633
Bank Marketing ~ BM-2 85.0 0.629
BM-3 84.0 0.686
—a= AC-1 "
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Figure 4: Verification of individual fairness across classifier
models, demonstrating the total verification time for varying
perturbations of similarity € between samples.
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Table 3: Improvements in fairness metrics and accuracy for each model after applying debiasing techniques, which are calculated
as the difference between the debiased and original metrics. Positive values signify improvements.

Model A Accuracy (%) A Disparate Impact

A Equal Opp. Diff. A Avg. Odds Diff.

AC-1 -0.28 0.148
AC-2 -0.27 0.104
AC-3 0.22 0.049

0.144 0.082
0.093 0.056
0.048 0.035

Figure 4 shows the total verification time for various models
across different € values when evaluating individual fairness. Verifi-
cation time increases with model complexity and €, ranging from a
few seconds to several minutes, with a hard timeout of 600 seconds
marking remaining samples as unknown.

These results show the feasibility of our verification approach
in assessing fairness across different models and datasets. The ob-
served trends in VF scores and verification times are consistent
with expectations and show that our method can efficiently assess
fairness while offering formal guarantees.

6.2 Adversarial Debiasing

To evaluate the effectiveness of adversarial debiasing, we present
our results in Table 3. In two out of three models, accuracy decreased
slightly after debiasing by 0.27% and 0.28%. This tradeoff between
fairness and accuracy is influenced by the hyperparameter A, which
balances the primary loss and adversarial loss.

Despite slight accuracy decreases, fairness metrics improved
across all models. Disparate impact showed the highest improve-
ment in AC-1 (0.148), indicating a more balanced prediction dis-
tribution. Equal opportunity difference also improved, with AC-1
showing the most significant gain (0.144), indicating more equi-
table true positive rates. Average odds difference improved in all
models, with AC-1 having the largest improvement (0.082), reflect-
ing reduced disparities in false positive and negative rates. These
improvements suggest that models are empirically less biased after
adversarial debiasing.

6.3 Original vs. Debiased Models

To evaluate the effectiveness of adversarial debiasing, we compared
the VF scores of the original models with those of the debiased
models. The verification results, illustrated in Figure 5, display the
VF scores across varying levels of similarity between individuals
when evaluating for individual fairness. While the empirical results
in Table 3 indicated improvements in fairness metrics after applying
adversarial debiasing, the verification results reveal a contrasting
outcome. As shown in Figure 5, the VF scores for the debiased
models are generally lower than those of the original models across
various € values. This discrepancy leads to a critical insight: al-
though adversarial debiasing may empirically enhance fairness
metrics, it does not necessarily ensure improved fairness under
formal verification.

We hypothesize on what could contribute to this discrepancy. In
[35], the authors demonstrate that adversarial training can suffer
from blind-spot vulnerabilities, where the model exhibits reduced
robustness for examples in low-density regions of the input space
that are not well covered by the training data. Similarly, adversarial
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Figure 5: VF scores for the original and debiased models
across varying € values, evaluating individual fairness. Solid
lines represent the original models, while dashed lines indi-
cate the debiased models.

debiasing might address fairness on observed data but fail to gener-
alize to inputs outside the dataset’s empirical distribution. Formal
verification with FairNNV evaluates the model’s behavior within
a bounded region around the input samples, including areas that
may not be represented in the training data, potentially uncovering
unfairness that empirical fairness metrics may not capture. Despite
these insights, there remains limited research on the limitations of
adversarial debiasing, particularly regarding its impact on fairness
beyond trade-offs with accuracy. Therefore, further investigation is
required to fully understand the theoretical foundations underly-
ing the observed discrepancy between improved empirical fairness
outcomes after adversarial debiasing and the corresponding lower
verification results.

Our results suggest that, despite showing empirical improve-
ments, these models are more prone to violating fairness speci-
fications. These findings highlight the importance of using for-
mal verification methods to inform model selection and fairness
mitigation strategies. Relying solely on empirical metrics may be
misleading, as they may not fully capture the underlying biases
within the models. Therefore, integrating formal verification into
the evaluation process ensures a more comprehensive assessment
of a model’s fairness, providing stronger assurances against biased
decision-making.
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6.4 Related Work

The field of fairness verification in neural networks is new but
growing, with varying approaches being developed to address dif-
ferent fairness definitions and measurement strategies. Sun et al.
[29] focus on probabilistic verification of group fairness by learning
Markov Chains from neural networks, enabling PAC-guaranteed
analysis and sensitivity assessments. Similarly, Albarghouthi et
al. [2] and Bastani et al. [8] employ probabilistic techniques, with
FairSquare and VeriFair providing rigorous verification of proba-
bilistic fairness properties. Xie et al. [33] introduce DeepGemini,
which uses state-of-the-art verification techniques to uncover dis-
criminatory samples and compute fairness scores. Their approach
is complemented by Biswas and Rajan’s [9] Fairify, an SMT-based
method that verifies individual fairness by leveraging interval arith-
metic and activation heuristics for efficient pruning.

Borca-Tasciuc et al. [10] propose techniques to prove fairness
using formal methods, focusing on reducing unfairness in neural
network models through proper training. Ruoss et al. [28] extend
this by introducing methods for learning certified individually fair
representations, ensuring proximity in latent spaces translates to
fairness in outputs. Khedr and Shoukry [19] develop CertiFair, a
verifier that checks global individual fairness properties of ReLU
neural network classifiers using distance-based similarity metrics.
John et al. [17] focus on individual fairness verification for struc-
tured data, constructing sound but incomplete verifiers for linear
and kernelized classifiers.

Urban et al. [32] propose a parallel static analysis approach for
certifying causal fairness in feed-forward neural networks. Ghosh
et al. [14, 15] introduce FVGM and Justicia, respectively. FVGM
uses Bayesian networks to encode feature correlations for accurate
fairness assessment, while Justicia employs a stochastic satisfiability
framework to verify various fairness metrics.

Our method utilizes reachability analysis techniques as opposed
to SMT solver techniques and evaluates two fairness definitions:
individual and counterfactual fairness. Furthermore, we provide
a fairness score (VF) to assist developers in selecting models that
meet their needs, offering a formal guarantee of fairness beyond
empirical checks. By applying the NNV tool in this domain, we
provide a rigorous and formal verification approach to assessing
fairness, offering insights that complement and enhance traditional
fairness evaluation methods.

7 LIMITATIONS AND FUTURE WORK

The issue of scalability is widespread in fairness verification liter-
ature, especially when evaluating the fairness of complex neural
networks. FairNNV’s scalability is limited during exact reachability
analysis, especially with ReLU-based networks. Our method relies
on star-set representations, providing sound and complete guaran-
tees. However, as the size of the network increases, it encounters
computational challenges. Each ReLU operation necessitates the
division of the input star set into active and inactive regions, re-
sulting in the exponential growth of the number of star sets in the
worst case—up to O(2N) for an N-neuron network, from Theorem
1in [30]. Although empirical results often show that the actual
number of star sets is smaller than this theoretical upper bound,
scalability remains a concern for larger models.

Tumlin et al.

To address this limitation, future work will explore the usage
of approximation techniques. Approximate reachability methods
offer a tractable solution for larger, more complex models [30].
We will analyze the trade-off between exact reachability methods
and approximation techniques in terms of computational time and
fairness guarantees, particularly as the complexity and size of the
networks increase, such as those employed in real-world financial
models.

Another limitation of our framework is the focus on perturbing
a single sensitive attribute during fairness verification. Future re-
search will extend the framework to incorporate multiple sensitive
attribute perturbations, enabling a more comprehensive analysis of
fairness among multiple sensitive features. Additionally, our empir-
ical analysis has been limited to a subset of fairness definitions. The
literature offers a diverse range of fairness metrics. Expanding our
evaluations to include these definitions will provide a more holistic
assessment of model fairness across various applications.

Furthermore, although adversarial debiasing has been employed
as a bias mitigation technique, our results reveal a discrepancy
between empirical improvements in fairness and those verified
through formal methods. This necessitates further investigation
into the effectiveness of adversarial debiasing and other mitiga-
tion techniques in conjunction with formal fairness verification.
Future research will compare various fairness mitigation methods
and evaluate their impact using FairNNV, refining strategies for
ensuring fairness in machine learning models.

In summary, future work will focus on extending FairNNV to ac-
commodate larger and more complex models, exploring additional
fairness definitions, investigating alternative debiasing techniques,
and analyzing the effects of perturbing multiple sensitive attributes.

8 CONCLUSION

Ensuring fairness in machine learning models is crucial, particularly
in high-stakes financial decision-making processes such as credit
scoring, loan approvals, and fraud detection. This paper introduces
FairNNV, a tool designed to provide formal verifications of fairness
using the NNV tool. By employing reachability analysis techniques,
FairNNV evaluates individual and counterfactual fairness and quan-
tifies fairness through the Verified Fairness (VF) score. Our results
demonstrate that while adversarial debiasing techniques can em-
pirically improve fairness metrics, they do not necessarily translate
into improved fairness under formal verification methods. The VF
scores for debiased models were generally lower than those of the
original models, highlighting the importance of formal verification
in guiding model selection and fairness mitigation techniques.
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