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Abstract

Training large Al models on numerous GPUs consumes a
massive amount of energy, making power delivery one of the
largest limiting factors in building and operating datacenters
for Al workloads. However, we observe that not all energy
consumed during training directly contributes to end-to-end
throughput; a significant portion can be removed without
slowing down training. We call this portion energy bloat.

In this work, we identify two independent sources of en-
ergy bloat in large model training and propose Perseus, a
training system that mitigates both. To do this, Perseus ob-
tains the time—energy tradeoff frontier of a large model train-
ing job using an efficient graph cut-based algorithm, and
schedules computation energy consumption across time to
reduce both types of energy bloat. Evaluation on large mod-
els, including GPT-3 and Bloom, shows that Perseus reduces
the energy consumption of large model training by up to 30%
without any throughput loss or hardware modification.!
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1 Introduction

As deep neural networks (DNNs) continue to grow in model
and dataset size [32, 40], the energy consumption of large
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model training is increasing as well. For instance, training
GPT-3 [8] reportedly consumed 1.3 GWh [63]. Then, this was
dwarfed by Amazon’s training of a 200B model, which con-
sumed about 11.9 GWh [29]—enough to power more than
1,000 average US households for a year [2]. Such energy-
intensive large model training not only inflates datacenter op-
erational expenses, but also made power delivery a primary
challenge in building datacenters today [9, 11, 12, 52, 53].

Despite recent works on accelerating large model train-
ing [45, 57, 90], energy optimization remains an open chal-
lenge [63, 68]. While energy optimization is well-studied in
the hardware community [7, 14, 75, 84], the power bottleneck
of recent datacenters [9, 11, 12, 53, 65] shows that efficiency
gains from hardware advancement alone are not sufficient to
sustain the growing demand for Al compute. In light of this,
recent works show that software can play a significant role
in energy optimization by capturing application characteris-
tics that general-purpose hardware cannot (e.g., no need to
finish computation before the deadline), bringing hardware-
agnostic energy-efficiency gains [15, 17, 78, 85, 86].

In this paper, we seek a software method that reduces the
energy consumption of large model training without slow-
down, thereby also reducing average power draw. To that
end, we identify energy bloat, the portion of energy consump-
tion that can be removed without slowdown in software
systems for large model training. We find two independent
sources of energy bloat—intrinsic and extrinsic—and propose
a single optimization framework that minimizes both.

Intrinsic energy bloat comes from computation imbalance
when a large model is distributed across multiple GPUs with
pipeline parallelism (§2.2). Balancing the amount of com-
putation in each pipeline stage is an important problem for
distributed execution planning [23, 30, 55, 90], but perfectly
balancing every stage is not always possible because layers
in a DNN are coarse-grained tensor operations with varying
amounts of computation. When stages have unequal compu-
tation times, those not on the critical path of computation
run needlessly fast—that is, they consume energy that does
not contribute to the overall training throughput. Such in-
trinsic energy bloat opens up the opportunity to precisely
slow down each non-critical computation in the pipeline
such that the length of the critical path does not change.

Extrinsic energy bloat, in contrast, arises when multiple
pipelines run in parallel in a synchronous fashion, and one
or more pipelines run slower than the rest (§2.3). Root causes
behind such slowdowns are varied, including power/thermal
throttling [47, 61, 62, 67, 93], I/O bottlenecks in the stor-
age/network [54, 83, 89], and hardware/software failures [25,
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37, 76], and the likelihood of their presence increases with
the scale and duration of training [28, 38, 79]. All pipelines
running faster than the straggler pipeline are needlessly
fast, wasting energy that does not affect the overall train-
ing throughput. Thus, we can slow down entire pipelines
without delaying gradient synchronization.

In this work, we propose Perseus, which formulates a uni-
fied optimization framework to remove both intrinsic and
extrinsic energy bloat from large model training (§3). At its
core, Perseus efficiently pre-characterizes the entire time-
energy tradeoff frontier of a training iteration, allowing it to
minimize intrinsic bloat under normal operation and to miti-
gate extrinsic bloat arising from stragglers. Existing works
fall short on both fronts. EnvPipe [15] is limited to intrinsic
bloat reduction with a point solution that leads to suboptimal
energy reduction. Zeus [86], in contrast, ignores intrinsic
bloat as it only considers single-GPU training, which also
renders its time—energy frontier suboptimal for large models.

We show that characterizing the optimal time—energy
Pareto frontier is NP-hard not only to solve, but also to ap-
proximate within any constant factor. Given this impasse, we
propose an efficient algorithm that optimally solves a relaxed
problem instead (§4). To do so, Perseus represents one train-
ing iteration as a directed acyclic graph (DAG) of forward
and backward computations in each pipeline stage. Then,
Perseus efficiently generates all energy schedules, defined as
the planned time and energy consumption of each computa-
tion, that are on the time—energy frontier using a graph cut-
based algorithm that iteratively crawls up the frontier from
the bottom. Minimizing intrinsic and/or extrinsic energy
bloat is then as simple as choosing the appropriate energy
schedule from the pre-characterized time-energy frontier.

Perseus consists of a client library and a server (§5). The
client library integrates with a large model training frame-
work and accelerator to measure computation energy con-
sumption and control accelerator speed. The server produces
optimized energy schedules, using the abstract computation
DAG and time/energy measurements provided by the client.

Evaluation on large models (GPT-3 [8], BERT [19], T5 [66],
Bloom [82], and a scaled-up version of Wide-ResNet [87]),
shows that Perseus is able to reduce per-iteration energy
consumption by up to 30% with negligible or no slowdown,
reducing energy consumption and average power draw (§6).

Overall, we make the following contributions in this paper:

e We identify intrinsic and extrinsic energy bloat in large
model training, fundamentally caused by computation
time imbalance at different levels.

e We propose Perseus, a software-only energy optimization
system that reduces energy bloat through a unified opti-
mization framework and a graph cut-based algorithm.

e We evaluate Perseus on a diverse set of large model work-
loads and show that it significantly reduces energy bloat,
bringing hardware-agnostic energy savings.
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Figure 1. One training iteration of GPT-3 1.3B with 4 pipeline
stages and 6 microbatches on NVIDIA A100 GPUs, drawn
to scale. For example, F5 and B5 in the S2 row denote for-
ward and backward for the fifth microbatch on Stage 2. The
critical path is traced with a blue line. Colors show power
consumption. Other models are visualized in Appendix A.

2 Motivation

First, we provide necessary background regarding large model
training (§2.1). Then, we introduce intrinsic (§2.2) and ex-
trinsic (§2.3) energy bloat present in large model training,
and discuss opportunities for energy reduction (§2.4).

2.1 Large Model Training

Large model training is mostly dominated by 3D (data, ten-
sor, and pipeline) parallelism [5, 45, 57, 72, 82]. Especially,
pipeline parallelism partitions a large model into multiple
stages and its training batch into microbatches, and pipelines
forward and backward computations through the stages.
Then, such pipelines are replicated to perform data parallel
training. Pipelines can only move on to the next iteration
after every pipeline has finished and synchronized gradients.

2.2 Intrinsic Energy Bloat

We profile GPT-3 1.3B on NVIDIA A100 GPUs and visualize
the timeline of one training iteration in Figure 1a. In addition
to the familiar bubbles in the 1F1B schedule [57], we observe
gaps between forward and backward computations, where
the GPU is simply blocking on communication with an ad-
jacent stage. Such gaps exist because the computation time
of each pipeline stage is not perfectly balanced. Partition-
ing stages in a balanced manner is an important problem in



Imbalance Ratio

Model # Parameters
4 stages 8 stages
3B 1.13 1.25

B 1.11 1.2

GPT-3 [8] 7 3
13B 1.08 1.17
175B 1.02 1.03
3B 1.13 1.25
Bloom [82] 7B 113 1.25
176B 1.05 1.10
0.1B 1.33 2.00
BERT [19] 0.3B 1.17 1.33
0.2B 1.19 1.50
T5 [66] 0.7B 1.05 1.11
2.9B 1.06 1.16
Wide-ResNet50 [87] 0.8B 1.23 1.46
Wide-ResNet101 [87] 1.5B 1.09 1.25

Table 1. Forward latency ratio of the longest to the shortest
stage on A100 GPUs. 1.00 would mean perfect balance.

distributed execution planning [23, 34, 55, 90], but perfect bal-
ancing is difficult because DNNs are essentially a sequence
of coarse-grained tensor operations with varying sizes.

To understand the amount of possible pipeline stage im-
balance, we exhaustively searched for the pipeline partition
with the smallest imbalance ratio, defined as the ratio of the
longest stage forward computation latency to the shortest.?
Table 1 lists the minimum imbalance ratio for various models,
which shows that perfect balance is difficult to achieve. See
Appendix B for partitioning details and sources of imbalance.

Given stage imbalance, not all forward and backward com-
putations are on the critical path of computation (Figure 1a).
This means that non-critical computations running at their
maximum speed are not contributing to faster iteration time,
and thus simply wasting energy. We call this intrinsic energy
bloat, which can be reduced by precisely slowing down each
non-critical computation without lengthening the critical
path (Figure 1b). Although seemingly simple, this problem
is not only NP-hard to solve, but also NP-hard to even ap-
proximate to any constant factor [74].

2.3 Extrinsic Energy Bloat

Numerous replicas of the same pipeline run in a data parallel
fashion in large model training. Because every pipeline must
synchronize gradients at the end, if one pipeline runs slower,
all other pipelines must wait until the straggler pipeline fin-
ishes (Figure 2a). Since the straggler pipeline determines
end-to-end iteration time, all other pipelines running at their
fastest possible iteration time are wasteful. We call this ex-
trinsic energy bloat, because unlike intrinsic energy bloat, its
cause is extrinsic to the training pipeline. To reduce extrinsic

2For Transformer-based models, we partition at the granularity of Trans-
former layers. For Wide-ResNet, we partition at the granularity of bottleneck
layers, which are three convolution layers wrapped with a skip connection.

st[F[F] B [F] B | B

S2 Fl B [F] B F| B s
y

s1lF|F B |F| B | B | 5

S2 Fl B [F] B [F] B

Time (seconds)
(a) Extrinsic energy bloat caused by a straggler

st[F[F] B |F| B | B

S2 F| B [F|] B F| B s
y

st[F] F | B | F B B |c

82 F| B F| B8 |F] B

Time (seconds)

(b) Reduced intrinsic and extrinsic energy bloat

Figure 2. Among two data parallel pipelines, the first one
becomes a straggler. The non-straggler pipeline causes ex-
trinsic energy bloat by running as fast as possible (a), which
can be reduced by precisely slowing it down (b).

bloat while keeping intrinsic bloat low, one can determine
the energy-optimal iteration time for non-straggler pipelines
and precisely slow down computations so that non-straggler
pipelines attain that iteration time (Figure 2b).

Stragglers arise from numerous sources. Thermal or power
throttling in a datacenter can result in 10-50% slowdown [47,
61, 62, 67, 93], and I/O bottlenecks in the storage or network
can be longer than GPU computation by up to 4x [54, 83, 89],
acting like a persistent straggler pipeline. Recent failure-
resilient training frameworks [25, 37, 76] deploy heteroge-
neous pipelines, introducing non-uniform iteration times.
With increasing job and infrastructure scale, the probability
of encountering stragglers increases [28, 38, 39, 79, 92].

In this work, we focus on stragglers that are known to and
anticipated by the training infrastructure, generally because
they were created by the infrastructure itself (e.g., power and
thermal throttling, non-compute bottlenecks, fault-tolerant
planning). Such stragglers also tend to persist beyond typ-
ical training iteration times. Therefore, Perseus focuses on
planning time and energy consumption across time and al-
lowing quick adaptation, assuming that information about
stragglers is available.

2.4 Potential Benefits of Reducing Energy Bloat

To gauge potential energy savings, we measure the energy
savings achieved by slowing down every computation in
the pipeline to their minimum-energy frequencies. This will
slow down iteration time, but can act as an upper bound for
energy savings. For our workloads in Section 6.2, this gives
on average 16% and 27% energy reduction on A100 and A40
GPUs, respectively. Section 6.2 shows that Perseus can realize
most of the potential savings with negligible slowdown.
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3 Perseus Overview

We first present Perseus’s unified optimization framework
that aims to remove both types of energy bloat (§3.1), and
then walk through the workflow of Perseus (§3.2).

3.1 Unified Optimization Framework

Intuitively, slowing down computations selectively in a train-
ing pipeline without affecting its critical path will keep the
same iteration time while reducing its energy consumption
(§2.2). Furthermore, when stragglers emerge, slowing down
computations in a non-straggler pipeline without making
it a straggler itself will reduce energy consumption even
more (§2.3). We formalize these two intuitions into a unified
optimization framework and derive a universal prescription
for a non-straggler pipeline’s energy-optimal iteration time.
Our goal is to minimize a pipeline’s energy consumption
by controlling the execution speed of each computation in
the pipeline. In doing so, we can slow down a pipeline’s
iteration time up to the straggler’s iteration time T”:

mFin Energy(F)

s.t. Time(F) <T’ M

where F is an assignment of GPU frequencies® to each for-
ward and backward computation in the pipeline, and Time(F)
and Energy(F) are the iteration time and energy consump-
tion of the pipeline when executed with F, respectively.
Changing F will lead to different values of Time(F) and
Energy(F), but we are only interested in (Time(F), Energy(F))
points that are on the time—energy tradeoff frontier.

Now, let us assume we have a fully characterized time—
energy frontier, bookended by Tpnin and T* (Section 4 is dedi-
cated to describing how). Ty is the shortest iteration time
on the frontier, which is the same as the iteration time of

3The SM frequency of NVIDIA GPUs can be set via NVML [4] in around 10
ms, which is much shorter than typical large model computation latencies.
Locking the GPU’s frequency provides deterministic computation latency [4,
27], making it suitable for tightly planning and packing execution over time.

on-straggler pipeline. Solid orange dots make up the frontier,
beyond T*.

running every computation at the maximum speed, and T*
is the iteration time with minimum energy consumption,
which is when each computation runs at the frequency that
consumes the least amount of energy for that computation.*
Figure 3 shows the three possible cases regarding where the
straggler’s iteration time T’ can be:

1. Figure 3a: When there are no stragglers, we simply select
the point on the frontier with iteration time Ty, which
reduces only intrinsic energy bloat.

2. Figure 3b: When a moderately slow straggler is detected,
we additionally reduce extrinsic energy bloat while keeping
intrinsic bloat low by slowing down all non-straggler
pipelines until T’, using up all the slack time.

3. Figure 3c: Finally, the straggler’s iteration time may go
beyond the minimum-energy point T* on the frontier.
In this case, we only slow down non-stragglers until T*,
because going past T* will instead increase energy.

The three cases can be merged into one universal prescrip-
tion for the pipeline’s energy-optimal iteration time:

Topt = min(T*, T'). )

Therefore, when a straggler emerges (i.e., Tnin < T”), Perseus
can compute T, using Equation 2 and quickly look up the
frequency plan Fop; that leads to iteration time Tqp; using the
pre-characterized time—energy frontier.

Finally, we note that, unlike other problem settings that do
not consider energy consumption, fully utilizing all the slack
time created by the straggler is not always energy-optimal;
being too fast or too slow can both waste energy.

3.2 Perseus Architecture

Energy Schedule. Perseus represents each iteration of the
training pipeline as a static directed acyclic graph (DAG),
where nodes are forward and backward computations in

4This is typically not the lowest frequency, because computations running
with very low frequencies incur more latency increase than power reduction,
resulting in higher energy consumption.
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each stage and edges are dependencies between computa-
tions. Each node on the computation DAG is annotated with
its planned time and energy consumption, which we call
the energy schedule. Perseus realizes an energy schedule by
executing each computation with a specific GPU frequency.

System Components. Perseus’s architecture is shown in
Figure 4. Perseus consists of a framework- and accelerator-
agnostic server and a framework-integrated and accelerator-
specific client. The server is a cluster-wide singleton. For
various training jobs, the server pre-characterizes the time—
energy frontier of one iteration (§4) and caches energy sched-
ules for fast lookup. The client profiles pipeline computations
online during training and realizes energy schedules by set-
ting the GPU’s frequency during runtime (§5).

Training Lifecycle. For the Perseus server, a training job
is primarily specified by its computation DAG for one train-
ing iteration. When the job begins execution, @ the Perseus
client invokes its online time—energy profiler (§5) to measure
the time and energy of each forward and backward compu-
tation on each supported frequency. Profiling is done in vivo
during the initial tens of training iterations.

Upon receiving profiling results, @ the server begins asyn-
chronously characterizing the time—energy frontier (§4) while
training continues. When characterization finishes, energy
schedules on the frontier are saved in a lookup table indexed
by T’. Then, @ the energy schedule corresponding to Ty is
deployed to the client. Energy schedules are realized by the
client’s asynchronous frequency controller, integrated into
the training framework (§5).

During training, @ the training infrastructure (e.g., data-
center rack power/temperature manager) notifies the Perseus
server of a straggler and its degree of slowdown. The server
then @ quickly reacts to this by looking up the energy sched-
ule corresponding to the anticipated straggler iteration time
(the one with iteration time T,p), and deploys it to the client.

4 Characterizing the Time-Energy Frontier

In this section, we describe our algorithm to efficiently obtain
the time—energy tradeoff frontier for a training pipeline in
detail. We first formulate the problem, show that it is NP-
hard, and describe a relaxed version (§4.1). Then, we provide
an overview of our algorithm (§4.2) and describe the core
subroutine in our algorithm (§4.3). Finally, we extend our
algorithm to support 3D/hybrid parallelism, constant-time
operations, and diverse pipeline schedules (§4.4).

4.1 Problem Formulation

Expression for Energy Consumption. The energy con-
sumption of a pipeline is not only from computation; it is
the sum of three parts: (1) Computation; (2) Blocking on
communication between computations; and (3) Blocking on
communication until the straggler pipeline finishes:

Zei (ﬁ) + Pblocking(N -T—- Zti (ﬁ)) + Pblocking "N~ (T, - T)

= Z(ei (ﬁ) - Pblocking 7 (ﬁ)) +Pblocking ‘N-T
i

) @

®)
where Pylocking is the power consumption of the GPU when
it is blocking on communication, N is the number of pipeline
stages, and t;(f;) and e; (f;) are the time and energy consump-
tion of computation i with frequency f;, respectively.’

As derived in Section 3.1, given straggler iteration time T”,
we draw a vertical line on the time—energy tradeoff frontier
(Time(F) vs. D+Q) at Topt and find Fypy where the two lines
intersect. Equation 3 shows that the time—-energy frontier of
a pipeline depends on the straggler’s iteration time T’ only
in the second term @, which is merely an upward shift of the
frontier. Therefore, if we characterize the tradeoff frontier
of Time(F) vs. @, that frontier can be used to find Ty, and
Fopt for any straggler iteration time T”. Thus, we define

Energy(F) = Z (ei(f}) = Polocking - ti(f})) (4)

1
and characterize the frontier of Time(F) vs. Energy(F).

Finding the Time-Energy Frontier. Finding one point on
the Pareto-optimal tradeoff frontier with iteration time T is

An assumption here is that Phlocking is constant, as a GPU blocking on
communication is busy-looping inside a NCCL kernel without heavy com-
putation utilization.
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equivalent to solving the following optimization problem:
min Energy(F)
" ()
st. Time(F) <T
We call this problem Pipeline Energy Minimization (PEM).
Theorem 4.1. Pipeline Energy Minimization is NP-hard.
Proof. Reduction from Knapsack. Details in Appendix C. O

The complete Pareto-optimal tradeoff frontier can be ob-
tained by solving PEM for all T € [Tin, T*], which is clearly
intractable. Therefore, we seek an appropriate relaxation of
the problem that will yield a nearly Pareto-optimal frontier.

One of the reasons PEM is NP-hard is because it is a discrete
optimization problem where the possible choices of compu-
tation time and energy are discrete, which is in turn because
GPUs only support discrete frequencies (e.g., in 15 MHz steps
and nothing in the middle). However, if frequency choices
were continuous, the problem is exactly and efficiently solv-
able [70]. This is akin to integer linear programs becoming
tractable when relaxed to linear programs.

The transform from the original problem to the relaxed
version is done by fitting a continuous exponential function
(a - e”* + ¢) to Pareto-optimal computation time and energy
measurements for each forward and backward computation.
We choose the exponential function due to its inherent flexi-
bility and natural fit to data (more details in Appendix D). We
show in Section 6.2 that this relaxation produces high-quality
approximate solutions that realize most of the opportunity
for savings. Solving the relaxed problem returns the time and
energy consumption planned for each computation in the
pipeline, or the energy schedule. Then, this is transformed
back to a feasible solution of the original problem, which is
the set of GPU frequencies F.

4.2 Iteratively Discovering the Frontier

Now, we first describe our iterative strategy of characterizing
the frontier, and dive deeper into one iteration in Section 4.3.

Although our relaxed problem is no longer NP-hard, solv-
ing it for each T’ € [Tin, T*] from scratch is inefficient.

Input: DAG G of computations i € G
Amount of time to reduce in one iteration r
Iteration time with all max frequencies Ty
Output: Set of optimized schedules S

> Begin with the minimum energy schedule
1 s « Minimum energy for all computations
2 S « {s}
3 while IterationTime(G, s) > Ty, do
> Reduce time by 7 with minimal energy increase (§4.3)
4 s « GetNextSchedule(G, s, 1)
5 S «— SU{s}

6 return S

Algorithm 1: Iteratively discovering the frontier.

Instead, what if we can tweak an existing schedule already
on the frontier to generate its neighbor energy schedule on
the frontier? Then, we can start from one end of the frontier
and trace along to the other end, discovering fine-grained
optimized energy schedules.

Figure 5 visualizes our strategy. We start from the right-
most point T* that consumes the minimum energy, which is
simply running every computation with the minimum en-
ergy.® This energy schedule is in fact Pareto-optimal because
there are no other schedules that achieve the same energy
with faster time. Then, we iteratively reduce iteration time
by unit time 7 (e.g., 1 ms) while increasing total energy min-
imally, which gives us the neighbor energy schedule on the
frontier.” This is repeated until iteration time reaches Tpy;y.

We note that tracing down from the energy schedule that
consumes the maximum energy (i.e., Figure 5 black dot)
would be incorrect. That schedule is far from optimized be-
cause, although it will execute with the least amount of time,
stage imbalance leaves room for energy reduction (§2.2).

Algorithm 1 provides an overview of our optimization
process. First, the energy schedule with the minimum energy
consumption is constructed by planning every computation
to run with minimum energy (line 1). Starting from there,
the iteration time of the schedule is iteratively reduced by
unit time ¢ while incurring minimal energy increase (line 4;
Section 4.3). This is repeated until the total iteration time
of the schedule can no longer be reduced, and every energy
schedule encountered in the process forms our frontier.

4.3 Finding the Neighbor Energy Schedule

In this section, we describe our core subroutine GetNextSched-
ule (Algorithm 1, line 4). Figure 6 provides visualizations of
the process. The entire procedure is given in Algorithm 2.

®The minimum energy consumption for each computation type can be
queried from the computation time/energy profiling information (§5).

77 is the unit time parameter that trades off the running time of Perseus’s
optimizer and the granularity of energy schedules discovered by Perseus.
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Figure 6. A simplified example of how to reduce iteration time by unit time 7. Given a 1F1B pipeline schedule with 2 stages
and 3 microbatches (D), it is first transformed to an equivalent representation of computation DAG (®). Then the Critical
DAG (®) is obtained by considering only the computations on the critical path. Our key observation is that any valid s-t cut
on the Critical DAG will reduce the iteration time by unit time 7. Cut A and Cut B are two examples of valid s-t cuts (@®).
Either reducing the one computation associated with Cut A (68) or reducing the two computations associated with Cut B (5B)

reduces the iteration time by 7.

Node- and Edge-Centric Computation DAGs. Originally,
Perseus’s representation of the computation DAG is node-
centric, which has forward and backward computations as
nodes and their dependencies as edges. As a setup for subse-
quent steps, we convert this into an edge-centric computa-
tion DAG where computations are edges and dependencies
are nodes (i.e., all incoming edges must complete before any
outgoing edge can begin). This conversion can be done by
splitting each node into two and connecting the two with an
edge annotated with the computation on the original node.

Removing Non-Critical Computations. Our goal is to
reduce the execution time of the computation DAG by 7,
which is equivalent to reducing the length of all critical paths
by 7.8 Since computations that are not on any critical path
(i-e., non-critical computations) do not affect the length of the
critical path, we remove them from the computation DAG.

Finding Computations to Speed Up. Which computations
on the DAG should we speed up in order to reduce the length
of all critical paths by 7? The key observation is that any
s-t cut on the computation DAG represents a way to reduce
the execution time of the DAG by . Specifically, by speed-
ing up the computations on all cut edges by z, the entire
computation DAG can be sped up exactly by 7.

Figure 6 shows two examples of this. @ shows two valid
s-t cuts: Cut A and Cut B. 64) speeds up the computation
edge cut by Cut A from 37 to 27, and the iteration time of the

8Let’s say there are two critical paths that run in parallel. They must be of
equal length to both be critical paths. Here, if only one were shortened, the
other will remain the sole critical path and the DAG will not execute faster.

energy schedule was reduced by 7. Similarly, 6B speeds up
the computation edges cut by Cut B from 57 to 47 and from
77 to 67, and the iteration time of the energy schedule was
also reduced by 7. Especially, in the second case, iteration
time was only reduced because computations on two parallel
critical paths were sped up together.

Solving with Minimum Cut. We have seen that any s-t
cut represents a way to speed up the entire DAG by 7. But
speeding up computations increases energy. Then, a natural
question is, which cut brings the smallest energy increase?
We can precisely map the flow capacity of an s-t cut to the
amount of energy increase from speeding up cut edges. That
is, by finding the amount of energy increase each compu-
tation will incur with the slope of its exponential function
(§4.1) and defining it to be the edge’s flow capacity, we can re-
duce our problem to minimum cut, which we can solve with
maximum flow. After finding the minimum cut, we modify
the durations of the computations involved in the cut, ob-
taining the neighbor energy schedule. Appendix E provides
details with mathematical expressions for flow capacities.

Converting Back to GPU Frequencies. Finally, we con-
vert the energy schedule into GPU frequencies that can be
realized by the Perseus client. For each computation, we
convert its planned execution time ¢ to the slowest GPU fre-
quency that will execute faster than ¢. This is because when
computations are tightly packed by our algorithm, while
slightly speeding up a computation is acceptable, slowing
down any computation on the critical path will directly slow
down the entire DAG, increasing intrinsic energy bloat.



API Description

profiler.begin(type)

profiler.end(type)
controller.set_speed(type)
server.set_straggler(id, delay, degree)

Begin time and energy profiling for computation type.

Record time and energy profiling results for computation type.

Set the hardware’s execution speed as planned for computation type.
Notify that a straggler is anticipated after delay seconds. A straggler

returning to normal can be communicated by setting degree to 1.

Table 2. The minimal set of Perseus client and server APIs that require implementation. One client process manages each
accelerator. The type parameter should be either "forward" or "backward". On GPUs, the “speed” control knob is the SM
frequency. set_straggler is invoked by the infrastructure with the id of an accelerator to notify the server via HTTP/RPC.

Input: DAG G of computations i € G

Current energy schedule s

Amount of iteration time to reduce ¢
Output: Neighbor schedule with reduced time s’

> Construct edge-centric computation DAG ()
1 G < Split nodes into two and connect with edge
> Find and remove non-critical computations (3)
Annotate earliest & latest start times for Vi € G
forie Gdo
if i has different earliest and latest start then
L L Remove i from G

[5, T I

> Find set of computations to modify (@)
6 S, T « FindMinCut(G, s)
> Modify computation durations (&)
7 Modify duration of Viin S — T cut by ¢
> Assign frequencies from planned computation times
8 s’ « min f; that runs no slower than planned
9 return s’

Algorithm 2: GetNextSchedule: Reducing the execution
time of the DAG by 7 with minimal energy increase.

Time Complexity Analysis. Our optimization algorithm
has polynomial runtime. Let N and M denote the number
of stages and microbatches, respectively. Then, the compu-
tation DAG will have O(NM) number of nodes and edges,
and maximum flow with Edmonds-Karp runs in O(N3M?).
While for general DAGs the total number of steps is known
to be exponential to the size of the DAG [71], we prove that
for DAGs that represent pipeline computations, the num-
ber of steps is O(N + M), yielding a final polynomial time
complexity of O((N + M)N3M?). See Appendix F for proof.
In reality, commonly used number of stages (N) is 4 to 8 (at
most tens) to reduce pipeline bubble ratio [18, 57]. Number of
microbatches (M) is typically around 4N [34, 72], but recently
with high data parallel degree, far fewer have been reported
even for high-performance settings [18]. As such, algorithm
runtime is practically negligible (§6.5), especially given that
large model training easily takes weeks or months [63].

4.4 Generalizations

In this section, we present generalizations to our optimiza-
tion algorithm useful for planning large model training.

3D/Hybrid Parallelism. Operator parallelism techniques
(e.g., data, tensor, or sequence parallelism) split operations
in equal sizes, resulting in each GPU running the same com-
putation. This allows Perseus to profile only one GPU per
stage, decide the energy schedule for that GPU, and replicate
it to all other GPUs in the same stage. We show that Perseus
works well for 3D parallelism in Section 6.4.

Constant-Time Operations. There are operations in the
training pipeline that may take non-trivial latency, other
than computation and blocking on communication. For in-
stance, loading and copying input data into VRAM or com-
munication over slower links can take considerable latency.
However, the time and energy consumption of these opera-
tions are not affected by the GPU’s frequency. Perseus can
take constant-time operations into account during planning
by viewing them as a node with only one frequency choice.

Other Pipeline Schedules. There are various schedules for
pipeline parallel training, including GPipe [34], 1F1B [56],
interleaved 1F1B [69], and early recomputation 1F1B [45]. As
long as the computations on the schedule can be expressed
as a DAG, Perseus can optimize its energy consumption
without modification. As long as there is stage imbalance,
any pipeline schedule will have intrinsic energy bloat.

5 Implementation

The Perseus server and client are implemented in Python.
Perseus can optimize any training infrastructure, framework,
and accelerator as long as the APIs in Table 2 can be imple-
mented, and the accelerator supports multiple execution
speeds that trade off computation time and energy.

As a reference, we have integrated the Perseus client with
Merak [45], which marries high-performance tensor paral-
lelism of Megatron-LM [3] and the generic pipeline execution
engine of DeepSpeed [1]. While training engine implemen-
tations differ widely, many have separate code blocks for
forward and backward, allowing them to be wrapped with
the profiler APIs. We provide an example of what is looks



like to integrate the client with a training engine in Appen-
dix G. Activation recomputation [13] is enabled to allow
large batch sizes to fit in GPUs.

Profiler. Accurate profiling is important to our optimization
algorithm; inaccurate latency profiles (especially underesti-
mations) may slow down the end-to-end latency of the DAG,
whereas inaccurate energy profiles can lead the algorithm
to incorrectly select computations to speed up.

Fortunately, the latency of a fixed set of GPU computa-
tions, especially with the GPU’s frequency locked, is known
to be very stable [4, 27]. Furthermore, to ensure that profiling
results are representative of real training, the Perseus client
profiles the time and energy of each forward and backward
computation at the beginning of the training job in vivo. Each
supported GPU frequency is profiled one by one from the
highest to the lowest for about five iterations (more if one
iteration has less microbatches). After a certain frequency,
lower frequencies result in both more time and energy con-
sumed, making them strictly suboptimal compared to higher
frequencies. Profiling is terminated at that point.

Finally, we profile Pylocking using two GPUs. One GPU
blocks on P2P communication and the other sleeps, and we
measure the power consumption of the blocking GPU. It is
sufficient to profile Ppjocking once per GPU model.

Asynchronous Frequency Controller. The client-side con-
troller spawns a separate process that asynchronously sets
the GPU’s frequency through NVML [4] without blocking
the main training process. Training frameworks can call
set_speed at the beginning of forward or backward to set
the GPU’s frequency as planned by the server.

6 Evaluation

We evaluate Perseus on five workloads and compare it against
EnvPipe and Zeus. Our key findings are the following:
e Perseus can effectively reduce intrinsic and extrinsic en-
ergy bloat. Training on real GPUs shows up to 28.5%
energy savings using Perseus (§6.2).

e In emulated large-scale training scenarios, Perseus sig-
nificantly outperforms the baselines by consistently pro-
viding up to 30% energy savings (§6.3).

e Energy bloat reduction is possible because Perseus can
enumerate efficient energy schedules on the time—energy
frontier (§6.4).

e Perseus reduces energy bloat with low overhead (§6.5).

6.1 Experimental Setup

Testbed. We run our evaluation workloads in a GPU cluster,
where each node is equipped with an AMD EPYC 7513 CPU,
512 GB DRAM, and four NVIDIA A40-48G GPUs. For A100
results, we use a node provided by Chameleon Cloud [41],
equipped with two Intel Xeon Platinum 8380 CPUs, 512 GB
DRAM, and four NVIDIA A100-80G PCle GPUs.

Workloads and experiment parameters. We evaluate
Perseus with various workloads spanning from GPT-3 [8],
Bloom [82], BERT [19], T5 [66], to Wide-ResNet [87]. We
use model variants with 1.3B to 6.7B parameters to run the
models in our testbed, and scale them up to 176B parameters
in large-scale emulation. We chose the microbatch size and
number of microbatches that yield the highest throughput
given the global batch size. We use the minimum imbalance
stage partitioning method described in Section 2.2 for all
workloads. Appendix B lists complete model configurations,
parameters, and stage partitioning details.

Metrics. We report GPU energy reduction and slowdown
of a training iteration (%) relative to using all maximum
GPU frequencies. In most cases slowdown is close to zero, in
which case energy and average power reductions coincide.
Reducing only extrinsic bloat is not possible, because Perseus
reduces extrinsic bloat while keeping intrinsic bloat low as it
slows down non-straggler pipelines. Therefore, we report (1)
intrinsic bloat reduction without stragglers and (2) intrinsic
+ extrinsic bloat reduction with stragglers.

Baselines. We mainly compare with two prior works:

e EnvPipe [15] reduces only intrinsic energy bloat while
trying to minimize slowdown. We compare Perseus’s
energy bloat reduction with EnvPipe (§6.2, §6.3).

e Zeus [86] characterizes the time-energy tradeoff of sin-
gle GPU training. We compare Perseus’s time—energy
frontier against that of Zeus (§6.4).

6.2 Reducing Energy Bloat

We start with overall energy bloat reduction—intrinsic bloat
without stragglers (§6.2.1) and intrinsic + extrinsic bloat
with stragglers (§6.2.2)—achieved by Perseus and EnvPipe.
All numbers were obtained by running on testbed GPUs. All
solutions use the same amount of GPU hardware resources.

6.2.1 Intrinsic Bloat Reduction Without Stragglers.
Table 3 compares the energy savings achieved by Perseus’s
minimum iteration time energy schedule (leftmost point of
the time—energy frontier) and that by EnvPipe.

We make two observations regarding Perseus. First, mod-
els show varying amounts of energy savings because (1) their
stage imbalances vary (Table 1), and (2) their forward and
backward are composed of different computations, which
affects time/energy sensitivity when changing the frequency.
For instance, unlike other models, Wide-ResNet 1.5B on A100
after minimum imbalance stage partitioning has nearly per-
fect stage balance, resulting in low intrinsic energy bloat.
However, as will be seen in Section 6.2.2, such models tend to
achieve greater extrinsic bloat savings because most of their
computations run at a high frequency, and slowing them
down due to stragglers leads to higher energy reduction.

Second, A40 demonstrates more energy savings compared
to A100. This is because the dynamic clock frequency range



Energy Savings (%)  Slowdown (%)

Model Perseus EnvPipe Perseus EnvPipe
GPT-3 1.3B 13.2 8.8 0.1 0.1
BERT 1.3B 12.9 8.0 0.5 0.0
T5 3B 10.6 7.4 1.3 3.4
Bloom 3B 11.7 8.9 0.2 0.2
Wide-ResNet 1.5B 3.2 3.7 23 4.1

(a) Four stage pipeline parallelism on A100 GPUs

Energy Savings (%)  Slowdown (%)

Model Perseus EnvPipe Perseus EnvPipe
GPT-3 2.7B 21.1 21.7 0.2 5.6
BERT 1.3B 15.7 16.5 0.0 9.7
T5 3B 285 19.3 0.0 0.0
Bloom 3B 22.4 19.9 0.0 0.0
Wide-ResNet 1.5B 20.4 16.5 0.2 0.5

(b) Eight stage pipeline parallelism on A40 GPUs

Table 3. [Experiment] Intrinsic energy bloat (without strag-
glers) reduction and iteration time slowdown.

of A100 (210-1410 MHz) is smaller than that of A40 (210-
1740 MHz). Thus, tuning down the GPU’s frequency yields
a relatively smaller change in computation time and energy
compared to those at the maximum frequency. However,
we expect the more recent GPUs to have better percentage
savings due to higher maximum frequency (e.g., 1980 MHz
for H100 SXM [58]) and better absolute savings due to high
TDP (e.g., 1,200 W for each GPU on GB200 [50]).

EnvPipe in general provides lower energy savings, primar-
ily due to its assumption that the final stage of a pipeline is
always the heaviest. This is only correct with a probability of
1/N, where N is the number of pipeline stages. Additionally,
it sometimes considerably degrades iteration time because
it is not aware of single-choice operations inside the pipeline
(§4.4) and can slow down some computations too much.

6.2.2 Intrinsic + Extrinsic Bloat Reduction With Strag-
glers. When stragglers create extrinsic energy bloat, the
amount of energy savings depends on how much energy re-
duction the time—energy frontier yields for longer iteration
times. Table 4 shows the amount of energy savings of a non-
straggler pipeline given varying straggler slowdowns. For
a given slowdown factor (T”/T), a non-straggler pipeline’s
iteration time is set to be Topy = min(T*, T’) (§3.1), and en-
ergy reduction comes from (1) slowing down the pipeline
itself and (2) reducing the time (and energy) blocking on
communication, waiting for the straggler.

The percentage of savings initially increases with the strag-
gler’s iteration time, but then gradually decreases as it slows
down beyond T*. This is expected. The absolute amount
of energy reduction in Joules is the largest when the strag-
gler’s iteration time is T* and constant afterward, because
Perseus does not slow down non-straggler pipelines beyond

Model Energy Savings (%) given T’ /T

#Params  Mehod | oc 1 12 13 14 15
GPT-3 Perseus 14.7 159 155 15.0 146 143
1.3B EnvPipe 8.7 8.5 8.3 8.1 79 7.7
Bloom Perseus 13.6 15.6 152 14.7 143 14.0
3B EnvPipe 8.8 8.7 84 82 8.0 7.8
BERT Perseus 149 169 164 159 155 15.0
1.3B EnvPipe 7.9 7.8 7.5 7.3 7.1 6.9
T5 Perseus 153 180 179 174 169 165
3B EnvPipe 8.4 8.2 8.0 7.8 7.6 7.4
Wide-ResNet  Perseus 9.4 127 126 123 12.0 11.6
1.5B EnvPipe 4.9 4.8 4.7 4.5 4.4 4.3

(a) Four stage pipeline parallelism on A100 GPUs

Model Energy Savings (%) given T’ /T

# Params Method | | oo "1 12 13 14 15
GPT-3 Perseus 245 26.0 259 252 246 24.0
2.7B EnvPipe 229 22,6 220 214 209 204
Bloom Perseus 255 264 259 252 246 24.0
3B EnvPipe 19.6 193 188 183 178 174
BERT Perseus 20.0 22.6 241 234 228 222
1.3B EnvPipe | 19.2 189 183 17.8 174 16.9
T5 Perseus 279 273 262 252 243 234
3B EnvPipe | 184 18.0 173 16.6 16.0 15.4

Wide-ResNet  Perseus 243 262 263 257 25.0 244
1.5B EnvPipe | 164 16.2 158 154 150 14.6

(b) Eight stage pipeline parallelism on A40 GPUs

Table 4. [Experiment] Energy savings given varying strag-
gler slowdown (T’ /T). Perseus can reduce extrinsic bloat
while keeping intrinsic bloat low, whereas EnvPipe cannot.

T* (§3.1). Thus, as the straggler slows down beyond T*, ad-
ditional time and energy is consumed while waiting for the
straggler, lowering the percentage of energy savings.
Finally, the point of maximum energy savings is different
for each model. This is because each model has a different
T* value, which is determined by how much each stage’s
computation slows down on the minimum-energy frequency.

6.2.3 How Much Potential Saving Was Realized? The
largest possible savings under our problem setting occurs
when running every computation at their minimum-energy
frequencies (i.e., the T* point on the time—energy frontier).
For intrinsic bloat without stragglers, Perseus realizes on
average 74% and 89% of the potential savings on A100 and
A40, respectively, with negligible slowdown. This is possible
because there are much more non-critical computations in
the DAG that can be slowed down than critical ones. With
stragglers, Perseus fully realizes potential savings when the
straggler’s slowdown degrees are on average 1.1 and 1.15 on
A100 and A40 respectively, which is not unrealistic consid-
ering slowdowns reported in literature (§2.3).



# Microbatches Global
# GPU. # Pipeli
s ipelines Per Pipeline Batch Size
1024 16 96
2
048 32 48 1536

4096 64 24
8192 128 12

Table 5. Strong scaling parameters for large-scale emulation.
A pipeline has tensor parallel degree 8 and 8 pipeline stages.

Il ntrinsic Extrinsic

Energy Saving (%)
Energy Saving (%)

Perseus EnvPipe Perseus EnvPipe Perseus EnvPipe Perseus EnvPipe

GPT-3175B  Bloom 176B GPT-3175B  Bloom 176B

(a) A100 (b) A40

Figure 7. [Emulation] Energy savings breakdown with strag-
gler slowdown 1.2 and 1,024 GPUs.

6.3 Large-Scale Emulation

Because we do not have access to a GPU cluster required to
run huge models like GPT-3 175B, we use emulation grounded
on fine-grained profiling for large-scale evaluation. In gen-
eral, trends in our emulation result match those obtained
from real training in Section 6.2.

Emulation Methodology. We profile the time and energy
consumption of each layer (e.g., Transformer decoder) in
GPT-3 175B and Bloom 176B and run our optimization algo-
rithm to obtain the time-energy frontier. We perform strong
scaling when varying the number of GPUs (Table 5) in or-
der to keep the global batch size constant [26, 42]. We used
A100 SXM GPUs for emulation, which we believe are more
representative of large-scale training infrastructure.

Emulator Fidelity. We compare the percentage of energy
savings vs. running all maximum frequencies given by our
emulator and real experiments for our A100 workloads and
find that the emulator always underestimates energy savings.
Specifically, savings on the leftmost and rightmost point of
the frontier are underestimated by 18.6% and 21.7% on aver-
age, respectively. We believe this is due to our simplifying
assumption that Pyjocking is constant regardless of the GPU’s
frequency. This means the savings given by the emulator
can be considered a lower bound for actual savings.

Result Summary. Figure 7 breaks down the amount of en-
ergy bloat reduction for GPT-3 175B and Bloom 176B when
slowdown degree is 1.2 on 1,024 GPUs. EnvPipe can only
reduce intrinsic bloat as it does not provide a time—energy
frontier; even for intrinsic bloat, it is suboptimal. In con-
trast, Perseus reduces energy consumption by up to 30% by
reducing both intrinsic and extrinsic energy bloat.

Energy Savings (%)
Model GPU Type Given # Microbatches
12 24 48 96
GPT-3 175B A100 15.20 14.19 13.62 13.32
A40 11.81 10.22 9.34 8.88
A100 10.47 7.06 5.23 4.28
Bloom 1768 49 697 449 312 241

Table 6. [Emulation] Perseus’s intrinsic energy bloat reduc-
tion without stragglers for GPT-3 175B and Bloom 176B.

Number of microbatches is varied following Table 5.
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Figure 8. [Emulation] Perseus’s intrinsic + extrinsic energy
bloat reduction with varying straggler slowdown (T’/T).
Number of pipelines is varied following Table 5. % denotes
T*/T for each pipeline. Please note the different Y-axes.

Intrinsic Bloat Reduction Without Stragglers. Table 6
shows Perseus’s intrinsic energy bloat reduction without
stragglers for GPT-3 175B and Bloom 176B. The number of
microbatches is varied based on Table 5. For all models, as
more microbatches are added to the pipeline, the amount of
intrinsic bloat decreases. This is fundamentally due to the
ratio of microbatches in the 1F1B’s warm-up and flush phase
(beginning and end) versus the steady state phase (middle).
Most microbatches in the warm-up and flush phases can slow
down until their minimum energy frequency, yielding large
energy savings. However, microbatches in the pipeline’s
steady state cannot slow down to their full potential when
the amount of stage imbalance is not large, thereby yielding
modest savings. When the number of microbatches in the
pipeline increases, only the number of steady state micro-
batches increases, and energy reduction converges to the
average energy savings of steady state microbatches.
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Figure 9. [Experiment] Iteration time—energy frontiers for GPT-3, achieved by Perseus and the two baselines derived from
Zeus [86]. Perseus Pareto-dominates all other approaches. The dotted vertical line is the iteration time of running all GPUs at

their maximum power limit, which is the default mode of operation. Please note the different X- and Y-axes.

Intrinsic + Extrinsic Bloat Reduction With Stragglers.
We introduce stragglers of varying slowdowns in large-scale
emulation. Figure 8 reports the amount of intrinsic + extrinsic
energy bloat reduction achieved by Perseus. The trend where
energy saving increases until 7’ < T* and wanes afterward
is consistent with Section 6.2.2.

An interesting observation here is that there is a trade-
off between scale and energy savings: configurations with
more pipelines have less percentage of energy savings or less
amount of energy savings per pipeline. It may seem intuitive
to assume that more pipelines bring more energy savings, as
there is only one straggler pipeline and all the other pipelines
can reduce their energy consumption. However, this holds
only in weak scaling scenarios, where the per-pipeline batch
size is held constant (i.e., increasing the global batch size
proportionally with the number of pipelines). Instead, in the
more realistic strong scaling configuration (i.e., the global
batch size is constant and per-pipeline batch size is decreased
as more pipelines deployed), each pipeline’s number of mi-
crobatches changes. With fewer microbatches, the ratio of
pipeline bubble (time that GPUs are idle) at the beginning
and end of each pipeline iteration increases [57]. These bub-
bles cannot be perfectly eliminated by intrinsic energy bloat
reduction, resulting in a smaller energy savings percentages.
However, as the absolute number of GPUs increases, even a
small savings percentage is expected to yield huge absolute
energy savings.

6.4 Iteration Time-Energy Frontier Comparison

The energy bloat reductions in Sections 6.2 and 6.3 were
made possible by the time-energy frontier obtained using
Perseus’s optimization algorithm (§4). Here, we further exam-
ine the frontier with different parallelization configurations
and models and compare against Zeus [86]. Since Zeus only
produces the training time—energy frontier for single-GPU
training jobs, we implemented two Zeus-based baselines for
large model training scenarios:

o ZeusGlobal: Scans one global power limit for all stages.

o ZeusPerStage: Finds a set of per-stage power limits that
balances forward computation time.

Figure 9 shows the frontiers of all solutions for different
sizes of GPT-3 under three parallelization configurations:
(a) four stage pipeline parallelism on A100; (b) eight stage
pipeline parallelism on A40; and (c) 3D parallelism (data
parallelism 2, tensor parallelism 2, pipeline parallelism 4)
on A40. All results were obtained from running on testbed
GPUs. Appendix H has frontiers for other models.

Perseus Pareto-dominates both baselines derived from
Zeus. ZeusGlobal is unaware of pipeline stage imbalances
and slows down every stage, and therefore is unable to in-
trinsic energy bloat. ZeusPerStage can balance the forward
computation time of each stage, but is unaware of the crit-
ical path of the DAG, slowing down critical computations.
In contrast, Perseus can precisely slow down non-critical
computations, effectively reducing energy bloat.

6.5 Overhead of Perseus

Profiling. At the beginning of training, the client-side pro-
filer (§5) profiles forward and backward computations in each
stage. For our A100 workloads, the initial profiling phase
increased end-to-end training time by 13 minutes on average,
which is negligible overhead for large model training.

Algorithm Runtime. The average runtime of the optimiza-
tion algorithm (§4) across our A100 workloads was 6.5 min-
utes, with the longest being Bloom 3B (15.7 minutes). For
our largest-scale emulation workload (GPT-3 175B on A100
with 8,192 GPUs), the algorithm took 87 seconds, which is
short because it is sufficient to optimize just one data paral-
lel pipeline (§4.4). While runtime will increase with larger
DAGs for larger models, we believe the overhead is justified
because training time is likely to also increase with the scale
of the training job. Looking up the optimal energy schedule
given the straggler’s iteration time T” is instantaneous.



7 Related Work

Large Model Training. Many recent works focus on en-
abling and accelerating large model training using 3D par-
allelism. GPipe [34] and PipeDream [55] first introduced
pipeline parallelism. 3D parallelism, especially popularized
for Transformer-based models by Megatron-LM [57, 69], is
considered to be the go-to solution for modern large model
training due to strong open-source projects [1, 3, 6] and
relatively low implementation complexity. Extending this,
Alpa [90], GSPMD [88], and nnScaler [48] provide automatic
parallelization for general DNNs. However, energy consump-
tion is not an optimization metric for any of the major large
model training frameworks.

Several works utilize computation idle times within large
model training pipelines to insert additional useful work [33,
59, 76]. In contrast, Perseus’s approach is to slow down pre-
ceding computations to fill the idle time and reduce power
and energy consumption. The rationale is twofold. First, the
amount of idle time—especially in the steady state of the
pipeline—is typically short. Inserting extra work may slow
down the entire pipeline or require pipeline re-partitioning
to make it feasible. Second, GPUs, especially those in the
earlier stage of the pipeline, are likely already constrained by
memory capacity, leaving little headroom for extra compu-
tation. We note that even with extra computation inserted,
some idle time is likely to remain, leaving room for Perseus
to provide energy savings.

Deep Learning and Energy Consumption. A line of work
measures or estimates the large amount of energy consump-
tion and carbon emission of deep learning workloads [20,
44, 49, 63, 73]. In terms of optimization, some works deter-
mine the GPU’s execution speed for a single fixed sequence
of GPU computations [16, 36, 43, 78, 85, 91], falling short
when the time-energy frontier of a complex large model
computation DAG needs to be characterized. Zeus [86] is a
recent work that observes the tradeoff between GPU com-
putation time and energy consumption, but still focuses on
single-GPU training. EnvPipe [15], on the other hand, aims
to find a point solution that reduces the energy consumption
of large model training with minimum slowdown. However,
EnvPipe’s heuristic assumes that the last pipeline stage is al-
ways the bottleneck, leading to suboptimal savings. In terms
of optimizing a single training job, Perseus is a superset of
both Zeus and EnvPipe, achieved by viewing large model
training as a computation DAG and introducing a principled
optimization algorithm.

Big Data and Energy Consumption. There are existing
works that change the frequency of CPUs to improve the
energy efficiency of big data workloads, including those that
only execute computation-intensive phases (e.g., map and
reduce) with the maximum frequency [35, 80], those that

choose the lowest frequency that can meet a given dead-
line [10, 51], or those that choose frequencies that balance
the completion time of parallel tasks (yet simply minimizing
idle time for smaller tasks within one stage) [46]. Perseus
provides a principled approach to setting the job’s end-to-
end completion time (§3.1) and task execution speed (§4),
and can be directly applied to big data workloads by generat-
ing a DAG of CPU computations and optimizing the CPU’s
frequencies.

8 Conclusion

We presented Perseus, a software-based energy optimization
system for large model training. Perseus builds on the ob-
servation that there are computation imbalances at different
levels in large model training that cause intrinsic and ex-
trinsic energy bloat, and simultaneously reduces both with a
principled graph cut-based algorithm. As a result, Perseus ad-
vances the state-of-the-art of DNN training energy optimiza-
tion by delivering energy savings with negligible slowdown,
thereby also reducing average power draw and enhancing
the sustainability of large model training.
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The Appendix has not been peer-reviewed
and is provided for supplementary information.

A Visualizations for Intrinsic Energy Bloat

Figure 10 shows the timeline of running one training itera-
tion of BERT 1.3B, T5 3B, Bloom 3B, and Wide-ResNet101
1.5B for maximum frequency and Perseus-optimized energy
schedule, respectively. For visualization purposes, we set
the number of microbatches to 6. Real evaluation workloads
have more microbatches. Energy schedule found by Perseus
successfully tunes down frequency for all models without
slowing down the iteration time, tightly packing computa-
tions over time and reducing intrinsic energy bloat.

B Workload Details
B.1 Minimum Imbalance Pipeline Partitioning

We partition layers of a model into N stages such that the
imbalance ratio, defined as the ratio of the longest stage for-
ward latency to the shortest, is minimized. We only consider
forward computation time as backward computations are
typically proportional to forward computation latency. For
Transformer-based models, we define layer as one Trans-
former layer. For Wide-ResNet, we define layer as one Bottle-
neck layer, which is three convolution layers wrapped with
a skip connection. Due to P2P communication overhead and
implementation challenges, many planners and frameworks
do not support partitioning in the middle of skip connections.
We call this minimum imbalance pipeline partitioning, and
throughout the paper, every workload we use is partitioned
as such.

Table 7 shows the computation time ratios of the heav-
iest stage to the lightest stage for 4 and 8 pipeline stages.
More pipeline stages generally increases imbalance due to
the coarse-grained nature of tensor operations. That is, the
relative size of each layer becomes smaller and smaller com-
pared to the total amount of computation allocated to each
stage, and imbalance increases.

GPT-3, Bloom, and BERT. Arguably, these are one of the
most homogeneous large models because they are a stack of
identical Transformer [77] encoder or decoder layers. How-
ever, the very last layer is the language modeling head, which
maps the final features to probabilities over the entire vocab-
ulary. The vocabulary size of GPT-3 is 50k, Bloom 251k, and
BERT 31k, which results in a very large linear layer for the
last stage. This leads to varying amounts of imbalance and
different minimum imbalance partitioning results for each
model.

T5. This is also based on Transformer layers, but the first half
of the layers are encoders, while the later half are decoders
(which corresponds to the original Transformer [77] model’s
architecture). However, the decoder layers as an extra cross
attention layer in the middle, making it computationally

heavier. Finally, T5 also ends with a language model head
with 32k vocabulary size. However, minimum imbalance
partitioning still balances T5 to a reasonable degree, although
it cannot be perfectly balanced.

Wide-ResNet. For Wide-ResNet, in order to make it suitable
for large model training evaluation, we used the variant with
width factor 8. Wide-ResNet is a collection of Bottleneck lay-
ers with three convolutions wrapped with a skip connection,
and there are four different sizes of Bottleneck layers laid
out sequentially. Therefore, even with minimum imbalance
partitioning, it is difficult to perfectly balance stages.

B.2 Does Imbalance Decrease with Larger Models?

Specifically for Transformer [77]-based models with homo-
geneous intermediate Transformer layers, the degree of im-
balance will decrease if the number of pipeline stages is held
constant. This is because the relative size of the embedding
layer and language model head will decrease as intermediate
Transformer layers increase in number and size. However,
as the model grow larger, the number of pipeline stages will
have to be increased simultaneously. This increases imbal-
ance, because the relative amount of computation in one
layer with respect to the amount in one pipeline stage be-
comes larger. As such, there is no simple relationship be-
tween model size and the amount of imbalance.

B.3 Alternative Planning Methods

3D parallelism is the go-to solution for large model training,
and our minimum imbalance pipeline partitioning method
is optimal for 3D parallelism because we implemented a
brute force search. More advanced planning methods such
as Alpa [90] exist, but for repetitive language model architec-
tures like GPT-3, Alpa equally allocates Transformer layers
to each stage [90], resulting in the same stage imbalance
caused by the language modeling head. Furthermore, it is
hard for tensor parallelism to divide operations infinitely;
practically at most degree 8 (within one node) due to col-
lective communication overhead. Thus, in the vast majority
of models, there will always be some degree of imbalance
between stages due to the minimum granularity of computa-
tion time.

B.4 Experiment Parameters

Tables 8, 9, and 10 list model variant names and experiment
parameters for our experiments. Model names and configu-
rations for GPT-3 were taken as is from the original model
publication [8]. Especially, model names and configurations
for BERT and T5 were directly taken from the Huggingface
Hub pretrained model zoo, except for the huge variant of
BERT, which we created to have hidden dimension 2048.
Wide-ResNet was based on Torch Vision [60] but scaled
up following the model’s original publication [87] using its



ow Pbiocking 150W 300W ow Pbiocking 150W 300W
) )

. | . |
s1 [FIFIFE B [F] B [F] B B B B s1 [FIF[F[F B [F[ 8 [Ff] B B B | B
2|34 3 4 5 || 8 1/2|3]4 3 4 6
FlIF] B B [[F] B B B B FF B B B B B B
S22l 42|53||§|4 5 / S2 23| 74 3|§|4 /
F| B B [Ff[ B [|F] B B B F B 4F| B 4F[ B B B B 4
3 2 3243|54|K|5 / 83 2| a7 4 /
B B [F] 8 [F] B [|F] B B4 B 4F| B B 4F B B B A
= HEHHE AR R P
0.00 Time (seconds) 1.39 0.00 Time (seconds) 1.39
(a) BERT 1.3B
ow Pbiocking 150W 300W ow Pbiocking 150W 300W
, . | , . |
s1 [FIFIFF B [F[ B [F] B B B B s1 [FTF[FIF B [F] B [F] B B B | B
2|3|4 3 2 3 4 5 || 6 2|34 3 4 || ptp
FIF B B [IF[ B B B B4 FIF B JF[ B B B B Al B4
S2 [ ol 4] 2 |5 3 4 || s / Sz ilo]3 3 |E| 4 /
F] B B |F| B |F B B B A @ B B B B B BA
83 2 3| 2 [4] 3 |5 4 | 5 / 53 2 L 4 /
B B [F| B [F[ B [F] B BA B B B B B B A
S4 A 2 3| 3 4| 4 |5| 5 IH_/ S4 q_z;
0.00 Time (seconds) 2.15 0.00 Time (seconds) 2.15
(b) T5 3B
ow Pbiocking 150W 300W ow Pbiocking 150W 300W
, . | , . |
S1|FFFF| B [F B|F B| B B B S1|FFFF| B|F B|F B | B | B B|
234. Joei b2t 3 4 5 ,) 2(3]4 e IR 4 7
F[ B B [IF[ 8 B B B FIF B B B B B B
S2| i lol3 /4253H4 5 / S2| lo]a Al 75| 5 4 /
F] B B |F[ B ][ B B B IE B BAF[ B |F[ B B BA
S3 2 /324|35|4 5 / S3 2 /s {4 5t //
B4F| B [F] B [F] B [F] B B B #F| B AF| BF[ B B B A
SN HEHEHE s e &
0.00 Time (seconds) 3.83 0.00 Time (seconds) 3.83
(c) Bloom 3B
ow Pbiocking 150W 300W ow Pbiocking 150W 300W
, . | , . |
81'...'.' B IF[ 8 [F B B B B s1[FIFIFF B [F] B [F] B B B |[ B
|234 1 5| 2 [¢]] 3 4 5 | [ 8 234 3 4 5 | s
52| [F[FIF B [F[ B [F] 8 [Ff] B B B 4 s2. JE[F[F B 4F[ B B B B BA
2[3 1 (4] 2 |s| 3 [6] 4 5 / 2(3 )‘ 4 5 /
FIF B[ 8 [F 8 |F &8 |F[ B B4 F| B AF[ B B B B B A
S3 il 13|24|35|46|5/ S3 2 i 5 || &
4 4
I A A A A s N4AAA
0.00 Time (seconds) 3.79 0.00 Time (seconds) 3.79

(d) Wide-ResNet101 1.5B

Figure 10. Visualization of Perseus’s Ty, solution for four stage pipeline workloads on NVIDIA A100 PCIe GPUs. For each
workload, the left is running every computation at maximum frequency, and the right is Perseus’s energy schedule that reduces
only intrinsic energy bloat without inflating iteration time. Note that these are not real workloads we run in Section 6; real
workloads have far more microbatches.

width factor parameter. The unit time parameter 7 was set C Pipeline Energy Minimization is NP-hard

to 1 ms for all experiments. The Pipeline Energy Minimization problem is stated again
for convenience:

m}n Energy(F)

st. Time(F) < T’ ©



Imbalance Ratio

Minimum Imbalance Ratio Partition

Model Si
ode 1ze 4 stages 8 stages 4 stages 8 stages
1B 1.17 133 [0, 6, 12, 19, 25] [0, 4,7, 10, 13, 16, 19, 22, 25]
3B 1.13 1.25 [0, 8, 16, 25, 33] [0, 5,9, 13, 17, 21, 25, 29, 33]
GPT-3 [8]
7B 1.11 1.23 [0, 8, 16, 24, 33] [0, 4, 8, 12, 16, 20, 24, 28, 33]
13B 1.08 1.17 [0, 10, 20, 30, 41] [0, 5, 10, 15, 20, 25, 30, 35, 41]
175B 1.02 1.03 [0, 24,48,72,97] [0, 12, 24, 36, 48, 60, 72, 84, 97]
3B 1.13 1.25 [0,9,17,25,31] [0, 6, 11, 16, 22, 28, 31]
Bloom [82] 7B 1.13 1.25 [0,9, 17, 25, 31] [0, 6, 11, 16, 22, 28, 31]
176B 1.05 1.10 [0, 18,36, 54, 71] [0, 9, 18, 27, 36, 45, 54, 63, 71]
0.1B 1.33 2.00 [0,4,7,10,13] [0,2,3,4,6, 8,10, 12, 13]
BERT [19] 0.3B 1.17 133 [0,7,13,19,25]  [0,3,6,9, 12, 15, 18, 22, 25]
1.3B 1.17 133 [0, 7,13, 19, 25] [0, 4,7, 10, 13, 16, 19, 22, 25]
0.2B 1.19 1.50 [0, 9, 15, 20, 25] [0, 5,9, 13, 15, 17, 19, 22, 25]
T5 [66] 0.7B 1.05 1.11 [0, 16, 29, 39,49] [0, 8, 16, 24, 29, 34, 39, 44, 49]
2.9B 1.06 1.16 [0, 15, 28,38,49] [0, 7, 15, 23, 28, 33, 38, 43, 49]
Wide-ResNet50 [87] 0.8B 1.23 146 [0,5,9, 14, 18] [0,3,5,7,9, 11, 13, 15, 18]
Wide-ResNet101 [87]  1.5B 1.09 1.25 [0,8,17,26,35] [0, 4,8, 12, 16, 21, 26, 31, 35]
(a) NVIDIA A100 PCIe GPUs.
. Imbalance Ratio Minimum Imbalance Ratio Partition
Model Size
4 stages 8 stages 4 stages 8 stages
1B 1.15 131 [0, 6, 12, 18, 25] [0,3,6,9, 12, 15, 18, 21, 25]
GPT-3 [8] 3B 1.11 1.21 [0, 8, 16, 24, 33] [0, 4, 8, 12, 16, 20, 24, 28, 33]
7B 1.08 1.17 [0, 8, 16, 24, 33] [0, 4, 8, 12, 16, 20, 24, 28, 33]
13B 1.07 1.14 [0, 10, 20, 30, 41] [0, 5, 10, 15, 20, 25, 30, 35, 41]
175B 1.01 1.02 [0, 24,48,72,97] [0, 12, 24, 36, 48, 60, 72, 84, 97]
3B 1.13 1.25 [0,9, 17, 25, 31] [0, 5,9, 13, 17, 21, 25, 29, 31]
Bloom [82] 7B 1.13 1.25 [0,9, 17, 25, 31] [0, 5,9, 13, 17, 21, 25, 29, 31]
176B 1.03 1.06 [0, 18, 36,54, 71] [0, 9, 18, 27, 36, 45, 54, 63, 71]
0.1B 1.33 2.00 [0,4,7,10,13] [0,1,2,4,6,8, 10, 12, 13]
BERT [19] 0.3B 1.17 133 [0,7,13,19,25] [0, 4,7, 10, 13, 16, 19, 22, 25]
1.3B 1.17 133 [0, 7,13, 19, 25] [0,3,6,9, 12, 15, 18, 22, 25]
0.2B 1.20 1.50 [0, 9, 15, 20, 25] [0, 5,9, 13, 15, 17, 19, 22, 25]
T5 [66] 0.7B 1.06 1.12 [0, 16,29,39,49] [0, 8, 16, 24, 29, 34, 39, 44, 49]
2.9B 1.07 1.17 [0, 15, 28,38,49] [0, 8, 15, 23, 28, 33, 38, 43, 49]
Wide-ResNet50 [87]  0.8B 1.13 172 [0,5,9,14, 18] [0,3,5,7,9,11, 13, 15, 18]
Wide-ResNet101 [87] 1.5B 1.08 1.25 [0, 8, 17, 26, 35] [0, 4, 8, 12, 16, 21, 26, 31, 35]
(b) NVIDIA A40 GPUs.

Table 7. Imbalance ratio between the longest and the shortest stages for various models. 1.00 would mean perfect balance.
Partitions for N stages is a list of N + 1 numbers, where the numbers represent layer indices. For instance, [0, 6, 12, 19, 25] for
GPT-3 1.3B means there are 6, 6, 7, and 5 Transformer layers in each stage, and the final stage also has the language model

head.

Model
gpt3-6.7b

Table 8. Experiment Parameters for 3D parallelism experiments on A40 GPUs. Microbatch size is per-pipeline, and there are
two data parallel copies of the same pipeline. Thus, global batch size should be calculated as the product of microbatch size
and the number of microbatches times two.

Global Batch Size Microbatch Size # Microbatches
1024 4

# Parameters

6.7B

128

where F is the frequency assignment for each pipeline com-
putation i € G, T’ is the straggler pipeline’s iteration time.

The decision problem corresponding to Equation 6 asks
whether it is possible to find frequency assignment F such



Model

# Parameters Global Batch Size Microbatch Size # Microbatches

gpt3-2.7b 2.7B
bert-huge-uncased 1.3B
t5-3b 3.0B
bloom-3b 3.0B
wide-resnet101 (width factor 8) 1.5B

1024 4 256
256 8 32
128 4 32
512 4 128

1536 32 48

Table 9. Experiment Parameters for eight-stage pipeline parallelism experiments on A40 GPUs. Model variant names are as

described in Torch Vision [60] or Huggingface Hub [81].

Model # Parameters Global Batch Size Microbatch Size # Microbatches
gpt3-xl 13B 512 4 128
bert-huge-uncased 1.3B 256 8 32
t5-3b 3.0B 128 4 32
bloom-3b 3.0B 512 4 128
wide-resnet101 (width factor 8) 15B 1536 64 24

Table 10. Experiment Parameters for Pipeline Parallelism Experiments on A100 PCle GPUs. Model variant names are as

described in Torch Vision [60] or Huggingface Hub [81].

that the total energy consumption is minimized while the
iteration time of pipeline G is no longer than the straggler’s
iteration time. We denote this problem pPEM.

In the following, we show that a simplification of PEM is
NP-hard by reduction from the 0/1 Knapsack problem, which
makes PEM NP-hard.

C.1 One Stage Two Frequencies Simplification

A simplification of PEM is considering the case where there is
only one pipeline stage and two frequencies to choose from.

For each pipeline computation i € {1,2,...,n}, we can
set the GPU frequency to either the lowest value or the
highest, denoted as [L, H] respectively. Choosing different
frequencies will lead to different execution time and energy
consumption. That is, if i is chosen to execute at frequency
L, it will take ¢;(L) time and e; (L) energy. On the other hand,
if i executes at frequency H, it takes t;(H) time and e;(H)
energy. The time and energy consumption of i are rational
numbers, as they are rounded up to 7.

Our goal is to minimize the energy consumption of exe-
cuting all computations while satisfying the time constraint.
Specifically, given a time deadline T’, we want to pick a
subset of operations J] C {1,2,...,n} and assign them to
execute at the lowest frequency L and execute the rest of
the operations with the highest frequency H, such that the
total time needed to execute all operations is smaller than
or equal to the deadline:

n

D (Xti(L) + (1= X)t(H)) < T’

i=1
where X; is a 0/1 indicator variable where X; = 1ifi € J
and X; = 0 otherwise. Under this time constraint, the goal is

to minimize the total energy consumption of executing all
computations:

n
D (Xiei (L) + (1 = Xp)es(H)).
i=1
Formally, we denote this problem as

PEM-lD(T = (TL, TH),E = (EL, EH), T’, EC)

where Ty = [t1(L),...,t,(L)], Ty = [t1(H),...,t,(H)] are
execution time vectors for low and high frequency respec-
tively, EL = [e1(L),...,e,(L)], Eg = [e1(H), ..., e (H)] are
energy consumption vectors for low and high frequency
respectively, and EC the target energy consumption.
PEM-1D returns true if and only if there exists a subset of
operations J C {1,2,...,n} such that }7, (X;t;(L) + (1 —
Xi)ti(H)) < T’ and er-l:l (Xiei(L) + (1 - Xl)el(H)) < EC.

C.2 0/1 Knapsack Problem

Consider two length n arrays containing positive integer
weights W = (wy, wa, ..., wy) and values V = (01,03, ...,0y,)
where the ith item has weight w; € Q* and value v; € Q7,
and a knapsack with weight capacity C € Q*.

The goal is to pick a subset of items S C {1,2,...,n},
such that the total weight of the chosen items is less than
or equal to the weight capacity: > ;csw; < C. Under this
constraint, the goal is to maximize the total value of items
in the knapsack: }};c5 v;.

Formally, we denote the decision problem of 0/1 Knapsack
as

KNAPSACK(W1,...,n],V[1,...,n],C,P)

where P € Q is the target value.



KNAPSACK returns true if and only if there exists a subset of
items S C {1,2,...,n} such that };csw; < Cand };cq0; >
P.

It is well known that kNAPSACK is NP-hard.

C.3 NP-hardness Proof
Theorem C.1. PEM-1D is NP-hard.

Proof. We will show that KNAPSACK <, PEM-1D, i.e., the 0/1
Knapsack problem is polynomial-time reducible to the sim-
plified pipeline energy minimization problem. Reduction
function f takes (W[1,...,n],V[1,...,n],C, P) as input and
does the following:

1. Construct n computations and empty vectors T, Ty, Er, Eq.

. For Vi, set t;(L) = w; and append to T;.

. For Vi, set t;(H) = 0 and append to Ty.

. For Vi, set e;(L) = —v; and append to EJ.

. For Vi, set e;(H) = 0 and append to Ey.
Set T" = C and EC = —P.

. Output (T = (T, Ty), E = (EL, Ey), T', EC)

N oG W

Correctness Analysis If (W[1,...,n],V[1,...,n],C,P) €
KNAPSACK, there exists a subset S such that } ;. w; < C and

ZieS v; > P.Now for PEM-lD(T = (TL, TH), E = (EL,EH), T/,EC),

select computations that have the same indices as items in S
to execute at low frequency L, while executing others at high
frequency H. Then, for the time constraint, },}_, (X;t;(L) +
(1 -X)ti(H)) = X1 Xiti(L) = Yieswi < C =T, and for
target energy, >, (Xie; (L)+(1-X;)e;(H)) = 21, Xiei (L) =
Sics —v; < —P = EC.

If (W[1,...,n],V[1,...,n],C, P) ¢ KNAPSACK, there does
not exist a subset S such that };cgw; < C and };cgv; = P.
There are two possibilities: either a subset S that satisfies
the weight constraint does not exist at all (w; > C, Vi) or
none of the subsets S that satisfy the weight constraint sat-
isfy D};esvi = P. For the first possibility, this means all the
computations must select the high frequency as the low
frequency does not satisfy the time constraint. Then total
energy consumption is 0, which is larger than EC = —P
since P € Q*. For the second possibility, for all subsets S,
Dlies Ui < P, which means that for all subsets of computa-
tions YL (Xiei (L) + (1 = Xi)ei(H)) = ¥jes —vi > —P = EC,
so none of them satisfy the energy constraint.

Efficiency Analysis Step 1-5 each takes O(n) time. Step 6
takes O(1) time. Finally, step 7 takes O(n) time.
Therefore, the function f takes O(n) time, which is poly-
nomial time w.r.t the input size.
m}

D Continuous Relaxation

The Pipeline Energy Minimization problem is NP-Hard, as
we have proved in Appendix C. Thus, we perform contin-
uous relaxation for the problem by fitting an exponential
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Figure 11. Pareto-optimal (time, energy) choices for forward
and backward computations in each stage of GPT-3 0.3B on
NVIDIA A40 GPUs.

function to each Pareto-optimal (time, energy) points for
each forward and backward computation in each stage. Fur-
thermore, the exponential function captures the nature of
diminishing returns well, in that the amount of energy con-
sumption needed to reduce computation time by a constant
amount increases multiplicatively.

Figure 11 visualizes Pareto-optimal (time, energy) mea-
surements for GPT-3 0.3B on A40 GPUs, showing that the
exponential function is a natural fit for data. This was our
consistent observation across different GPUs and models in
our evaluation.

E Full Details of GetNextSchedule

For the sake of presentation, we made a simplifying state-
ment in the body of the paper that computations only speed
up by 7. However, since we aim to speed up all critical paths
by precisely 7, speeding up more than one computation from
a critical path allows other computations on that critical
path to be slowed down. We always take such slowdown
opportunity because it will decrease energy consumption.

In the following, we describe the procedure of annotating
edges with flow capacities and then solving the problem with
maximum flow.

E.1 Generating Capacity DAG

On the computation DAG, we first remove all the computa-
tions that are not on any of the critical paths and construct
the Critical DAG. We would like to find a set of edges I'* to
speed up by 7 and I~ to slow down by 7 on the Critical DAG,
such that the total energy consumption increases minimally.



This can be described as the following problem:

min > el =) e 7)

iel* il

where e;(t;) is the exponential function fit to Pareto-optimal
(time, energy) measurements for computation i, €] = e;(t; —
7) — e;(t;) is the extra amount of energy needed to speed up
iby 7 and e; = e;(t;) — e;(t; + 7) is the energy saved from
slowing down i by 7.

An important fact that leads us to the solution is that
(i) the problem of finding the set of edges to modify such
that energy increase is minimized (i.e., solving Equation 7)
coincides with (ii) finding the minimum cut of a DAG whose
lower and upper bound flow capacities are defined as

(0,ef) ift; is longest possible (slowest)
(Li,u;) = { (e;,00) if t; is shortest possible (fastest) (8)
(e;,ef) otherwise.

This equivalence was given by the theoretical works of
Phillips and Dessouky [31, 64].

Thus, we construct the Capacity DAG from the Critical
DAG by annotating its edges with flow capacities given by
Equation 8. The capacity of an S — T cut (S is the set of nodes
on the source side and T the sink side) on the Capacity DAG
with S — T edges I* and T — S edges I” is identical to the
objective in Equation 7. Then, we use the Edmonds-Karp
maximum flow algorithm [21] to find the minimum cut of
the Capacity DAG. Finally, after the minimum cut has been
identified from the Capacity DAG, edges in I'* are sped up by
7 and those in I~ are slowed down by 7, ultimately reducing
the length of every critical path exactly by 7 with the smallest
possible energy increase.

E.2 Max Flow Algorithm on the Capacity DAG

A characteristic of our Capacity DAG that precludes the
direct application of well-known max flow algorithms is
that some edges also have flow lower bounds, asserting that
at least a certain amount of flow must pass through in the
edge. However, the Max Flow Min Cut theorem by Ford and
Fulkerson holds for the case of non-zero flow lower bounds
(See Chapter 1, Section 9 of [24]), allowing us to find the
minimum cut (which is equivalent to the minimum energy
modification set) using any maximum flow algorithm. We
adopt an approach that adds dummy source/sink nodes to
create a DAG that has zero flow lower bounds, finds the
maximum flow on the new DAG, and extracts the flow so
that it corresponds to a flow in the original DAG [22]. The
algorithm is given in Algorithm 3.

F Proof for Polynomial Runtime

Perseus enumerates the entire time-energy frontier one by
one, and the runtime of one iteration is polynomial time
with respect to the number of stages N and the number
of microbatches M. Thus, determining whether the entire

Input: Directed Acyclic Graph G = (V,E)
Source node s € V and sink node t € V
Lower and upper bounds I(e), u(e) for Ve € E
Output: A maximum feasible flow of G if it exists

1 Construct a new graph G’ = (V’, E’) by adding new
source and sink nodes s’ and t’, edges from s’ to
each node in V, edges from each node in V to ¢/, and
an edge from ¢ to s

> Define the capacity ¢’ (e) of each edge e € E’

2 :forv e Vdo

3| (s'v) & yey l(uo)

L ¢/ (vt’) = Xev l(ow)
5 for uv € E do
6 L ¢ (uv) «— u(uv) — l(uo)
7 ¢/ (ts) «— o
> Find the max flow on G’
8 f’ « EdmondsKarp (G, ¢’)
> G has a feasible flow if and only if G has a saturating flow
9 if FlowValue (f’) # X ey ¢/ (s'v) then

10 L return nil
> Convert f” to a feasible flow f in G

11 for uv € E do

12 L f(uv) «— f'(uv) + I(uv)
> Construct residual graph and improve f to max flow

13 for uv € E do

14 c(uv) «— u(uv) — f(uv)

15 L c(ou) «— f(ou) — l(vu)

16 return EdmondsKarp (G, ¢)

Algorithm 3: Maximum Flow with Lower Bounds

algorithm runs in polynomial time reduces to whether the
worst case number of iterations is polynomial with respect
to N and M. While for general DAGs the maximum number
of points on the frontier can be exponential with respect
to the size of the DAG [71], here we prove that under mild
assumptions for DAGs that represent pipeline schedules, the
number of iterations is O(N + M). The assumptions are valid
for all pipeline schedules known to the authors, including
GPipe [34] and 1F1B [56].

Theorem F.1. For DAGs that represent pipeline schedules,
the number of iterations needed is O(N + M).

Proof. Since we always reduce iteration time by 7, the num-

ber of iterations is
tmax - tmin

T
where ty,x and ¢y are the maximum and minimum possible
iteration time, respectively.

Assume that any pipeline schedule representing one it-
eration of training has a prologue, a steady state, and an



# In the framework's pipeline execution engine:
from perseus.client import profiler, controller

def train_step(model, dataloader):

for instuction in pipeline_schedule:

if isinstance(instruction, Forward):
controller.set_speed("forward")
profiler.begin("forward")
# Run forward on microbatch
profiler.end("forward")

elif isinstance(instruction, Backward):
controller.set_speed("backward")
profiler.begin("backward")
# Run backward on microbatch
profiler.end("backward")

Listing 1. Perseus client API integration example.

epilogue. The prologue is when the pipeline starts from an
empty state and is gradually filled with pipeline computa-
tions, while the epilogue is when the pipeline is drained to
reach an empty state. It is easy to see that the number of
pipeline computations on the critical path of both the pro-
logue and epilogue is O(N), as deeper pipelines (larger N)
take longer to fill. On the other hand, the steady state of the
pipeline is when the pipeline is completely filled, and the
number of pipeline computations in any simple path through
the steady state of the DAG is O(M). Therefore, the total
number of pipeline computations in the critical path of the
entire DAG is O(N + M).

tmax and tnin can be constructed by multiplying the num-
ber of computations with the average execution time of a
computation. Computations are executed with frequencies
fmin and fimax, respectively, and thus the multipliers of N and
M do not cancel out when t,x — tmin is evaluated. Therefore,
tmax — tmin, and hence (tpax — tmin) /7, is O(N + M). O

G Perseus Client Integration Example

Listing 1 shows an example integration of Perseus’s Client
API (first three rows in Table 2) with a hypothetical (but
typical) training framework’s pipeline execution engine.

A typical structure of a pipeline execution engine is to
have instructions for each distinct operations in the pipeline,
including not only forward and backward executions, but
also P2P and collective communications, and implement a
handler for each instruction. Therefore, framework develop-
ers can wrap such handlers with the Perseus client APIs to
mark their beginning and end.
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Figure 12. Eight stage pipeline parallelism on A40.

H Time-Energy Frontiers

Figure 12 shows the time-energy frontiers achieved by Perseus
and the two baseline approaches for the rest of the work-
loads ran with eight stage pipeline parallelism, measured in
NVIDIA A40 GPUs.

T5 shows an interesting frontier due to the hardware topol-
ogy of our A40 machine setup: Each node has four GPUs and
NVLink connects GPUs 0 and 1, and 2 and 3; GPUs 1 and 2
must communicate through the NUMA interconnect; Finally,
different nodes are connected with Infiniband only adjacent
to GPUs 0 and 1 (data to and from GPUs 2 and 3 must also
go through the NUMA interconnect). The implication of this
heterogeneous GPU interconnect is that if more than one
P2P communications that need to go through the NUMA
interconnect happen at the same time, contention happens
and both of data transfers slow down significantly. However,
Perseus’s plan reduces this contention, overall decreasing
iteration time noticeably. Yet, contention and noisy commu-
nication latencies still exist, leading to a noisy frontier.

For many ZeusPerStage lines, energy fluctuates signifi-
cantly when iteration time increases due to ZeusPerStage
being unaware of critical paths. Balancing the forward com-
putation time between stages could even let the modified
stages take over the critical path. As a result, the iteration
time increases, which increases energy bloat, and more en-
ergy is spent on blocking on communication (§4.1). When the
decreased energy on computation fails to cover the increased
energy on P2P communication, total energy increases.

Figure 13 shows the time—energy frontiers achieved by
Perseus and the two baseline approaches for the rest of the
workloads, measured with four stage pipeline parallelism in
NVIDIA A100 PCIle GPUs. Wide-ResNet has a noisy frontier
because the variability in microbatch loading time introduces
noise in the end-to-end iteration time when computations
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Figure 13. 4 stage pipeline parallelism on A100 PCle.

are tightly packed by Perseus. This was not pronounced in
A40 GPUs because compared to A100 PCle, computation is
slower, but data loading time is similar. Thus, the noise in
data loading time becomes more noticeable in A100 PCle.
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