
Reducing Energy Bloat in Large Model Training
Jae-Won Chung

1
Yile Gu

1,2
Insu Jang

1
Luoxi Meng

1,3
Nikhil Bansal

1
Mosharaf Chowdhury

1

1
University of Michigan

2
University of Washington

3
University of California, San Diego

Abstract
Training large AI models on numerous GPUs consumes a

massive amount of energy, making power delivery one of the

largest limiting factors in building and operating datacenters

for AI workloads. However, we observe that not all energy

consumed during training directly contributes to end-to-end

throughput; a significant portion can be removed without

slowing down training. We call this portion energy bloat.

In this work, we identify two independent sources of en-

ergy bloat in large model training and propose Perseus, a

training system that mitigates both. To do this, Perseus ob-

tains the time–energy tradeoff frontier of a large model train-

ing job using an efficient graph cut-based algorithm, and

schedules computation energy consumption across time to

reduce both types of energy bloat. Evaluation on large mod-

els, including GPT-3 and Bloom, shows that Perseus reduces

the energy consumption of large model training by up to 30%

without any throughput loss or hardware modification.
1

CCSConcepts: •Computer systems organization; •Com-
puting methodologies→Machine learning; • Software
and its engineering→ Power management;

Keywords: Energy-efficiency, datacenter powermanagement,

straggler, distributed training, large model training

ACM Reference Format:
Jae-Won Chung, Yile Gu, Insu Jang, Luoxi Meng, Nikhil Bansal,

and Mosharaf Chowdhury. 2024. Reducing Energy Bloat in Large

Model Training. In ACM SIGOPS 30th Symposium on Operating

Systems Principles (SOSP ’24), November 4–6, 2024, Austin, TX, USA.

ACM,NewYork, NY, USA, 24 pages. https://doi.org/10.1145/3694715.
3695970

1 Introduction
As deep neural networks (DNNs) continue to grow in model

and dataset size [32, 40], the energy consumption of large

1
Perseus is open-source as part of Zeus [86] at https://ml.energy/zeus.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SOSP ’24, November 4–6, 2024, Austin, TX, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-1251-7/24/11

https://doi.org/10.1145/3694715.3695970

model training is increasing as well. For instance, training

GPT-3 [8] reportedly consumed 1.3 GWh [63]. Then, this was

dwarfed by Amazon’s training of a 200B model, which con-

sumed about 11.9 GWh [29]—enough to power more than

1,000 average US households for a year [2]. Such energy-

intensive largemodel training not only inflates datacenter op-

erational expenses, but also made power delivery a primary

challenge in building datacenters today [9, 11, 12, 52, 53].

Despite recent works on accelerating large model train-

ing [45, 57, 90], energy optimization remains an open chal-

lenge [63, 68]. While energy optimization is well-studied in

the hardware community [7, 14, 75, 84], the power bottleneck

of recent datacenters [9, 11, 12, 53, 65] shows that efficiency

gains from hardware advancement alone are not sufficient to

sustain the growing demand for AI compute. In light of this,

recent works show that software can play a significant role

in energy optimization by capturing application characteris-

tics that general-purpose hardware cannot (e.g., no need to

finish computation before the deadline), bringing hardware-

agnostic energy-efficiency gains [15, 17, 78, 85, 86].

In this paper, we seek a software method that reduces the

energy consumption of large model training without slow-

down, thereby also reducing average power draw. To that

end, we identify energy bloat, the portion of energy consump-

tion that can be removed without slowdown in software

systems for large model training. We find two independent

sources of energy bloat—intrinsic and extrinsic—and propose

a single optimization framework that minimizes both.

Intrinsic energy bloat comes from computation imbalance

when a large model is distributed across multiple GPUs with

pipeline parallelism (§2.2). Balancing the amount of com-

putation in each pipeline stage is an important problem for

distributed execution planning [23, 30, 55, 90], but perfectly

balancing every stage is not always possible because layers

in a DNN are coarse-grained tensor operations with varying

amounts of computation. When stages have unequal compu-

tation times, those not on the critical path of computation

run needlessly fast—that is, they consume energy that does

not contribute to the overall training throughput. Such in-

trinsic energy bloat opens up the opportunity to precisely

slow down each non-critical computation in the pipeline

such that the length of the critical path does not change.

Extrinsic energy bloat, in contrast, arises when multiple

pipelines run in parallel in a synchronous fashion, and one

or more pipelines run slower than the rest (§2.3). Root causes

behind such slowdowns are varied, including power/thermal

throttling [47, 61, 62, 67, 93], I/O bottlenecks in the stor-

age/network [54, 83, 89], and hardware/software failures [25,

https://doi.org/10.1145/3694715.3695970
https://doi.org/10.1145/3694715.3695970
https://ml.energy/zeus
https://doi.org/10.1145/3694715.3695970

37, 76], and the likelihood of their presence increases with

the scale and duration of training [28, 38, 79]. All pipelines

running faster than the straggler pipeline are needlessly

fast, wasting energy that does not affect the overall train-

ing throughput. Thus, we can slow down entire pipelines

without delaying gradient synchronization.

In this work, we propose Perseus, which formulates a uni-

fied optimization framework to remove both intrinsic and

extrinsic energy bloat from large model training (§3). At its

core, Perseus efficiently pre-characterizes the entire time–

energy tradeoff frontier of a training iteration, allowing it to

minimize intrinsic bloat under normal operation and to miti-

gate extrinsic bloat arising from stragglers. Existing works

fall short on both fronts. EnvPipe [15] is limited to intrinsic

bloat reduction with a point solution that leads to suboptimal

energy reduction. Zeus [86], in contrast, ignores intrinsic

bloat as it only considers single-GPU training, which also

renders its time–energy frontier suboptimal for large models.

We show that characterizing the optimal time–energy

Pareto frontier is NP-hard not only to solve, but also to ap-

proximate within any constant factor. Given this impasse, we

propose an efficient algorithm that optimally solves a relaxed

problem instead (§4). To do so, Perseus represents one train-

ing iteration as a directed acyclic graph (DAG) of forward

and backward computations in each pipeline stage. Then,

Perseus efficiently generates all energy schedules, defined as

the planned time and energy consumption of each computa-

tion, that are on the time–energy frontier using a graph cut-

based algorithm that iteratively crawls up the frontier from

the bottom. Minimizing intrinsic and/or extrinsic energy

bloat is then as simple as choosing the appropriate energy

schedule from the pre-characterized time–energy frontier.

Perseus consists of a client library and a server (§5). The

client library integrates with a large model training frame-

work and accelerator to measure computation energy con-

sumption and control accelerator speed. The server produces

optimized energy schedules, using the abstract computation

DAG and time/energy measurements provided by the client.

Evaluation on large models (GPT-3 [8], BERT [19], T5 [66],

Bloom [82], and a scaled-up version of Wide-ResNet [87]),

shows that Perseus is able to reduce per-iteration energy

consumption by up to 30% with negligible or no slowdown,

reducing energy consumption and average power draw (§6).

Overall, wemake the following contributions in this paper:

• We identify intrinsic and extrinsic energy bloat in large

model training, fundamentally caused by computation

time imbalance at different levels.

• Wepropose Perseus, a software-only energy optimization

system that reduces energy bloat through a unified opti-

mization framework and a graph cut-based algorithm.

• We evaluate Perseus on a diverse set of large model work-

loads and show that it significantly reduces energy bloat,

bringing hardware-agnostic energy savings.

0.00 3.83Time (seconds)

F
1

F
2

F
3

F
4

B
1

F
5

B
2

F
6

B
3

B
4

B
5

B
6

F
1

F
2

F
3

B
1

F
4

B
2

F
5

B
3

F
6

B
4

B
5

B
6

F
1

F
2

B
1

F
3

B
2

F
4

B
3

F
5

B
4

F
6

B
5

B
6

F
1

B
1

F
2

B
2

F
3

B
3

F
4

B
4

F
5

B
5

F
6

B
6

S1

S2

S3

S4

0W Pblocking 150W 300W

(a) Execution timeline of one training iteration

0.00 3.83Time (seconds)

F
1

F
2

F
3

F
4

B
1

F
5

B
2

F
6

B
3

B
4

B
5

B
6

F
1

F
2

F
3

B
1

F
4

B
2

F
5

B
3

F
6

B
4

B
5

B
6

F
1

F
2

B
1

F
3

B
2

F
4

B
3

F
5

B
4

F
6

B
5

B
6

F
1

B
1

F
2

B
2

F
3

B
3

F
4

B
4

F
5

B
5

F
6

B
6

S1

S2

S3

S4

0W Pblocking 150W 300W

(b) Execution timeline with reduced intrinsic energy bloat

Figure 1.One training iteration of GPT-3 1.3Bwith 4 pipeline

stages and 6 microbatches on NVIDIA A100 GPUs, drawn

to scale. For example, F5 and B5 in the S2 row denote for-

ward and backward for the fifth microbatch on Stage 2. The

critical path is traced with a blue line. Colors show power

consumption. Other models are visualized in Appendix A.

2 Motivation
First, we provide necessary background regarding largemodel

training (§2.1). Then, we introduce intrinsic (§2.2) and ex-

trinsic (§2.3) energy bloat present in large model training,

and discuss opportunities for energy reduction (§2.4).

2.1 Large Model Training
Large model training is mostly dominated by 3D (data, ten-

sor, and pipeline) parallelism [5, 45, 57, 72, 82]. Especially,

pipeline parallelism partitions a large model into multiple

stages and its training batch into microbatches, and pipelines

forward and backward computations through the stages.

Then, such pipelines are replicated to perform data parallel

training. Pipelines can only move on to the next iteration

after every pipeline has finished and synchronized gradients.

2.2 Intrinsic Energy Bloat
We profile GPT-3 1.3B on NVIDIA A100 GPUs and visualize

the timeline of one training iteration in Figure 1a. In addition

to the familiar bubbles in the 1F1B schedule [57], we observe

gaps between forward and backward computations, where

the GPU is simply blocking on communication with an ad-

jacent stage. Such gaps exist because the computation time

of each pipeline stage is not perfectly balanced. Partition-

ing stages in a balanced manner is an important problem in

Model # Parameters Imbalance Ratio
4 stages 8 stages

GPT-3 [8]

3B 1.13 1.25

7B 1.11 1.23

13B 1.08 1.17

175B 1.02 1.03

Bloom [82]

3B 1.13 1.25

7B 1.13 1.25

176B 1.05 1.10

BERT [19]

0.1B 1.33 2.00

0.3B 1.17 1.33

T5 [66]

0.2B 1.19 1.50

0.7B 1.05 1.11

2.9B 1.06 1.16

Wide-ResNet50 [87] 0.8B 1.23 1.46

Wide-ResNet101 [87] 1.5B 1.09 1.25

Table 1. Forward latency ratio of the longest to the shortest

stage on A100 GPUs. 1.00 would mean perfect balance.

distributed execution planning [23, 34, 55, 90], but perfect bal-

ancing is difficult because DNNs are essentially a sequence

of coarse-grained tensor operations with varying sizes.

To understand the amount of possible pipeline stage im-

balance, we exhaustively searched for the pipeline partition

with the smallest imbalance ratio, defined as the ratio of the

longest stage forward computation latency to the shortest.
2

Table 1 lists the minimum imbalance ratio for various models,

which shows that perfect balance is difficult to achieve. See

Appendix B for partitioning details and sources of imbalance.

Given stage imbalance, not all forward and backward com-

putations are on the critical path of computation (Figure 1a).

This means that non-critical computations running at their

maximum speed are not contributing to faster iteration time,

and thus simply wasting energy. We call this intrinsic energy

bloat, which can be reduced by precisely slowing down each

non-critical computation without lengthening the critical

path (Figure 1b). Although seemingly simple, this problem

is not only NP-hard to solve, but also NP-hard to even ap-

proximate to any constant factor [74].

2.3 Extrinsic Energy Bloat
Numerous replicas of the same pipeline run in a data parallel

fashion in large model training. Because every pipeline must

synchronize gradients at the end, if one pipeline runs slower,

all other pipelines must wait until the straggler pipeline fin-

ishes (Figure 2a). Since the straggler pipeline determines

end-to-end iteration time, all other pipelines running at their

fastest possible iteration time are wasteful. We call this ex-

trinsic energy bloat, because unlike intrinsic energy bloat, its

cause is extrinsic to the training pipeline. To reduce extrinsic

2
For Transformer-based models, we partition at the granularity of Trans-

former layers. ForWide-ResNet, we partition at the granularity of bottleneck

layers, which are three convolution layers wrapped with a skip connection.

F B F

F

F B B

B FF BS1
S2

B

F B F

F F

F B B

B F BS1
S2

B

Time (seconds)

s
y
n
c

(a) Extrinsic energy bloat caused by a straggler

F

F B

F

BF

BB

F B

B FS1
S2

Time (seconds)

F B F

F B

F B B

B FF BS1
S2 s

y
n
c

(b) Reduced intrinsic and extrinsic energy bloat

Figure 2. Among two data parallel pipelines, the first one

becomes a straggler. The non-straggler pipeline causes ex-

trinsic energy bloat by running as fast as possible (a), which

can be reduced by precisely slowing it down (b).

bloat while keeping intrinsic bloat low, one can determine

the energy-optimal iteration time for non-straggler pipelines

and precisely slow down computations so that non-straggler

pipelines attain that iteration time (Figure 2b).

Stragglers arise from numerous sources. Thermal or power

throttling in a datacenter can result in 10–50% slowdown [47,

61, 62, 67, 93], and I/O bottlenecks in the storage or network

can be longer than GPU computation by up to 4× [54, 83, 89],
acting like a persistent straggler pipeline. Recent failure-

resilient training frameworks [25, 37, 76] deploy heteroge-

neous pipelines, introducing non-uniform iteration times.

With increasing job and infrastructure scale, the probability

of encountering stragglers increases [28, 38, 39, 79, 92].

In this work, we focus on stragglers that are known to and

anticipated by the training infrastructure, generally because

they were created by the infrastructure itself (e.g., power and

thermal throttling, non-compute bottlenecks, fault-tolerant

planning). Such stragglers also tend to persist beyond typ-

ical training iteration times. Therefore, Perseus focuses on

planning time and energy consumption across time and al-

lowing quick adaptation, assuming that information about

stragglers is available.

2.4 Potential Benefits of Reducing Energy Bloat
To gauge potential energy savings, we measure the energy

savings achieved by slowing down every computation in

the pipeline to their minimum-energy frequencies. This will

slow down iteration time, but can act as an upper bound for

energy savings. For our workloads in Section 6.2, this gives

on average 16% and 27% energy reduction on A100 and A40

GPUs, respectively. Section 6.2 shows that Perseus can realize

most of the potential savings with negligible slowdown.

Iteration Time (seconds)

Ite
ra

tio
n

E
ne

rg
y

(J
ou

le
s)

T *T 0= Tmin

Intrinsic
Bloat

(a) 𝑇 ′ = 𝑇min

Iteration Time (seconds)

Ite
ra

tio
n

E
ne

rg
y

(J
ou

le
s)

T *Tmin T 0

Intrinsic
+

Extrinsic
Bloat

(b) 𝑇min < 𝑇 ′ ≤ 𝑇 ∗

Iteration Time (seconds)

Ite
ra

tio
n

E
ne

rg
y

(J
ou

le
s)

T *Tmin T 0

Intrinsic
+

Extrinsic
Bloat

(c) 𝑇 ∗ < 𝑇 ′

Figure 3. Three cases showing where the straggler pipeline’s iteration time𝑇 ′ can be. 𝑇min and 𝑇
∗
are the shortest and longest

iteration times on the time–energy frontier. The black dot is when all computations run at the maximum speed, which wastes

energy. The green dot is the energy-optimal iteration time of the non-straggler pipeline. Solid orange dots make up the frontier,

and the orange dotted line shows that iteration energy increases beyond 𝑇 ∗.

3 Perseus Overview
We first present Perseus’s unified optimization framework

that aims to remove both types of energy bloat (§3.1), and

then walk through the workflow of Perseus (§3.2).

3.1 Unified Optimization Framework
Intuitively, slowing down computations selectively in a train-

ing pipeline without affecting its critical path will keep the

same iteration time while reducing its energy consumption

(§2.2). Furthermore, when stragglers emerge, slowing down

computations in a non-straggler pipeline without making

it a straggler itself will reduce energy consumption even

more (§2.3). We formalize these two intuitions into a unified

optimization framework and derive a universal prescription

for a non-straggler pipeline’s energy-optimal iteration time.

Our goal is to minimize a pipeline’s energy consumption

by controlling the execution speed of each computation in

the pipeline. In doing so, we can slow down a pipeline’s

iteration time up to the straggler’s iteration time 𝑇 ′:

min

𝐹
Energy(𝐹)

s.t. Time(𝐹) ≤ 𝑇 ′
(1)

where 𝐹 is an assignment of GPU frequencies
3
to each for-

ward and backward computation in the pipeline, and Time(𝐹)
and Energy(𝐹) are the iteration time and energy consump-

tion of the pipeline when executed with 𝐹 , respectively.

Changing 𝐹 will lead to different values of Time(𝐹) and
Energy(𝐹), but we are only interested in (Time(𝐹), Energy(𝐹))
points that are on the time–energy tradeoff frontier.

Now, let us assume we have a fully characterized time–

energy frontier, bookended by𝑇min and𝑇
∗
(Section 4 is dedi-

cated to describing how). 𝑇min is the shortest iteration time

on the frontier, which is the same as the iteration time of

3
The SM frequency of NVIDIA GPUs can be set via NVML [4] in around 10

ms, which is much shorter than typical large model computation latencies.

Locking the GPU’s frequency provides deterministic computation latency [4,

27], making it suitable for tightly planning and packing execution over time.

running every computation at the maximum speed, and 𝑇 ∗

is the iteration time with minimum energy consumption,

which is when each computation runs at the frequency that

consumes the least amount of energy for that computation.
4

Figure 3 shows the three possible cases regarding where the

straggler’s iteration time 𝑇 ′ can be:

1. Figure 3a: When there are no stragglers, we simply select

the point on the frontier with iteration time 𝑇min, which

reduces only intrinsic energy bloat.

2. Figure 3b: When a moderately slow straggler is detected,

we additionally reduce extrinsic energy bloat while keeping

intrinsic bloat low by slowing down all non-straggler

pipelines until 𝑇 ′, using up all the slack time.

3. Figure 3c: Finally, the straggler’s iteration time may go

beyond the minimum-energy point 𝑇 ∗ on the frontier.

In this case, we only slow down non-stragglers until 𝑇 ∗,
because going past 𝑇 ∗ will instead increase energy.

The three cases can be merged into one universal prescrip-

tion for the pipeline’s energy-optimal iteration time:

𝑇opt = min(𝑇 ∗,𝑇 ′). (2)

Therefore, when a straggler emerges (i.e.,𝑇min < 𝑇 ′), Perseus
can compute 𝑇opt using Equation 2 and quickly look up the

frequency plan 𝐹opt that leads to iteration time𝑇opt using the

pre-characterized time–energy frontier.

Finally, we note that, unlike other problem settings that do

not consider energy consumption, fully utilizing all the slack

time created by the straggler is not always energy-optimal;

being too fast or too slow can both waste energy.

3.2 Perseus Architecture

Energy Schedule. Perseus represents each iteration of the

training pipeline as a static directed acyclic graph (DAG),

where nodes are forward and backward computations in

4
This is typically not the lowest frequency, because computations running

with very low frequencies incur more latency increase than power reduction,

resulting in higher energy consumption.

Energy
Schedule
 for Topt

Energy
Schedule
 for Tmin

Perseus
Client

GPU GPU GPU GPU

Online
Time/Energy

Profiler

Perseus
Server

Frontier Characterization

Time

Energy

Profile
Information

1

Asynchronous
Frequency
Controller

Energy
Schedule
Lookup Table

Tmin Schedule 1
… …
Topt Schedule N

3

Optimization2

Straggler
Notification45

Distributed Training Framework

Figure 4. Perseus architecture and workflow.

each stage and edges are dependencies between computa-

tions. Each node on the computation DAG is annotated with

its planned time and energy consumption, which we call

the energy schedule. Perseus realizes an energy schedule by

executing each computation with a specific GPU frequency.

System Components. Perseus’s architecture is shown in

Figure 4. Perseus consists of a framework- and accelerator-

agnostic server and a framework-integrated and accelerator-

specific client. The server is a cluster-wide singleton. For

various training jobs, the server pre-characterizes the time–

energy frontier of one iteration (§4) and caches energy sched-

ules for fast lookup. The client profiles pipeline computations

online during training and realizes energy schedules by set-

ting the GPU’s frequency during runtime (§5).

Training Lifecycle. For the Perseus server, a training job
is primarily specified by its computation DAG for one train-

ing iteration. When the job begins execution, 1 the Perseus

client invokes its online time–energy profiler (§5) to measure

the time and energy of each forward and backward compu-

tation on each supported frequency. Profiling is done in vivo

during the initial tens of training iterations.

Upon receiving profiling results, 2 the server begins asyn-

chronously characterizing the time–energy frontier (§4) while

training continues. When characterization finishes, energy

schedules on the frontier are saved in a lookup table indexed

by 𝑇 ′. Then, 3 the energy schedule corresponding to𝑇min is

deployed to the client. Energy schedules are realized by the

client’s asynchronous frequency controller, integrated into

the training framework (§5).

During training, 4 the training infrastructure (e.g., data-

center rack power/temperaturemanager) notifies the Perseus

server of a straggler and its degree of slowdown. The server

then 5 quickly reacts to this by looking up the energy sched-

ule corresponding to the anticipated straggler iteration time

(the one with iteration time𝑇opt), and deploys it to the client.

4 Characterizing the Time–Energy Frontier
In this section, we describe our algorithm to efficiently obtain

the time–energy tradeoff frontier for a training pipeline in

detail. We first formulate the problem, show that it is NP-

hard, and describe a relaxed version (§4.1). Then, we provide

an overview of our algorithm (§4.2) and describe the core

subroutine in our algorithm (§4.3). Finally, we extend our

algorithm to support 3D/hybrid parallelism, constant-time

operations, and diverse pipeline schedules (§4.4).

4.1 Problem Formulation

Expression for Energy Consumption. The energy con-

sumption of a pipeline is not only from computation; it is

the sum of three parts: (1) Computation; (2) Blocking on

communication between computations; and (3) Blocking on

communication until the straggler pipeline finishes:∑︁
𝑖

𝑒𝑖 (𝑓𝑖) + 𝑃blocking(𝑁 ·𝑇 −
∑︁
𝑖

𝑡𝑖 (𝑓𝑖)) + 𝑃blocking ·𝑁 · (𝑇 ′ −𝑇)

=
∑︁
𝑖

(
𝑒𝑖 (𝑓𝑖) − 𝑃blocking · 𝑡𝑖 (𝑓𝑖)

)
1

+ 𝑃blocking ·𝑁 ·𝑇 ′

2

(3)

where 𝑃blocking is the power consumption of the GPU when

it is blocking on communication, 𝑁 is the number of pipeline

stages, and 𝑡𝑖 (𝑓𝑖) and 𝑒𝑖 (𝑓𝑖) are the time and energy consump-

tion of computation 𝑖 with frequency 𝑓𝑖 , respectively.
5

As derived in Section 3.1, given straggler iteration time𝑇 ′,
we draw a vertical line on the time–energy tradeoff frontier

(Time(𝐹) vs. 1 + 2) at 𝑇opt and find 𝐹opt where the two lines

intersect. Equation 3 shows that the time–energy frontier of

a pipeline depends on the straggler’s iteration time 𝑇 ′ only
in the second term 2 , which is merely an upward shift of the

frontier. Therefore, if we characterize the tradeoff frontier

of Time(𝐹) vs. 1 , that frontier can be used to find 𝑇opt and

𝐹opt for any straggler iteration time 𝑇 ′. Thus, we define

Energy(𝐹) =
∑︁
𝑖

(
𝑒𝑖 (𝑓𝑖) − 𝑃blocking · 𝑡𝑖 (𝑓𝑖)

)
(4)

and characterize the frontier of Time(𝐹) vs. Energy(𝐹).

Finding the Time–Energy Frontier. Finding one point on

the Pareto-optimal tradeoff frontier with iteration time 𝑇 is

5
An assumption here is that 𝑃

blocking
is constant, as a GPU blocking on

communication is busy-looping inside a NCCL kernel without heavy com-

putation utilization.

Iteration Time (seconds)

Ite
ra

tio
n

E
ne

rg
y

(J
ou

le
s)

Running all computations
with minimum energy

Running all computations
with maximum speed

Iteratively
reduce time

Tmin T *

Figure 5. Starting from the energy schedule that consumes

the minimum energy, we iteratively reduce its iteration time

to trace up and iteratively discover the tradeoff frontier.

equivalent to solving the following optimization problem:

min

𝐹
Energy(𝐹)

s.t. Time(𝐹) ≤ 𝑇
(5)

We call this problem Pipeline Energy Minimization (PEM).

Theorem 4.1. Pipeline Energy Minimization is NP-hard.

Proof. Reduction from Knapsack. Details in Appendix C. □

The complete Pareto-optimal tradeoff frontier can be ob-

tained by solving PEM for all𝑇 ∈ [𝑇min,𝑇
∗], which is clearly

intractable. Therefore, we seek an appropriate relaxation of

the problem that will yield a nearly Pareto-optimal frontier.

One of the reasons PEM is NP-hard is because it is a discrete

optimization problem where the possible choices of compu-

tation time and energy are discrete, which is in turn because

GPUs only support discrete frequencies (e.g., in 15MHz steps

and nothing in the middle). However, if frequency choices

were continuous, the problem is exactly and efficiently solv-

able [70]. This is akin to integer linear programs becoming

tractable when relaxed to linear programs.

The transform from the original problem to the relaxed

version is done by fitting a continuous exponential function

(𝑎 · 𝑒𝑏𝑡 + 𝑐) to Pareto-optimal computation time and energy

measurements for each forward and backward computation.

We choose the exponential function due to its inherent flexi-

bility and natural fit to data (more details in Appendix D). We

show in Section 6.2 that this relaxation produces high-quality

approximate solutions that realize most of the opportunity

for savings. Solving the relaxed problem returns the time and

energy consumption planned for each computation in the

pipeline, or the energy schedule. Then, this is transformed

back to a feasible solution of the original problem, which is

the set of GPU frequencies 𝐹 .

4.2 Iteratively Discovering the Frontier
Now, we first describe our iterative strategy of characterizing

the frontier, and dive deeper into one iteration in Section 4.3.

Although our relaxed problem is no longer NP-hard, solv-

ing it for each 𝑇 ′ ∈ [𝑇min,𝑇
∗] from scratch is inefficient.

Input: DAG G of computations 𝑖 ∈ G
Amount of time to reduce in one iteration 𝜏

Iteration time with all max frequencies 𝑇min

Output: Set of optimized schedules S

⊲ Begin with the minimum energy schedule

1 𝑠 ←Minimum energy for all computations

2 S ← {𝑠}
3 while IterationTime(G, 𝑠) > 𝑇min do

⊲ Reduce time by 𝜏 with minimal energy increase (§4.3)

4 𝑠 ← GetNextSchedule(G, 𝑠 , 𝜏)
5 S ← S ∪ {𝑠}
6 return S

Algorithm 1: Iteratively discovering the frontier.

Instead, what if we can tweak an existing schedule already

on the frontier to generate its neighbor energy schedule on

the frontier? Then, we can start from one end of the frontier

and trace along to the other end, discovering fine-grained

optimized energy schedules.

Figure 5 visualizes our strategy. We start from the right-

most point 𝑇 ∗ that consumes the minimum energy, which is

simply running every computation with the minimum en-

ergy.
6
This energy schedule is in fact Pareto-optimal because

there are no other schedules that achieve the same energy

with faster time. Then, we iteratively reduce iteration time

by unit time 𝜏 (e.g., 1 ms) while increasing total energy min-

imally, which gives us the neighbor energy schedule on the

frontier.
7
This is repeated until iteration time reaches 𝑇min.

We note that tracing down from the energy schedule that

consumes the maximum energy (i.e., Figure 5 black dot)

would be incorrect. That schedule is far from optimized be-

cause, although it will execute with the least amount of time,

stage imbalance leaves room for energy reduction (§2.2).

Algorithm 1 provides an overview of our optimization

process. First, the energy schedule with the minimum energy

consumption is constructed by planning every computation

to run with minimum energy (line 1). Starting from there,

the iteration time of the schedule is iteratively reduced by

unit time 𝜏 while incurring minimal energy increase (line 4;

Section 4.3). This is repeated until the total iteration time

of the schedule can no longer be reduced, and every energy

schedule encountered in the process forms our frontier.

4.3 Finding the Neighbor Energy Schedule
In this section, we describe our core subroutine GetNextSched-

ule (Algorithm 1, line 4). Figure 6 provides visualizations of

the process. The entire procedure is given in Algorithm 2.

6
The minimum energy consumption for each computation type can be

queried from the computation time/energy profiling information (§5).

7𝜏 is the unit time parameter that trades off the running time of Perseus’s

optimizer and the granularity of energy schedules discovered by Perseus.

2τ

2τ

4τ

4τ

2τ

2τ
1 Energy schedule

2τ 3τ 4τ 7τ 2τ 3τ

5τ2τ 6τ 4τ 3τ4τ s t4τ
2τ

5τ

3τ

6τ

7τ

4τ
3τ

3τ

2 Computation DAG

s t
2τ

5τ

3τ

6τ

7τ

3τ

3τ

3 Removed non-critical computations

5B Energy schedule after Cut B

5A Energy schedule after Cut A

2τ 3τ 4τ 6τ 2τ 3τ

4τ2τ 6τ 4τ 3τ4τ

Forward Backward

4 Two s-t cut examples

2τ

4τ 2τ

s t
2τ

5τ

3τ

6τ

7τ

3τ

3τCut BCut A

2τ 4τ 7τ 2τ 3τ

5τ2τ 6τ 4τ 3τ4τ

2τ

Figure 6. A simplified example of how to reduce iteration time by unit time 𝜏 . Given a 1F1B pipeline schedule with 2 stages

and 3 microbatches (1), it is first transformed to an equivalent representation of computation DAG (2). Then the Critical

DAG (3) is obtained by considering only the computations on the critical path. Our key observation is that any valid s-t cut

on the Critical DAG will reduce the iteration time by unit time 𝜏 . Cut A and Cut B are two examples of valid s-t cuts (4).

Either reducing the one computation associated with Cut A (5A) or reducing the two computations associated with Cut B (5B)

reduces the iteration time by 𝜏 .

Node- and Edge-Centric Computation DAGs. Originally,
Perseus’s representation of the computation DAG is node-

centric, which has forward and backward computations as

nodes and their dependencies as edges. As a setup for subse-

quent steps, we convert this into an edge-centric computa-

tion DAG where computations are edges and dependencies

are nodes (i.e., all incoming edges must complete before any

outgoing edge can begin). This conversion can be done by

splitting each node into two and connecting the two with an

edge annotated with the computation on the original node.

Removing Non-Critical Computations. Our goal is to
reduce the execution time of the computation DAG by 𝜏 ,

which is equivalent to reducing the length of all critical paths

by 𝜏 .8 Since computations that are not on any critical path

(i.e., non-critical computations) do not affect the length of the

critical path, we remove them from the computation DAG.

Finding Computations to Speed Up.Which computations

on the DAG should we speed up in order to reduce the length

of all critical paths by 𝜏? The key observation is that any

s-t cut on the computation DAG represents a way to reduce

the execution time of the DAG by 𝜏 . Specifically, by speed-

ing up the computations on all cut edges by 𝜏 , the entire

computation DAG can be sped up exactly by 𝜏 .

Figure 6 shows two examples of this. 4 shows two valid

s-t cuts: Cut A and Cut B. 5A speeds up the computation

edge cut by Cut A from 3𝜏 to 2𝜏 , and the iteration time of the

8
Let’s say there are two critical paths that run in parallel. They must be of

equal length to both be critical paths. Here, if only one were shortened, the

other will remain the sole critical path and the DAG will not execute faster.

energy schedule was reduced by 𝜏 . Similarly, 5B speeds up

the computation edges cut by Cut B from 5𝜏 to 4𝜏 and from

7𝜏 to 6𝜏 , and the iteration time of the energy schedule was

also reduced by 𝜏 . Especially, in the second case, iteration

time was only reduced because computations on two parallel

critical paths were sped up together.

Solving with Minimum Cut. We have seen that any s-t

cut represents a way to speed up the entire DAG by 𝜏 . But

speeding up computations increases energy. Then, a natural

question is, which cut brings the smallest energy increase?

We can precisely map the flow capacity of an s-t cut to the

amount of energy increase from speeding up cut edges. That

is, by finding the amount of energy increase each compu-

tation will incur with the slope of its exponential function

(§4.1) and defining it to be the edge’s flow capacity, we can re-

duce our problem to minimum cut, which we can solve with

maximum flow. After finding the minimum cut, we modify

the durations of the computations involved in the cut, ob-

taining the neighbor energy schedule. Appendix E provides

details with mathematical expressions for flow capacities.

Converting Back to GPU Frequencies. Finally, we con-
vert the energy schedule into GPU frequencies that can be

realized by the Perseus client. For each computation, we

convert its planned execution time 𝑡 to the slowest GPU fre-

quency that will execute faster than 𝑡 . This is because when

computations are tightly packed by our algorithm, while

slightly speeding up a computation is acceptable, slowing

down any computation on the critical path will directly slow

down the entire DAG, increasing intrinsic energy bloat.

API Description

profiler.begin(type) Begin time and energy profiling for computation type.
profiler.end(type) Record time and energy profiling results for computation type.
controller.set_speed(type) Set the hardware’s execution speed as planned for computation type.
server.set_straggler(id, delay, degree) Notify that a straggler is anticipated after delay seconds. A straggler

returning to normal can be communicated by setting degree to 1.

Table 2. The minimal set of Perseus client and server APIs that require implementation. One client process manages each

accelerator. The type parameter should be either "forward" or "backward". On GPUs, the “speed” control knob is the SM

frequency. set_straggler is invoked by the infrastructure with the id of an accelerator to notify the server via HTTP/RPC.

Input: DAG G of computations 𝑖 ∈ G
Current energy schedule 𝑠

Amount of iteration time to reduce 𝜏

Output: Neighbor schedule with reduced time 𝑠′

⊲ Construct edge-centric computation DAG (2)

1 G ← Split nodes into two and connect with edge

⊲ Find and remove non-critical computations (3)

2 Annotate earliest & latest start times for ∀𝑖 ∈ G
3 for 𝑖 ∈ G do
4 if 𝑖 has different earliest and latest start then
5 Remove 𝑖 from G

⊲ Find set of computations to modify (4)

6 𝑆 , 𝑇 ← FindMinCut(G, 𝑠)
⊲ Modify computation durations (5)

7 Modify duration of ∀𝑖 in 𝑆 −𝑇 cut by 𝜏

⊲ Assign frequencies from planned computation times

8 𝑠′ ← min 𝑓𝑖 that runs no slower than planned

9 return 𝑠′

Algorithm 2: GetNextSchedule: Reducing the execution
time of the DAG by 𝜏 with minimal energy increase.

Time Complexity Analysis. Our optimization algorithm

has polynomial runtime. Let 𝑁 and 𝑀 denote the number

of stages and microbatches, respectively. Then, the compu-

tation DAG will have 𝑂 (𝑁𝑀) number of nodes and edges,

and maximum flow with Edmonds-Karp runs in 𝑂 (𝑁 3𝑀3).
While for general DAGs the total number of steps is known

to be exponential to the size of the DAG [71], we prove that

for DAGs that represent pipeline computations, the num-

ber of steps is 𝑂 (𝑁 +𝑀), yielding a final polynomial time

complexity of 𝑂 ((𝑁 +𝑀)𝑁 3𝑀3). See Appendix F for proof.
In reality, commonly used number of stages (𝑁) is 4 to 8 (at

most tens) to reduce pipeline bubble ratio [18, 57]. Number of

microbatches (𝑀) is typically around 4𝑁 [34, 72], but recently

with high data parallel degree, far fewer have been reported

even for high-performance settings [18]. As such, algorithm

runtime is practically negligible (§6.5), especially given that

large model training easily takes weeks or months [63].

4.4 Generalizations
In this section, we present generalizations to our optimiza-

tion algorithm useful for planning large model training.

3D/Hybrid Parallelism. Operator parallelism techniques

(e.g., data, tensor, or sequence parallelism) split operations

in equal sizes, resulting in each GPU running the same com-

putation. This allows Perseus to profile only one GPU per

stage, decide the energy schedule for that GPU, and replicate

it to all other GPUs in the same stage. We show that Perseus

works well for 3D parallelism in Section 6.4.

Constant-Time Operations. There are operations in the

training pipeline that may take non-trivial latency, other

than computation and blocking on communication. For in-

stance, loading and copying input data into VRAM or com-

munication over slower links can take considerable latency.

However, the time and energy consumption of these opera-

tions are not affected by the GPU’s frequency. Perseus can

take constant-time operations into account during planning

by viewing them as a node with only one frequency choice.

Other Pipeline Schedules. There are various schedules for
pipeline parallel training, including GPipe [34], 1F1B [56],

interleaved 1F1B [69], and early recomputation 1F1B [45]. As

long as the computations on the schedule can be expressed

as a DAG, Perseus can optimize its energy consumption

without modification. As long as there is stage imbalance,

any pipeline schedule will have intrinsic energy bloat.

5 Implementation
The Perseus server and client are implemented in Python.

Perseus can optimize any training infrastructure, framework,

and accelerator as long as the APIs in Table 2 can be imple-

mented, and the accelerator supports multiple execution

speeds that trade off computation time and energy.

As a reference, we have integrated the Perseus client with

Merak [45], which marries high-performance tensor paral-

lelism ofMegatron-LM [3] and the generic pipeline execution

engine of DeepSpeed [1]. While training engine implemen-

tations differ widely, many have separate code blocks for

forward and backward, allowing them to be wrapped with

the profiler APIs. We provide an example of what is looks

like to integrate the client with a training engine in Appen-

dix G. Activation recomputation [13] is enabled to allow

large batch sizes to fit in GPUs.

Profiler. Accurate profiling is important to our optimization

algorithm; inaccurate latency profiles (especially underesti-

mations) may slow down the end-to-end latency of the DAG,

whereas inaccurate energy profiles can lead the algorithm

to incorrectly select computations to speed up.

Fortunately, the latency of a fixed set of GPU computa-

tions, especially with the GPU’s frequency locked, is known

to be very stable [4, 27]. Furthermore, to ensure that profiling

results are representative of real training, the Perseus client

profiles the time and energy of each forward and backward

computation at the beginning of the training job in vivo. Each

supported GPU frequency is profiled one by one from the

highest to the lowest for about five iterations (more if one

iteration has less microbatches). After a certain frequency,

lower frequencies result in both more time and energy con-

sumed, making them strictly suboptimal compared to higher

frequencies. Profiling is terminated at that point.

Finally, we profile 𝑃blocking using two GPUs. One GPU

blocks on P2P communication and the other sleeps, and we

measure the power consumption of the blocking GPU. It is

sufficient to profile 𝑃blocking once per GPU model.

Asynchronous FrequencyController. The client-side con-
troller spawns a separate process that asynchronously sets

the GPU’s frequency through NVML [4] without blocking

the main training process. Training frameworks can call

set_speed at the beginning of forward or backward to set

the GPU’s frequency as planned by the server.

6 Evaluation
Weevaluate Perseus on fiveworkloads and compare it against

EnvPipe and Zeus. Our key findings are the following:

• Perseus can effectively reduce intrinsic and extrinsic en-

ergy bloat. Training on real GPUs shows up to 28.5%

energy savings using Perseus (§6.2).

• In emulated large-scale training scenarios, Perseus sig-

nificantly outperforms the baselines by consistently pro-

viding up to 30% energy savings (§6.3).

• Energy bloat reduction is possible because Perseus can

enumerate efficient energy schedules on the time–energy

frontier (§6.4).

• Perseus reduces energy bloat with low overhead (§6.5).

6.1 Experimental Setup

Testbed.We run our evaluation workloads in a GPU cluster,

where each node is equipped with an AMD EPYC 7513 CPU,

512 GB DRAM, and four NVIDIA A40-48G GPUs. For A100

results, we use a node provided by Chameleon Cloud [41],

equipped with two Intel Xeon Platinum 8380 CPUs, 512 GB

DRAM, and four NVIDIA A100-80G PCIe GPUs.

Workloads and experiment parameters. We evaluate

Perseus with various workloads spanning from GPT-3 [8],

Bloom [82], BERT [19], T5 [66], to Wide-ResNet [87]. We

use model variants with 1.3B to 6.7B parameters to run the

models in our testbed, and scale them up to 176B parameters

in large-scale emulation. We chose the microbatch size and

number of microbatches that yield the highest throughput

given the global batch size. We use the minimum imbalance

stage partitioning method described in Section 2.2 for all

workloads. Appendix B lists complete model configurations,

parameters, and stage partitioning details.

Metrics. We report GPU energy reduction and slowdown

of a training iteration (%) relative to using all maximum

GPU frequencies. In most cases slowdown is close to zero, in

which case energy and average power reductions coincide.

Reducing only extrinsic bloat is not possible, because Perseus

reduces extrinsic bloat while keeping intrinsic bloat low as it

slows down non-straggler pipelines. Therefore, we report (1)

intrinsic bloat reduction without stragglers and (2) intrinsic

+ extrinsic bloat reduction with stragglers.

Baselines.We mainly compare with two prior works:

• EnvPipe [15] reduces only intrinsic energy bloat while

trying to minimize slowdown. We compare Perseus’s

energy bloat reduction with EnvPipe (§6.2, §6.3).

• Zeus [86] characterizes the time–energy tradeoff of sin-

gle GPU training. We compare Perseus’s time–energy

frontier against that of Zeus (§6.4).

6.2 Reducing Energy Bloat
We start with overall energy bloat reduction—intrinsic bloat

without stragglers (§6.2.1) and intrinsic + extrinsic bloat

with stragglers (§6.2.2)—achieved by Perseus and EnvPipe.

All numbers were obtained by running on testbed GPUs. All

solutions use the same amount of GPU hardware resources.

6.2.1 Intrinsic Bloat Reduction Without Stragglers.
Table 3 compares the energy savings achieved by Perseus’s

minimum iteration time energy schedule (leftmost point of

the time–energy frontier) and that by EnvPipe.

We make two observations regarding Perseus. First, mod-

els show varying amounts of energy savings because (1) their

stage imbalances vary (Table 1), and (2) their forward and

backward are composed of different computations, which

affects time/energy sensitivity when changing the frequency.

For instance, unlike other models,Wide-ResNet 1.5B on A100

after minimum imbalance stage partitioning has nearly per-

fect stage balance, resulting in low intrinsic energy bloat.

However, as will be seen in Section 6.2.2, such models tend to

achieve greater extrinsic bloat savings because most of their

computations run at a high frequency, and slowing them

down due to stragglers leads to higher energy reduction.

Second, A40 demonstrates more energy savings compared

to A100. This is because the dynamic clock frequency range

Model Energy Savings (%) Slowdown (%)
Perseus EnvPipe Perseus EnvPipe

GPT-3 1.3B 13.2 8.8 0.1 0.1

BERT 1.3B 12.9 8.0 0.5 0.0

T5 3B 10.6 7.4 1.3 3.4

Bloom 3B 11.7 8.9 0.2 0.2

Wide-ResNet 1.5B 3.2 3.7 2.3 4.1

(a) Four stage pipeline parallelism on A100 GPUs

Model Energy Savings (%) Slowdown (%)
Perseus EnvPipe Perseus EnvPipe

GPT-3 2.7B 21.1 21.7 0.2 5.6

BERT 1.3B 15.7 16.5 0.0 9.7

T5 3B 28.5 19.3 0.0 0.0

Bloom 3B 22.4 19.9 0.0 0.0

Wide-ResNet 1.5B 20.4 16.5 0.2 0.5

(b) Eight stage pipeline parallelism on A40 GPUs

Table 3. [Experiment] Intrinsic energy bloat (without strag-

glers) reduction and iteration time slowdown.

of A100 (210–1410 MHz) is smaller than that of A40 (210–

1740 MHz). Thus, tuning down the GPU’s frequency yields

a relatively smaller change in computation time and energy

compared to those at the maximum frequency. However,

we expect the more recent GPUs to have better percentage

savings due to higher maximum frequency (e.g., 1980 MHz

for H100 SXM [58]) and better absolute savings due to high

TDP (e.g., 1,200 W for each GPU on GB200 [50]).

EnvPipe in general provides lower energy savings, primar-

ily due to its assumption that the final stage of a pipeline is

always the heaviest. This is only correct with a probability of

1/𝑁 , where 𝑁 is the number of pipeline stages. Additionally,

it sometimes considerably degrades iteration time because

it is not aware of single-choice operations inside the pipeline

(§4.4) and can slow down some computations too much.

6.2.2 Intrinsic + Extrinsic Bloat ReductionWith Strag-
glers. When stragglers create extrinsic energy bloat, the

amount of energy savings depends on how much energy re-

duction the time–energy frontier yields for longer iteration

times. Table 4 shows the amount of energy savings of a non-

straggler pipeline given varying straggler slowdowns. For

a given slowdown factor (𝑇 ′/𝑇), a non-straggler pipeline’s
iteration time is set to be 𝑇opt = min(𝑇 ∗,𝑇 ′) (§3.1), and en-

ergy reduction comes from (1) slowing down the pipeline

itself and (2) reducing the time (and energy) blocking on

communication, waiting for the straggler.

The percentage of savings initially increaseswith the strag-

gler’s iteration time, but then gradually decreases as it slows

down beyond 𝑇 ∗. This is expected. The absolute amount

of energy reduction in Joules is the largest when the strag-

gler’s iteration time is 𝑇 ∗ and constant afterward, because

Perseus does not slow down non-straggler pipelines beyond

Model Method Energy Savings (%) given𝑇 ′/𝑇
Params 1.05 1.1 1.2 1.3 1.4 1.5

GPT-3 Perseus 14.7 15.9 15.5 15.0 14.6 14.3

1.3B EnvPipe 8.7 8.5 8.3 8.1 7.9 7.7

Bloom Perseus 13.6 15.6 15.2 14.7 14.3 14.0

3B EnvPipe 8.8 8.7 8.4 8.2 8.0 7.8

BERT Perseus 14.9 16.9 16.4 15.9 15.5 15.0

1.3B EnvPipe 7.9 7.8 7.5 7.3 7.1 6.9

T5 Perseus 15.3 18.0 17.9 17.4 16.9 16.5

3B EnvPipe 8.4 8.2 8.0 7.8 7.6 7.4

Wide-ResNet Perseus 9.4 12.7 12.6 12.3 12.0 11.6

1.5B EnvPipe 4.9 4.8 4.7 4.5 4.4 4.3

(a) Four stage pipeline parallelism on A100 GPUs

Model Method Energy Savings (%) given𝑇 ′/𝑇
Params 1.05 1.1 1.2 1.3 1.4 1.5

GPT-3 Perseus 24.5 26.0 25.9 25.2 24.6 24.0

2.7B EnvPipe 22.9 22.6 22.0 21.4 20.9 20.4

Bloom Perseus 25.5 26.4 25.9 25.2 24.6 24.0

3B EnvPipe 19.6 19.3 18.8 18.3 17.8 17.4

BERT Perseus 20.0 22.6 24.1 23.4 22.8 22.2

1.3B EnvPipe 19.2 18.9 18.3 17.8 17.4 16.9

T5 Perseus 27.9 27.3 26.2 25.2 24.3 23.4

3B EnvPipe 18.4 18.0 17.3 16.6 16.0 15.4

Wide-ResNet Perseus 24.3 26.2 26.3 25.7 25.0 24.4

1.5B EnvPipe 16.4 16.2 15.8 15.4 15.0 14.6

(b) Eight stage pipeline parallelism on A40 GPUs

Table 4. [Experiment] Energy savings given varying strag-

gler slowdown (𝑇 ′/𝑇). Perseus can reduce extrinsic bloat

while keeping intrinsic bloat low, whereas EnvPipe cannot.

𝑇 ∗ (§3.1). Thus, as the straggler slows down beyond 𝑇 ∗, ad-
ditional time and energy is consumed while waiting for the

straggler, lowering the percentage of energy savings.

Finally, the point of maximum energy savings is different

for each model. This is because each model has a different

𝑇 ∗ value, which is determined by how much each stage’s

computation slows down on the minimum-energy frequency.

6.2.3 How Much Potential Saving Was Realized? The

largest possible savings under our problem setting occurs

when running every computation at their minimum-energy

frequencies (i.e., the 𝑇 ∗ point on the time–energy frontier).

For intrinsic bloat without stragglers, Perseus realizes on

average 74% and 89% of the potential savings on A100 and

A40, respectively, with negligible slowdown. This is possible

because there are much more non-critical computations in

the DAG that can be slowed down than critical ones. With

stragglers, Perseus fully realizes potential savings when the

straggler’s slowdown degrees are on average 1.1 and 1.15 on

A100 and A40 respectively, which is not unrealistic consid-

ering slowdowns reported in literature (§2.3).

GPUs # Pipelines
Microbatches
Per Pipeline

Global
Batch Size

1024 16 96

1536

2048 32 48

4096 64 24

8192 128 12

Table 5. Strong scaling parameters for large-scale emulation.

A pipeline has tensor parallel degree 8 and 8 pipeline stages.

Intrinsic Extrinsic

Perseus EnvPipe Perseus EnvPipe
0

10

20

30

E
ne

rg
y

S
av

in
g

(%
)

GPT-3 175B Bloom 176B

(a) A100

Perseus EnvPipe Perseus EnvPipe
0

10

20

30

E
ne

rg
y

S
av

in
g

(%
)

GPT-3 175B Bloom 176B

(b) A40

Figure 7. [Emulation] Energy savings breakdownwith strag-

gler slowdown 1.2 and 1,024 GPUs.

6.3 Large-Scale Emulation
Because we do not have access to a GPU cluster required to

run hugemodels like GPT-3 175B, we use emulation grounded

on fine-grained profiling for large-scale evaluation. In gen-

eral, trends in our emulation result match those obtained

from real training in Section 6.2.

Emulation Methodology.We profile the time and energy

consumption of each layer (e.g., Transformer decoder) in

GPT-3 175B and Bloom 176B and run our optimization algo-

rithm to obtain the time–energy frontier. We perform strong

scaling when varying the number of GPUs (Table 5) in or-

der to keep the global batch size constant [26, 42]. We used

A100 SXM GPUs for emulation, which we believe are more

representative of large-scale training infrastructure.

Emulator Fidelity.We compare the percentage of energy

savings vs. running all maximum frequencies given by our

emulator and real experiments for our A100 workloads and

find that the emulator always underestimates energy savings.

Specifically, savings on the leftmost and rightmost point of

the frontier are underestimated by 18.6% and 21.7% on aver-

age, respectively. We believe this is due to our simplifying

assumption that 𝑃blocking is constant regardless of the GPU’s

frequency. This means the savings given by the emulator

can be considered a lower bound for actual savings.

Result Summary. Figure 7 breaks down the amount of en-

ergy bloat reduction for GPT-3 175B and Bloom 176B when

slowdown degree is 1.2 on 1,024 GPUs. EnvPipe can only

reduce intrinsic bloat as it does not provide a time–energy

frontier; even for intrinsic bloat, it is suboptimal. In con-

trast, Perseus reduces energy consumption by up to 30% by

reducing both intrinsic and extrinsic energy bloat.

Model GPU Type
Energy Savings (%)

Given # Microbatches
12 24 48 96

GPT-3 175B

A100 15.20 14.19 13.62 13.32

A40 11.81 10.22 9.34 8.88

Bloom 176B

A100 10.47 7.06 5.23 4.28

A40 6.97 4.49 3.12 2.41

Table 6. [Emulation] Perseus’s intrinsic energy bloat reduc-

tion without stragglers for GPT-3 175B and Bloom 176B.

Number of microbatches is varied following Table 5.

Pipelines
16 32 64 128

1.0 1.1 1.2 1.3 1.4 1.5
T 0/T

0

10

20

30

E
ne

rg
y

S
av

in
g

(%
)

(a) GPT-3 175B on A100

1.0 1.1 1.2 1.3 1.4 1.5
T 0/T

0

10

20

30

E
ne

rg
y

S
av

in
g

(%
)

(b) Bloom 176B on A100

1.0 1.1 1.2 1.3 1.4 1.5
T 0/T

0

5

10

15

20

E
ne

rg
y

S
av

in
g

(%
)

(c) GPT-3 175B on A40

1.0 1.1 1.2 1.3 1.4 1.5
T 0/T

0

5

10

15

20

E
ne

rg
y

S
av

in
g

(%
)

(d) Bloom 176B on A40

Figure 8. [Emulation] Perseus’s intrinsic + extrinsic energy

bloat reduction with varying straggler slowdown (𝑇 ′/𝑇).
Number of pipelines is varied following Table 5.⋆ denotes

𝑇 ∗/𝑇 for each pipeline. Please note the different Y-axes.

Intrinsic Bloat Reduction Without Stragglers. Table 6
shows Perseus’s intrinsic energy bloat reduction without

stragglers for GPT-3 175B and Bloom 176B. The number of

microbatches is varied based on Table 5. For all models, as

more microbatches are added to the pipeline, the amount of

intrinsic bloat decreases. This is fundamentally due to the

ratio of microbatches in the 1F1B’s warm-up and flush phase

(beginning and end) versus the steady state phase (middle).

Most microbatches in the warm-up and flush phases can slow

down until their minimum energy frequency, yielding large

energy savings. However, microbatches in the pipeline’s

steady state cannot slow down to their full potential when

the amount of stage imbalance is not large, thereby yielding

modest savings. When the number of microbatches in the

pipeline increases, only the number of steady state micro-

batches increases, and energy reduction converges to the

average energy savings of steady state microbatches.

ZeusGlobal ZeusPerStage Perseus

60.0 62.5 65.0 67.5 70.0
Iteration Time (seconds)

55000

57500

60000

62500

65000

67500

70000

Ite
ra

tio
n

E
ne

rg
y

(J
ou

le
s)

(a) PP=4 on A100, GPT-3 1.3B

160 180 200
Iteration Time (seconds)

240000

260000

280000

300000

320000

Ite
ra

tio
n

E
ne

rg
y

(J
ou

le
s)

(b) PP=8 on A40, GPT-3 2.7B

140 160 180 200
Iteration Time (seconds)

450000

475000

500000

525000

550000

575000

600000

Ite
ra

tio
n

E
ne

rg
y

(J
ou

le
s)

(c) DP=2, TP=2, PP=4 on A40, GPT-3 6.7B

Figure 9. [Experiment] Iteration time–energy frontiers for GPT-3, achieved by Perseus and the two baselines derived from

Zeus [86]. Perseus Pareto-dominates all other approaches. The dotted vertical line is the iteration time of running all GPUs at

their maximum power limit, which is the default mode of operation. Please note the different X- and Y-axes.

Intrinsic + Extrinsic Bloat Reduction With Stragglers.
We introduce stragglers of varying slowdowns in large-scale

emulation. Figure 8 reports the amount of intrinsic + extrinsic

energy bloat reduction achieved by Perseus. The trend where

energy saving increases until 𝑇 ′ < 𝑇 ∗ and wanes afterward

is consistent with Section 6.2.2.

An interesting observation here is that there is a trade-

off between scale and energy savings: configurations with

more pipelines have less percentage of energy savings or less

amount of energy savings per pipeline. It may seem intuitive

to assume that more pipelines bring more energy savings, as

there is only one straggler pipeline and all the other pipelines

can reduce their energy consumption. However, this holds

only in weak scaling scenarios, where the per-pipeline batch

size is held constant (i.e., increasing the global batch size

proportionally with the number of pipelines). Instead, in the

more realistic strong scaling configuration (i.e., the global

batch size is constant and per-pipeline batch size is decreased

as more pipelines deployed), each pipeline’s number of mi-

crobatches changes. With fewer microbatches, the ratio of

pipeline bubble (time that GPUs are idle) at the beginning

and end of each pipeline iteration increases [57]. These bub-

bles cannot be perfectly eliminated by intrinsic energy bloat

reduction, resulting in a smaller energy savings percentages.

However, as the absolute number of GPUs increases, even a

small savings percentage is expected to yield huge absolute

energy savings.

6.4 Iteration Time–Energy Frontier Comparison
The energy bloat reductions in Sections 6.2 and 6.3 were

made possible by the time–energy frontier obtained using

Perseus’s optimization algorithm (§4). Here, we further exam-

ine the frontier with different parallelization configurations

and models and compare against Zeus [86]. Since Zeus only

produces the training time–energy frontier for single-GPU

training jobs, we implemented two Zeus-based baselines for

large model training scenarios:

• ZeusGlobal: Scans one global power limit for all stages.

• ZeusPerStage: Finds a set of per-stage power limits that

balances forward computation time.

Figure 9 shows the frontiers of all solutions for different

sizes of GPT-3 under three parallelization configurations:

(a) four stage pipeline parallelism on A100; (b) eight stage

pipeline parallelism on A40; and (c) 3D parallelism (data

parallelism 2, tensor parallelism 2, pipeline parallelism 4)

on A40. All results were obtained from running on testbed

GPUs. Appendix H has frontiers for other models.

Perseus Pareto-dominates both baselines derived from

Zeus. ZeusGlobal is unaware of pipeline stage imbalances

and slows down every stage, and therefore is unable to in-

trinsic energy bloat. ZeusPerStage can balance the forward

computation time of each stage, but is unaware of the crit-

ical path of the DAG, slowing down critical computations.

In contrast, Perseus can precisely slow down non-critical

computations, effectively reducing energy bloat.

6.5 Overhead of Perseus

Profiling. At the beginning of training, the client-side pro-

filer (§5) profiles forward and backward computations in each

stage. For our A100 workloads, the initial profiling phase

increased end-to-end training time by 13 minutes on average,

which is negligible overhead for large model training.

Algorithm Runtime. The average runtime of the optimiza-

tion algorithm (§4) across our A100 workloads was 6.5 min-

utes, with the longest being Bloom 3B (15.7 minutes). For

our largest-scale emulation workload (GPT-3 175B on A100

with 8,192 GPUs), the algorithm took 87 seconds, which is

short because it is sufficient to optimize just one data paral-

lel pipeline (§4.4). While runtime will increase with larger

DAGs for larger models, we believe the overhead is justified

because training time is likely to also increase with the scale

of the training job. Looking up the optimal energy schedule

given the straggler’s iteration time 𝑇 ′ is instantaneous.

7 Related Work

Large Model Training. Many recent works focus on en-

abling and accelerating large model training using 3D par-

allelism. GPipe [34] and PipeDream [55] first introduced

pipeline parallelism. 3D parallelism, especially popularized

for Transformer-based models by Megatron-LM [57, 69], is

considered to be the go-to solution for modern large model

training due to strong open-source projects [1, 3, 6] and

relatively low implementation complexity. Extending this,

Alpa [90], GSPMD [88], and nnScaler [48] provide automatic

parallelization for general DNNs. However, energy consump-

tion is not an optimization metric for any of the major large

model training frameworks.

Several works utilize computation idle times within large

model training pipelines to insert additional useful work [33,

59, 76]. In contrast, Perseus’s approach is to slow down pre-

ceding computations to fill the idle time and reduce power

and energy consumption. The rationale is twofold. First, the

amount of idle time–especially in the steady state of the

pipeline–is typically short. Inserting extra work may slow

down the entire pipeline or require pipeline re-partitioning

to make it feasible. Second, GPUs, especially those in the

earlier stage of the pipeline, are likely already constrained by

memory capacity, leaving little headroom for extra compu-

tation. We note that even with extra computation inserted,

some idle time is likely to remain, leaving room for Perseus

to provide energy savings.

Deep Learning and Energy Consumption. A line of work

measures or estimates the large amount of energy consump-

tion and carbon emission of deep learning workloads [20,

44, 49, 63, 73]. In terms of optimization, some works deter-

mine the GPU’s execution speed for a single fixed sequence

of GPU computations [16, 36, 43, 78, 85, 91], falling short

when the time–energy frontier of a complex large model

computation DAG needs to be characterized. Zeus [86] is a

recent work that observes the tradeoff between GPU com-

putation time and energy consumption, but still focuses on

single-GPU training. EnvPipe [15], on the other hand, aims

to find a point solution that reduces the energy consumption

of large model training with minimum slowdown. However,

EnvPipe’s heuristic assumes that the last pipeline stage is al-

ways the bottleneck, leading to suboptimal savings. In terms

of optimizing a single training job, Perseus is a superset of

both Zeus and EnvPipe, achieved by viewing large model

training as a computation DAG and introducing a principled

optimization algorithm.

Big Data and Energy Consumption. There are existing
works that change the frequency of CPUs to improve the

energy efficiency of big data workloads, including those that

only execute computation-intensive phases (e.g., map and

reduce) with the maximum frequency [35, 80], those that

choose the lowest frequency that can meet a given dead-

line [10, 51], or those that choose frequencies that balance

the completion time of parallel tasks (yet simply minimizing

idle time for smaller tasks within one stage) [46]. Perseus

provides a principled approach to setting the job’s end-to-

end completion time (§3.1) and task execution speed (§4),

and can be directly applied to big data workloads by generat-

ing a DAG of CPU computations and optimizing the CPU’s

frequencies.

8 Conclusion
We presented Perseus, a software-based energy optimization

system for large model training. Perseus builds on the ob-

servation that there are computation imbalances at different

levels in large model training that cause intrinsic and ex-

trinsic energy bloat, and simultaneously reduces both with a

principled graph cut-based algorithm. As a result, Perseus ad-

vances the state-of-the-art of DNN training energy optimiza-

tion by delivering energy savings with negligible slowdown,

thereby also reducing average power draw and enhancing

the sustainability of large model training.

Acknowledgements
We would like to thank the SOSP reviewers, our shepherd

Eddie Kohler, and SymbioticLab members for their insightful

feedback. This work is in part supported by NSF grants CNS-

2104243, CNS-2106184, and CCF-2327011, NWO VICI grant

639.023.812, grants from VMware and the Mozilla Founda-

tion, and a gift from Salesforce. We also thank Chameleon

Cloud for providing A100 nodes as well as CloudLab. Jae-

Won Chung is additionally supported by the Kwanjeong

Educational Foundation.

References
[1] DeepSpeed. https://github.com/microsoft/DeepSpeed.
[2] How much electricity does an American home use? https://www.eia.

gov/tools/faqs/faq.php?id=97&t=3.
[3] Megatron-LM. https://github.com/NVIDIA/Megatron-LM.

[4] NVIDIA Management Library (NVML). https://developer.nvidia.com/
nvidia-management-library-nvml.

[5] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessan-

dro Cappelli, Ruxandra Cojocaru, Mérouane Debbah, Étienne Goffinet,

Daniel Hesslow, Julien Launay, Quentin Malartic, et al. The falcon

series of open language models. arXiv preprint arXiv:2311.16867, 2023.

[6] Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black,

Preetham Gali, Leo Gao, Eric Hallahan, Josh Levy-Kramer, Connor

Leahy, Lucas Nestler, Kip Parker, Michael Pieler, Jason Phang, Shiv-

anshu Purohit, Hailey Schoelkopf, Dashiell Stander, Tri Songz, Curt

Tigges, Benjamin Thérien, Phil Wang, and Samuel Weinbach. GPT-

NeoX: Large Scale Autoregressive Language Modeling in PyTorch, 9

2023.

[7] Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu,

Martin Foltin, R. StanleyWilliams, Paolo Faraboschi, Wen-meiWHwu,

John Paul Strachan, Kaushik Roy, and Dejan S. Milojicic. PUMA: A

programmable ultra-efficient memristor-based accelerator for machine

learning inference. In ASPLOS, 2019.

https://github.com/microsoft/DeepSpeed
https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
https://github.com/NVIDIA/Megatron-LM
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,

Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,

Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. Language models are few-shot learners. In NeurIPS,

2020.

[9] Trevor Cai. Predictable scaling and infrastructure (HotChips 2024

keynote talk). OpenAI.

[10] Xiaojun Cai, Feng Li, Ping Li, Lei Ju, and Zhiping Jia. Sla-aware

energy-efficient scheduling scheme for hadoop yarn. The Journal of

Supercomputing, 73(8):3526–3546, Aug 2017.

[11] CBRE. Global data center trends 2023. https://www.cbre.com/insights/
reports/global-data-center-trends-2023, 2023.

[12] CBRE. Global data center trends 2024. https://www.cbre.com/insights/
reports/global-data-center-trends-2024, 2024.

[13] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training

deep nets with sublinear memory cost. 2016.

[14] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. Eyeriss:

An energy-efficient reconfigurable accelerator for deep convolutional

neural networks. IEEE Journal of Solid-State Circuits, 52(1):127–138,

2017.

[15] Sangjin Choi, Inhoe Koo, Jeongseob Ahn, Myeongjae Jeon, and

Youngjin Kwon. EnvPipe: Performance-preserving DNN training

framework for saving energy. In ATC, 2023.

[16] Marcus Chow and Daniel Wong. CoFRIS: Coordinated frequency and

resource scaling for GPU inference servers. In IGSC, 2024.

[17] Jae-Won Chung, Nishil Talati, and Mosharaf Chowdhury. Toward

cross-layer energy optimizations in AI systems. In Energy-Efficient

Computing for Science Workshop, 2024.

[18] ML COMMONS. MLPerf training v3.1 benchmark results.

https://github.com/mlcommons/training_results_v3.1.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: Pre-training of deep bidirectional transformers for language

understanding. In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics

(NAACL), 2019.

[20] Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes, Erika Odmark,

Roy Schwartz, Emma Strubell, Alexandra Sasha Luccioni, Noah A.

Smith, Nicole DeCario, and Will Buchanan. Measuring the carbon

intensity of ai in cloud instances. In 2022 ACM Conference on Fairness,

Accountability, and Transparency, 2022.

[21] Jack Edmonds and Richard M. Karp. Theoretical improvements in

algorithmic efficiency for network flow problems. Journal of the ACM,

19(2):248–264, 1972.

[22] Jeff Erickson. Extensions of maximum flow. https://courses.engr.
illinois.edu/cs498dl1/sp2015/notes/25-maxflowext.pdf. [Online; ac-
cessed 05-April-2023].

[23] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen

Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, Lansong Diao,

Xiaoyong Liu, and Wei Lin. DAPPLE: A pipelined data parallel ap-

proach for training large models. In ACM PPoPP, 2021.

[24] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University

Press, 1962.

[25] Swapnil Gandhi, Mark Zhao, Athinagoras Skiadopoulos, and Christos

Kozyrakis. ReCycle: Pipeline adaptation for the resilient distributed

training of large DNNs. In SOSP, 2024.

[26] Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir

Gholami, Kai Rothauge, Michael W Mahoney, and Joseph Gonzalez.

On the computational inefficiency of large batch sizes for stochastic

gradient descent. arXiv preprint arXiv:1811.12941, 2018.

[27] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-

mann, Ymir Vigfusson, and Jonathan Mace. Serving DNNs like clock-

work: Performance predictability from the bottom up. In OSDI, 2020.

[28] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Ti-

wari. Failures in large scale systems: Long-termmeasurement, analysis,

and implications. In SC, 2017.

[29] James Hamilton. Constraint-driven innovation (CIDR 2024

keynote talk). https://mvdirona.com/jrh/talksandpapers/
JamesHamiltonCIDR2024.pdf.

[30] Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr.

PipeTransformer: Automated elastic pipelining for distributed training

of large-scale models. In ICML, 2021.

[31] Dorit S. Hochbaum. A polynomial time repeated cuts algorithm for

the time cost tradeoff problem: The linear and convex crashing cost

deadline problem. Computers & Industrial Engineering, 95:64–71, 2016.

[32] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena

Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas,

Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Thomas Hen-

nigan, Eric Noland, Katherine Millican, George van den Driessche,

Bogdan Damoc, Aurelia Guy, Simon Osindero, Karén Simonyan, Erich

Elsen, Oriol Vinyals, Jack Rae, and Laurent Sifre. An empirical analysis

of compute-optimal large language model training. In NeurIPS, 2022.

[33] Qinghao Hu, Zhisheng Ye, Meng Zhang, Qiaoling Chen, Peng Sun,

Yonggang Wen, and Tianwei Zhang. Hydro: Surrogate-Based hyper-

parameter tuning service in datacenters. In OSDI, 2023.

[34] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu

Chen, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,

Yonghui Wu, and Zhifeng Chen. GPipe: Efficient training of giant

neural networks using pipeline parallelism. In NeurIPS, 2019.

[35] Shadi Ibrahim, Tien-Dat Phan, Alexandra Carpen-Amarie, Houssem-

Eddine Chihoub, Diana Moise, and Gabriel Antoniu. Governing energy

consumption in hadoop through cpu frequency scaling: An analysis.

Future Generation Computer Systems, 54:219–232, 2016.

[36] Shashikant Ilager, Rajeev Muralidhar, Kotagiri Rammohanrao, and Ra-

jkumar Buyya. A data-driven frequency scaling approach for deadline-

aware energy efficient scheduling on graphics processing units (GPUs).

In CCGRID, 2020.

[37] Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and Mosharaf Chowd-

hury. Oobleck: Resilient distributed training of large models using

pipeline templates. In SOSP, 2023.

[38] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie

Qian, Wencong Xiao, and Fan Yang. Analysis of Large-Scale Multi-

Tenant GPU clusters for DNN training workloads. In ATC, 2019.

[39] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen,

Zhi Zhang, Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia,

Sun He, Hongmin Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou,

Yiyao Sheng, Zhuo Jiang, Haohan Xu, Haoran Wei, Zhang Zhang,

Pengfei Nie, Leqi Zou, Sida Zhao, Liang Xiang, Zherui Liu, Zhe Li,

Xiaoying Jia, Jianxi Ye, Xin Jin, and Xin Liu. MegaScale: Scaling large

language model training to more than 10,000 GPUs. In NSDI, 2024.

[40] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Ben-

jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and

Dario Amodei. Scaling laws for neural language models. arXiv preprint

arXiv:2001.08361, 2020.

[41] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,

Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S Gunawi, Cody

Hammock, et al. Lessons learned from the chameleon testbed. In ATC,

2020.

[42] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail

Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for

deep learning: Generalization gap and sharp minima. In ICLR, 2017.

[43] Adam Krzywaniak, Paweł Czarnul, and Jerzy Proficz. Dynamic GPU

power capping with online performance tracing for energy efficient

GPU computing using DEPO tool. Future Generation Computer Systems,

https://www.cbre.com/insights/reports/global-data-center-trends-2023
https://www.cbre.com/insights/reports/global-data-center-trends-2023
https://www.cbre.com/insights/reports/global-data-center-trends-2024
https://www.cbre.com/insights/reports/global-data-center-trends-2024
https://courses.engr.illinois.edu/cs498dl1/sp2015/notes/25-maxflowext.pdf
https://courses.engr.illinois.edu/cs498dl1/sp2015/notes/25-maxflowext.pdf
https://mvdirona.com/jrh/talksandpapers/JamesHamiltonCIDR2024.pdf
https://mvdirona.com/jrh/talksandpapers/JamesHamiltonCIDR2024.pdf

145:396–414, 2023.

[44] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas

Dandres. Quantifying the carbon emissions of machine learning. arXiv

preprint arXiv:1910.09700, 2019.

[45] Zhiquan Lai, Shengwei Li, Xudong Tang, Keshi Ge, Weijie Liu, Yabo

Duan, Linbo Qiao, and Dongsheng Li. Merak: An efficient distributed

DNN training framework with automated 3d parallelism for giant foun-

dation models. IEEE Transactions on Parallel and Distributed Systems,

34(5):1466–1478, 2023.

[46] Hongjian Li, Yaojun Wei, Yu Xiong, Enjie Ma, and Wenhong Tian. A

frequency-aware and energy-saving strategy based on dvfs for spark.

The Journal of Supercomputing, 77(10):11575–11596, Oct 2021.

[47] Shaohong Li, Xi Wang, Xiao Zhang, Vasileios Kontorinis, Sreekumar

Kodakara, David Lo, and Parthasarathy Ranganathan. Thunderbolt:

Throughput-Optimized, Quality-of-Service-Aware power capping at

scale. In OSDI, 2020.

[48] Zhiqi Lin, Youshan Miao, Quanlu Zhang, Fan Yang, Yi Zhu, Cheng

Li, Saeed Maleki, Xu Cao, Ning Shang, Yilei Yang, Weijiang Xu, Mao

Yang, Lintao Zhang, and Lidong Zhou. nnScaler: Constraint-Guided

parallelization plan generation for deep learning training. In OSDI,

2024.

[49] Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat.

Estimating the carbon footprint of BLOOM, a 176b parameter language

model. 2022.

[50] Tobias Mann. NVIDIA turns up the AI heat with 1,200w blackwell gpus.

https://www.theregister.com/2024/03/18/nvidia_turns_up_the_ai.

[51] Stathis Maroulis, Nikos Zacheilas, and Vana Kalogeraki. ExpREsS:

Energy efficient scheduling of mixed stream and batch processing

workloads. In ICAC, 2017.

[52] Eric Masanet, Nuoa Lei, and Jonathan Koomey. To better understand

ai’s growing energy use, analysts need a data revolution. Joule, 2024.

[53] McKinsey & Company. Investing in the rising data center economy.

https://www.mckinsey.com/industries/technology-media-and-
telecommunications/our-insights/investing-in-the-rising-data-
center-economy#/, 2023.

[54] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay

Chidambaram. Analyzing and mitigating data stalls in dnn training.

14(5):771–784, jan 2021.

[55] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,

Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei

Zaharia. PipeDream: generalized pipeline parallelism for DNN training.

In SOSP, 2019.

[56] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and

Matei Zaharia. Memory-efficient pipeline-parallel DNN training. In

ICML, 2021.

[57] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-

ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi

Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and

Matei Zaharia. Efficient large-scale language model training on GPU

clusters using Megatron-LM. In SC, 2021.

[58] NVIDIA. Nvidia H100 tensor core GPU architecture overview.

https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-

hopper.

[59] Kazuki Osawa, Shigang Li, and Torsten Hoefler. PipeFisher: Efficient

training of large language models using pipelining and fisher informa-

tion matrices. In MLSys, 2023.

[60] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, et al. Pytorch: An imperative style, high-performance

deep learning library. NeurIPS, 2019.

[61] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo Goiri, Brijesh

Warrier, Nithish Mahalingam, and Ricardo Bianchini. Characterizing

power management opportunities for llms in the cloud. 2024.

[62] Pratyush Patel, Zibo Gong, Syeda Rizvi, Esha Choukse, Pulkit Misra,

Thomas Anderson, and Akshitha Sriraman. Towards improved power

management in cloud gpus. IEEE Computer Architecture Letters,

22(2):141–144, 2023.

[63] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel

Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean.

Carbon emissions and large neural network training. arXiv preprint

arXiv:2104.10350, 2021.

[64] Steve Phillips and Mohamed I. Dessouky. Solving the project time/cost

tradeoff problem using the minimal cut concept. Management Science,

24(4):393–400, 1977.

[65] Leonardo Piga, Iyswarya Narayanan, Aditya Sundarrajan, Matt Skach,

Qingyuan Deng, Biswadip Maity, Manoj Chakkaravarthy, Alison

Huang, Abhishek Dhanotia, and Parth Malani. Expanding datacenter

capacity with dvfs boosting: A safe and scalable deployment experi-

ence. In ASPLOS, 2024.

[66] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan

Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Ex-

ploring the limits of transfer learning with a unified text-to-text trans-

former. Journal of Machine Learning Research, 21(140):1–67, 2020.

[67] Varun Sakalkar, Vasileios Kontorinis, David Landhuis, Shaohong Li,

Darren De Ronde, Thomas Blooming, Anand Ramesh, James Kennedy,

Christopher Malone, Jimmy Clidaras, and Parthasarathy Ranganathan.

Data center power oversubscription with a medium voltage power

plane and Priority-Aware capping. In ASPLOS, 2020.

[68] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green

AI. Commun. ACM, 63(12):54–63, 2020.

[69] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,

Jared Casper, and Bryan Catanzaro. Megatron-LM: Training multi-

billion parameter language models using model parallelism. arXiv

preprint arXiv:1909.08053, 2019.

[70] Martin Skutella. Approximation algorithms for the discrete time-cost

tradeoff problem. Mathematics of Operations Research, 23(4):909–929,

1998.

[71] Martin Skutella. Approximation and randomization in scheduling. PhD

thesis, 1998.

[72] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGres-

ley, Samyam Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prab-

humoye, George Zerveas, Vijay Korthikanti, Elton Zhang, Rewon

Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad

Shoeybi, Yuxiong He, Michael Houston, Saurabh Tiwary, and Bryan

Catanzaro. Using deepspeed and megatron to train Megatron-Turing

NLG 530b, a Large-Scale generative language model. 2022.

[73] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and

policy considerations for deep learning in NLP. Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, 2019.

[74] Ola Svensson. Hardness of vertex deletion and project scheduling. In

International Workshop on Approximation Algorithms for Combinatorial

Optimization, pages 301–312. Springer, 2012.

[75] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient

processing of deep neural networks: A tutorial and survey. Proceedings

of the IEEE, 105(12):2295–2329, 2017.

[76] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao

Jia, Minjia Zhang, Ravi Netravali, and Guoqing Harry Xu. Bamboo:

Making preemptible instances resilient for affordable training of large

DNNs. In NSDI, 2023.

[77] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention

is all you need. In NeurIPS, 2017.

[78] Farui Wang, Weizhe Zhang, Shichao Lai, Meng Hao, and Zheng Wang.

Dynamic GPU energy optimization for machine learning training

workloads. IEEE Transactions on Parallel and Distributed Systems, 2021.

[79] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,

Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. MLaaS in the

https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/investing-in-the-rising-data-center-economy#/
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/investing-in-the-rising-data-center-economy#/
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/investing-in-the-rising-data-center-economy#/

wild: Workload analysis and scheduling in large-scale heterogeneous

GPU clusters. In NSDI, 2022.

[80] Thomas Wirtz and Rong Ge. Improving MapReduce energy efficiency

for computation intensive workloads. In International Green Comput-

ing Conference and Workshops, 2011.

[81] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,

Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf,

Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Syl-

vain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush.

Transformers: State-of-the-art natural language processing. In EMNLP,

2020.

[82] BigScience Workshop. BLOOM: A 176b-parameter open-access multi-

lingual language model. 2023.

[83] Y. Xiao, L. Ju, Z. Zhou, S. Li, Z. Huan, D. Zhang, R. Jiang, L. Wang,

X. Zhang, L. Liang, and J. Zhou. Antdt: A self-adaptive distributed

training framework for leader and straggler nodes. In ICDE, 2024.

[84] Heejin Yang, Ji-Hwan Seol, Rohit Rothe, Zichen Fan, Qirui Zhang,

Hun-Seok Kim, David T. Blaauw, and Dennis Sylvester. A 1.5-𝜇W

fully-integrated keyword spotting soc in 28-nm CMOS with skip-rnn

and fast-settling analog frontend for adaptive frame skipping. IEEE J.

Solid State Circuits, 59(1):29–39, 2024.

[85] Zhenning Yang, Luoxi Meng, Jae-Won Chung, and Mosharaf Chowd-

hury. Chasing low-carbon electricity for practical and sustainable dnn

training. 2023.

[86] Jie You, Jae-Won Chung, and Mosharaf Chowdhury. Zeus: Understand-

ing and optimizing GPU energy consumption of DNN training. In

USENIX NSDI, 2023.

[87] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In

Proceedings of the British Machine Vision Conference (BMVC), 2016.

[88] Shiwei Zhang, Lansong Diao, Chuan Wu, Siyu Wang, and Wei Lin.

Accelerating large-scale distributed neural network trainingwith spmd

parallelism. In SoCC, 2022.

[89] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan,

Mustafa Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei

Lu, Sundaram Narayanan, Jack Langman, Kevin Wilfong, Harsha Ras-

togi, Carole-Jean Wu, Christos Kozyrakis, and Parik Pol. Understand-

ing data storage and ingestion for large-scale deep recommendation

model training: Industrial product. In ISCA, 2022.

[90] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng

Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,

Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. Alpa: Automating

inter- and Intra-Operator parallelism for distributed deep learning. In

USENIX OSDI, 2022.

[91] Pengfei Zou, Ang Li, Kevin Barker, and Rong Ge. Indicator-directed dy-

namic power management for iterative workloads on GPU-accelerated

systems. In CCGRID, 2020.

[92] Yazhou Zu, Alireza Ghaffarkhah, Hoang-Vu Dang, Brian Towles,

Steven Hand, Safeen Huda, Adekunle Bello, Alexander Kolbasov, Arash

Rezaei, Dayou Du, Steve Lacy, HangWang, AaronWisner, Chris Lewis,

and Henri Bahini. Resiliency at scale: Managing Google’s TPUv4 ma-

chine learning supercomputer. In NSDI, 2024.

[93] Matej Špeťko, Ondřej Vysocký, Branislav Jansík, and Lubomír Říha.

DGX-A100 face to face DGX-2 – performance, power and thermal

behavior evaluation. Energies, 14(2), 2021.

The Appendix has not been peer-reviewed

and is provided for supplementary information.

A Visualizations for Intrinsic Energy Bloat
Figure 10 shows the timeline of running one training itera-

tion of BERT 1.3B, T5 3B, Bloom 3B, and Wide-ResNet101

1.5B for maximum frequency and Perseus-optimized energy

schedule, respectively. For visualization purposes, we set

the number of microbatches to 6. Real evaluation workloads

have more microbatches. Energy schedule found by Perseus

successfully tunes down frequency for all models without

slowing down the iteration time, tightly packing computa-

tions over time and reducing intrinsic energy bloat.

B Workload Details
B.1 Minimum Imbalance Pipeline Partitioning
We partition layers of a model into 𝑁 stages such that the

imbalance ratio, defined as the ratio of the longest stage for-

ward latency to the shortest, is minimized. We only consider

forward computation time as backward computations are

typically proportional to forward computation latency. For

Transformer-based models, we define layer as one Trans-

former layer. For Wide-ResNet, we define layer as one Bottle-

neck layer, which is three convolution layers wrapped with

a skip connection. Due to P2P communication overhead and

implementation challenges, many planners and frameworks

do not support partitioning in the middle of skip connections.

We call this minimum imbalance pipeline partitioning, and

throughout the paper, every workload we use is partitioned

as such.

Table 7 shows the computation time ratios of the heav-

iest stage to the lightest stage for 4 and 8 pipeline stages.

More pipeline stages generally increases imbalance due to

the coarse-grained nature of tensor operations. That is, the

relative size of each layer becomes smaller and smaller com-

pared to the total amount of computation allocated to each

stage, and imbalance increases.

GPT-3, Bloom, and BERT. Arguably, these are one of the
most homogeneous large models because they are a stack of

identical Transformer [77] encoder or decoder layers. How-

ever, the very last layer is the languagemodeling head, which

maps the final features to probabilities over the entire vocab-

ulary. The vocabulary size of GPT-3 is 50k, Bloom 251k, and

BERT 31k, which results in a very large linear layer for the

last stage. This leads to varying amounts of imbalance and

different minimum imbalance partitioning results for each

model.

T5. This is also based on Transformer layers, but the first half

of the layers are encoders, while the later half are decoders

(which corresponds to the original Transformer [77] model’s

architecture). However, the decoder layers as an extra cross

attention layer in the middle, making it computationally

heavier. Finally, T5 also ends with a language model head

with 32k vocabulary size. However, minimum imbalance

partitioning still balances T5 to a reasonable degree, although

it cannot be perfectly balanced.

Wide-ResNet. ForWide-ResNet, in order to make it suitable

for large model training evaluation, we used the variant with

width factor 8. Wide-ResNet is a collection of Bottleneck lay-

ers with three convolutions wrapped with a skip connection,

and there are four different sizes of Bottleneck layers laid

out sequentially. Therefore, even with minimum imbalance

partitioning, it is difficult to perfectly balance stages.

B.2 Does Imbalance Decrease with Larger Models?
Specifically for Transformer [77]-based models with homo-

geneous intermediate Transformer layers, the degree of im-

balance will decrease if the number of pipeline stages is held

constant. This is because the relative size of the embedding

layer and language model head will decrease as intermediate

Transformer layers increase in number and size. However,

as the model grow larger, the number of pipeline stages will

have to be increased simultaneously. This increases imbal-

ance, because the relative amount of computation in one

layer with respect to the amount in one pipeline stage be-

comes larger. As such, there is no simple relationship be-

tween model size and the amount of imbalance.

B.3 Alternative Planning Methods
3D parallelism is the go-to solution for large model training,

and our minimum imbalance pipeline partitioning method

is optimal for 3D parallelism because we implemented a

brute force search. More advanced planning methods such

as Alpa [90] exist, but for repetitive language model architec-

tures like GPT-3, Alpa equally allocates Transformer layers

to each stage [90], resulting in the same stage imbalance

caused by the language modeling head. Furthermore, it is

hard for tensor parallelism to divide operations infinitely;

practically at most degree 8 (within one node) due to col-

lective communication overhead. Thus, in the vast majority

of models, there will always be some degree of imbalance

between stages due to the minimum granularity of computa-

tion time.

B.4 Experiment Parameters
Tables 8, 9, and 10 list model variant names and experiment

parameters for our experiments. Model names and configu-

rations for GPT-3 were taken as is from the original model

publication [8]. Especially, model names and configurations

for BERT and T5 were directly taken from the Huggingface

Hub pretrained model zoo, except for the huge variant of

BERT, which we created to have hidden dimension 2048.

Wide-ResNet was based on Torch Vision [60] but scaled

up following the model’s original publication [87] using its

0.00 1.39Time (seconds)

F
1

F
2

F
3

F
4

B
1

F
5

B
2

F
6

B
3

B
4

B
5

B
6

F
1

F
2

F
3

B
1

F
4

B
2

F
5

B
3

F
6

B
4

B
5

B
6

F
1

F
2

B
1

F
3

B
2

F
4

B
3

F
5

B
4

F
6

B
5

B
6

F
1

B
1

F
2

B
2

F
3

B
3

F
4

B
4

F
5

B
5

F
6

B
6

S1

S2

S3

S4

0W Pblocking 150W 300W

0.00 1.39Time (seconds)

F
1

F
2

F
3

F
4

B
1

F
5

B
2

F
6

B
3

B
4

B
5

B
6

F
1

F
2

F
3

B
1

F
4

B
2

F
5

B
3

F
6

B
4

B
5

B
6

F
1

F
2

B
1

F
3

B
2

F
4

B
3

F
5

B
4

F
6

B
5

B
6

F
1

B
1

F
2

B
2

F
3

B
3

F
4

B
4

F
5

B
5

F
6

B
6

S1

S2

S3

S4

0W Pblocking 150W 300W

(a) BERT 1.3B

0.00 2.15Time (seconds)

F
1

F
2

F
3

F
4

B
1

F
5

B
2

F
6

B
3

B
4

B
5

B
6

F
1

F
2

F
3

B
1

F
4

B
2

F
5

B
3

F
6

B
4

B
5

B
6

F
1

F
2

B
1

F
3

B
2

F
4

B
3

F
5

B
4

F
6

B
5

B
6

F
1

B
1

F
2

B
2

F
3

B
3

F
4

B
4

F
5

B
5

F
6

B
6

S1

S2

S3

S4

0W Pblocking 150W 300W

0.00 2.15Time (seconds)

F
1

F
2

F
3

F
4

B
1

F
5

B
2

F
6

B
3

B
4

B
5

B
6

F
1

F
2

F
3

B
1

F
4

B
2

F
5

B
3

F
6

B
4

B
5

B
6

F
1

F
2

B
1

F
3

B
2

F
4

B
3

F
5

B
4

F
6

B
5

B
6

F
1

B
1

F
2

B
2

F
3

B
3

F
4

B
4

F
5

B
5

F
6

B
6

S1

S2

S3

S4

0W Pblocking 150W 300W

(b) T5 3B

0.00 3.83Time (seconds)

F
1

F
2

F
3

F
4

B
1

F
5

B
2

F
6

B
3

B
4

B
5

B
6

F
1

F
2

F
3

B
1

F
4

B
2

F
5

B
3

F
6

B
4

B
5

B
6

F
1

F
2

B
1

F
3

B
2

F
4

B
3

F
5

B
4

F
6

B
5

B
6

F
1

B
1

F
2

B
2

F
3

B
3

F
4

B
4

F
5

B
5

F
6

B
6

S1

S2

S3

S4

0W Pblocking 150W 300W

0.00 3.83Time (seconds)

F
1

F
2

F
3

F
4

B
1

F
5

B
2

F
6

B
3

B
4

B
5

B
6

F
1

F
2

F
3

B
1

F
4

B
2

F
5

B
3

F
6

B
4

B
5

B
6

F
1

F
2

B
1

F
3

B
2

F
4

B
3

F
5

B
4

F
6

B
5

B
6

F
1

B
1

F
2

B
2

F
3

B
3

F
4

B
4

F
5

B
5

F
6

B
6

S1

S2

S3

S4

0W Pblocking 150W 300W

(c) Bloom 3B

0.00 3.79Time (seconds)

F
1

F
2

F
3

F
4

B
1

F
5

B
2

F
6

B
3

B
4

B
5

B
6

F
1

F
2

F
3

B
1

F
4

B
2

F
5

B
3

F
6

B
4

B
5

B
6

F
1

F
2

B
1

F
3

B
2

F
4

B
3

F
5

B
4

F
6

B
5

B
6

F
1

B
1

F
2

B
2

F
3

B
3

F
4

B
4

F
5

B
5

F
6

B
6

S1

S2

S3

S4

0W Pblocking 150W 300W

0.00 3.79Time (seconds)

F
1

F
2

F
3

F
4

B
1

F
5

B
2

F
6

B
3

B
4

B
5

B
6

F
1

F
2

F
3

B
1

F
4

B
2

F
5

B
3

F
6

B
4

B
5

B
6

F
1

F
2

B
1

F
3

B
2

F
4

B
3

F
5

B
4

F
6

B
5

B
6

F
1

B
1

F
2

B
2

F
3

B
3

F
4

B
4

F
5

B
5

F
6

B
6

S1

S2

S3

S4

0W Pblocking 150W 300W

(d) Wide-ResNet101 1.5B

Figure 10. Visualization of Perseus’s 𝑇min solution for four stage pipeline workloads on NVIDIA A100 PCIe GPUs. For each

workload, the left is running every computation at maximum frequency, and the right is Perseus’s energy schedule that reduces

only intrinsic energy bloat without inflating iteration time. Note that these are not real workloads we run in Section 6; real

workloads have far more microbatches.

width factor parameter. The unit time parameter 𝜏 was set

to 1 ms for all experiments.

C Pipeline Energy Minimization is NP-hard
The Pipeline Energy Minimization problem is stated again

for convenience:

min

𝐹
Energy(𝐹)

s.t. Time(𝐹) ≤ 𝑇 ′
(6)

Model Size Imbalance Ratio Minimum Imbalance Ratio Partition
4 stages 8 stages 4 stages 8 stages

GPT-3 [8]

1B 1.17 1.33 [0, 6, 12, 19, 25] [0, 4, 7, 10, 13, 16, 19, 22, 25]

3B 1.13 1.25 [0, 8, 16, 25, 33] [0, 5, 9, 13, 17, 21, 25, 29, 33]

7B 1.11 1.23 [0, 8, 16, 24, 33] [0, 4, 8, 12, 16, 20, 24, 28, 33]

13B 1.08 1.17 [0, 10, 20, 30, 41] [0, 5, 10, 15, 20, 25, 30, 35, 41]

175B 1.02 1.03 [0, 24, 48, 72, 97] [0, 12, 24, 36, 48, 60, 72, 84, 97]

Bloom [82]

3B 1.13 1.25 [0, 9, 17, 25, 31] [0, 6, 11, 16, 22, 28, 31]

7B 1.13 1.25 [0, 9, 17, 25, 31] [0, 6, 11, 16, 22, 28, 31]

176B 1.05 1.10 [0, 18, 36, 54, 71] [0, 9, 18, 27, 36, 45, 54, 63, 71]

BERT [19]

0.1B 1.33 2.00 [0, 4, 7, 10, 13] [0, 2, 3, 4, 6, 8, 10, 12, 13]

0.3B 1.17 1.33 [0, 7, 13, 19, 25] [0, 3, 6, 9, 12, 15, 18, 22, 25]

1.3B 1.17 1.33 [0, 7, 13, 19, 25] [0, 4, 7, 10, 13, 16, 19, 22, 25]

T5 [66]

0.2B 1.19 1.50 [0, 9, 15, 20, 25] [0, 5, 9, 13, 15, 17, 19, 22, 25]

0.7B 1.05 1.11 [0, 16, 29, 39, 49] [0, 8, 16, 24, 29, 34, 39, 44, 49]

2.9B 1.06 1.16 [0, 15, 28, 38, 49] [0, 7, 15, 23, 28, 33, 38, 43, 49]

Wide-ResNet50 [87] 0.8B 1.23 1.46 [0, 5, 9, 14, 18] [0, 3, 5, 7, 9, 11, 13, 15, 18]

Wide-ResNet101 [87] 1.5B 1.09 1.25 [0, 8, 17, 26, 35] [0, 4, 8, 12, 16, 21, 26, 31, 35]

(a) NVIDIA A100 PCIe GPUs.

Model Size Imbalance Ratio Minimum Imbalance Ratio Partition
4 stages 8 stages 4 stages 8 stages

GPT-3 [8]

1B 1.15 1.31 [0, 6, 12, 18, 25] [0, 3, 6, 9, 12, 15, 18, 21, 25]

3B 1.11 1.21 [0, 8, 16, 24, 33] [0, 4, 8, 12, 16, 20, 24, 28, 33]

7B 1.08 1.17 [0, 8, 16, 24, 33] [0, 4, 8, 12, 16, 20, 24, 28, 33]

13B 1.07 1.14 [0, 10, 20, 30, 41] [0, 5, 10, 15, 20, 25, 30, 35, 41]

175B 1.01 1.02 [0, 24, 48, 72, 97] [0, 12, 24, 36, 48, 60, 72, 84, 97]

Bloom [82]

3B 1.13 1.25 [0, 9, 17, 25, 31] [0, 5, 9, 13, 17, 21, 25, 29, 31]

7B 1.13 1.25 [0, 9, 17, 25, 31] [0, 5, 9, 13, 17, 21, 25, 29, 31]

176B 1.03 1.06 [0, 18, 36, 54, 71] [0, 9, 18, 27, 36, 45, 54, 63, 71]

BERT [19]

0.1B 1.33 2.00 [0, 4, 7, 10, 13] [0, 1, 2, 4, 6, 8, 10, 12, 13]

0.3B 1.17 1.33 [0, 7, 13, 19, 25] [0, 4, 7, 10, 13, 16, 19, 22, 25]

1.3B 1.17 1.33 [0, 7, 13, 19, 25] [0, 3, 6, 9, 12, 15, 18, 22, 25]

T5 [66]

0.2B 1.20 1.50 [0, 9, 15, 20, 25] [0, 5, 9, 13, 15, 17, 19, 22, 25]

0.7B 1.06 1.12 [0, 16, 29, 39, 49] [0, 8, 16, 24, 29, 34, 39, 44, 49]

2.9B 1.07 1.17 [0, 15, 28, 38, 49] [0, 8, 15, 23, 28, 33, 38, 43, 49]

Wide-ResNet50 [87] 0.8B 1.13 1.72 [0, 5, 9, 14, 18] [0, 3, 5, 7, 9, 11, 13, 15, 18]

Wide-ResNet101 [87] 1.5B 1.08 1.25 [0, 8, 17, 26, 35] [0, 4, 8, 12, 16, 21, 26, 31, 35]

(b) NVIDIA A40 GPUs.

Table 7. Imbalance ratio between the longest and the shortest stages for various models. 1.00 would mean perfect balance.

Partitions for 𝑁 stages is a list of 𝑁 + 1 numbers, where the numbers represent layer indices. For instance, [0, 6, 12, 19, 25] for

GPT-3 1.3B means there are 6, 6, 7, and 5 Transformer layers in each stage, and the final stage also has the language model

head.

Model # Parameters Global Batch Size Microbatch Size # Microbatches

gpt3-6.7b 6.7 B 1024 4 128

Table 8. Experiment Parameters for 3D parallelism experiments on A40 GPUs. Microbatch size is per-pipeline, and there are

two data parallel copies of the same pipeline. Thus, global batch size should be calculated as the product of microbatch size

and the number of microbatches times two.

where 𝐹 is the frequency assignment for each pipeline com-

putation 𝑖 ∈ G, 𝑇 ′ is the straggler pipeline’s iteration time.

The decision problem corresponding to Equation 6 asks

whether it is possible to find frequency assignment 𝐹 such

Model # Parameters Global Batch Size Microbatch Size # Microbatches

gpt3-2.7b 2.7 B 1024 4 256

bert-huge-uncased 1.3 B 256 8 32

t5-3b 3.0 B 128 4 32

bloom-3b 3.0 B 512 4 128

wide-resnet101 (width factor 8) 1.5 B 1536 32 48

Table 9. Experiment Parameters for eight-stage pipeline parallelism experiments on A40 GPUs. Model variant names are as

described in Torch Vision [60] or Huggingface Hub [81].

Model # Parameters Global Batch Size Microbatch Size # Microbatches

gpt3-xl 1.3 B 512 4 128

bert-huge-uncased 1.3 B 256 8 32

t5-3b 3.0 B 128 4 32

bloom-3b 3.0 B 512 4 128

wide-resnet101 (width factor 8) 1.5 B 1536 64 24

Table 10. Experiment Parameters for Pipeline Parallelism Experiments on A100 PCIe GPUs. Model variant names are as

described in Torch Vision [60] or Huggingface Hub [81].

that the total energy consumption is minimized while the

iteration time of pipeline G is no longer than the straggler’s

iteration time. We denote this problem pem.

In the following, we show that a simplification of pem is

NP-hard by reduction from the 0/1 Knapsack problem, which

makes pem NP-hard.

C.1 One Stage Two Frequencies Simplification
A simplification of pem is considering the case where there is

only one pipeline stage and two frequencies to choose from.

For each pipeline computation 𝑖 ∈ {1, 2, . . . , 𝑛}, we can
set the GPU frequency to either the lowest value or the

highest, denoted as [𝐿, 𝐻] respectively. Choosing different
frequencies will lead to different execution time and energy

consumption. That is, if 𝑖 is chosen to execute at frequency

𝐿, it will take 𝑡𝑖 (𝐿) time and 𝑒𝑖 (𝐿) energy. On the other hand,

if 𝑖 executes at frequency 𝐻 , it takes 𝑡𝑖 (𝐻) time and 𝑒𝑖 (𝐻)
energy. The time and energy consumption of 𝑖 are rational

numbers, as they are rounded up to 𝜏 .

Our goal is to minimize the energy consumption of exe-

cuting all computations while satisfying the time constraint.

Specifically, given a time deadline 𝑇 ′, we want to pick a

subset of operations 𝐽 ⊆ {1, 2, . . . , 𝑛} and assign them to

execute at the lowest frequency 𝐿 and execute the rest of

the operations with the highest frequency 𝐻 , such that the

total time needed to execute all operations is smaller than

or equal to the deadline:

𝑛∑︁
𝑖=1

(𝑋𝑖𝑡𝑖 (𝐿) + (1 − 𝑋𝑖)𝑡𝑖 (𝐻)) ≤ 𝑇 ′

where 𝑋𝑖 is a 0/1 indicator variable where 𝑋𝑖 = 1 if 𝑖 ∈ 𝐽

and 𝑋𝑖 = 0 otherwise. Under this time constraint, the goal is

to minimize the total energy consumption of executing all

computations:

𝑛∑︁
𝑖=1

(𝑋𝑖𝑒𝑖 (𝐿) + (1 − 𝑋𝑖)𝑒𝑖 (𝐻)).

Formally, we denote this problem as

pem-1d(𝑇 = (𝑇𝐿,𝑇𝐻), 𝐸 = (𝐸𝐿, 𝐸𝐻),𝑇 ′, 𝐸𝐶)
where 𝑇𝐿 = [𝑡1 (𝐿), . . . , 𝑡𝑛 (𝐿)], 𝑇𝐻 = [𝑡1 (𝐻), . . . , 𝑡𝑛 (𝐻)] are
execution time vectors for low and high frequency respec-

tively, 𝐸𝐿 = [𝑒1 (𝐿), . . . , 𝑒𝑛 (𝐿)], 𝐸𝐻 = [𝑒1 (𝐻), . . . , 𝑒𝑛 (𝐻)] are
energy consumption vectors for low and high frequency

respectively, and 𝐸𝐶 the target energy consumption.

pem-1d returns true if and only if there exists a subset of

operations 𝐽 ⊆ {1, 2, . . . , 𝑛} such that

∑𝑛
𝑖=1 (𝑋𝑖𝑡𝑖 (𝐿) + (1 −

𝑋𝑖)𝑡𝑖 (𝐻)) ≤ 𝑇 ′ and
∑𝑛

𝑖=1 (𝑋𝑖𝑒𝑖 (𝐿) + (1 − 𝑋𝑖)𝑒𝑖 (𝐻)) ≤ 𝐸𝐶 .

C.2 0/1 Knapsack Problem
Consider two length 𝑛 arrays containing positive integer

weights𝑊 = (𝑤1,𝑤2, . . . ,𝑤𝑛) and values𝑉 = (𝑣1, 𝑣2, . . . , 𝑣𝑛)
where the 𝑖th item has weight 𝑤𝑖 ∈ Q+ and value 𝑣𝑖 ∈ Q+,
and a knapsack with weight capacity 𝐶 ∈ Q+.
The goal is to pick a subset of items 𝑆 ⊆ {1, 2, . . . , 𝑛},

such that the total weight of the chosen items is less than

or equal to the weight capacity:

∑
𝑖∈𝑆 𝑤𝑖 ≤ 𝐶 . Under this

constraint, the goal is to maximize the total value of items

in the knapsack:

∑
𝑖∈𝑆 𝑣𝑖 .

Formally, we denote the decision problem of 0/1 Knapsack

as

knapsack(𝑊 [1, . . . , 𝑛],𝑉 [1, . . . , 𝑛],𝐶, 𝑃)
where 𝑃 ∈ Q is the target value.

knapsack returns true if and only if there exists a subset of

items 𝑆 ⊆ {1, 2, . . . , 𝑛} such that

∑
𝑖∈𝑆 𝑤𝑖 ≤ 𝐶 and

∑
𝑖∈𝑆 𝑣𝑖 ≥

𝑃 .

It is well known that knapsack is NP-hard.

C.3 NP-hardness Proof
Theorem C.1. pem-1d is NP-hard.

Proof. We will show that knapsack ≤𝑝 pem-1d, i.e., the 0/1

Knapsack problem is polynomial-time reducible to the sim-

plified pipeline energy minimization problem. Reduction

function 𝑓 takes (𝑊 [1, . . . , 𝑛],𝑉 [1, . . . , 𝑛],𝐶, 𝑃) as input and
does the following:

1. Construct𝑛 computations and empty vectors𝑇𝐿,𝑇𝐻 , 𝐸𝐿, 𝐸𝐻 .

2. For ∀𝑖 , set 𝑡𝑖 (𝐿) = 𝑤𝑖 and append to 𝑇𝐿 .

3. For ∀𝑖 , set 𝑡𝑖 (𝐻) = 0 and append to 𝑇𝐻 .

4. For ∀𝑖 , set 𝑒𝑖 (𝐿) = −𝑣𝑖 and append to 𝐸𝐿 .

5. For ∀𝑖 , set 𝑒𝑖 (𝐻) = 0 and append to 𝐸𝐻 .

6. Set 𝑇 ′ = 𝐶 and 𝐸𝐶 = −𝑃 .
7. Output (𝑇 = (𝑇𝐿,𝑇𝐻), 𝐸 = (𝐸𝐿, 𝐸𝐻),𝑇 ′, 𝐸𝐶)

Correctness Analysis If (𝑊 [1, . . . , 𝑛],𝑉 [1, . . . , 𝑛],𝐶, 𝑃) ∈
knapsack, there exists a subset 𝑆 such that

∑
𝑖∈𝑆 𝑤𝑖 ≤ 𝐶 and∑

𝑖∈𝑆 𝑣𝑖 ≥ 𝑃 . Now for pem-1d(𝑇 = (𝑇𝐿,𝑇𝐻), 𝐸 = (𝐸𝐿, 𝐸𝐻),𝑇 ′, 𝐸𝐶),
select computations that have the same indices as items in 𝑆

to execute at low frequency 𝐿, while executing others at high

frequency 𝐻 . Then, for the time constraint,

∑𝑛
𝑖=1 (𝑋𝑖𝑡𝑖 (𝐿) +

(1 − 𝑋𝑖)𝑡𝑖 (𝐻)) =
∑𝑛

𝑖=1𝑋𝑖𝑡𝑖 (𝐿) =
∑

𝑖∈𝑆 𝑤𝑖 ≤ 𝐶 = 𝑇 ′, and for

target energy,

∑𝑛
𝑖=1 (𝑋𝑖𝑒𝑖 (𝐿)+(1−𝑋𝑖)𝑒𝑖 (𝐻)) =

∑𝑛
𝑖=1𝑋𝑖𝑒𝑖 (𝐿) =∑

𝑖∈𝑆 −𝑣𝑖 ≤ −𝑃 = 𝐸𝐶 .

If (𝑊 [1, . . . , 𝑛],𝑉 [1, . . . , 𝑛],𝐶, 𝑃) ∉ knapsack, there does

not exist a subset 𝑆 such that

∑
𝑖∈𝑆 𝑤𝑖 ≤ 𝐶 and

∑
𝑖∈𝑆 𝑣𝑖 ≥ 𝑃 .

There are two possibilities: either a subset 𝑆 that satisfies

the weight constraint does not exist at all (𝑤𝑖 > 𝐶,∀𝑖) or
none of the subsets 𝑆 that satisfy the weight constraint sat-

isfy

∑
𝑖∈𝑆 𝑣𝑖 ≥ 𝑃 . For the first possibility, this means all the

computations must select the high frequency as the low

frequency does not satisfy the time constraint. Then total

energy consumption is 0, which is larger than 𝐸𝐶 = −𝑃
since 𝑃 ∈ Q+. For the second possibility, for all subsets 𝑆 ,∑

𝑖∈𝑆 𝑣𝑖 < 𝑃 , which means that for all subsets of computa-

tions

∑𝑛
𝑖=1 (𝑋𝑖𝑒𝑖 (𝐿) + (1 − 𝑋𝑖)𝑒𝑖 (𝐻)) =

∑
𝑖∈𝑆 −𝑣𝑖 > −𝑃 = 𝐸𝐶 ,

so none of them satisfy the energy constraint.

Efficiency Analysis Step 1–5 each takes 𝑂 (𝑛) time. Step 6

takes 𝑂 (1) time. Finally, step 7 takes 𝑂 (𝑛) time.

Therefore, the function 𝑓 takes 𝑂 (𝑛) time, which is poly-

nomial time w.r.t the input size.

□

D Continuous Relaxation
The Pipeline Energy Minimization problem is NP-Hard, as

we have proved in Appendix C. Thus, we perform contin-

uous relaxation for the problem by fitting an exponential

1.0 1.1 1.2
Normalized Time

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y Stage 0

1.0 1.1 1.2
Normalized Time

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y Stage 1

1.0 1.1 1.2
Normalized Time

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y Stage 2

1.0 1.1 1.2
Normalized Time

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y Stage 3

Forward BackwardForward BackwardForward BackwardForward Backward

Figure 11. Pareto-optimal (time, energy) choices for forward

and backward computations in each stage of GPT-3 0.3B on

NVIDIA A40 GPUs.

function to each Pareto-optimal (time, energy) points for

each forward and backward computation in each stage. Fur-

thermore, the exponential function captures the nature of

diminishing returns well, in that the amount of energy con-

sumption needed to reduce computation time by a constant

amount increases multiplicatively.

Figure 11 visualizes Pareto-optimal (time, energy) mea-

surements for GPT-3 0.3B on A40 GPUs, showing that the

exponential function is a natural fit for data. This was our

consistent observation across different GPUs and models in

our evaluation.

E Full Details of GetNextSchedule
For the sake of presentation, we made a simplifying state-

ment in the body of the paper that computations only speed

up by 𝜏 . However, since we aim to speed up all critical paths

by precisely 𝜏 , speeding up more than one computation from

a critical path allows other computations on that critical

path to be slowed down. We always take such slowdown

opportunity because it will decrease energy consumption.

In the following, we describe the procedure of annotating

edges with flow capacities and then solving the problemwith

maximum flow.

E.1 Generating Capacity DAG
On the computation DAG, we first remove all the computa-

tions that are not on any of the critical paths and construct

the Critical DAG. We would like to find a set of edges 𝐼+ to
speed up by 𝜏 and 𝐼− to slow down by 𝜏 on the Critical DAG,

such that the total energy consumption increases minimally.

This can be described as the following problem:

min

𝐼+, 𝐼 −

∑︁
𝑖∈𝐼+

𝑒+𝑖 −
∑︁
𝑖∈𝐼 −

𝑒−𝑖 , (7)

where 𝑒𝑖 (𝑡𝑖) is the exponential function fit to Pareto-optimal

(time, energy) measurements for computation 𝑖 , 𝑒+𝑖 = 𝑒𝑖 (𝑡𝑖 −
𝜏) − 𝑒𝑖 (𝑡𝑖) is the extra amount of energy needed to speed up

𝑖 by 𝜏 and 𝑒−𝑖 = 𝑒𝑖 (𝑡𝑖) − 𝑒𝑖 (𝑡𝑖 + 𝜏) is the energy saved from

slowing down 𝑖 by 𝜏 .

An important fact that leads us to the solution is that

(i) the problem of finding the set of edges to modify such

that energy increase is minimized (i.e., solving Equation 7)

coincides with (ii) finding the minimum cut of a DAG whose

lower and upper bound flow capacities are defined as

(𝑙𝑖 , 𝑢𝑖) =


(0, 𝑒+𝑖) if 𝑡𝑖 is longest possible (slowest)

(𝑒−𝑖 ,∞) if 𝑡𝑖 is shortest possible (fastest)

(𝑒−𝑖 , 𝑒+𝑖) otherwise.

(8)

This equivalence was given by the theoretical works of

Phillips and Dessouky [31, 64].

Thus, we construct the Capacity DAG from the Critical

DAG by annotating its edges with flow capacities given by

Equation 8. The capacity of an 𝑆 −𝑇 cut (𝑆 is the set of nodes

on the source side and𝑇 the sink side) on the Capacity DAG

with 𝑆 → 𝑇 edges 𝐼+ and 𝑇 → 𝑆 edges 𝐼− is identical to the

objective in Equation 7. Then, we use the Edmonds-Karp

maximum flow algorithm [21] to find the minimum cut of

the Capacity DAG. Finally, after the minimum cut has been

identified from the Capacity DAG, edges in 𝐼+ are sped up by
𝜏 and those in 𝐼− are slowed down by 𝜏 , ultimately reducing

the length of every critical path exactly by 𝜏 with the smallest

possible energy increase.

E.2 Max Flow Algorithm on the Capacity DAG
A characteristic of our Capacity DAG that precludes the

direct application of well-known max flow algorithms is

that some edges also have flow lower bounds, asserting that

at least a certain amount of flow must pass through in the

edge. However, the Max Flow Min Cut theorem by Ford and

Fulkerson holds for the case of non-zero flow lower bounds

(See Chapter 1, Section 9 of [24]), allowing us to find the

minimum cut (which is equivalent to the minimum energy

modification set) using any maximum flow algorithm. We

adopt an approach that adds dummy source/sink nodes to

create a DAG that has zero flow lower bounds, finds the

maximum flow on the new DAG, and extracts the flow so

that it corresponds to a flow in the original DAG [22]. The

algorithm is given in Algorithm 3.

F Proof for Polynomial Runtime
Perseus enumerates the entire time–energy frontier one by

one, and the runtime of one iteration is polynomial time

with respect to the number of stages 𝑁 and the number

of microbatches 𝑀 . Thus, determining whether the entire

Input: Directed Acyclic Graph 𝐺 = (𝑉 , 𝐸)
Source node 𝑠 ∈ 𝑉 and sink node 𝑡 ∈ 𝑉
Lower and upper bounds 𝑙 (𝑒), 𝑢 (𝑒) for ∀𝑒 ∈ 𝐸

Output: A maximum feasible flow of 𝐺 if it exists

1 Construct a new graph 𝐺 ′ = (𝑉 ′, 𝐸′) by adding new

source and sink nodes 𝑠′ and 𝑡 ′, edges from 𝑠′ to
each node in 𝑉 , edges from each node in 𝑉 to 𝑡 ′, and
an edge from 𝑡 to 𝑠

⊲ Define the capacity 𝑐′ (𝑒) of each edge 𝑒 ∈ 𝐸′

2 : for 𝑣 ∈ 𝑉 do
3 𝑐′ (𝑠′𝑣) ← ∑

𝑢∈𝑉 𝑙 (𝑢𝑣)
4 𝑐′ (𝑣𝑡 ′) ← ∑

𝑤∈𝑉 𝑙 (𝑣𝑤)
5 for 𝑢𝑣 ∈ 𝐸 do
6 𝑐′ (𝑢𝑣) ← 𝑢 (𝑢𝑣) − 𝑙 (𝑢𝑣)
7 𝑐′ (𝑡𝑠) ← ∞
⊲ Find the max flow on G’

8 𝑓 ′ ← EdmondsKarp (𝐺 ′, 𝑐′)
⊲ 𝐺 has a feasible flow if and only if𝐺 ′ has a saturating flow

9 if FlowValue (𝑓 ′) ≠
∑

𝑣∈𝑉 𝑐′ (𝑠′𝑣) then
10 return nil

⊲ Convert 𝑓 ′ to a feasible flow 𝑓 in 𝐺

11 for 𝑢𝑣 ∈ 𝐸 do
12 𝑓 (𝑢𝑣) ← 𝑓 ′ (𝑢𝑣) + 𝑙 (𝑢𝑣)

⊲ Construct residual graph and improve 𝑓 to max flow

13 for 𝑢𝑣 ∈ 𝐸 do
14 𝑐 (𝑢𝑣) ← 𝑢 (𝑢𝑣) − 𝑓 (𝑢𝑣)
15 𝑐 (𝑣𝑢) ← 𝑓 (𝑣𝑢) − 𝑙 (𝑣𝑢)
16 return EdmondsKarp (𝐺 , 𝑐)

Algorithm 3:Maximum Flow with Lower Bounds

algorithm runs in polynomial time reduces to whether the

worst case number of iterations is polynomial with respect

to 𝑁 and𝑀 . While for general DAGs the maximum number

of points on the frontier can be exponential with respect

to the size of the DAG [71], here we prove that under mild

assumptions for DAGs that represent pipeline schedules, the

number of iterations is𝑂 (𝑁 +𝑀). The assumptions are valid

for all pipeline schedules known to the authors, including

GPipe [34] and 1F1B [56].

Theorem F.1. For DAGs that represent pipeline schedules,
the number of iterations needed is 𝑂 (𝑁 +𝑀).

Proof. Since we always reduce iteration time by 𝜏 , the num-

ber of iterations is

𝑡max − 𝑡min

𝜏
where 𝑡max and 𝑡min are the maximum and minimum possible

iteration time, respectively.

Assume that any pipeline schedule representing one it-

eration of training has a prologue, a steady state, and an

In the framework's pipeline execution engine:
from perseus.client import profiler, controller

def train_step(model, dataloader):
...

for instuction in pipeline_schedule:
if isinstance(instruction, Forward):

controller.set_speed("forward")
profiler.begin("forward")
Run forward on microbatch
profiler.end("forward")

elif isinstance(instruction, Backward):
controller.set_speed("backward")
profiler.begin("backward")
Run backward on microbatch
profiler.end("backward")

...

Listing 1. Perseus client API integration example.

epilogue. The prologue is when the pipeline starts from an

empty state and is gradually filled with pipeline computa-

tions, while the epilogue is when the pipeline is drained to

reach an empty state. It is easy to see that the number of

pipeline computations on the critical path of both the pro-

logue and epilogue is 𝑂 (𝑁), as deeper pipelines (larger 𝑁)

take longer to fill. On the other hand, the steady state of the

pipeline is when the pipeline is completely filled, and the

number of pipeline computations in any simple path through

the steady state of the DAG is 𝑂 (𝑀). Therefore, the total
number of pipeline computations in the critical path of the

entire DAG is 𝑂 (𝑁 +𝑀).
𝑡max and 𝑡min can be constructed by multiplying the num-

ber of computations with the average execution time of a

computation. Computations are executed with frequencies

𝑓min and 𝑓max, respectively, and thus the multipliers of 𝑁 and

𝑀 do not cancel out when 𝑡max − 𝑡min is evaluated. Therefore,

𝑡max − 𝑡min, and hence (𝑡max − 𝑡min)/𝜏 , is 𝑂 (𝑁 +𝑀). □

G Perseus Client Integration Example
Listing 1 shows an example integration of Perseus’s Client

API (first three rows in Table 2) with a hypothetical (but

typical) training framework’s pipeline execution engine.

A typical structure of a pipeline execution engine is to

have instructions for each distinct operations in the pipeline,

including not only forward and backward executions, but

also P2P and collective communications, and implement a

handler for each instruction. Therefore, framework develop-

ers can wrap such handlers with the Perseus client APIs to

mark their beginning and end.

8 10 12
Iteration Time (seconds)

11000

12000

13000

14000

15000

16000

Ite
ra

tio
n

E
ne

rg
y

(J
ou

le
s)

(a) BERT

20.0 22.5 25.0 27.5 30.0
Iteration Time (seconds)

20000

22500

25000

27500

30000

32500

Ite
ra

tio
n

E
ne

rg
y

(J
ou

le
s)

(b) T5

80 90 100 110 120
Iteration Time (seconds)

110000

120000

130000

140000

150000

160000

170000

Ite
ra

tio
n

E
ne

rg
y

(J
ou

le
s)

(c) Bloom

15 20 25 30
Iteration Time (seconds)

22000

24000

26000

28000

30000

32000

Ite
ra

tio
n

E
ne

rg
y

(J
ou

le
s)

(d) Wide-ResNet

Figure 12. Eight stage pipeline parallelism on A40.

H Time–Energy Frontiers
Figure 12 shows the time–energy frontiers achieved by Perseus

and the two baseline approaches for the rest of the work-

loads ran with eight stage pipeline parallelism, measured in

NVIDIA A40 GPUs.

T5 shows an interesting frontier due to the hardware topol-

ogy of our A40 machine setup: Each node has four GPUs and

NVLink connects GPUs 0 and 1, and 2 and 3; GPUs 1 and 2

must communicate through the NUMA interconnect; Finally,

different nodes are connected with Infiniband only adjacent

to GPUs 0 and 1 (data to and from GPUs 2 and 3 must also

go through the NUMA interconnect). The implication of this

heterogeneous GPU interconnect is that if more than one

P2P communications that need to go through the NUMA

interconnect happen at the same time, contention happens

and both of data transfers slow down significantly. However,

Perseus’s plan reduces this contention, overall decreasing

iteration time noticeably. Yet, contention and noisy commu-

nication latencies still exist, leading to a noisy frontier.

For many ZeusPerStage lines, energy fluctuates signifi-

cantly when iteration time increases due to ZeusPerStage

being unaware of critical paths. Balancing the forward com-

putation time between stages could even let the modified

stages take over the critical path. As a result, the iteration

time increases, which increases energy bloat, and more en-

ergy is spent on blocking on communication (§4.1).When the

decreased energy on computation fails to cover the increased

energy on P2P communication, total energy increases.

Figure 13 shows the time–energy frontiers achieved by

Perseus and the two baseline approaches for the rest of the

workloads, measured with four stage pipeline parallelism in

NVIDIA A100 PCIe GPUs. Wide-ResNet has a noisy frontier

because the variability in microbatch loading time introduces

noise in the end-to-end iteration time when computations

6.0 6.5 7.0 7.5 8.0
Iteration Time (seconds)

5500

5750

6000

6250

6500

6750

7000
Ite

ra
tio

n
E

ne
rg

y
(J

ou
le

s)

(a) BERT

9 10 11 12
Iteration Time (seconds)

8500

9000

9500

10000

10500

Ite
ra

tio
n

E
ne

rg
y

(J
ou

le
s)

(b) T5

60 65 70 75
Iteration Time (seconds)

58000

60000

62000

64000

66000

68000

70000

Ite
ra

tio
n

E
ne

rg
y

(J
ou

le
s)

(c) Bloom

12 13 14 15
Iteration Time (seconds)

10000

11000

12000

13000

14000
Ite

ra
tio

n
E

ne
rg

y
(J

ou
le

s)

(d) Wide-ResNet

Figure 13. 4 stage pipeline parallelism on A100 PCIe.

are tightly packed by Perseus. This was not pronounced in

A40 GPUs because compared to A100 PCIe, computation is

slower, but data loading time is similar. Thus, the noise in

data loading time becomes more noticeable in A100 PCIe.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Large Model Training
	2.2 Intrinsic Energy Bloat
	2.3 Extrinsic Energy Bloat
	2.4 Potential Benefits of Reducing Energy Bloat

	3 Perseus Overview
	3.1 Unified Optimization Framework
	3.2 Perseus Architecture

	4 Characterizing the Time–Energy Frontier
	4.1 Problem Formulation
	4.2 Iteratively Discovering the Frontier
	4.3 Finding the Neighbor Energy Schedule
	4.4 Generalizations

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Reducing Energy Bloat
	6.3 Large-Scale Emulation
	6.4 Iteration Time–Energy Frontier Comparison
	6.5 Overhead of Perseus

	7 Related Work
	8 Conclusion
	References
	A Visualizations for Intrinsic Energy Bloat
	B Workload Details
	B.1 Minimum Imbalance Pipeline Partitioning
	B.2 Does Imbalance Decrease with Larger Models?
	B.3 Alternative Planning Methods
	B.4 Experiment Parameters

	C Pipeline Energy Minimization is NP-hard
	C.1 One Stage Two Frequencies Simplification
	C.2 0/1 Knapsack Problem
	C.3 NP-hardness Proof

	D Continuous Relaxation
	E Full Details of GetNextSchedule
	E.1 Generating Capacity DAG
	E.2 Max Flow Algorithm on the Capacity DAG

	F Proof for Polynomial Runtime
	G Perseus Client Integration Example
	H Time–Energy Frontiers

