
The ARCH-COMP Friendly Verification
Competition for Continuous and Hybrid Systems

Alessandro Abate1, Matthias Althoff7, Lei Bu12, Gidon Ernst2, Goran Frehse3,
Luca Geretti11, Taylor T Johnson10, Claudio Menghi8,9 Stefan Mitsch6, Stefan

Schupp4, and Sadegh Soudjani5

1 University of Oxford, Alessandro.Abate@cs.ox.ac.uk
2 LMU Munich, Germany, gidon.ernst@lmu.de

3 ENSTA Paris, Institut Polytechnique de Paris, France, goran.frehse@ensta-paris.fr
4 TU Wien, Vienna, Austria, stefan.schupp@tuwien.ac.at

5 Max Planck Institute for Software Systems, Germany, sadegh@mpi-sws.org
6 DePaul University, Chicago, USA, smitsch@depaul.edu

7 Technical University of Munich, Munich, Germany, althoff@tum.de
8 University of Bergamo, Bergamo, Italy, claudio.menghi@unibg.it
9 McMaster University, Hamilton, Canada, menghic@mcmaster.ca

10 Vanderbilt University, Nashville, TN, USA taylor.johnson@vanderbilt.edu
11 University of Verona, Verona, Italy luca.geretti@univr.it

12 Nanjing University, Nanjing, Jiangsu, P.R. China, bulei@nju.edu.cn

Abstract. The workshop on Applied Verification for Continuous and
Hybrid Systems (ARCH) is an annual venue for researchers and practi-
tioners working on automated analysis and verification of hybrid systems.
ARCH-COMP is a friendly competition held with the ARCH event. The
competition was established in 2017 and aims to explore, document, and
push forward the state of the art in the field. It evaluates and compares
methods and tools for automated hybrid systems analysis and verifica-
tion on predefined benchmark problems. It is supported by an active
community around several categories of problems, including linear and
nonlinear systems, simulation-based and analytic methods, and models
from many application domains, such as automotive systems or neural
networks. This paper describes the format of the competition and its
organization. It documents the experiences and decisions from the current
and past editions of the competition and presents reflections and lessons
learned.

Keywords: hybrid systems · competition · tool evaluation
Website: https://cps-vo.org/group/ARCH/FriendlyCompetition

1 Introduction

The design of systems with continuous, real-valued quantities can be complicated
when hard constraints on their behaviors must be satisfied. For example, designing
a cruise controller to maintain the vehicle at target speed while avoiding collisions
is complicated due to event-based phenomena in the plant or the controller. Hybrid

https://cps-vo.org/group/ARCH/FriendlyCompetition

systems are a convenient modeling formalism to describe systems containing
continuous variables subject to event-based dynamics changes. A hybrid system
can model a cyber-physical system requiring a software controller to interact
with a physical plant to ensure hard constraints. Examples of hard constraints on
hybrid systems include assuring a minimum battery charge, maximum voltage
levels in an electrical grid, or adherence to security features like a dead man’s
switch. Formal verification is an approach to assess whether a design satisfies
hard constraints based on a mathematically rigorous analysis of a formal model
of the system. It has been successfully applied to software and hardware systems
since the 80s, and researchers have been developing verification techniques for
continuous and hybrid systems since the 90s.

Verifying continuous and hybrid systems is quite challenging: even reachabil-
ity is undecidable in many cases [76], and computing accurate solutions can be
prohibitively expensive. The absence of sharp theoretical bounds on the com-
putational time lends particular weight to experimental evaluations. Much of
the research has therefore gone into finding abstractions and heuristics with a
suitable trade-off between accuracy and computational cost such that problem
instances of practical interest can be handled. However, evaluating, assessing,
and comparing existing techniques raises several questions:

– Which problem instances are of practical interest, and how to find them?

– How much accuracy is really needed?

– How much computation is acceptable?

Answering these questions is challenging: The answers depend on the application
domain and the particular system, the specification to be verified, and the
available computation hardware. They also evolve as algorithms become more
sophisticated, computation hardware gets faster, and practitioners develop more
demanding problems. The goal of the ARCH workshop series and the ARCH-
COMP friendly competition is to provide such problem instances to researchers
and maintain a forum where the advantages and drawbacks of different approaches
can be assessed. This requires defining a fair way to execute tools on problem
instances and identifying instances suitable for different tools. The format and
organization of ARCH-COMP are intended to facilitate progress toward these
objectives and will be described in more detail in the next section.

This paper is structured as follows. Section 2 provides background information
on the principles of formal verification and how they apply to continuous and
hybrid systems. Section 3 describes the competition format and its organization.
Section 4 presents the different tracks of the competition. Section 5 describes
efforts towards repeatable experiments and results. Section 6 summarizes the
achievements of ARCH-COMP, our reflections, lessons learned, and outlook.

2

2 Verification of Continuous, Hybrid, and Stochastic
Systems

We summarize the principles of formal verification and how they apply to contin-
uous and hybrid systems. As we will see, several difficulties arise when moving
from the classic setting of finite state machines to a continuous time.

2.1 The Formal Verification Approach

A formal verification requires a model of the system and a formal description of
the specification. If the formal verification procedure terminates, it either

– claims that the system satisfies the specification, possibly providing a certifi-
cate such as an invariant or an interpolant;

– claims that the system violates the specification, often providing a witness
such as a counterexample;

– or returns “unknown”, typically because the runtime exceeds a given upper
bound.

In many verification competitions such as SV-COMP [29], participants submit
their software tools, and the organizers run them on a set of benchmarks unknown
a priori to the participants. The tools are evaluated by considering the correctness
of their verdicts, the number of problems handled in a given time frame, and the
overall runtime. To decide whether the result is correct, the problem instance
either has a result known by construction, has a result considered trustworthy
from a reference tool, or a referee tool checks whether the certificate or witness
can be validated.

Several problems arise when replicating this procedure with continuous and
hybrid systems as it is the goal in ARCH-COMP. Before discussing these problems,
we define what we mean by continuous and hybrid systems and their verification.

2.2 Continuous, Hybrid, and Stochastic Systems

Continuous systems. We consider continuous systems to be systems whose
state can be described by a vector x ∈ Rn, i.e., with n real-valued variables. In a
discrete-time system, the state evolves according to a function

xk+1 = f(xk, uk), x0 ∈ X0, uk ∈ U ,

where k represents time, X0 ⊆ Rn the set of initial conditions, and uk ∈ Rm

is exogenous to the system. This is sometimes described as a nondeterministic
input, but should not be confused with the notion of inputs in control systems.
The input uk is non-deterministically chosen from the compact set U ⊆ Rm. This
allows one to, e.g., model bounded disturbances or to account for the difference
between the dynamics function f(·) and the actual system. The specification is
considered to be satisfied if it is valid for all admissible sequences of uk. The
input u effectively turns the equation into an inclusion.

3

We consider continuous-time systems described by ordinary differential equa-
tions (ODEs) of the form

ẋ = f(x, u), x(0) ∈ X0, u(t) ∈ U ,

where t ∈ R≥0 represents time and whose solution is a trajectory x : R≥0 7→ Rn.
In some cases, trajectories may only be defined for a finite time horizon. The
type of system is named after the type of f . If f is linear in x and u, we speak of
a linear system, etc. As above, the input u effectively turns the equation into a
differential inclusion.
Hybrid systems. We consider hybrid systems modeled by extending finite state
automata with a continuous system in each discrete state. We highlight two
important aspects of this extension below, see [104] for the full definition:

– Trajectories within a discrete state must satisfy at all times a so-called staying
condition or invariant I associated with the discrete state, i.e., x(τ) ∈ I for
all time points τ ∈ [0, t] in the interval from 0 to time horizon t.

– Transitions from one discrete state to another are only allowed when the
continuous state x satisfies an associated guard condition G, i.e., x ∈ G. Note
that the system may nonetheless remain in the discrete state as long as its
staying condition is satisfied. A transition may instantaneously update the
continuous state according to its reset function.

The combined effect of staying and guard conditions is to introduce nondetermin-
ism in the timing of state changes. Such nondeterminism can abstract complex
or partially unknown real systems with crisp and clean formal models. However,
it can also make verifying such systems very difficult or even simulating them
numerically. The semantics of hybrid systems are given by executions, which are
sequences of trajectories associated with discrete states such that each trajectory
satisfies the staying condition and transitions (instantaneous state changes) satisfy
the guard conditions and reset functions. An alternative way of modeling hybrid
systems is with hybrid programs and hybrid games that mix discrete statements,
differential equations, and potentially adversarial dynamics in an imperative
programming language.

In the remainder of the paper, we will not distinguish between discrete and
continuous states (unless absolutely necessary) and use the symbol x to denote
the state of either continuous, discrete, or hybrid systems.
Stochastic systems. We consider stochastic systems that are affected by un-
certainty with known probability distributions. The system’s behavior can be
captured via a state vector x ∈ Rn, i.e., with n real-valued variables. In a discrete-
time stochastic system, the state evolves according to the stochastic difference
equation

xk+1 = f(xk, uk, wk), x0 ∈ X0, uk ∈ U , k = 0, 1, 2, . . . (1)

where k represents time, uk ∈ U is the input, and (w0, w1, w2, . . .) is a sequence
of independent and identically distributed (iid) random variables representing the

4

uncertainty affecting the evolution of the system. In a continuous-time stochastic
system, the state evolves according to the stochastic differential equation

dx = f(x, u)dt+ g(x, u)dWt, x0 ∈ X0, u ∈ U , (2)

where time changes continuously, u ∈ U is the input, f(x, u) is called the drift,
g(x, u) is called the diffusion, and Wt is the Brownian motion representing the
stochastic uncertainty.

Equations (1)-(2) represent the simplest structure of models studied in the
ARCH Stochastic Category. In general, the stochastic models could have the
following different features:

– The timeline could be discrete or continuous.
– The state space could be continuous or hybrid.
– The drift in the differential equation could be linear, piecewise linear, or

nonlinear.
– The noise could be Brownian motion or iid. The type of control actions

affecting the system could also be different. The control actions could appear
as switching signals, or changing the drift of the differential equation, or a
combination of these two cases.

2.3 Verification Problems

Most of the problem instances in ARCH-COMP can be characterized as safety
problems : Given a set of initial states X0 and a set of forbidden or unsafe states
F , check whether the state remains at all times outside of F . If the system is
unsafe, there exists an execution such that for some state x during this execution,
x ∈ F . We call such an execution a witness of the violation.

Safety properties can express complex properties (such as bounded liveness)
that can be encoded in a so-called observer automaton. An observer has an error
state that is reachable if (and only if) the property is violated. Setting F as this
error state, safety is equivalent to satisfying the property.

In the case of stochastic models, as those in Eqs. (1) and (2) above, the
verification problem is modified into finding the probability of satisfaction of
a temporal specification (such as, in the easiest instance, safety); or checking
whether such likelihood meets a user-defined threshold in the unit interval.

Set propagation, Reachability, and Model Checking. Reachability algorithms are
used to compute a finite representation of a set of states that cover all reachable
states; note that there are typically infinitely many reachable states in the dense
state space. This may be done similarly to that by which ODEs are solved
numerically, i.e., iteratively computing one-step successors. We call this process
set propagation, and it proceeds as follows: Starting from the set of initial states, a
successor set is computed that covers the next states over a given time interval or
over the next discrete transition. This process is repeated iteratively to generate,
in a tree-like fashion, sets that cover all reachable states. In principle, this tree can
be infinite because discrete transitions enter a cycle or continuous time diverges

5

(assuming we only cover finite time intervals in each step). However, if a set is
already covered by previously used initial sets, its successors do not need to be
computed again. If all sets are eventually covered, the tree can be finite even
though executions over infinite time and infinitely many transitions are covered.
Checking for cover by predecessors amounts to a fixed-point check and constitutes
a rudimentary form of model checking.

For all but the most simple dynamics, it is impossible to cover the solutions
of ODEs with a single computable set, even over small time intervals. Instead,
the cover is approximate, and the degree of overapproximation (ratio between
excess and total states covered) is difficult to quantify precisely, particularly in a
hybrid system. We call these covers approximate reach sets.

In the case of stochastic models, as those in Eqs. (1) and (2), general ver-
ification of temporally extended specifications boils down to computing state-
dependent likelihoods, namely computing the probability that trajectories, ini-
tialized anywhere in the state space, verify the given temporal specification. This
is attained via dynamic programming algorithms, namely leveraging Bellman
iterations.

Decision vs reach set approximation. In principle, the job of a verification tool
is to decide if the specification is satisfied. In continuous and hybrid systems,
the shape and size of the computed approximate reach sets contain plenty of
information about the system, and it is common for engineers to plot and inspect
them visually. Most verification tools can produce an approximate reach set as
part of the output, in addition to the satisfaction of the property.

Bounded vs unbounded problems. In software verification, it is common to dis-
tinguish between bounded and unbounded instances. The bound refers to the
number of discrete time steps (clock ticks) considered. In a hybrid system, we
must distinguish between two types of boundedness that are orthogonal and
sometimes confused in the literature:

– bounded time problems consider executions or trajectories whose total length,
measured by time (imagine a clock running in parallel to the system), do not
exceed a given bound,

– bounded transition problems consider executions with a bounded number of
discrete state changes.

In the above classification, the “bounded model checking” problems from software
verification are bounded transition problems. A bounded transition problem may
be unbounded in time. A bounded time problem can correspond to an unbounded
number of discrete transitions. Even in simple hybrid systems, a system may take
infinite discrete transitions in a bounded time interval since discrete transitions
are considered instantaneous in (discrete or continuous) time.

Some confusion can arise because the continuous trajectories are only approxi-
mated up to a given upper bound in time in most reachability algorithms. This is
for practical reasons: The trajectories are covered with sets, each covering a finite
time interval. Since only a finite number of sets can be computed, this limits

6

the time horizon to the sum of the finite time intervals. However, this limitation
can be sidestepped entirely if we admit an unbounded number of transitions.
The trick is simple: add a clock variable to the system and impose the staying
condition to include an arbitrary upper bound T > 0 on the clock, as well as
self-loop transitions to all discrete states (self-loops do not modify the discrete
state); let each self-loop reset the clock to zero. The augmented system thus
obtained has exactly the same behavior as the original system, except that the
clock ensures that the system does not remain in a discrete state longer than T
time before taking a transition. Therefore, it is sufficient to cover continuous-time
trajectories up to time T .

To summarize, most tools cover only bounded continuous time intervals
between discrete transitions. Many tools consider only bounded transitions, i.e.,
they do the equivalent of “bounded model checking”. All tools that can handle
unbounded numbers of transitions, e.g., through fixed-point checking, can also
handle problems that are unbounded in time.

Theorem proving. Unlike numerical reachability analysis tools, hybrid systems
theorem provers use logical reasoning to analyze fully symbolic and parametric
models with unbounded initial sets and for unbounded time. Depending on
the expressiveness of the underlying logics, hybrid systems theorem provers
can analyze safety properties, liveness properties, stability properties, and game
properties. Theorem provers attempt to construct proofs from axioms of programs,
differential equations, and arithmetic. Such proofs can typically be conducted
interactively, steered with tactics, or attempted fully automatically.

For differential equation analysis, instead of computing reachable sets nu-
merically, theorem provers often use invariant techniques, such as Lyapunov
functions and Barrier certificates, to prove that dynamics stay inside certain safe
regions. For liveness analysis, progress properties are used. Stability analysis can
be expressed as a combination of safety and liveness [168]. Highly trustworthy
theorem provers separate searching for such invariant properties from certifying
them from axioms, which enables the use of untrusted numerical procedures
during search; some theorem provers use invariant search directly as part of their
trusted code base or defer this task to the user. In addition to establishing cor-
rectness properties about models, auxiliary development tasks, such as stepwise
refinement [133], runtime monitoring [146], compilation of models to executable
code [35,92,167], and derivation of artifacts for machine learning [90,156], are
expressible in logic and supported by some theorem provers.

2.4 Synthesis Problems

Many of the previously mentioned systems exhibit non-determinism in the form
of uncertainty and/or control actions. For the analysis of stochastic systems, it is
relevant to resolve this non-determinism to analyze the system’s properties.

Different approaches, often referred to as schedulers, policies, or controllers,
exist to resolve non-determinism that affects the behavior of the resulting sys-
tem. For instance, stochastic schedulers resolve non-determinism according to

7

a given distribution. State-dependent schedulers, on the other hand, resolve
non-determinism based on the current system state. A richer class is given by
history-dependent schedulers, which incorporate not only the current state but
also past evolution to resolve non-deterministic choices.

In this setup, the synthesis problem demands a scheduler such that the
probability of satisfying a given specification is maximized, an expected total
cost is minimized, or an expected total reward is maximized.

Note that the synthesis problem is much more complex than the verification
problem since we search for optimal schedulers on a possibly uncountable func-
tional space. Therefore, formal and sound solutions are developed to synthesize
schedulers with correctness guarantees. The main challenges to consider include:
(a) the given specification to be checked on the model could have a finite or
infinite time horizon (characterizing the infinite-horizon behavior of the system
is more complicated than the finite-horizon behavior); (b) The required specifica-
tion could go beyond safety and reachability, which induces augmented hybrid
models with both continuous and discrete state components; (c) Resolving the
probabilistic non-determinism is difficult on the considered benchmarks since
the system could be influenced by Brownian motions and Poisson processes;
and (d) The evolution of the (augmented) system could be derived from both
deterministic and probabilistic equations.

In the case of stochastic models, as those in Eqs.(1) and (2), general synthesis
goals reduce to computing optimal policies using Bellman iterations - this is a
slight generalization of the approaches and algorithms for verification described
above.

2.5 Problem Instances

We distinguish three types of problem instances, each serving a different purpose:

– Toy problems mainly serve educational purposes. However, some, such as
the bouncing ball, showcase fundamental properties: How reach sets are
approximated, how the approximation error and the number of sets increase
with each transition, whether there’s a fixed-point check, etc. So, to experts,
certain toy problems can be quite representative and useful for developing
new software tools.

– Academic benchmarks serve to illustrate a particular aspect. For instance, a
parametric benchmark with varying numbers of discrete states can be useful
to compare different tools on this aspect.

– Industrial benchmarks ideally originate from actual design problems in appli-
cation domains. They constitute a Litmus test of whether tools can handle
problems of practical interest. However, they are hard to come by and can
be biased towards certain classes of problems. They also tend to be either
excessively hard or too easy for effective comparisons.

In ARCH-COMP, we use all three types of problem instances to assess tools on
a wide range of criteria, while also evaluating their capability to solve problems
of practical or industrial interest.

8

2.6 Inherent Challenges in Evaluating Results

When evaluating verification tools for continuous and hybrid systems in the spirit
of the formal verification approach outlined in Sect. 2.1 there are fundamental
and practical problems.

Undecidable Certificates. The role of certificates is to provide a way to check that
a system satisfies a property. In continuous and hybrid systems, even rudimentary
problems such as verifying an invariant in a single discrete state are generally
undecidable. Thus, checking the validity of a certificate can be as difficult as
checking the property itself. So far, we have not used certificates in ARCH-COMP.
However, we use visualizations of reach set approximations for sanity checks,
which can be considered a first step in this direction.

Missing Witnesses. A witness is a collection of data, e.g., an execution, that
allows one to check that a property is violated by a system. For continuous and
hybrid systems, this is problematic in a fundamental way. For all but the simplest
classes, trajectories can be described at best by transcendental functions, such
as exponential functions of time. The sequence of states that describe a witness
would almost surely involve irrational numbers. More practically speaking, a
witness produced by a verification can be refuted by a referee tool, but it rarely
can be confirmed as an actual execution of the system. Therefore, finding a cover
guaranteed to contain at least one solution can be helpful. However, no tool
currently outputs such a witness cover.

Differing Semantics. Various modeling and specification formalisms have been
proposed for continuous and hybrid systems. A survey from 2005 mentions no less
than five fundamentally different semantics for hybrid automata alone [87], and
other formalisms for hybrid systems abound [27]. While some differences are more
technical, others directly affect whether a problem instance can be effectively
characterized and the verification outcome. We have sometimes included different
variations, such as continuous-time and discrete-time instances, for inclusivity.
Similarly, the stochastic model category has seen the presence of very diverse
and semantically rich modeling formalisms and corresponding benchmarks that
are not always easy to adapt to other models.

Missing Exchange Format. Because of the multitude of different classes of models
and properties, there is no readily applicable way to specify problem instances in
a uniform manner. By way of a compromise, some tools have adopted a common
syntax based on the hybrid automaton formalism. Efforts to define interchange
formats have not seen widespread success [26]. De facto, each tool has its way
of specifying models and properties. This is particularly true in the instance of
stochastic models.

Hand-crafted Hyperparameters. Most verification algorithms involve many hyper-
parameters, such as the time step used for reach set approximation, parameters to

9

define set approximations (orders of zonotopes or Taylor models), and other ways
to abstract from or simplify representations of sets of behaviors. Some attempts
at automating the choice of hyperparameters have been made [21,175–179], but
in general, the proper way to use many tools remains expert knowledge that is
not easily obtained or widely disseminated.

3 Competition Format and Organization

The main objective of ARCH-COMP is to evaluate and compare different ap-
proaches across a set of benchmark problems. While performance measures such
as time and memory consumption are evaluated, we consider them secondary
to the test of whether participants can solve interesting problems – call it the
Olympic spirit if you like.

The competition is accompanied by a workshop, which provides a means to
propose and present benchmark problems and showcase tools in detail. The work-
shop maintains a curated benchmark repository, where models and specifications
are archived and can be updated where necessary. The accompanying discussions
occur in a public electronic forum associated with the workshop.

3.1 A Friendly Format

As we described in Sect. 2.6, we are confronted with many problem classes,
diverse solution methods, and a lack of unified interfaces and hyperparameters.
Consequently, we opt for the format of a friendly competition: Participants
create and select problem instances and can tune hyperparameters for each
instance before submitting their solution instances in a repeatability package.
This ensures that each tool is showcased under its most suitable configuration,
which is not necessarily the case when running with a default configuration or
when hyperparameters are chosen by the organizers instead.

We have two mechanisms to assure that solution instances are indeed true
solutions and not the result of cheating (which we never had) or the lucky result
of modeling or specification errors (of which we had several):
– Solution instances are accessible to other participants during the competition

and publicly archived afterward. An impressive performance is, therefore,
likely to provoke scrutiny by experts. This incentivizes participants to submit
solutions that can withstand such scrutiny over time.

– Problem instances can be designed to bracket the computed solutions. Take
a problem instance where the model satisfies the specification. A bracket
instance would be a slight modification of either the model or the specification
such that the specification is now violated. If a tool gives correct answers
for both bracket instances with the same set of hyperparameters, the tool’s
accuracy lies within the solution space left by the bracket instances. For some
classes of problems (like convex invariants), this could be formalized so that
correctly solving a set of bracket instances formally guarantees a given level
of accuracy of the tool. So far, we have not felt the need to take it to such a
formal level.

10

3.2 Organization and Schedule

The competition is divided into groups that address different problems and will
be described in more detail in Sect. 4. Each group is managed by a group leader,
who organizes discussion rounds and the joint writing of a final report for each
group. All decisions are taken by consensus. This decentralized organization
allows each group to develop rules and criteria suitable for their problems.

Each year, the competition follows the following schedule:

1. Following a public call for participation, participants register with a group.
2. The group meets to select problem instances and propose new ones. Groups

are encouraged to include benchmarks from the ARCH proceedings.
3. Participants submit preliminary results discussed in a second group meeting.

Difficulties and misunderstandings can be resolved in this phase, and surprise
performances can be discussed. If necessary, problem instances are refined or
clarified.

4. Participants submit their final solution instances in a repeatability package.
The evaluation chair runs all packages, and the resulting performance logs
are returned to participants. The packages are publicly archived.

5. Each group writes a final report, which includes descriptions of problem
instances, performance results, and a discussion of those results. The reports
are published in the ARCH proceedings.

6. The competition closes with a presentation by each group leader, given at
the ARCH workshop. The audience votes for a winning tool in each group
and casts a final vote for the overall most impressive result.

3.3 Artifacts and Results

Problem instances are described in natural language in the ARCH workshop
group reports or benchmark papers. Where possible, formal models for each
instance are also provided in an online repository in formats recognized by the
community [9].

Each participating tool deposits its artifacts for solving the problem instances
in the repository (program code or executables, scripts, configuration files, etc.)
and a script that runs each instance and provides the result in a given format.
Typically, the result is whether the specification is satisfied, not satisfied, or the
instance cannot be decided. This script is used in the repeatability evaluation,
which will be described in Sect. 5, and to measure the runtimes and memory
consumption.

Depending on the group and the problem instances, tools also produce ad-
ditional output, such as plots of reachable states. We have found this approach
helpful to gain further insight, e.g., when one tool unexpectedly outperforms
another, for quick and intuitive estimation of the precision of the results, and
as a sanity check for surprisingly good or bad performance. Where useful, such
plots are included in the group reports.

11

4 Thematic Groups of the Competition

The competition is organized by groups (tracks), which operate and report
independently since they address different problems and solution methods. Each
group tackles a different class of models (e.g., linear vs. nonlinear), methods
(reach set approximation vs. theorem proving), and objectives (verifying safety
vs. falsification). This section provides a summary related to each group of the
competition. For each group, we report its (i) goal, i.e., the problem addressed
by the track, (ii) benchmarks, i.e., the benchmark problems considered in the
competition; (iii) participants, i.e., the tools participating in the track; and
(iv) outcome, i.e., a description of the outcomes produced by each track across
the years. Table 1 reports the tools participating in each group for each year
of the competition. Table 2 reports the number of benchmarks considered for
each group and year. We do not report illustrative graphics for the results of
each group since the goal of this work is to provide general reflections about the
competition and not to discuss the results in detail. The reader can refer to the
corresponding group reports for this analysis.

4.1 Piecewise Constant Dynamics

Goal. In ARCH-COMP, we have a track PCDB for continuous and hybrid systems
with piecewise constant dynamics (HPCD) and bounded model checking (BMC)
of HPCD systems. The PCDB category concerns hybrid systems where in each
location (mode, piece of the hybrid state space), the dynamics are given by
a differential inclusion of the form ẋ(t) ∈ U , where U is a convex subset of
Rn. Specifically, the BMC task concerns the bounded model checking of HPCD
systems where the bound is described as the depth of the discrete jump of the
system. The verification specifications used in PCDB track focus on the (bounded)
reachability verification, e.g., whether two processes can be in the critical section
at the same time, or whether a vehicle can reach a specific dangerous position,
and so on. As the main techniques, implementations used by different checkers
vary from each other, the goal of the PCDB track is to present the landscape of
existing solutions in a breadth and showcase the current state of the art.

Benchmarks. The benchmark collection has evolved continuously with each
edition of the competiton [41,42,45–47,84–86]. Since HPCD and BMC are two
parallel tracks at the beginning, and merged to PCDB in the edition of 2020, the
benchmarks contain both unbounded and bounded specifications for each cases.
Most of the benchmarks are extendable, so that the models can be concretized
with different values of parameters to increase the difficulty of the problem in
the aspects of number of continuous variables, number of discrete locations, and
number of components in the system. Thus, the benchmarks can be used in the
evaluation of the efficiency, scalability of different tools.

Participants. Throughout the years, different checkers have joined the com-
petition, while not everyone of them participated every year. These tools are

12

Table 1: Tools participating in each group for each year of the competition

P
articip

atin
g

T
ools

C
ategory

2017
2018

2019
2020

2021
2022

2023

P
iecew

ise
C

on
stan

t
D

yn
am

ics

B
A

C
H

[43,44],
L
yse

[33],
P

H
A
V
er/SX

[82],
V
eriSiM

P
L

[6,7]. B
A

C
H

[43,44],
L
yse

[33],
P

H
A
V
er/SX

[82],
P

H
A
V
erLite

[25],
V

eriSiM
P

L
[6,7].

B
A

C
H

[43,44],
H

yC
O

M
P

[55],
L
yse

[33],
P

H
A
V
er/SX

[82],
P

H
A
V
erLite

[25],
V
eriSiM

P
L

[6,7]. B
A

C
H

[43,44],
P

H
A
V
er/SX

[82],
P

H
A
V
erLite

[25],
R

O
P

IC
A

L
[149],

X
Speed

[158].

N
/A

B
A

C
H

[43,44],
P

H
A
V
er/SX

[82],
P

H
A
V
erLite

[25],
SA

T
-

R
each

[158],
X

Speed
[158].

N
/A

L
in

ear
D

yn
am

ics
A

xelerator
[49]

C
O

R
A

[10]
F
low

*
[51]

H
yD

R
A

[161]
H

ylaa
[22]

SpaceE
x

[83]
X

Speed
[158]

C
O

R
A

[10]
C

O
R

A
/SX

[14]
C

2E
2

[74]
F
low

*
[51]

H
yD

R
A

[161]
H

ylaa
[22]

JuliaR
each

[31]
SpaceE

x
[83]

X
Speed

[158]

C
O

R
A

[10]
C

O
R

A
/SX

[14]
H

yD
R

A
[161]

H
ylaa

[22]
JuliaR

each
[31]

SpaceE
x

[83]
X

Speed
[158]

C
O

R
A

[10]
C

2E
2

[74]
H

yD
R

A
[161]

H
ylaa

[22]
H

ylaa-
C

ontinuous
[23]

JuliaR
each

[31]
SpaceE

x
[83]

X
Speed

[158]

C
O

R
A

[10]
H

yD
R

A
[161]

JuliaR
each

[31]
SpaceE

x
[83]

C
O

R
A

[10]
JuliaR

each
[31]

C
O

R
A

[10]
JuliaR

each
[31]

V
erse

[132].

N
on

lin
ear

D
yn

am
ics

C
O

R
A

[10]
F
low

*
[51]

Isabelle
/H

O
L

[109] C
O

R
A

[10]
C

O
R

A
/SX

[14]
C

2E
2

[74]
F
low

*
[51]

Isabelle
/H

O
L

[109]
Sym

R
each

[72]

A
riadne

[40]
C

O
R

A
[10]

D
ynIbex

[160]
F
low

*
[51]

Isabelle
/H

O
L

[109]
JuliaR

each
[31]

A
riadne

[40]
C

O
R

A
[10]

D
ynIbex

[160]
F
low

*
[51]

Isabelle
/H

O
L

[109]
JuliaR

each
[31]

A
riadne

[40]
C

O
R

A
[10]

D
ynIbex

[160]
JuliaR

each
[31]

K
aa

[125]

A
riadne

[40]
C

O
R

A
[10]

D
ynIbex

[160]
JuliaR

each
[31]

K
aa

[125]
K

eY
m

aera
X

[89]

A
riadne

[40]
C

O
R

A
[10]

D
ynIbex

[160]
JuliaR

each
[31]

K
eY

m
aera

X
[89]

V
erse

[132].

A
IN

N
C

S
N

/A
N

/A
N

N
V

[136,170],
Sherlock
[63–65],
V

erisig
[112,113],

N
N

V
[136,170],

O
V

E
R
T

[164],
R

eachN
N

*
[75,

106],
V
enM

A
S

[8].

JuliaR
each

[31],
N

N
V

[136,170],
V

erisig
[112,113],

C
O

R
A

[10,126],
JuliaR

each
[31],

N
N

V
[136,170],

P
O

L
A

R
[105].

C
O

R
A

[10,126],
JuliaR

each
[31],

N
N

V
[136,170].

S
toch

astic
M

od
els

N
/A

B
arrier

[114],
FA

U
S
T

2
[166],

F
IR
M

−
G
D
T
L

[131],
M
o
d
est

[103],
S
D
C
P
N
&
IP
S

[71],
S
R
each

T
o
o
ls

[172].

FA
U
S
T

2
[166],

H
Y
P
E
G

[153],
L
yap

M
M
C

[159],
M
o
d
est

[103],
S
D
C
P
N
&
IP
S

[71],
S
R
each

T
o
o
ls

[172],
S
to
cH

y
[50],

S
yS

C
o
R
e

[102].

A
M
Y
T
IS
S

[129],
FA

U
S
T

2
[166],

h
p
n
m
g

[108],
M
asco

t-S
D
S

[140],
M
o
d
est

[103],
P
ro
b
R
each

[163],
S
D
C
P
N
&
IP
S

[71,138],
S
R
each

T
o
o
ls

[172],
S
to
cH

y
[50].

A
M
Y
T
IS
S

[129],
F
IG
A
R
O

[36,37],
h
p
n
m
g

[108],
H
Y
P
E
G

[153],
M
asco

t-S
D
S

[139,140],
M
o
d
est

[103],
P
ro
b
R
each

[163],
P
yC

A
T
S
H
O
O

[53],
S
D
C
P
N
&
IP
S

[71,138],
S
R
each

T
o
o
ls

[172],
S
to
cH

y
[50],

S
yS

C
o
R
e

[101].

F
IG
A
R
O

[36,37],
H
Y
P
E
G

[153],
M
o
d
est

[103],
R
ealyS

t
[58],

P
yC

A
T
S
H
O
O

[53],
S
D
C
P
N
&
IP
S

[71,138],
S
yS

C
o
R
e

[101].

H
Y
P
E
G

[153],
P
ro
b
R
each

[163],
R
ealyS

t
[58],

S
yS

C
o
R
e

[171].

F
alsifi

cation
S-T

aL
iR

o
[19].

S-T
aL

iR
o

[19],
FalStar

[70].
B

reach
[61],

FalStar
[70],

falsify
[181],

S-T
aL

iR
o

[19].

A
R

IsT
E

O
[142],

B
reach

[61],
falsify

[181],
FalStar

[70],
S-T

aL
iR

o
[19],

zlscheck
[183].

A
R

IsT
E

O
[142],

B
reach

[61],
FalC

A
uN

[173],
falsify

[181],
FalStar

[70],
ForeSee

[182],
S-T

aL
iR

o
[19],

zlscheck
[183].

A
R

IsT
E

O
[142],

FalC
A

uN
[173],

falsify
[181],

FalStar
[70],

ForeSee
[182],

S-T
aL

iR
o

[19],
Ψ

-T
aLiR

o
[169].

A
R

IsT
E

O
[142],

A
T

heN
A

[78],
FalC

A
uN

[173],
ForeSee

[182],
N

N
Fal[151],

ST
G

E
M

[152],
S-T

aL
iR

o
[19],

Ψ
-T

aL
iR

o
[169].

H
y
b
rid

S
y
s-

tem
s

T
h
eo-

rem
P

rovin
g

N
/A

K
eY

m
aera

X
[89],

K
eY

m
aera

3
[155],

H
H

L
P

rover[174] K
eY

m
aera

X
[89],

K
eY

m
aera

3
[155],

H
H

L
P

rover[174] K
eY

m
aera

X
[89],

K
eY

m
aera

3
[155],

H
H

L
P

rover[174],
H

ybridV
C

s
[150] K

eY
m

aera
X

[89],
H

H
L

P
rover[174] K

eY
m

aera
X

[89],
H

H
L

P
rover[174],

H
H

L
P

y
[162],

IsaV
O

D
E

s
[79]

K
eY

m
aera

X
[89],

H
H

L
P

rover[174],
H

H
L
P

y
[162],

IsaV
O

D
E

s
[79]

13

Table 2: Number of benchmark models considered for each group and year

Number of benchmark Models
Category 2017 2018 2019 2020 2021 2022 2023

Piecewise Constant Dynamics 5 5 5 6 N/A 6 N/A

Linear Dynamics 3 6 6 8 9 9 8

Nonlinear Dynamics 3 4 4 6 5 6 6

AINNCS N/A N/A 5 7 7 10 10

Stochastic Models N/A 5 4 7 10 6 2

Falsification 1 1 6 7 7 6 7

Hybrid Systems Theorem Prov-
ing

N/A 139 169 214 214 220 221

using different techniques, e.g. SMT encoding and solving based, polyherdal
based geometric computation, support function based verification, and so on.
Past participant tools in this category in alphabetical order are BACH [43,44],
HyCOMP [55], HyDra [161], Lyse [33], PHAVer/SX [82], PHAVerLite [25], SAT-
Reach [158], SpaceEx [83], TROPICAL [149], VeriSiMPL [6,7] , XSpeed [158].

Outcome. In the evaluation reports, we can see the size of individual automata
that can be solved has increased significantly. It will be an important topic to
evaluate whether existing methods/tools can handle large compositional system
efficiently. Besides of the evaluation results, the PCDB track has achieved a
stable benchmark set in a well recognized format of models.

4.2 Continuous and Hybrid Systems with Linear Dynamics

Goal. While there exists an analytical solution for piecewise constant dynamics,
the solution of linear systems can be computed exactly in some specific cases only,
e.g., when all eigenvalues are real or imaginary [128]. However, linear dynamics
can be considered the most straightforward dynamics besides piecewise constant
dynamics because the superposition principle can be used, the homogeneous
solution can be computed analytically using the matrix exponential, and the
convexity of reachable sets of points is preserved in time. This makes it possible
to use convex set representations and compute the reachable set without the
wrapping effect [99]. Because the verification of purely linear systems is already
fairly well understood, the goal of this track is to assess how to scale the computa-
tion using order reduction methods with formal error bounds and decomposition
techniques [11, 23, 32]. The verification of hybrid systems with linear dynamics is
much less understood. While novel ideas have already been proposed to solve
the problem of precise and scalable guard intersection [16,20, 98], benchmarking
different concepts for guard intersections is a primary goal. Finally, a further goal
is to evaluate fully automatic verification processes as proposed, e.g., in [175,177].

14

Benchmarks. Over the years, we have added more challenging benchmarks while
some easy benchmarks have been removed [12–15,17, 18]. In particular, we have
added high-dimensional problems with up to one million state variables and
removed low-dimensional ones, such as the building benchmark with 48 state
variables. In general, the number of continuous state variables for hybrid systems is
much lower than for purely continuous systems due to the difficulty of computing
precise and scalable guard intersections. In the 2023 edition, three benchmarks
were purely continuous, while five were hybrid. The hybrid benchmarks cover cases
where guards trigger the discrete transitions and where the discrete transition
changes can happen arbitrarily.

Participants. So far, eleven tools have participated in this category. All tools
essentially use some form of reachability analysis. Past participating tools in
this category in alphabetical order are Axelerator [49], CORA [10], C2E2 [62],
Flow* [51], HyDRA [161], Hylaa [22], Hylaa-Continuous [23], JuliaRech [31],
SpaceEx [83], Verse [132], and XSpeed [158].

Outcome. By comparing the results in the yearly competitions, each tool could
improve more than without the gained insights. The number of state variables
that can be considered today is several orders of magnitude larger than what we
could verify in the competition’s first edition (2017). Some verification results are
now automatically obtained, which was realized for the first time in 2023. Besides
these scientific achievements, several achievements regarding the reproducibility
of results have been pioneered in this category. This includes using the same
modeling format for all benchmarks (SpaceEx model definition), Docker files for
executing all results and fully automatically evaluating Docker files on the same
server to better compare computation times.

4.3 Nonlinear Dynamics

Goal. As opposed to piecewise constant and linear systems, nonlinear differential
systems do not have an analytical solution and the superposition principle is not
applicable. As a result, in the numerical case, an (over-)approximated solution is
typically computed. Given the nonconvexity of sets in general, set representation
is particular important. Specifically, how to provide a finite polynomial approxi-
mation that introduces a small remainder for rigorous analysis. Currently, Taylor
polynomials [28] are the most commonly used representation for the enclosure of
nonlinear sets, although there has been some work on Bernstein polynomials in
recent years [57]. Given the sensitivity of those approximations to the problem
at hand, lately some work has been done in automating numerical reachability
parameters [93,179].

Since the majority of the tools in this category fall into the numerical approach,
the main goal is to show improvements in the ability to represent the finite-time
reachable set as tightly as possible within reasonable computation times. While
most of the problems with nonlinearity are associated to continuous evolution,
hybrid evolution also introduces its own challenges. Nonlinear guards and their

15

intersections are not trivially understood, with respect to varying concavity and
the difficulty to handle tangential crossings. Consequently, a secondary goal has
been to capture those critical cases and evaluate how to effectively address them.

Benchmarks. The benchmarks suite has steadily evolved over the years [52,94–
97, 110, 111]. The general policy for choosing benchmarks is to allow as many
tools as possible to return an answer to the corresponding verification problem.
Given the mixed numerical and symbolic approaches used, this objective can be
particularly daunting. As a result, some benchmarks have been adapted across
the years to become more/less challenging based on average progress from the
existing participants or the presence of new participants. To explicitly manage
this versioning, all benchmarks are currently identified by a four letter contraction
of the name followed by two digits representing the most recent year they were
updated.

Recently, there has been a greater effort in two specific directions: addressing
inherent issues with numerical stability (on the continuous side) and assessing the
quality of sets after transitions (on the hybrid side). Since 2020, out of the average
six benchmarks, two are specifically hybrid to deal with transverse crossings
(LOVO21) and large sets crossings (SPRE22), respectively.

Participants. Throughout the years, 12 different tools joined the competition.
Most tools had a purely numerical approach, with a minority using symbolic
approaches. Typically there have been 6 participants each year. Past participating
tools in this category in alphabetical order are Ariadne [40], C2E2 [62], CORA [10],
CORA/SX [14], DynIbex [160], Flow* [51], Isabelle/HOL [109], JuliaReach [31],
Kaa [125], KeYmaera X [89], SymReach [72] and Verse [132].

Outcome. The interaction between research groups that was solicited from the
competition (during it and outside of it) produced improvements in many tools
across the years. While there has been no particular focus on increasing the
number of variables handled, combinations of dynamics and large initial sets
originally not addressable progressively became the standard for verification.
There is still a significant amount of work to be done on numerical tools to
support some categories of transitions necessary to analyze hybrid systems. On
the other side, some symbolic tools were not originally designed to work with
hybrid dynamics either, requiring extra effort to support the existing benchmarks.

4.4 Artificial Intelligence and Neural Network Control Systems
(AINNCS)

Goal. Autonomous systems increasingly incorporate artificial intelligence (AI)
and machine learning components, such as neural networks (NNs), for various
sensing/measurement and control tasks ranging from perception, sensor fusion,
planning, and feedback control. Control theory, particularly in the intelligent
control area, investigated significantly the usage of neural networks as feedback
controllers. This category primarily considers such neural network control systems

16

(NNCS), where a feedback control policy is designed and implemented as a
neural network providing input to some plant, the latter of which is modeled as
differential equations or hybrid systems. Specifications considered have been safety
properties (invariants) and some limited reachability properties. The category was
first held in 2019 [137] and has been held annually since then [123,124, 134, 135],
with varying participants over the years.

Benchmarks. The benchmarks have varied over the years of the competition. Most
benchmarks consist of a continuous-time and continuous-state plant modeled
using linear or nonlinear ODEs, with properties—mostly safety—defined as
predicates over the state-space of the plant model. Most of the plant models have
been of low dimensionality, with around two to ten state variables. Typically, the
neural network controller generates inputs for the plant model periodically, in a
sample-and-hold fashion, so the control input produced by the neural network is
applied to the plant for the entire control period. Most controllers have consisted of
fairly small (orders of tens to hundreds) of neurons, mostly with ReLU activation
functions. A few benchmarks have varied from this typical structure, with some
in discrete time.

Participants. The participating tools have varied over the years of the AIN-
NCS category. The tools that have participated in the AINNCS category in any
year since 2019 are (in alphabetic order): COntinuous Reachability Analyzer
(CORA) [10,126], JuliaReach [31], NNV (Neural Network Verification Tool) [136,
170], Sherlock [63–65], POLAR [105], OVERT [164], ReachNN* [75,106], Ven-
MAS [8], and Verisig [112, 113]. One tool has participated in every iteration
(NNV), and several tools have participated in two or more iterations (CORA,
JuliaReach, POLAR/ReachNN*, and Verisig).

Outcomes. The AINNCS category has led to several outcomes in the verification
of systems controlled by neural networks. The first major contribution is the
support of this new research area and community for verification of hybrid and
continuous systems that use AI components, where now nine verification tools
have participated over the years. The next significant contribution is the curation
of a set of around a dozen challenging benchmarks now, that have been used
within the community in the development of new methods, for comparisons and
motivation of new challenges. Within this has been standardization effort for
the representation of the neural network controllers, specifically in the ONNX
format, along with representation of the plant models in interchange formats.
Another outcome is the identification of significant challenges in this space, for
example, the scalability in both the sizes of the neural network controllers and
the plant dimensionality currently are fairly low, and motivate the development
of further scalable verification methods and effective abstractions that are not
overly conservative. There are many such challenges to address for the AINNCS
category in future iterations of the competition that we hope to continue in the
next iterations of ARCH-COMP.

17

4.5 Stochastic Models

Goal. Approaches and tools in the ARCH stochastic category aim to verify and
synthesize systems that combine discrete, continuous, and stochastic behavior.
In this context, verification tries to answer questions about the probability of
reachability and other specifications. An example of such specifications is to check
whether “the probability to reach a subset of the state space A where variable
x ≥ 3 holds is larger than 0.8.” Such specifications are encoded appropriately in
formal specification languages. Furthermore, part of this category is dedicated
to solving synthesis problems, i.e., finding a suitable resolution of existing non-
determinism such that a given specification (as before) is satisfied. Apart from
evaluating tools, each year the participants of the category decide on a goal
that serves the community such as categorizing and classifying benchmarks or,
more recently, the development of a set of toy examples in different modeling
formalisms that each participating tool can solve.

Benchmarks. The set of benchmarks as described in previous reports [1–5]
incorporates eleven systems from different communities, which have been collected
by the participants over the years. Several benchmarks are also known from other
communities but have been extended by including stochastic behaviors. Others
come from an industrial application, e.g., from energy systems, robotics, or
healthcare. As the approaches and goals of the participating tools vary, the
collection of benchmarks exhibits a diverse set of challenges such that there is
currently no tool that can solve all benchmarks.

Participants. Up to this day, 15 tools have participated in this category. While
not every approach participated every year, on average five tools have taken
part in the event. Furthermore, we have hosted various experts from the field,
taking part in the bi-weekly meetings and contributing to discussions. Tools
that participate are based on a diverse set of theoretical approaches, such as
abstraction-based methods, simulation relations, coupled stochastic relations,
statistical model checking, rare event simulation, kernel-embedding methods, and
approaches based on reachability computation (stochastic extension of classic
reachability analysis for hybrid system). We refer the reader to the paper [130]
for a survey on the theoretical developments of these approaches on formal verifi-
cation and synthesis of stochastic systems. Past participating tools in the ARCH
stochastic category in alphabetical order are AMYTISS [129], FAUST2 [166],
Figaro [38], hpnmg [108], HYPEG [153], Mascot-SDS [139], modes [48], Pro-
bReach [163], prohver [80], PyCATSHOO [54], RealySt [58], SDCPN&IPS [30],
SReachTools [172], StocHy [50], and SySCoRe [171].

Outcome. Over the years, apart from benchmark evaluation, the ARCH stochastic
category has fostered a lively exchange on community-relevant topics that has
resulted in several initiatives besides the main goal of the competition. One central
aspect in this regard has been the discussion of different modeling paradigms
for stochastic systems, how to represent a given system within these modeling

18

paradigms, and whether an interchange/exchange format could be developed, as
done earlier for other models. This overall goal, however, is arguably harder than
in other categories, in view of the semantical richness and diversity of stochastic
(and additionally hybrid) modeling frameworks.

4.6 Falsification

Goals. It targets the black-/greybox analysis of executable models considering
requirements expressed in temporal logic with time bounds, encoded in metric
temporal logic (MTL [127]) or signal temporal logic (STL [141]) over a finite
time horizon. The participants need to find initial conditions and time-varying
inputs subject to certain constraints that steer the system into a violation of the
respective requirement. The goal is to compare how quickly tools find witness
signals for such violations, and moreover to compare the statistical variability in
these results, since many approaches are stochastic.

Benchmarks. As described in past reports [59, 60, 66–69], the benchmark set
has been growing continuously and encompasses seven system models, including
some well-known models in the automotive domain that have been widely used
in the literature [115]. Each comes with a number of requirements, comprised
of a definition of the search space of input signals, as well as the temporal logic
formula to be falsified. The models encompass a variety of difficulties, such as
nonlinear or discontinuous behavior, and large search spaces.

Participants. The participants typically rely on simulation-based approaches and
employ quantitative metrics [73,81] to measure how close a given input is to violat-
ing a requirement (“robustness semantics”). Research in this area has produced a
variety of techniques, mature tools, and practical applications; these are described
in overview survey articles [24,56]. More recently, approaches based on system
identification have participated, which first learn a surrogate model of the behav-
ior, over which the falsification problem is easier to solve. Past participants of the
competition include ARIsTEO [142], ATheNA [78], Breach [61], FalCAuN [173],
ForeSee [182], NNFal [151], STGEM [152], falsify [181], FalStar [70], S-TaLiRo [19],
Ψ -TaLiRo [169], and zlscheck (based on Zélus [39]).

Outcome. The falsification category has achieved a stable benchmark set that is
gradually becoming a standard in the falsification literature. Moreover, recently
a validation step [66] has been introduced to detect any discrepancies between
tools, simulation environments, model versions, and experimental setup; all major
such issues have been found and fixed. This increases trust in the empirical
comparison, which is available now for a wide range of tools as a reference.

4.7 Hybrid Systems Theorem Proving

Scope and Goals. The characteristic feature of the hybrid systems theorem proving
category is its emphasis of programming languages as structuring principles for

19

hybrid systems. The unambiguity and precision of program language semantics
paves the way for mathematical rigor of logical reasoning principles. Typical
approaches in this category perform deduction based on a program logic for hybrid
systems and hybrid games, such as differential dynamic logic (dL [154]) or Hybrid
Hoare Calculus [100]. Unlike other categories in the competition, hybrid systems
theorem proving uses fully symbolic, non-deterministic, parametric models, and
focuses on infinite-time verification from unbounded starting states. As a result,
the proofs in this category typically identify fundamental design characteristics of
the analyzed models, such as loop invariants and invariant properties of differential
equations. The examples vary in scale from basic hybrid programs to industrial
case studies, such as verification of collision avoidance in autonomous ground
vehicles. The correctness specifications in this category express necessity (safety,
programs only reach safe states), eventuality (liveness, programs eventually reach
goal states), and winning strategies (games, one of the competing players wins).
Future extension to stability [168] is planned.

Benchmarks. The competition benchmark set includes common design shapes at
a small scale to test theorem proving base functionality, nonlinear and parametric
continuous models to assess the continuous reasoning capabilities, hybrid games,
and full-scale hybrid systems case studies, each in three modes:

– fully automatic verification without any additional input beyond the original
hybrid system and its safety specification (in particular, without any proof
scripts or other parametrization of the proof procedures);

– semi-automatic verification from design insights that are annotated to the
original problem specification, allowing users to communicate specific advice
about the system such as loop invariants;

– proof checking from proof scripts, which perform a significant part of the
verification or provide problem-specific proof tactics.

Recent editions of the benchmarks in this category [144, 147, 148] use select
examples to make a more detailed side-by-side comparison of modeling features
and verification approaches.

Participants. Benchmark examples in this category are written in differential
dynamic logic [154] which has axioms and an unambiguous semantics available
in Isabelle/HOL and Coq [34], and in KeYmaera 3 [155] and KeYmaera X [89].
If known, the benchmark examples come with proof hints for semi-automatic
verification and proof scripts for proof checking. A tutorial on the modeling
principles in differential dynamic logic can be found in [157], whereas details
on the ASCII syntax are in [145]. From this common format, participating
tools translate benchmark examples into their own input syntax. Participants in
this category included KeYmaera X [89] with Pegasus invariant generator [165],
Bellerophon tactic script language [88], implicit definitions of functions [91],
and implicit and explicit proof management [143]; IsaVODEs [79, 107]; HHL
Prover [174], and HHLPy [162].

20

Outcome. One of the benefits of hybrid systems theorem proving is its trans-
parency in terms of human-inspectable proofs or disproofs that justify why a
hybrid systems model does or does not satisfy the desired properties. Many
significant theorem proving results (in general, not only for hybrid systems) were
obtained with manual guidance to find such proofs, which highlights another
benefit: even if fully automated tools may get stuck, theorem proving with manual
guidance can still make progress. For benchmarking purposes, however, this poses
a challenge when it comes to comparing the reasoning performance of hybrid
systems theorem provers.

For full performance comparison transparency, the hybrid systems theorem
proving category introduced the automated mode, in which tools are required to
find proofs in their default configuration automatically without hints from a user.
In automated mode, the number of solved examples and their duration reflect the
capabilities that tools provide to novice users or users that focus on modeling,
but not on proving. A challenge related to proof automation is proof portability:
since tools generally integrate a mix of proof search techniques whose use is
typically balanced with timeouts, the compute power of a machine searching and
checking a proof may influence whether or not a proof can be found (for example,
a proof search heuristic may succeed within its default timeout on one machine,
but abort with a timeout on a lesser machine).

Naturally, even as automation made significant advances over the course of
the competition, the number of proofs found fully automated remained lower
than in interactive or hints mode, since better automation lets users become more
efficient in doing manual proofs. The number of solved examples and the tactic
script lengths in hints and interactive mode are indicative of the state-of-the-art
performance and the user effort necessary to achieve such results.

In summary, theorem proving is a complementary technique to reachability
analysis that can find concise, easily checkable, and human-interpretable cor-
rectness proofs with significantly lower computation time [96]. Progress in case
studies of significant size is achievable with human guidance. Recent competi-
tion instances additionally introduced a qualitative side-by-side comparison of
modeling features, semantic similarities and differences, and proof examples to
provide better intuition about the mechanics of modeling and conducting proofs
in different theorem proving systems.

5 Repeatability

Repeatability aims to enable the replication of results and experiments on the
same (or another platform) and provides additional evidence of the validity of
the results. The submission and collection of the benchmarks, execution scripts,
installation scripts, and corresponding instructions may provide the capability
for future researchers to build upon and reuse these computational results for
other purposes, for instance, in comparisons in research papers.

The competition makes significant efforts to ensure the repeatability of the
experiments. Each iteration of the competition has had a repeatability evaluation

21

process to validate the results of the participants in the different categories, the
specific details of which may be found in each iteration’s repeatability evaluation
report [116–122]. The general repeatability process and its goals are similar to
artifact and repeatability evaluations done in some computer science conferences
over the past decade or so (see e.g. [180]), to enhance trust and validity of
computational results and make available computational artifacts that support
claims and conclusions made through research papers and reports. The process
has evolved over the years, initially beginning with a significant manual effort, to
near full automation in the most recent iterations of the competition.

Generally, the evaluation has been led primarily by the evaluation chair (Taylor
Johnson), who installed and reran the tools on the benchmarks across all the
categories, using artifacts provided by the participants through the centralized
repository [9]. In the early years, this process was performed by providing
installation scripts for the tools as well as execution scripts for the benchmarks,
which were then installed on a virtual machine and executed on a laptop, requiring
a significant amount of manual effort (around an hour per tool to install and
then execute the benchmarks). The process evolved to require Docker files to
be submitted so that Docker containers could be built automatically, then with
batch execution scripts for all the benchmarks for a given tool in a given category.
With the Dockerized setup, the manual intervention typically required around a
day of effort to set everything up and start batch execution, with typically around
a week of total time required for execution of all benchmarks across all categories.
Once standardized with the Dockerized execution, we typically have run our
experiments on an Amazon Web Services (AWS) Elastic Compute Cloud (EC2)
g4dn.4xlarge machine with an Intel Xeon Scalable (2nd Generation Cascade Lake),
16 vCPUs, 2.5 GHz base, (AWS/EC2 custom chip, roughly Xeon Gold 5200
Series with 24 physical cores) and 64GB RAM. On this platform, the execution
runtimes in a given category varied depending on the benchmarks, with some
typically completing in seconds with others requiring hours of execution. Further
improvements include executing all tools across all the supported benchmarks
in each category, along with some collection of performance metrics (runtime,
verification result where applicable, etc.).

6 Overall Achievements and Outlook

Since 2017, the series of friendly ARCH-COMP competitions has matured and
gained some routine around the yearly schedule. The event enjoys a steady
popularity around an active community. New teams with new approaches and
tools enter the competition yearly, while categories become more firmly established.
For example, for the falsification group, the number of tools participating in the
competition (see Table 1) increased from one tool (2017) to eight tools (2021
and 2023). Thanks to theoretical advances and tool improvements, the scale of
treatable problems has increased by several orders of magnitude, e.g., in the
categories for piecewise continuous, linear, and non-linear categories. In some

22

instances, the insights gained by investigating the results of the competition
played an important role.

All groups have worked to increase the number and diversity of the available
benchmarks. For example, for the falsification group, the number of benchmark
models (see Table 2) increased from one model (2017) to seven models (2020,
2021, and 2023). They are now collected in a central, shared repository for easier
access [9]. These benchmarks are regularly used in publications for evaluating new
approaches, improving the relevance of such experiments and the comparability
across different publications. ARCH-COMP has also gained some visibility in the
industry, tools are increasingly applicable to industrial products, and some con-
tributions to the associated workshop are closely related to the competition. For
example, recent work [77] enables the use of falsification-based testing techniques
with Test Sequence and Test Assessment Blocks, i.e., Simulink blocks commonly
used by industrial practitioners to test their models.

Progress has also been made for the concerns of fair evaluation, as discussed
in section 2.6: Many groups have established standard formats for problem
specifications and exchange formats for witnesses, which increases trust in the
results. Similarly, the efforts towards complete repeatability of the evaluation,
presented in section 5, are progressing with each installment of ARCH-COMP.
Most groups now have automated at least some aspects of this process.

While the competition has seen a lot of progress over the years, some chal-
lenges remain. In some categories, fully automating the repeatability evaluation
requires other issues to be resolved first, such as standardizing input and witness
formats. Due to the diversity and complexity of methods and problems, this, in
turn, will require further theoretical and technical advances complemented by im-
plementation work. This is in particular more evident in the Stochastic Category
due to the large differences between the class of models and problem formulations
on these models. This category is pushing activities on theoretical analysis of
stochastic models, developing new tools based on these advances, moving towards
an interchange format of stochastic models, and importing minimal case studies
where methods developed for different model classes can be compared. With its
collaborative spirit, the friendly ARCH-COMP competition will do its best to
nurture discussions and collaborations that help to tackle these challenges in the
rich and rewarding field of continuous and hybrid systems.

Acknowledgements

We are grateful to all the participants in all the iterations of ARCH-COMP. In
addition, we gratefully acknowledge financial support by the project TRAITS,
funded by the German Federal Ministry of Education and Research under grant
number 01IS21087 and by the French Agence Nationale de Recherche under grant
number ANR-21-FAI1-0005-01. Some material presented in this paper is based
upon work supported by the National Science Foundation (NSF) through grant
numbers 2028001, 2220401, and 2220426, the Defense Advanced Research Projects
Agency (DARPA) under contract number FA8750-23-C-0518, and the Air Force

23

Office of Scientific Research (AFOSR) under contract number FA9550-22-1-0019
and FA9550-23-1-0135.

References

1. Abate, A., Blom, H., Bouissou, M., Cauchi, N., Chraibi, H., Delicaris, J., Haesaert,
S., Hartmanns, A., Khaled, M., Lavaei, A., Ma, H., Mallik, K., Niehage, M., Remke,
A., Schupp, S., Shmarov, F., Soudjani, S., Thorpe, A., Turcuman, V., Zuliani, P.:
Arch-comp21 category report: Stochastic models. In: International Workshop on
Applied Verification of Continuous and Hybrid Systems (ARCH21). EPiC Series in
Computing, vol. 80, pp. 55–89. EasyChair (2021). https://doi.org/10.29007/dprv

2. Abate, A., Blom, H., Cauchi, N., Degiorgio, K., Fraenzle, M., Hahn, E.M., Haesaert,
S., Ma, H., Oishi, M., Pilch, C., Remke, A., Salamati, M., Soudjani, S., van
Huijgevoort, B., Vinod, A.: ARCH-COMP19 category report: Stochastic modelling.
In: International Workshop on Applied Verification of Continuous and Hybrid
Systems (ARCH19). EPiC Series in Computing, vol. 61, pp. 62–102. EasyChair
(2019). https://doi.org/10.29007/f2vb

3. Abate, A., Blom, H., Cauchi, N., Delicaris, J., Hartmanns, A., Khaled, M., Lavaei,
A., Pilch, C., Remke, A., Schupp, S., Shmarov, F., Soudjani, S., Vinod, A., Wooding,
B., Zamani, M., Zuliani, P.: Arch-comp20 category report: Stochastic models. In:
International Workshop on Applied Verification of Continuous and Hybrid Systems
(ARCH20). EPiC Series in Computing, vol. 74, pp. 76–106. EasyChair (2020).
https://doi.org/10.29007/mqzc

4. Abate, A., Blom, H., Cauchi, N., Haesaert, S., Hartmanns, A., Lesser, K., Oishi,
M., Sivaramakrishnan, V., Soudjani, S., Vasile, C.I., Vinod, A.P.: ARCH-COMP18
category report: Stochastic modelling. In: International Workshop on Applied Veri-
fication of Continuous and Hybrid Systems (ARCH18). EPiC Series in Computing,
vol. 54, pp. 71–103. EasyChair (2018). https://doi.org/10.29007/7ks7

5. Abate, A., Blom, H., Delicaris, J., Haesaert, S., Hartmanns, A., van Huijgevoort,
B., Lavaei, A., Ma, H., Niehage, M., Remke, A., Schön, O., Schupp, S., Soudjani,
S., Willemsen, L.: ARCH-COMP22 Category Report: Stochastic Models. vol. 90,
pp. 113–141. EasyChair (2022). https://doi.org/10.29007/LSVC

6. Adzkiya, D., Abate, A.: VeriSiMPL: Verification via biSimulations of MPL models.
In: International Conference on Quantitative Evaluation of Systems. Lecture Notes
in Computer Science, vol. 8054, pp. 253–256. Springer (2013)

7. Adzkiya, D., Zhang, Y., Abate, A.: VeriSiMPL 2: An open-source software for the
verification of max-plus-linear systems. Discrete Event Dynamic Systems 26(1),
109–145 (2016). https://doi.org/10.1007/s10626-015-0218-x

8. Akintunde, M.E., Botoeva, E., Kouvaros, P., Lomuscio, A.: Formal verification of
neural agents in non-deterministic environments. In: International Conference on
Autonomous Agents and Multiagent Systems, AAMAS. pp. 25–33 (2020)

9. et al., G.F.: ARCH-COMP repository of benchmark models, documentation, and
repeatability packages. https://gitlab.com/goranf/ARCH-COMP

10. Althoff, M.: An introduction to CORA 2015. In: Workshop on Applied Verification
for Continuous and Hybrid Systems. p. 120–151 (2015)

11. Althoff, M.: Reachability analysis of large linear systems with uncertain inputs in
the Krylov subspace. IEEE Transactions on Automatic Control 65(2), 477–492
(2020)

24

https://doi.org/10.29007/dprv
https://doi.org/10.29007/dprv
https://doi.org/10.29007/f2vb
https://doi.org/10.29007/f2vb
https://doi.org/10.29007/mqzc
https://doi.org/10.29007/mqzc
https://doi.org/10.29007/7ks7
https://doi.org/10.29007/7ks7
https://doi.org/10.29007/LSVC
https://doi.org/10.29007/LSVC
https://doi.org/10.1007/s10626-015-0218-x
https://doi.org/10.1007/s10626-015-0218-x
https://gitlab.com/goranf/ARCH-COMP

12. Althoff, M., Bak, S., Bao, Z., Forets, M., Frehse, G., Freire, D., Kochdumper, N., Li,
Y., Mitra, S., Ray, R., Schilling, C., Schupp, S., Wetzlinger, M.: ARCH-COMP20
category report: Continuous and hybrid systems with linear continuous dynamics.
In: International Workshop on Applied Verification of Continuous and Hybrid
Systems. EPiC Series in Computing, vol. 74, p. 16–48 (2020)

13. Althoff, M., Bak, S., Cattaruzza, D., Chen, X., Frehse, G., Ray, R., Schupp, S.:
ARCH-COMP17 category report: Continuous and hybrid systems with linear
continuous dynamics. In: International Workshop on Applied Verification for
Continuous and Hybrid Systems. p. 143–159 (2017)

14. Althoff, M., Bak, S., Chen, X., Fan, C., Forets, M., Frehse, G., Kochdumper, N., Li,
Y., Mitra, S., Ray, R., Schilling, C., Schupp, S.: ARCH-COMP18 category report:
Continuous and hybrid systems with linear continuous dynamics. In: International
Workshop on Applied Verification for Continuous and Hybrid Systems. p. 23–52
(2018)

15. Althoff, M., Bak, S., Forets, M., Frehse, G., Kochdumper, N., Ray, R., Schilling, C.,
Schupp, S.: ARCH-COMP19 category report: Continuous and hybrid systems with
linear continuous dynamics. In: International Workshop on Applied Verification
of Continuous and Hybrid Systems. EPiC Series in Computing, vol. 61, p. 14–40
(2019)

16. Althoff, M., Krogh, B.H.: Avoiding geometric intersection operations in reachability
analysis of hybrid systems. In: Hybrid Systems: Computation and Control. p. 45–54
(2012)

17. Althoff, M., Ábrahám, E., Forets, M., Frehse, G., Freire, D., Schilling, C., Schupp,
S., Wetzlinger, M.: ARCH-COMP21 category report: Continuous and hybrid
systems with linear continuous dynamics. In: International Workshop on Applied
Verification of Continuous and Hybrid Systems. vol. 80, p. 1–31 (2021). https:

//doi.org/10.29007/lhbw, https://easychair.org/publications/paper/81BS
18. Althoff, M., Forets, M., Schilling, C., Wetzlinger, M.: ARCH-COMP22 category

report: Continuous and hybrid systems with linear continuous dynamics. In:
International Workshop on Applied Verification of Continuous and Hybrid Systems.
EPiC Series in Computing, vol. 90, p. 58–85. EasyChair (2022). https://doi.org/
10.29007/mmzc, https://easychair.org/publications/paper/b6cN

19. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: A tool
for temporal logic falsification for hybrid systems. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. pp. 254–257.
Springer (2011)

20. Bak, S., Bogomolov, S., Althoff, M.: Time-triggered conversion of guards for
reachability analysis of hybrid automata. In: International Conference on Formal
Modelling and Analysis of Timed Systems. p. 133–150 (2017)

21. Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source transformation and
translation tool for hybrid automaton models. In: Proc. of the 18th International
Conference on Hybrid Systems: Computation and Control (2015)

22. Bak, S., Duggirala, P.S.: HyLAA: A tool for computing simulation-equivalent
reachability for linear systems. In: Proc. of the 20th International Conference on
Hybrid Systems: Computation and Control. p. 173–178 (2017)

23. Bak, S., Tran, H.D., Johnson, T.T.: Numerical verification of affine systems with
up to a billion dimensions. In: Proc. of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control. p. 23–32 (2019)

24. Bartocci, E., Deshmukh, J.V., Donzé, A., Fainekos, G., Maler, O., Nickovic, D.,
Sankaranarayanan, S.: Specification-based monitoring of cyber-physical systems:

25

https://doi.org/10.29007/lhbw
https://doi.org/10.29007/lhbw
https://doi.org/10.29007/lhbw
https://doi.org/10.29007/lhbw
https://easychair.org/publications/paper/81BS
https://doi.org/10.29007/mmzc
https://doi.org/10.29007/mmzc
https://doi.org/10.29007/mmzc
https://doi.org/10.29007/mmzc
https://easychair.org/publications/paper/b6cN

A survey on theory, tools and applications. In: Lectures on Runtime Verification,
Lecture Notes in Computer Science, vol. 10457, pp. 135–175. Springer (2018).
https://doi.org/10.1007/978-3-319-75632-5_5

25. Becchi, A., Zaffanella, E.: A direct encoding for NNC polyhedra. In: Computer
Aided Verification. pp. 230–248. Springer (2018)

26. van Beek, D.A., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.: Concrete syntax
and semantics of the compositional interchange format for hybrid systems. IFAC
Proceedings Volumes 41(2), 7979–7986 (2008)

27. Bemporad, A.: Efficient conversion of mixed logical dynamical systems into an
equivalent piecewise affine form. IEEE transactions on Automatic Control 49(5),
832–838 (2004)

28. Berz, M., Makino, K.: Performance of taylor model methods for validated inte-
gration of odes. In: Applied Parallel Computing. State of the Art in Scientific
Computing. pp. 65–73. Springer (2006)

29. Beyer, D.: Competition on software verification and witness validation: SV-COMP
2023. In: TACAS (2). Lecture Notes in Computer Science, vol. 13994, pp. 495–522.
Springer (2023)

30. Blom, H.A., Ma, H., Bakker, G.B.: Interacting particle system-based estimation of
reach probability for a generalized stochastic hybrid system. IFAC-PapersOnLine
51(16), 79–84 (2018)

31. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach:
A toolbox for set-based reachability. In: Proc. of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control. p. 39–44 (2019). https:
//doi.org/10.1145/3302504.3311804

32. Bogomolov, S., Forets, M., Frehse, G., Viry, F., Podelski, A., Schilling, C.: Reach
set approximation through decomposition with low-dimensional sets and high-
dimensional matrices. In: Proc. of the 21st International Conference on Hybrid
Systems: Computation and Control. p. 41–50 (2018)

33. Bogomolov, S., Frehse, G., Giacobbe, M., Henzinger, T.A.: Counterexample-guided
refinement of template polyhedra. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 589–606. Springer
(2017)

34. Bohrer, R., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differen-
tial dynamic logic. In: CPP. pp. 208–221. ACM (2017)

35. Bohrer, R., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: Veriphy: verified
controller executables from verified cyber-physical system models. In: ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2018. pp. 617–630 (2018). https://doi.org/10.1145/3192366.3192406

36. Bouissou, M., Houdebine, J.: Inconsistency detection in KB3 models. ESREL 2002
(2002)

37. Bouissou, M., Houdebine, J., S., H.: Reference manual of the Figaro probabilistic
modelling language (2019)

38. Bouissou, M., Khan, S.: Bridging the dependability and model checking worlds.
In: Congrès Lambda Mu 23 «Innovations et maîtrise des risques pour un avenir
durable»-23e Congrès de Maîtrise des Risques et de Sûreté de Fonctionnement,
Institut pour la Maîtrise des Risques (2022)

39. Bourke, T., Pouzet, M.: Zélus: A synchronous language with ODEs. In: Inter-
national Conference on Hybrid Systems: Computation and Control (HSCC). pp.
113–118 (2013)

26

https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/3192366.3192406

40. Bresolin, D., Collins, P., Geretti, L., Segala, R., Villa, T., Gonzalez, S.v.: A
Computable and Compositional Semantics for Hybrid Automata. In: International
Conference on Hybrid Systems: Computation and Control. HSCC, ACM (2020)

41. Bu, L., Abate, A., Adzkiya, D., Mufid, M.S., Ray, R., Wu, Y., Zaffanella, E.: ARCH-
COMP20 category report: Hybrid systems with piecewise constant dynamics and
bounded model checking. In: International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH20). EPiC Series in Computing, vol. 74,
pp. 1–15. EasyChair (2020)

42. Bu, L., Frehse, G., Kundu, A., Ray, R., Shi, Y., Zaffanella, E.: ARCH-COMP22
category report: Hybrid systems with piecewise constant dynamics and bounded
model checking. In: International Workshop on Applied Verification of Continuous
and Hybrid Systems. EPiC Series in Computing, vol. 90, pp. 44–57. EasyChair
(2022)

43. Bu, L., Li, Y., Wang, L., Chen, X., Li, X.: BACH 2 : Bounded reachability checker
for compositional linear hybrid systems. In: Design, Automation and Test in
Europe (DATE). pp. 1512–1517 (2010)

44. Bu, L., Li, Y., Wang, L., Li, X.: BACH : Bounded reachability checker for linear
hybrid automata. In: Formal Methods in Computer-Aided Design (FMCAD).
pp. 1–4 (2008)

45. Bu, L., Ray, R., Schupp, S.: ARCH-COMP17 category report: Bounded model
checking of hybrid systems with piecewise constant dynamics. In: ARCH17. Inter-
national Workshop on Applied Verification of Continuous and Hybrid Systems,
collocated with Cyber-Physical Systems Week (CPSWeek). EPiC Series in Com-
puting, vol. 48, pp. 134–142. EasyChair (2017)

46. Bu, L., Ray, R., Schupp, S.: ARCH-COMP18 category report: Bounded model
checking of hybrid systems with piecewise constant dynamics. In: ARCH18. Inter-
national Workshop on Applied Verification of Continuous and Hybrid Systems.
EPiC Series in Computing, vol. 54, pp. 14–22. EasyChair (2018)

47. Bu, L., Ray, R., Schupp, S.: ARCH-COMP19 category report: Bounded model
checking of hybrid systems with piecewise constant dynamics. In: ARCH19. Inter-
national Workshop on Applied Verification of Continuous and Hybrid Systems,
part of CPS-IoT Week. EPiC Series in Computing, vol. 61, pp. 120–128. EasyChair
(2019)

48. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical
model checker for nondeterminism and rare events. International journal on
software tools for technology transfer 22(6), 759–780 (2020)

49. Cattaruzza, D., Abate, A., Schrammel, P., Kroening, D.: Unbounded-time analysis
of guarded LTI systems with inputs by abstract acceleration. In: Static Analysis.
p. 312–331 (2015)

50. Cauchi, N., Abate, A.: StocHy: automated verification and synthesis of stochastic
processes. In: International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS) (2019)

51. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Proc. of Computer-Aided Verification. p. 258–263. LNCS 8044,
Springer (2013)

52. Chen, X., Althoff, M., Immler, F.: Arch-comp17 category report: Continuous
systems with nonlinear dynamics. In: International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems. EPiC Series in Computing, vol. 48, pp.
160–169. EasyChair (2017). https://doi.org/10.29007/v6g4

27

https://doi.org/10.29007/v6g4
https://doi.org/10.29007/v6g4

53. Chraibi, H., Houbedine, J., Sibler, A.: PyCATSHOO: Toward a new platform
dedicated to dynamic reliability assessments of hybrid systems. In: 13th Interna-
tional Conference on Probabilistic Safety Assessment and Management (PSAM
13). Seoul, Korea (2016)

54. Chraibi, H., Houbedine, J., Sibler, A.: Pycatshoo: Toward a new platform dedicated
to dynamic reliability assessments of hybrid systems. In: PSAM congress (2016)

55. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: An SMT-Based Model
Checker for Hybrid Systems. In: TACAS. pp. 52–67 (2015)

56. Corso, A., Moss, R.J., Koren, M., Lee, R., Kochenderfer, M.J.: A survey of
algorithms for black-box safety validation of cyber-physical systems. J. Artif. Intell.
Res. 72, 377–428 (2021). https://doi.org/10.1613/jair.1.12716

57. Dang, T., Testylier, R.: Reachability analysis for polynomial dynamical systems
using the bernstein expansion. Reliable Computing 17 (12 2012)

58. Delicaris, J., Schupp, S., Ábráham, E., Remke, A.: Maximizing Reachability
Probabilities in Rectangular Automata with Random Clocks. In: Theoretical
Aspects of Software Engineering (TASE). LNCS, Springer (2023), accepted for
publication

59. Dokhanchi, A., Yaghoubi, S., Hoxha, B., Fainekos, G.: ARCH-COMP17 cate-
gory report: Preliminary results on the falsification benchmarks. In: ARCH17.
International Workshop on Applied Verification of Continuous and Hybrid
Systems. pp. 170–174. EPiC Series in Computing, EasyChair (2017). https:

//doi.org/10.29007/wmf5

60. Dokhanchi, A., Yaghoubi, S., Hoxha, B., Fainekos, G., Ernst, G., Zhang, Z.,
Arcaini, P., Hasuo, I., Sedwards, S.: ARCH-COMP18 category report: Results on
the falsification benchmarks. In: ARCH18. International Workshop on Applied
Verification of Continuous and Hybrid Systems. pp. 104–109. EPiC Series in
Computing, EasyChair (2018). https://doi.org/10.29007/t85q

61. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Proc. of Computer-Aided Verification. p. 167–170 (2010)

62. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: A verification tool
for stateflow models. In: Tools and Algorithms for the Construction and Analysis
of Systems. p. 68–82 (2015)

63. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: ACM International
Conference on Hybrid Systems: Computation and Control, HSCC. pp. 157–168
(2019). https://doi.org/10.1145/3302504.3311807

64. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Learning and verification of
feedback control systems using feedforward neural networks. IFAC-PapersOnLine
51(16), 151 – 156 (2018). https://doi.org/10.1016/j.ifacol.2018.08.026, iFAC
Conference on Analysis and Design of Hybrid Systems ADHS 2018

65. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep
feedforward neural networks. In: NASA Formal Methods. pp. 121–138. Springer
(2018)

66. Ernst, G., Arcaini, P., Bennani, I., Chandratre, A., Donzé, A., Fainekos, G., Frehse,
G., Gaaloul, K., Inoue, J., Khandait, T., Mathesen, L., Menghi, C., Pedrielli, G.,
Pouzet, M., Waga, M., Yaghoubi, S., Yamagata, Y., Zhang, Z.: ARCH-COMP 2021
category report: Falsification with validation of results. In: International Workshop
on Applied Verification of Continuous and Hybrid Systems (ARCH21). pp. 133–152.
EPiC Series in Computing, EasyChair (2021). https://doi.org/10.29007/xwl1

28

https://doi.org/10.1613/jair.1.12716
https://doi.org/10.1613/jair.1.12716
https://doi.org/10.29007/wmf5
https://doi.org/10.29007/wmf5
https://doi.org/10.29007/wmf5
https://doi.org/10.29007/wmf5
https://doi.org/10.29007/t85q
https://doi.org/10.29007/t85q
https://doi.org/10.1145/3302504.3311807
https://doi.org/10.1145/3302504.3311807
https://doi.org/10.1016/j.ifacol.2018.08.026
https://doi.org/10.1016/j.ifacol.2018.08.026
https://doi.org/10.29007/xwl1
https://doi.org/10.29007/xwl1

67. Ernst, G., Arcaini, P., Bennani, I., Donzé, A., Fainekos, G., Frehse, G., Mathesen,
L., Menghi, C., Pedrielli, G., Pouzet, M., Yaghoubi, S., Yamagata, Y., Zhang,
Z.: ARCH-COMP 2020 category report: Falsification. In: ARCH20. International
Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH20).
pp. 140–152. EPiC Series in Computing, EasyChair (2020). https://doi.org/10.
29007/trr1

68. Ernst, G., Arcaini, P., Donzé, A., Fainekos, G., Mathesen, L., Pedrielli, G.,
Yaghoubi, S., Yamagata, Y., Zhang, Z.: ARCH-COMP 2019 category report:
Falsification. In: ARCH19. International Workshop on Applied Verification of Con-
tinuous and Hybrid Systems. pp. 129–140. EPiC Series in Computing, EasyChair
(2019). https://doi.org/10.29007/68dk

69. Ernst, G., Arcaini, P., Fainekos, G., Formica, F., Inoue, J., Khandait, T., Mahboob,
M.M., Menghi, C., Pedrielli, G., Waga, M., Yamagata, Y., Zhang, Z.: Arch-comp
2022 category report: Falsification with ubounded resources. In: International
Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22).
pp. 204–221. EPiC Series in Computing, EasyChair (2022). https://doi.org/10.
29007/fhnk

70. Ernst, G., Sedwards, S., Zhang, Z., Hasuo, I.: Falsification of hybrid systems using
adaptive probabilistic search. ACM Transactions on Modeling and Computer
Simulation (TOMACS) 31(3), 1–22 (2021)

71. Everdij, M., Blom, H.: Hybrid state Petri nets which have the analysis power
of stochastic hybrid systems and the formal verification power of automata. In:
Pawlewski, P. (ed.) Petri Nets, chap. 12, pp. 227–252. I-Tech Education and
Publishing, Vienna (2010)

72. Fabian Immler, Matthias Althoff, M.S.T.e.a.: Symreach. https://github.com/

mahendrasinghtomar/SymReach

73. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In:
Formal Approaches to Software Testing and Runtime Verification. pp. 178–192.
LNCS, Springer (2006)

74. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachability
analysis for nonlinear hybrid models with C2E2. In: Computer Aided Verification.
p. 531–538 (2016)

75. Fan, J., Huang, C., Li, W., Chen, X., Zhu, Q.: Reachnn*: A tool for reachability
analysis ofneural-network controlled systems. In: International Symposium on
Automated Technology for Verification and Analysis (ATVA) (2020)

76. Fijalkow, N., Ouaknine, J., Pouly, A., Sousa-Pinto, J., Worrell, J.: On the decid-
ability of reachability in linear time-invariant systems. In: Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and Control. pp.
77–86 (2019)

77. Formica, F., Fan, T., Rajhans, A., Pantelic, V., Lawford, M., Menghi, C.:
Simulation-based testing of simulink models with test sequence and test as-
sessment blocks. IEEE Transactions on Software Engineering pp. 1–19 (2023).
https://doi.org/10.1109/TSE.2023.3343753

78. Formica, F., Tony, F., Menghi, C.: Search-based software testing driven by auto-
matically generated and manually defined fitness functions. ACM Transactions on
Software Engineering and Methodology (2023). https://doi.org/10.1145/3624745

79. Foster, S., Huerta y Munive, J., Gleirscher, M., Struth, G.: Hybrid systems
verification with isabelle/hol: Simpler syntax, better models, faster proofs. In: Intl.
Symp. on Formal Methods (FM 2021). vol. LNCS 13047, pp. 367–386 (2021)

29

https://doi.org/10.29007/trr1
https://doi.org/10.29007/trr1
https://doi.org/10.29007/trr1
https://doi.org/10.29007/trr1
https://doi.org/10.29007/68dk
https://doi.org/10.29007/68dk
https://doi.org/10.29007/fhnk
https://doi.org/10.29007/fhnk
https://doi.org/10.29007/fhnk
https://doi.org/10.29007/fhnk
https://github.com/mahendrasinghtomar/SymReach
https://github.com/mahendrasinghtomar/SymReach
https://doi.org/10.1109/TSE.2023.3343753
https://doi.org/10.1109/TSE.2023.3343753
https://doi.org/10.1145/3624745
https://doi.org/10.1145/3624745

80. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: International Conference
on Hybrid Systems: Computation and Control. p. 43–52. HSCC ’11, ACM (2011).
https://doi.org/10.1145/1967701.1967710

81. Fränzle, M., Hansen, M.R.: A robust interpretation of duration calculus. In:
International Colloquium on Theoretical Aspects of Computing. pp. 257–271.
Springer (2005)

82. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech.
International Journal on Software Tools for Technology Transfer 10, 263–279
(2008)

83. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Proc. of the 23rd International Conference on Computer Aided Verification. p.
379–395. LNCS 6806, Springer (2011)

84. Frehse, G., Abate, A., Adzkiya, D., Becchi, A., Bu, L., Cimatti, A., Giacobbe, M.,
Griggio, A., Mover, S., Mufid, M.S., Riouak, I., Tonetta, S., Zaffanella, E.: ARCH-
COMP19 category report: Hybrid systems with piecewise constant dynamics. In:
ARCH19. International Workshop on Applied Verification of Continuous and
Hybrid Systemsi, part of CPS-IoT Week. EPiC Series in Computing, vol. 61, pp.
1–13. EasyChair (2019)

85. Frehse, G., Abate, A., Adzkiya, D., Bu, L., Giacobbe, M.: ARCH-COMP17 cat-
egory report: Hybrid systems with piecewise constant dynamics. In: ARCH17.
International Workshop on Applied Verification of Continuous and Hybrid Sys-
tems, collocated with Cyber-Physical Systems Week (CPSWeek). EPiC Series in
Computing, vol. 48, pp. 124–133. EasyChair (2017)

86. Frehse, G., Abate, A., Adzkiya, D., Bu, L., Giacobbe, M., Mufid, M.S., Zaffanella,
E.: ARCH-COMP18 category report: Hybrid systems with piecewise constant
dynamics. In: ARCH18. International Workshop on Applied Verification of Con-
tinuous and Hybrid Systems, ARCH@ADHS. EPiC Series in Computing, vol. 54,
pp. 1–13. EasyChair (2018)

87. Frehse, G.F.: Compositional verification of hybrid systems using simulation rela-
tions. Ph.D. thesis, Radboud University (2005)

88. Fulton, N., Mitsch, S., Bohrer, B., Platzer, A.: Bellerophon: Tactical theorem
proving for hybrid systems. In: ITP. pp. 207–224 (2017). https://doi.org/10.1007/
978-3-319-66107-0_14

89. Fulton, N., Mitsch, S., Quesel, J., Völp, M., Platzer, A.: Keymaera X: an ax-
iomatic tactical theorem prover for hybrid systems. In: International Conference
on Automated Deduction (CADE). pp. 527–538 (2015). https://doi.org/10.1007/
978-3-319-21401-6_36

90. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: Toward
safe control through proof and learning. In: Conference on Artificial Intelligence,
(AAAI). pp. 6485–6492 (2018)

91. Gallicchio, J., Tan, Y.K., Mitsch, S., Platzer, A.: Implicit definitions with dif-
ferential equations for keymaera X - (system description). In: Automated Rea-
soning - International Joint Conference (IJCAR). pp. 723–733 (2022). https:

//doi.org/10.1007/978-3-031-10769-6_42

92. Garcia, L., Mitsch, S., Platzer, A.: Hyplc: hybrid programmable logic controller
program translation for verification. In: ACM/IEEE International Conference
on Cyber-Physical Systems, ICCPS. pp. 47–56 (2019). https://doi.org/10.1145/
3302509.3311036

30

https://doi.org/10.1145/1967701.1967710
https://doi.org/10.1145/1967701.1967710
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-031-10769-6_42
https://doi.org/10.1007/978-3-031-10769-6_42
https://doi.org/10.1007/978-3-031-10769-6_42
https://doi.org/10.1007/978-3-031-10769-6_42
https://doi.org/10.1145/3302509.3311036
https://doi.org/10.1145/3302509.3311036
https://doi.org/10.1145/3302509.3311036
https://doi.org/10.1145/3302509.3311036

93. Geretti, L., Collins, P., Bresolin, D., Villa, T.: Automating numerical parameters
along the evolution of a nonlinear system. Lecture Notes in Computer Science
13498 LNCS, 336 – 345 (2022). https://doi.org/10.1007/978-3-031-17196-3_22

94. Geretti, L., Sandretto, J.A.D., Althoff, M., Benet, L., Chapoutot, A., Chen,
X., Collins, P., Forets, M., Freire, D., Immler, F., Kochdumper, N., Sanders,
D.P., Schilling, C.: Arch-comp20 category report: Continuous and hybrid systems
with nonlinear dynamics. In: International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH20). EPiC Series in Computing, vol. 74,
pp. 49–75. EasyChair (2020). https://doi.org/10.29007/zkf6, https://easychair.
org/publications/paper/nrdD

95. Geretti, L., Sandretto, J.A.D., Althoff, M., Benet, L., Chapoutot, A., Collins, P.,
Duggirala, P.S., Forets, M., Kim, E., Linares, U., Sanders, D.P., Schilling, C.,
Wetzlinger, M.: ARCH-COMP21 category report: Continuous and hybrid systems
with nonlinear dynamics. In: International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH21). EPiC Series in Computing, vol. 80,
pp. 32–54. EasyChair (2021). https://doi.org/10.29007/2jw8, https://easychair.
org/publications/paper/GWwz

96. Geretti, L., Sandretto, J.A.D., Althoff, M., Benet, L., Collins, P., Duggirala, P.,
Forets, M., Kim, E., Mitsch, S., Schilling, C., Wetzlinger, M.: ARCH-COMP22
category report: Continuous and hybrid systems with nonlinear dynamics. In:
International Workshop on Applied Verification of Continuous and Hybrid Systems
(ARCH22). EPiC Series in Computing, vol. 90, pp. 86–112. EasyChair (2022).
https://doi.org/10.29007/fnzc, https://easychair.org/publications/paper/JrQ4

97. Geretti, L., Sandretto, J.A.D., Althoff, M., Benet, L., Collins, P., Forets, M.,
Ivanova, E., Li, Y., Mitra, S., Mitsch, S., Schilling, C., Wetzlinger, M., Zhuang,
D.: Arch-comp23 category report: Continuous and hybrid systems with nonlinear
dynamics. In: Frehse, G., Althoff, M. (eds.) Proceedings of 10th International
Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH23).
EPiC Series in Computing, vol. 96, pp. 61–88. EasyChair (2023). https://doi.

org/10.29007/93f2, https://easychair.org/publications/paper/T7LG
98. Girard, A., Le Guernic, C.: Zonotope/hyperplane intersection for hybrid systems

reachability analysis. In: Proc. of Hybrid Systems: Computation and Control. p.
215–228. LNCS 4981, Springer (2008)

99. Girard, A., Le Guernic, C., Maler, O.: Efficient computation of reachable sets of
linear time-invariant systems with inputs. In: Hybrid Systems: Computation and
Control. p. 257–271. LNCS 3927, Springer (2006)

100. Guelev, D.P., Wang, S., Zhan, N.: Compositional hoare-style reasoning about
hybrid CSP in the duration calculus. In: SETTA. Lecture Notes in Computer
Science, vol. 10606, pp. 110–127. Springer (2017)

101. Haesaert, S., Soudjani, S.: Robust dynamic programming for temporal logic control
of stochastic systems. IEEE Transactions on Automatic Control 66(6), 2496–2511
(2020)

102. Haesaert, S., Zadeh Soudjani, S.E., Abate, A.: Verification of general Markov
decision processes by approximate similarity relations and policy refinement. SIAM
Journal on Control and Optimization 55(4), 2333–2367 (2017)

103. Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment
for quantitative modelling and verification. In: 20th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Lecture Notes in Computer Science, vol. 8413, pp. 593–598. Springer (2014).
https://doi.org/10.1007/978-3-642-54862-8_51

31

https://doi.org/10.1007/978-3-031-17196-3_22
https://doi.org/10.1007/978-3-031-17196-3_22
https://doi.org/10.29007/zkf6
https://doi.org/10.29007/zkf6
https://easychair.org/publications/paper/nrdD
https://easychair.org/publications/paper/nrdD
https://doi.org/10.29007/2jw8
https://doi.org/10.29007/2jw8
https://easychair.org/publications/paper/GWwz
https://easychair.org/publications/paper/GWwz
https://doi.org/10.29007/fnzc
https://doi.org/10.29007/fnzc
https://easychair.org/publications/paper/JrQ4
https://doi.org/10.29007/93f2
https://doi.org/10.29007/93f2
https://doi.org/10.29007/93f2
https://doi.org/10.29007/93f2
https://easychair.org/publications/paper/T7LG
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51

104. Henzinger, T.: The theory of hybrid automata. In: Inan, K., Kurshan, R.P. (eds.)
Verification of Digital and Hybrid Systems, NATO ASI Series F: Computer and
Systems Sciences, vol. 170, p. 265–292. Springer (2000)

105. Huang, C., Fan, J., Chen, X., Li, W., Zhu, Q.: POLAR: A polynomial arith-
metic framework for verifying neural-network controlled systems. In: International
Symposium on Automated Technology for Verification and Analysis (ATVA)
(2022)

106. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Reachnn: Reachability analysis of
neural-network controlled systems. ACM Transactions on Embedded Computing
Systems (TECS) 18(5s), 1–22 (2019)

107. Huerta y Munive, J.J., Struth, G.: Predicate transformer semantics for hybrid
systems. JAR 66(1), 93–139 (2022)

108. Hüls, J., Niehaus, H., Remke, A.: Hpnmg: A C++ Tool for Model Checking Hybrid
Petri Nets with General Transitions. In: International NASA Formal Methods
Symposium (NFM). Springer (2020)

109. Immler, F.: Verified reachability analysis of continuous systems. In: TACAS’15.
LNCS, vol. 9035, pp. 37–51. Springer (2015)

110. Immler, F., Althoff, M., Benet, L., Chapoutot, A., Chen, X., Forets, M., Geretti,
L., Kochdumper, N., Sanders, D.P., Schilling, C.: ARCH-COMP19 category re-
port: Continuous and hybrid systems with nonlinear dynamics. In: ARCH19.
International Workshop on Applied Verification of Continuous and Hybrid
Systems. EPiC Series in Computing, vol. 61, pp. 41–61. EasyChair (2019).
https://doi.org/10.29007/m75b, https://easychair.org/publications/paper/4FSh

111. Immler, F., Althoff, M., Chen, X., Fan, C., Frehse, G., Kochdumper, N., Li,
Y., Mitra, S., Tomar, M.S., Zamani, M.: ARCH-COMP18 category report:
Continuous and hybrid systems with nonlinear dynamics. In: Frehse, G. (ed.)
ARCH18. International Workshop on Applied Verification of Continuous and
Hybrid Systems. EPiC Series in Computing, vol. 54, pp. 53–70. EasyChair (2018).
https://doi.org/10.29007/mskf, https://easychair.org/publications/paper/gjfh

112. Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig 2.0:
Verification of neural network controllers using taylor model preconditioning. In:
International Conference on Computer-Aided Verification (2021)

113. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: Verifying safety
properties of hybrid systems with neural network controllers. In: International
Conference on Hybrid Systems: Computation and Control. p. 169–178. HSCC,
ACM (2019). https://doi.org/10.1145/3302504.3311806

114. Jagtap, P., Soudjani, S., Zamani, M.: Temporal logic verification of stochastic
systems using barrier certificates. In: International Symposium on Automated
Technology for Verification and Analysis. pp. 177–193. Springer (2018)

115. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control veri-
fication benchmark. In: International Conference on Hybrid Systems: Computation
and Control. pp. 253–262. ACM (2014)

116. Johnson, T.T.: Arch-comp17 repeatability evaluation report. In: ARCH17. In-
ternational Workshop on Applied Verification of Continuous and Hybrid Sys-
tems. EPiC Series in Computing, vol. 48, pp. 175–180. EasyChair (2017).
https://doi.org/10.29007/7hvk, https://easychair.org/publications/paper/nMvb

117. Johnson, T.T.: Arch-comp18 repeatability evaluation report. In: ARCH18. In-
ternational Workshop on Applied Verification of Continuous and Hybrid Sys-
tems. EPiC Series in Computing, vol. 54, pp. 128–134. EasyChair (2018).
https://doi.org/10.29007/n9t3, https://easychair.org/publications/paper/9J6v

32

https://doi.org/10.29007/m75b
https://doi.org/10.29007/m75b
https://easychair.org/publications/paper/4FSh
https://doi.org/10.29007/mskf
https://doi.org/10.29007/mskf
https://easychair.org/publications/paper/gjfh
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1145/3302504.3311806
https://doi.org/10.29007/7hvk
https://doi.org/10.29007/7hvk
https://easychair.org/publications/paper/nMvb
https://doi.org/10.29007/n9t3
https://doi.org/10.29007/n9t3
https://easychair.org/publications/paper/9J6v

118. Johnson, T.T.: Arch-comp19 repeatability evaluation report. In: ARCH19. In-
ternational Workshop on Applied Verification of Continuous and Hybrid Sys-
tems. EPiC Series in Computing, vol. 61, pp. 162–169. EasyChair (2019).
https://doi.org/10.29007/wbl3, https://easychair.org/publications/paper/xvBM

119. Johnson, T.T.: Arch-comp20 repeatability evaluation report. In: ARCH20. Inter-
national Workshop on Applied Verification of Continuous and Hybrid Systems
(ARCH20). EPiC Series in Computing, vol. 74, pp. 175–183. EasyChair (2020).
https://doi.org/10.29007/8dp4, https://easychair.org/publications/paper/3W11

120. Johnson, T.T.: ARCH-COMP21 repeatability evaluation report. In: International
Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH21).
EPiC Series in Computing, vol. 80, pp. 153–160. EasyChair (2021). https://doi.
org/10.29007/zqdx, https://easychair.org/publications/paper/cfpN

121. Johnson, T.T.: Arch-comp22 repeatability evaluation report. In: International
Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22).
EPiC Series in Computing, vol. 90, pp. 222–230. EasyChair (2022). https://doi.
org/10.29007/djqx, https://easychair.org/publications/paper/LnDH

122. Johnson, T.T.: Arch-comp23 repeatability evaluation report. In: Frehse, G., Althoff,
M. (eds.) Proceedings of 10th International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH23). EPiC Series in Computing, vol. 96, pp.
189–195. EasyChair (2023). https://doi.org/10.29007/q313, https://easychair.

org/publications/paper/TdVx

123. Johnson, T.T., Lopez, D.M., Benet, L., Forets, M., Guadalupe, S., Schilling, C.,
Ivanov, R., Carpenter, T.J., Weimer, J., Lee, I.: Arch-comp21 category report:
Artificial intelligence and neural network control systems (ainncs) for continuous
and hybrid systems plants. In: International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH21). EPiC Series in Computing, vol. 80,
pp. 90–119. EasyChair (2021). https://doi.org/10.29007/kfk9

124. Johnson, T.T., Lopez, D.M., Musau, P., Tran, H.D., Botoeva, E., Leofante, F.,
Maleki, A., Sidrane, C., Fan, J., Huang, C.: Arch-comp20 category report: Artificial
intelligence and neural network control systems (ainncs) for continuous and hybrid
systems plants. In: ARCH20. International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH20). EPiC Series in Computing, vol. 74,
pp. 107–139. EasyChair (2020). https://doi.org/10.29007/9xgv

125. Kim, E., Duggirala, P.S.: Kaa: A python implementation of reachable set com-
putation using bernstein polynomials. EPiC Series in Computing 74, 184–196
(2020)

126. Kochdumper, N., Schilling, C., Althoff, M., Bak, S.: Open- and closed-loop neural
network verification using polynomial zonotopes. In: NASA Formal Methods. pp.
16–36. Springer (2023)

127. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4), 255–299 (1990)

128. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for
families of linear vector fields. Symbolic Computation 32, 231–253 (2001)

129. Lavaei, A., Khaled, M., Soudjani, S., Zamani, M.: AMYTISS: Parallelized auto-
mated controller synthesis for large-scale stochastic systems. In: Computer Aided
Verification (CAV). pp. 461–474. Springer (2020)

130. Lavaei, A., Soudjani, S., Abate, A., Zamani, M.: Automated verification and
synthesis of stochastic hybrid systems: A survey. Automatica 146, 110617 (2022)

131. Leahy, K., Cristofalo, E., Vasile, C.I., Jones, A., Montijano, E., Schwager, M.,
Belta, C.: Control in belief space with temporal logic specifications using vision-

33

https://doi.org/10.29007/wbl3
https://doi.org/10.29007/wbl3
https://easychair.org/publications/paper/xvBM
https://doi.org/10.29007/8dp4
https://doi.org/10.29007/8dp4
https://easychair.org/publications/paper/3W11
https://doi.org/10.29007/zqdx
https://doi.org/10.29007/zqdx
https://doi.org/10.29007/zqdx
https://doi.org/10.29007/zqdx
https://easychair.org/publications/paper/cfpN
https://doi.org/10.29007/djqx
https://doi.org/10.29007/djqx
https://doi.org/10.29007/djqx
https://doi.org/10.29007/djqx
https://easychair.org/publications/paper/LnDH
https://doi.org/10.29007/q313
https://doi.org/10.29007/q313
https://easychair.org/publications/paper/TdVx
https://easychair.org/publications/paper/TdVx
https://doi.org/10.29007/kfk9
https://doi.org/10.29007/kfk9
https://doi.org/10.29007/9xgv
https://doi.org/10.29007/9xgv

based localization. The International Journal of Robotics Research 38(6), 702–722
(2019)

132. Li, Y., Zhu, H., Braught, K., Shen, K., Mitra, S.: Verse: A python library for rea-
soning about multi-agent hybrid system scenarios. In: Computer Aided Verification.
pp. 351–364 (2023)

133. Loos, S.M., Platzer, A.: Differential refinement logic. In: Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS. pp. 505–514 (2016). https:

//doi.org/10.1145/2933575.2934555

134. Lopez, D.M., Althoff, M., Benet, L., Chen, X., Fan, J., Forets, M., Huang, C., John-
son, T.T., Ladner, T., Li, W., Schilling, C., Zhu, Q.: Arch-comp22 category report:
Artificial intelligence and neural network control systems (ainncs) for continuous
and hybrid systems plants. In: International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH22). EPiC Series in Computing, vol. 90,
pp. 142–184. EasyChair (2022). https://doi.org/10.29007/wfgr

135. Lopez, D.M., Althoff, M., Forets, M., Johnson, T.T., Ladner, T., Schilling, C.:
Arch-comp23 category report: Artificial intelligence and neural network control
systems (ainncs) for continuous and hybrid systems plants. In: Frehse, G., Althoff,
M. (eds.) Proceedings of 10th International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH23). EPiC Series in Computing, vol. 96,
pp. 89–125. EasyChair (2023). https://doi.org/10.29007/x38n, https://easychair.
org/publications/paper/Vfq4b

136. Lopez, D.M., Choi, S.W., Tran, H.D., Johnson, T.T.: Nnv 2.0: The neural network
verification tool. In: Computer Aided Verification (CAV). p. 397–412. Springer-
Verlag, Berlin, Heidelberg (2023). https://doi.org/10.1007/978-3-031-37703-7_19

137. Lopez, D.M., Musau, P., Tran, H.D., Dutta, S., Carpenter, T.J., Ivanov, R.,
Johnson, T.T.: Arch-comp19 category report: Artificial intelligence and neural
network control systems (ainncs) for continuous and hybrid systems plants. In:
ARCH19. International Workshop on Applied Verification of Continuous and
Hybrid Systems. EPiC Series in Computing, vol. 61, pp. 103–119. EasyChair
(2019). https://doi.org/10.29007/rgv8

138. Ma, H., Blom, H.A.: Interacting particle system based estimation of reach proba-
bility of general stochastic hybrid systems. Nonlinear Analysis: Hybrid Systems
47, 101303 (2023)

139. Majumdar, R., Mallik, K., Rychlicki, M., Schmuck, A.K., Soudjani, S.: A flexible
toolchain for symbolic rabin games under fair and stochastic uncertainties. In:
Computer Aided Verification (CAV). Springer (2023), (to appear)

140. Majumdar, R., Mallik, K., Soudjani, S.: Symbolic controller synthesis for büchi
specifications on stochastic systems. In: International conference on hybrid systems:
computation and control. pp. 1–11 (2020)

141. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems. pp. 152–166. Springer (2004)

142. Menghi, C., Nejati, S., Briand, L., Isasi Parache, Y.: Approximation-refinement
testing of compute-intensive cyber-physical models: An approach based on system
identification. In: International Conference on Software Engineering (ICSE). IEEE
/ ACM (2020)

143. Mitsch, S.: Implicit and explicit proof management in keymaera X. In: Pro-
ceedings of the 6th Workshop on Formal Integrated Development Environ-
ment, F-IDE@NFM 2021, Held online, 24-25th May 2021. pp. 53–67 (2021).
https://doi.org/10.4204/EPTCS.338.8, https://doi.org/10.4204/EPTCS.338.8

34

https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.1145/2933575.2934555
https://doi.org/10.29007/wfgr
https://doi.org/10.29007/wfgr
https://doi.org/10.29007/x38n
https://doi.org/10.29007/x38n
https://easychair.org/publications/paper/Vfq4b
https://easychair.org/publications/paper/Vfq4b
https://doi.org/10.1007/978-3-031-37703-7_19
https://doi.org/10.1007/978-3-031-37703-7_19
https://doi.org/10.29007/rgv8
https://doi.org/10.29007/rgv8
https://doi.org/10.4204/EPTCS.338.8
https://doi.org/10.4204/EPTCS.338.8
https://doi.org/10.4204/EPTCS.338.8

144. Mitsch, S., Jin, X., Zhan, B., Wang, S., Zhan, N.: Arch-comp21 category report:
Hybrid systems theorem proving. In: Frehse, G., Althoff, M. (eds.) 8th International
Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH21).
EPiC Series in Computing, vol. 80, pp. 120–132. EasyChair (2021). https://doi.
org/10.29007/35cf

145. Mitsch, S., y Munive, J.J.H., Jin, X., Zhan, B., Wang, S., Zhan, N.: ARCH-
COMP20 category report: Hybrid systems theorem proving. In: ARCH. EPiC
Series in Computing, vol. 74, pp. 153–174. EasyChair (2020)

146. Mitsch, S., Platzer, A.: Modelplex: verified runtime validation of verified cyber-
physical system models. Formal Methods Syst. Des. 49(1-2), 33–74 (2016). https:
//doi.org/10.1007/s10703-016-0241-z

147. Mitsch, S., Sheng, H., Zhan, B., Wang, S., Foster, S., Munive, J.J.H.Y.: Arch-
comp23 category report: Hybrid systems theorem proving. In: Frehse, G., Althoff,
M. (eds.) Proceedings of 10th International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH23). EPiC Series in Computing, vol. 96,
pp. 170–188. EasyChair (2023). https://doi.org/10.29007/57g4

148. Mitsch, S., Zhan, B., Sheng, H., Bentkamp, A., Jin, X., Wang, S., Foster, S.,
Laursen, C.P., Munive, J.J.H.Y.: Arch-comp22 category report: Hybrid systems
theorem proving. In: Frehse, G., Althoff, M., Schoitsch, E., Guiochet, J. (eds.)
Proceedings of 9th International Workshop on Applied Verification of Continuous
and Hybrid Systems (ARCH22). EPiC Series in Computing, vol. 90, pp. 185–203.
EasyChair (2022). https://doi.org/10.29007/4lxf

149. Mufid, M.S., Adzkiya, D., Abate, A.: Symbolic reachability analysis of high
dimensional max-plus linear systems. IFAC-PapersOnLine 53(4), 459–465 (2020).
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.04.060

150. y Munive, J.J.H.: Verification components for hybrid systems. Arch. Formal Proofs
2019 (2019), https://www.isa-afp.org/entries/Hybrid_Systems_VCs.html

151. NNFal. https://gitlab.com/Atanukundu/NNFal (04 2023 [Online])
152. Peltomäki, J., Porres, I.: Requirement falsification for cyber-physical systems using

generative models. arXiv preprint arXiv:2310.20493 (2023)
153. Pilch, C., Remke, A.: HYPEG: Statistical Model Checking for hybrid Petri nets:

Tool Paper. In: International Conference on Performance Evaluation Methodologies
and Tools. pp. 186–191. VALUETOOLS 2017, ACM (2017)

154. Platzer, A.: A complete uniform substitution calculus for differential dynamic
logic. J. Autom. Reason. 59(2), 219–265 (2017)

155. Platzer, A., Quesel, J.: Keymaera: A hybrid theorem prover for hybrid systems
(system description). In: Automated Reasoning, 4th International Joint Conference
(IJCAR). pp. 171–178 (2008). https://doi.org/10.1007/978-3-540-71070-7_15

156. Qian, M., Mitsch, S.: Reward shaping from hybrid systems models in reinforcement
learning. In: NASA Formal Methods - International Symposium (NFM). pp. 122–
139 (2023). https://doi.org/10.1007/978-3-031-33170-1_8

157. Quesel, J., Mitsch, S., Loos, S.M., Aréchiga, N., Platzer, A.: How to model and
prove hybrid systems with keymaera: a tutorial on safety. Int. J. Softw. Tools
Technol. Transf. 18(1), 67–91 (2016)

158. Ray, R., Gurung, A., Das, B., Bartocci, E., Bogomolov, S., Grosu, R.: XSpeed:
Accelerating reachability analysis on multi-core processors. In: Hardware and
Software: Verification and Testing. p. 3–18. Springer International Publishing
(2015)

159. Salamati, M., Soudjani, S., Majumdar, R.: Approximate time bounded reachability
for ctmcs and ctmdps: A lyapunov approach. In: QEST. Lecture Notes in Computer
Science, vol. 11024, pp. 389–406. Springer (2018)

35

https://doi.org/10.29007/35cf
https://doi.org/10.29007/35cf
https://doi.org/10.29007/35cf
https://doi.org/10.29007/35cf
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.29007/57g4
https://doi.org/10.29007/57g4
https://doi.org/10.29007/4lxf
https://doi.org/10.29007/4lxf
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.04.060
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.04.060
https://www.isa-afp.org/entries/Hybrid_Systems_VCs.html
https://gitlab.com/Atanukundu/NNFal
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-031-33170-1_8
https://doi.org/10.1007/978-3-031-33170-1_8

160. Alexandre dit Sandretto, J., Chapoutot, A.: Validated Explicit and Implicit Runge-
Kutta Methods. Reliable Computing electronic edition 22 (2016)

161. Schupp, S., Abraham, E., Ben Makhlouf, I., Kowalewski, S.: HyPro: A C++ library
for state set representations for hybrid systems reachability analysis. In: Proc. of
the NASA Formal Methods Symposium. p. 288–294 (2017)

162. Sheng, H., Bentkamp, A., Zhan, B.: HHLPy: Practical verification of hybrid
systems using hoare logic. In: Formal Methods. pp. 160–178. Springer (2023)

163. Shmarov, F., Zuliani, P.: ProbReach: Verified probabilistic δ-reachability for
stochastic hybrid systems. In: HSCC. pp. 134–139. ACM (2015)

164. Sidrane, C., Kochenderfer, M.J.: OVERT: Verification of nonlinear dynamical
systems with neural network controllers via overapproximation. Safe Machine
Learning workshop at ICLR (2019)

165. Sogokon, A., Mitsch, S., Tan, Y.K., Cordwell, K., Platzer, A.: Pegasus: sound
continuous invariant generation. Formal Methods Syst. Des. 58(1-2), 5–41 (2021).
https://doi.org/10.1007/s10703-020-00355-z

166. Soudjani, S., Gevaerts, C., Abate, A.: FAUST2: Formal Abstractions of
Uncountable-STate STochastic processes. In: TACAS. vol. 15, pp. 272–286 (2015)

167. Strauss, M., Mitsch, S.: Slow down, move over: A case study in formal verification,
refinement, and testing of the responsibility-sensitive safety model for self-driving
cars. In: Tests and Proofs - International Conference (TAP). pp. 149–167 (2023).
https://doi.org/10.1007/978-3-031-38828-6_9

168. Tan, Y.K., Mitsch, S., Platzer, A.: Verifying switched system stability with logic.
In: ACM International Conference on Hybrid Systems: Computation and Control
(HSCC). pp. 2:1–2:11 (2022). https://doi.org/10.1145/3501710.3519541

169. Thibeault, Q., Anderson, J., Chandratre, A., Pedrielli, G., Fainekos, G.: PSY-
TaLiRo: A Python Toolbox for Search-Based Test Generation for Cyber-Physical
Systems. In: Formal Methods for Industrial Critical Systems. pp. 223–231. Springer
(2021)

170. Tran, H.D., Yang, X., Lopez, D.M., Musau, P., Nguyen, L.V., Xiang, W., Bak,
S., Johnson, T.T.: NNV: The neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: International Conference
on Computer-Aided Verification (CAV) (July 2020). https://doi.org/10.1007/

978-3-030-53288-8_1

171. Van Huijgevoort, B., Schön, O., Soudjani, S., Haesaert, S.: Syscore: Synthesis via
stochastic coupling relations. In: International Conference on Hybrid Systems:
Computation and Control. HSCC ’23, ACM (2023). https://doi.org/10.1145/

3575870.3587123

172. Vinod, A.P., Gleason, J.D., Oishi, M.M.: Sreachtools: a MATLAB stochastic reach-
ability toolbox. In: ACM international conference on hybrid systems: computation
and control. pp. 33–38 (2019)

173. Waga, M.: Falsification of cyber-physical systems with robustness-guided black-
box checking. In: International Conference on Hybrid Systems: Computation and
Control (HSCC). pp. 11:1–11:13. ACM (2020). https://doi.org/10.1145/3365365.
3382193

174. Wang, S., Zhan, N., Zou, L.: An improved HHL prover: an interactive theorem
prover for hybrid systems. In: ICFEM 2015, LNCS, vol. 9407, pp. 382–399. Springer
(2015)

175. Wetzlinger, M., Kochdumper, N., Althoff, M.: Adaptive parameter tuning for
reachability analysis of linear systems. In: IEEE Conference on Decision and
Control. pp. 5145–5152 (2020). https://doi.org/10.1109/CDC42340.2020.9304431

36

https://doi.org/10.1007/s10703-020-00355-z
https://doi.org/10.1007/s10703-020-00355-z
https://doi.org/10.1007/978-3-031-38828-6_9
https://doi.org/10.1007/978-3-031-38828-6_9
https://doi.org/10.1145/3501710.3519541
https://doi.org/10.1145/3501710.3519541
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1145/3575870.3587123
https://doi.org/10.1145/3575870.3587123
https://doi.org/10.1145/3575870.3587123
https://doi.org/10.1145/3575870.3587123
https://doi.org/10.1145/3365365.3382193
https://doi.org/10.1145/3365365.3382193
https://doi.org/10.1145/3365365.3382193
https://doi.org/10.1145/3365365.3382193
https://doi.org/10.1109/CDC42340.2020.9304431
https://doi.org/10.1109/CDC42340.2020.9304431

176. Wetzlinger, M., Kochdumper, N., Bak, S., Althoff, M.: Fully automated verification
of linear systems using inner and outer approximations of reachable sets. IEEE
Transactions on Automatic Control 68(12), 7771–7786 (2023). https://doi.org/
10.1109/TAC.2023.3292008

177. Wetzlinger, M., Kochdumper, N., Bak, S., Althoff, M.: Fully-automated verification
of linear systems using reachability analysis with support functions. In: Proc. of
the 26th ACM International Conference on Hybrid Systems: Computation and
Control (2023). https://doi.org/10.1145/3575870.3587121

178. Wetzlinger, M., Kulmburg, A., Althoff, M.: Adaptive parameter tuning for reach-
ability analysis of nonlinear systems. In: International Conference on Hybrid
Systems: Computation and Control. HSCC ’21, Association for Computing Machin-
ery (2021). https://doi.org/10.1145/3447928.3456643, https://doi.org/10.1145/
3447928.3456643

179. Wetzlinger, M., Kulmburg, A., Le Penven, A., Althoff, M.: Adaptive reachability al-
gorithms for nonlinear systems using abstraction error analysis. Nonlinear Analysis:
Hybrid Systems 46 (2022). https://doi.org/10.1016/j.nahs.2022.101252

180. Winter, S., Timperley, C.S., Hermann, B., Cito, J., Bell, J., Hilton, M., Beyer, D.:
A retrospective study of one decade of artifact evaluations. In: ESEC/FSE 2022:
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. p. 145–156. ACM
(2022). https://doi.org/10.1145/3540250.3549172

181. Yamagata, Y., Liu, S., Akazaki, T., Duan, Y., Hao, J.: Falsification of cyber-physical
systems using deep reinforcement learning. IEEE Transactions on Software Engi-
neering 47(12), 2823–2840 (2021). https://doi.org/10.1109/TSE.2020.2969178

182. Zhang, Z., Lyu, D., Arcaini, P., Ma, L., Hasuo, I., Zhao, J.: Effective Hybrid
System Falsification Using Monte Carlo Tree Search Guided by QB-Robustness.
In: Computer Aided Verification. pp. 595–618. Springer (2021). https://doi.org/
10.1007/978-3-030-81685-8_29

183. zlscheck. https://github.com/ismailbennani/zlscheck (04 2023 [Online])

37

https://doi.org/10.1109/TAC.2023.3292008
https://doi.org/10.1109/TAC.2023.3292008
https://doi.org/10.1109/TAC.2023.3292008
https://doi.org/10.1109/TAC.2023.3292008
https://doi.org/10.1145/3575870.3587121
https://doi.org/10.1145/3575870.3587121
https://doi.org/10.1145/3447928.3456643
https://doi.org/10.1145/3447928.3456643
https://doi.org/10.1145/3447928.3456643
https://doi.org/10.1145/3447928.3456643
https://doi.org/10.1016/j.nahs.2022.101252
https://doi.org/10.1016/j.nahs.2022.101252
https://doi.org/10.1145/3540250.3549172
https://doi.org/10.1145/3540250.3549172
https://doi.org/10.1109/TSE.2020.2969178
https://doi.org/10.1109/TSE.2020.2969178
https://doi.org/10.1007/978-3-030-81685-8_29
https://doi.org/10.1007/978-3-030-81685-8_29
https://doi.org/10.1007/978-3-030-81685-8_29
https://doi.org/10.1007/978-3-030-81685-8_29
https://github.com/ismailbennani/zlscheck

	The ARCH-COMP Friendly Verification Competition for Continuous and Hybrid Systems

