
To appear in EPTCS.

Verification of Behavior Trees with Contingency Monitors

Serena S. Serbinowska
0000-0002-9259-1586
Vanderbilt University
Nashville TN, USA

serena.serbinowska@vanderbilt.edu

Nicholas Potteiger
0009-0005-0406-0355
Vanderbilt University
Nashville TN, USA

nicholas.potteiger@vanderbilt.edu

Anne M. Tumlin
0009-0000-1635-8793
Vanderbilt University
Nashville TN, USA

anne.m.tumlin@vanderbilt.edu

Taylor T. Johnson
0000-0001-8021-9923
Vanderbilt University
Nashville TN, USA

taylor.johnson@vanderbilt.edu

Behavior Trees (BTs) are high level controllers that have found use in a wide range of robotics tasks.
As they grow in popularity and usage, it is crucial to ensure that the appropriate tools and methods are
available for ensuring they work as intended. To that end, we created a new methodology by which to
create Runtime Monitors for BTs. These monitors can be used by the BT to correct when undesirable
behavior is detected and are capable of handling LTL specifications. We demonstrate that in terms of
runtime, the generated monitors are on par with monitors generated by existing tools and highlight
certain features that make our method more desirable in various situations. We note that our method
allows for our monitors to be swapped out with alternate monitors with fairly minimal user effort.
Finally, our method ties in with our existing tool, BehaVerify, allowing for the verification of BTs with
monitors.

1 Introduction

A Behavior Tree (BT) is a high-level tree-structured controller with leaf nodes that interact with the
environment and interior nodes that control which branches of the tree are executed. The tree-structure
means that BTs are often more intuitive than equivalent finite state machines, but are also powerful
tools capable of being used in many environments. Furthermore, the inherently recursive nature of tree
structures allows for adaptability, modularity, and reuse.

BTs originated in video games and were used for Non Playable Characters (NPCs). NPCs are, in
essence, virtual agents in a digital environment. As time progressed, NPCs needed to respond to more
complex environments. The video game industry responded to this by creating BTs: designer friendly
controllers for complex systems. In light of this, it is unsurprising that the controllers subsequently
made the jump to areas such as robotics and drone control. Bipedal locomotion for robots [18], vision
measurement systems of road users [26], and swarms of agents have all utilized BTs. A recent survey [21]
provides even more examples of BTs in action.

It is clear that BTs are continuing to grow in popularity and usage. As they expand into new domains,
especially real-world safety-critical domains, it is imperative to be able to provide guarantees about
their correctness. Two methods for providing such guarantees are runtime monitoring and design time
verification. Runtime monitoring can be used to alert the BT if there is danger of a violation occurring,
allowing the tree to self-correct, while design time verification can be used to ensure the model is correct.

At present, tools already exist for the creation of runtime monitors, such as NASA’s Copilot [24] and
NuRV [7], though they are not designed for BTs specifically. However, it is important that the tools not
only exist, but be compatible with the BT , and that the BT reacts correctly to these tools. After all, if the

2 Verification of BT with Monitors

monitor correctly indicates a dangerous situation is occurring but the BT ignores this warning, then the
danger has not been averted.

The primary contributions of this work are the following:

1. We provide a formal definition for BTs with Monitors (BT M).

2. We expand the Domain Specific Language (DSL) of BehaVerify [27], allowing it to describe BT Ms.
BehaVerify was originally created for design time verification on BTs.

3. We present software for converting Linear Temporal Logic (LTL) specifications written in the DSL
into input for the existing tool LTL2BA [16].

(a) We then translate the output of LTL2BA back into the DSL. This enables BehaVerify to
generate nuXmv [6] models, allowing us to use Design Time Verification to confirm that the
BT M works as intended.

(b) Additionally, we can translate the output of LTL2BA directly into a C or Python monitor, for
use with code generated by BehaVerify.

(c) Furthermore, we compare the generated C monitors to monitors generated by Copilot [24] and
demonstrate our monitors are on par in terms of performance and offer certain improvements
in terms of correctness.

2 Related Work

There is a broad body of work utilizing behavior trees for planning purposes in robotic systems [5, 9–
11, 22, 31, 35, 36], illustrating their broad usage in safety-critical systems. There are several practical
implementations of BTs (such as PyTrees [32] and its Robotic Operating System (ROS) extension
PyTreesRos, BehaviorTree.cpp [1], and Unreal Engine [13]). Each of these feature a Blackboard (shared
memory between nodes). For a variety of practical reasons, our tool targets the implementation of BTs
presented in PyTrees, though we hope to target BehaviorTree.cpp in the future as well.

There are several existing works that develop and apply formal verification for BTs. There are
several tools for model verification of BTs: [4], BehaVerify [27], BTCompiler, ArcadeBT [19], and
MoVe4BT [23]. Prior to this work, however, none of these tools supported Runtime Verification of
BTs. [8] does runtime verification for a fragment of Timed Propositional Temporal Logic (TPTL) for BTs,
but failed to configure our examples to work with it.

The authors in [25] utilized the runtime verification framework NASA Copilot [24] to ensure that a
flying aircraft maintains an airspeed above a threshold using natural language and Past Linear Temporal
Logic (PLTL). Similarly, stream runtime verification (SRV) monitors were generated using HLola [17]
in [34] to seamlessly integrate with a UAV hybrid navigation controller for post decision making and
online remediation actions. Furthermore, the authors in [33] develop an architecture that allows for
construction of runtime monitors that can be integrated into an Urban Air Mobility (UAM) System.
They demonstrate that runtime monitors are built using NASA OGMA [25] and NASA FRET [25] for
battery monitoring of a UAV simulated in Microsoft AirSim [30]. Runtime monitoring instrumentation
frameworks for ROS specifically also have been developed [14]. Our approach generally differs from
these works because we are interested in creating monitors for BTs specifically. However, our approach
also clearly has overlap with several of these methods; we too seek to enable remediation actions for
the models being monitored. Furthermore, while we create our own monitors, our general framework
is compatible with alternative monitors. In light of this, we compare our monitors to those created by
Copilot in Section 5.

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 3

Another related aspect is that of the Simplex architecture [2, 28, 29]. The Simplex architecture
describes control switching logic swaps between multiple controllers depending on the current state of the
system. Our work differs from this approach in two main methods: first our approach is focused explicitly
on BTs, and second our approach does not utilize multiple controllers. Instead, we utilize the structure of
BTs to integrate the ‘switch’ into the BT itself.

The work that is most closely related to ours is [8]. This work is about BTs equipped with runtime
monitors based on Timed Propositional Temporal Logic (TPTL) and provides a formal definition of the
setup. However, unlike our work, the monitors are not meant to be interacted with; the BT has no way
of reacting to a violation. In terms of generating monitors by transforming temporal logic specifications
to automata, our approach is similar to that of ltl2mon and LamaConv [3, 12, 15], but differs in that we
consider BTs. We further differentiate our work through the design time verification aspect. Our method
allows us to prove that a BT equipped with a monitor and its contingency response for detected violations
is guaranteed to satisfy a specification.

3 Preliminaries

This section provides a formal definition for Linear Temporal Logic and Buchi Automata. This is followed
by an intuitive overview of BTs and a formal definition.

3.1 Linear Temporal Logic

A Linear Temporal Logic (LTL) formula is evaluated on a trace. A trace is a sequence of states Tr ≜
[n0,n1,...]. Here n0 is the state at time 0, n1 is the state at time 1, etc. The grammar of an LTL formula is
presented in Grammar 1.

⟨LTL⟩ ::= ⟨a⟩ #First Order Logic Formula
| ¬⟨LTL⟩ | ⟨LTL⟩∨⟨LTL⟩ #Minimal Boolean operators
| ⃝(⟨LTL⟩) |(⟨LTL⟩)U (⟨LTL⟩) #Temporal operators next and until

Grammar 1: Minimal LTL Grammar.

We assume the reader is familiar with Boolean logic, so we will not describe them here. ⃝(φ) is true at
time t if φ is true at time t+1. φ1U φ2 is true at time t if ∃t ′′ such that t ≤ t ′′ and φ2 is true at t ′′ and ∀t ′

such that t≤ t ′< t ′′, φ1 is true at t ′.
In addition to the grammar presented in Grammar 1, we also utilize □(φ) (globally) and ♢(φ) (finally).

These do not increase the expressiveness of LTL, but make writing formulas easier. □(φ) is true at time t
if ∀t ′ such that t≤ t ′, φ is true at time t ′. ♢(φ) is true at time t if ∃t ′ such that t≤ t ′, φ is true at time t ′.

Finally, we say that φ is true for the entire trace if it is true at time 0. Notationally, we will write
Tr⊨φ to mean that φ is true for the entire trace Tr, Tr[i, j]⊨φ if we are looking at the segment of the trace
[ni,ni+1,...n j], and utilize ̸⊨ in the same way but to mean not true.

3.2 Buchi Automata

A Buchi Automaton (BA) is a tuple (Q,Σ,∆,q0,F).

1. Q is a finite set representing the states BA can be in.

2. Σ is a finite set representing the possible inputs.

4 Verification of BT with Monitors

3. ∆ is a function from Q×Σ 7→ 2Q. Here 2Q is the power set of Q. This function describes the
nondeterministic transitions available from a given state-input combination.

4. q0 is an element of Q. This is the initial state.

5. F is a finite set such that F ⊆Q. This is the set of accepting states.

Then, BA accepts a given sequence of inputs [a0,a1,...] if and only if there exists a sequence [q0,q1,...]
such that

1. ∀ j∈Z s.t. j≥0,q j+1∈∆(q j,a j)

2. ∀ j∈Z,∃k∈Z s.t. j<k∧ak∈F

Thus we accept if we begin in the initial state, take valid transitions, and enter accepting states an infinite
number of times. We accept if any such trace is possible; thus a single trace can be used to prove that the
input is accepted but it cannot be used to prove that the input is not accepted.

3.3 Behavior Tree Overview

BTs are rooted trees with parent-child relationships. Each node has one parent, except the root which has
no parent. When executing, a BT starts from the root and follows a Depth First Traversal. Nodes can
change this traversal order and leave certain branches unexplored based on what their children return.
This process is started by an external activation signal called a tick. In practice, trees are often structured
recursively and parents propagate this signal to their children, but for this paper a tick will only be used to
refer to the root receiving the external signal. Note that BTs are inactive until they receive a tick. In the
interest of conciseness, we will omit these periods of inactivity from various diagrams. We assume that a
tick will only arrive while the tree in inactive.

Each node is always in one of four states: Success (S), Failure (F), Running (R), or Invalid (I). We
will use active and executing to describe where we are in the execution of the tree. When a new tick
arrives, each node is set to I and the root becomes both active and executing. Until the root finishes
executing, exactly one node will be active at all times but more than one node can be executing. A node
that is executing is similar to a function that has been called but has not yet turned. A node that is active is
similar to a function that is currently being stepped through. When a node finishes executing it returns S,
R, or F.

In addition to ticks, we use timestep or t to track each time the active node changes. Both tick and
timestep will be enumerated sequentially starting from 1. Refer to Figure 2 for an example.

Nodes can be grouped into three categories: leaf, decorator, and composite.

Leaf Nodes Leaf nodes do not have children. It is common to categorize leaf nodes as checks/guards
(e.g. at boundary?) and actions (e.g. go forward). Checks evaluate a boolean condition and return S if true
and F otherwise. Consider Subfigure (a) of Figure 1; if there is an apple on the table, the check will return
S. If there is not, F will be returned. Either way, the status will be returned to the root which will proceed
accordingly. It is important to note that checks only check a condition and return the appropriate status;
they do not set variables or take any sort of action.. By contrast, actions can execute actions, for lack of a
better word. For instance, in Subfigure (b) of Figure 1, the action executes the action of moving left. It is
important to note that actions are also not restricted in what status they return. While Subfigure (b) of
Figure 1 shows F being returned, it would be valid to create a version of this action that always return S,
or it could return R because it hasn’t finished, or it could return F based on some sort of conditional logic.

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 5

Check

Is the apple on
the table?

Root

tick Return=S
1 2

Action

Move left

Root

tick Return=F
1 2

Check

Is the apple on
the table?

Root

Invert

tick1 Return=S 2

Return=F 3 Return
inverted

(a) Check Node (Leaf) (b) Action Node (Leaf) (c) Inverter Node (Decorator)

Figure 1: Example Leaf and Decorator Nodes.

Node a

Node d

x :=x+2
S

Node c

(x≤2)?S:F

Node b

x :=x+1
S

Tick 1 1 1 1 1 1 1 2 2 2 2 2

t 1 2 3 4 5 6 7 8 9 10 11 12

Active a b a c a d a a b a c a

Returns - S - S - S S - S - F F

x 0 1 1 1 1 3 3 3 4 4 4 4

Figure 2: A BT consisting of a sequence node (a) with two actions (b, d) and a check (c). We use the
ternary operator i? j : k to mean if i then j else k. Tick indicates the number of times the tree has been
ticked. At each timestep t, the variable x is updated based on the active node. If a node is finished, then it
returns one of S, F, or R.

Decorator Nodes Decorator nodes ‘decorate’ their children, allowing for easy adjustments to be made.
A decorator node will always have exactly one child, but that child can have children of its own. An
inverter (decorator that swaps S and F) is in Subfigure (c) of Figure 1.

Composite Nodes Composite nodes control the traversal of the tree. Changing a composite node
will change the conditions under which branches of the tree are activated. The three primary types of
composite nodes are selector, sequence, and parallel nodes. The children of composite nodes are ordered
and are activated according to the order, which we will treat as being left-to-right, both visually and in our
language.

1. Recall our notation of Success (S), Running (R), and Failure (F).

2. Selector Nodes: Selector/Fallback nodes activate their children from left-to-right until one of them
returns S or R, at which point the selector itself returns S or R. If a child node returns F, the selector
activates the next child. Selectors can be used to prioritize behaviors, ordering them from most
preferable at the left to least preferable at the right. Another way to think of these nodes as providing
a series of fallbacks in case the intended action fails.

3. Sequence Nodes: Sequence nodes activate their children in a left-to-right order, requiring each
child to return S before moving on to the next. The sequence returns S only if all its children
return S. It returns F or R as soon as one of its children does. This is ideal for defining a series of
actions that must be performed in a specific order to achieve a goal. Figure 2 shows an example
sequence node with two actions and one check. The figure clearly demonstrates the order in which
the children become active. Additionally, it showcases how composite nodes control the flow of

6 Verification of BT with Monitors

logic in a BT; during tick 1, all three children are active at some point. However, during tick 2 node
(d) never becomes active because node (c) returned F.

4. Parallel Nodes: For the purpose of this paper, we do not consider truly parallel nodes (i.e., nodes
that activate all their children simultaneously). Instead, our parallel nodes activate nodes one at
a time in a left-to-right order. However, unlike selector and sequence nodes, a parallel node will
always tick all of its children. Once the last child returns, the parallel node uses a policy that
considers what all of the children returned. The two most common policies are Success on All,
which requires that all children return S for S to be returned, and Success on One, which requires
only one child to return S for S to be returned. This is consistent with [32]. It is possible to define
more complex policies, but this is beyond the scope of this paper.

3.4 Formal Definition of Behavior Trees

A Behavior Tree (BT) is a tuple (S,V,ΣT ,∆T ,s0,v0).

1. S is a finite set that describes the state of the tree itself (which node is active, what nodes have
returned so far, etc).

2. V is a finite set that describes the state of the Blackboard variables (the persistent memory of the
tree).

3. ΣT is a finite set of all possible ‘inputs’ to the tree (e.g., environmental factors).

4. ∆T is a function S×V×ΣT 7→S×V . This function takes the current state of the tree, the variables,
and environmental factors and produces a new tree state and new variable values.

5. s0 is an element of S that describes the initial state of the tree.

6. v0 is an element of V that describes the initial state of the Blackboard variables.

This definition does not allow for nondeterminism, though it could be simulated through a ‘seed’ variable.
Furthermore, this definition is slightly too permissive; additional restrictions would need to be placed on
∆T to enforce the tree structure. We omit these details as we believe that they would complicate the issue
without providing additional insight.

For a given sequence of inputs [a0,a1,...], the corresponding BT trace is a sequence [(s0,v0),(s1,v1),...]
such that

∀ j∈Z s.t. j≥0,∆T (s j,v j,a j)=(s j+1,v j+1)

4 Problem Statement and Methodology

While we have defined BTs, we have not defined Behavior Trees with Monitors (BT Ms). In this section
we will first define BT M, then formally state the problem we are addressing, and finally present our
method for addressing the issue.

4.1 Formal Definition of Behavior Trees with Monitors

A BT M is a tuple (S,V,M,ΣT ,∆M,s0,v0,m0).

1. S, V , ΣT , s0, and v0 are unchanged from BT .

2. M is a finite set describing the state of the monitor.

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 7

3. ∆M is a function S×V×ΣT ×M 7→S×V×M. This function takes the current state of the tree, the
variables, environmental factors, and the state of the monitor and produces a new tree state, new
variables state, and a new monitor state.

4. m0 is an element of M and describes the initial state of the monitor.

For a given sequence of inputs [a0,a1,...], the corresponding BT M trace is a sequence [(s0,v0,m0),
(s1,v1,m1), ...] such that

∀ j∈Z s.t. j≥0,∆T (s j,v j,a j,m j)=(s j+1,v j+1,m j+1)

4.2 Problem Statement

Our problem statement follows. Given a BT and a φ , create a BT M that monitors φ such that BT M is
capable of reacting to a violation of φ . To demonstrate the utiltity of this process, we will also consider
φ1, a second specification that holds for BT M but not for BT .

To accomplish this goal we modified the Domain Specific Language (DSL) of BehaVerify (outlined
below) to allow the use of monitors within BTs. We utilize the tool LTL2BA [16] and specifically the
implementation at 1 to translate an LTL formula into a monitor in the form of a BA. Then we create an
implementation of that BA for use with the BT . Finally, to verify that BT M satisfies the property, we
also convert the output of LTL2BA into an implementation of the monitor within the DSL and utilize
BehaVerify to create a nuXmv model that proves φ1 is true for BT M but false for BT .

4.3 BehaVerify

BehaVerify uses a Domain Specific Language (DSL) that allows the user to specify a BT . As the DSL
itself 2 is complex, we will provide an overview here.

The user defines a finite set of typed variables that will be used by the BT . The user also defines a
finite set of leaf nodes. Each leaf node is a finite sequence of statements, exactly one of which is a return
statement while the rest are variable statements. A variable statement consists of the variable whose value
is being updated and a sequence of ‘if statements’ that determines the new value. Nondeterminism is
allowed in variable statements. The return statement is similar, but is used to determined what status
the node will return. Note that the node does not stop execution when the return statement is executed;
it is only used to determine the return status, not to ‘return’ from the node. Finally, the user creates a
finite tree consisting of composite (selector, sequence, and parallel), decorator (inverter and X_is_Y), and
user-defined leaf nodes.

Monitors We add special syntax to our DSL for the creation and use of monitors. The user provides an
LTL specification that is to be monitored. Furthermore, the user specifies where in the tree the monitor
should be used, and how the tree should react to the possible outputs of the monitor. We describe the
details of transforming the monitor in Subsection 4.4.

We present two pipelines for making monitors. The first is for generating a Python implementation
of a BT and either Python or C code for the monitor(s). The second pipeline is for generating a nuXmv
model of a BT and its monitor(s).

1https://github.com/utwente-fmt/ltl2ba
2https://github.com/verivital/behaverify/blob/main/metamodel/behaverify.tx

https://github.com/utwente-fmt/ltl2ba
https://github.com/verivital/behaverify/blob/main/metamodel/behaverify.tx

8 Verification of BT with Monitors

DSL

Python Code

Commands for LTL2BA

Spin Never Claim

Python/C MonitorsPython BT M

BehaVerify LTL2BA

Figure 3: Diagram of how BehaVerify
generates Python code for BTs with mon-
itors. LTL2BA is a tool for converting
an LTL specification to a BA. Spin is a
model checker, and a Never Claim can
be checked using Spin. Solid blue arrows
mark new contributions.

4.4 Generating Implementations

We utilize the following process to generate a BT M using BehaVerify.

1. The user creates a DSL file specifying the BT and any monitors it uses.

2. BehaVerify creates a Python implementation for BT , ignoring the monitors.

3. For each monitor in the DSL file, BehaVerify creates a command for use with LTL2BA.

4. For each command, LTL2BA creates a Buchi Automaton (BA). The output is in the form of a ‘never
claim’ for use with the Spin [20] model checker.

5. For each BA, BehaVerify creates a corresponding Python implementation.

6. The monitors are combined with the generated Python code.

This process can be seen in Figure 3. Below we provide some additional details.

Command Creation LTL2BA commands can contain temporal operators (e.g. ‘globally’), boolean
operators (e.g. ‘and’), boolean constants (‘true’ and ‘false’), and lowercase alphanumeric strings repre-
senting boolean variables. Our conversion process prioritizes making the resulting LTL formula as small
as possible. Thus the formula □(a∨b) (here □ means globally) would be converted to □p0, where p0 is
boolean predicate representing a∨b.

Monitor We provide a quick refresher on BA. For details, see Subsection 3.2. A BA is a nondeterministic
automaton with transition guards. Thus from a given state, BA can transition to any other state provided a
transition to that state exists and the associated guard condition is true. Within the formal definition, these
guards are encoded into the transition function. Some of the states in the BA are ‘accepting’ states. The
BA accepts a trace if there exists a sequence where the BA is infinitely often in an accepting state.

To mimic this behavior, the monitor takes as input a set of states that the BA could be in along with
the current model state. The current model state provides all the necessary information to determine if a
transition guard is true. This, combined with the possible states, is used to create a new set of possible
states. If there are no possible states, then there is no longer any way for the specification to be true,
meaning it must be false. If there is a possible state that is an accepting state with a transition to itself
and the guard is always true, then the specification is guaranteed to be true. Otherwise, the specification
could still prove to be true or false (unknown). The monitor returns both the new set of possible states
and the verdict to the user. If a violation occurs, the monitor can be ‘reset’. This is important as we want
our monitor to be repeatably usable; without a reset it would have to continuously report that a violation
occurred.

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 9

DSL

Modified DSL

Commands for LTL2BA

Spin Never Claim

.smv model of BT M

LTL2BA

BehaVerify

Figure 4: Diagram of how BehaVerify
generates .smv files for BTs with mon-
itors that can be verified using nuXmv.
LTL2BA is a tool for converting an
LTL specification to a BA. Spin is a
model checker, and a Never Claim can
be checked using Spin. Solid blue arrows
mark new contributions.

4.5 nuXmv Model Generation

The nuXmv pipeline is very similar to the Python pipeline, and as such we will avoid going into the inner
workings of this pipeline. The main difference is that we create a monitor using the DSL of BehaVerify
allowing BehaVerify to create a .smv model for use with nuXmv.

5 Monitor Comparison

We created two scaling scenarios and ran timing comparisons for the generated monitors created by
BehaVerify and Copilot. We planned to compare two monitors generated by NuRV, but did not ultimately
do so (see Subsection 5.5 for details). Additionally, we utilized the generated Python code with monitors
to generate example traces. While these example traces are not conclusive proof, they were sufficient
to demonstrate some differences in the generated monitors. The results demonstrate that the monitors
generated by BehaVerify are not outclassed by existing tools and in some cases are preferable from a
correctness standpoint. Furthermore, this demonstrates the versatility of our setup; it is fairly painless to
bring in outside monitors should the need arise.

The rest of this section will describe the scaling scenarios, present the results, and then reason about
the results.

5.1 Scenarios

For our scenarios, a drone navigates a grid and tries to reach a destination. Once the destination is reached,
a new destination is randomly generated. We generated grids from size 10 by 10 to 50 by 50 in two styles:
dense fixed and sparse random. The dense fixed grids start with a 5 by 5 grid and copies this layout to fill
the entire grid. The sparse random grids are randomly generated. See Figure 5 for details.

At each time step, the drone attempts to move towards the target according to the control logic. We
want the drone to satisfy the following specifications

φS=□(∀(xo,yo)∈Obs,(xd ,yd) ̸=(xo,yo))

φL=□(♢((xd ,yd)=(xg,yg)∨∃(xo,yo)∈Obs s.t. (xg,yg)=(xo,yo)))

Here Obs is a predetermined finite set of obstacles. φS is a safety specification that states that the drone’s
position (xd ,yd) is never equal to the position of an obstacle (xo,yo). φL is a liveness specification that
states that the drone’s position is eventually equal to the destination (xg,yg), or the destination is an
obstacle. We utilize the quantifiers ∀,∃ (for all and exists, respectively) for convenience here; in practice
we write out each individual obstacle.

10 Verification of BT with Monitors

Figure 5: Images representing some of the grids used for the scaling experiments. The upper grids are
sparse and were randomly generated. The lower grids are dense and were created by copying a 5 by 5 grid
repeatedly. The left grids are 10 by 10 and the right grids are 50 by 50. Black squares are obstacles, the
blue square is the drone, and the green square is the destination.

Then the specifications we monitor are

φS1=□(∀(xo,yo)∈Obs,(xd+(x∆∗s),yd+(y∆∗s)) ̸=(xo,yo))

φL1=□


(x∆,y∆)=(1,0) =⇒⃝((x∆,y∆) ̸=(−1,0))∧
(x∆,y∆)=(−1,0) =⇒⃝((x∆,y∆) ̸=(1,0))∧
(x∆,y∆)=(0,1) =⇒⃝((x∆,y∆) ̸=(0,−1))∧
(x∆,y∆)=(0,−1) =⇒⃝((x∆,y∆) ̸=(0,1))



S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 11

Figure 6: Pictures are ordered left to right. The drone (blue) is trying to reach the destination (green)
while avoiding obstacles (black). In the left image, the control logic tells the drone to go down. Because
neither monitor reported a violation, the drone moved 2 squares and is now in the situation shown in the
middle image. The control logic now tells the drone to go up. The liveness monitor reports a violation; if
we go up two squares, the drone will be stuck in a loop. Therefore, the drone only goes up one square
and is now in the situation shown in the right image. If the drone has not been equipped with the liveness
monitor, it would have gone back to the state shown in the left image, then middle, then left, etc.

(xd ,yd) is the current location of the drone, (x∆,y∆) is one of (1,0), (−1,0), (0,1), (0,−1), (0,0), describing
the possible directions the drone moves in, and s is the speed of the drone (either 1 or 2). Thus the safety
specification monitor is violated if we are on a collision course and the liveness specification monitor is
violated if we do a 180 turn. We note that both specifications being monitored are safety specifications;
however, we will refer to the second as a liveness specification as it is being used to ensure the liveness
specification is not violated. Please note the following: we are not claiming that by monitoring these
conditions any BT will satisfy the desired specifications; rather, the purpose is to demonstrate that the
monitors can be used to correct specific flaws in a BT . Furthermore, it is possible to design and insert
these monitors into the BT without the use of a special tool; however, such a task may prove more complex
then writing an LTL specification and utilizing our tool.

By default, the drone will try to move 2 squares; if either the safety monitor or liveness monitor are
triggered, it will only move one square. The safety monitor ensures that the drone does not move into
obstacles. The liveness monitor ensures that the drone escapes potential loops, as seen in Figure 6. Thus
both monitors are necessary for the drone to function as intended. Note that this example is not meant to
illustrate good programming practice for drone controllers; there are no doubt better methods by which to
control a drone. Rather, the purpose of this example is to demonstrate how one can use the monitors to
ensure a system functions correctly.

5.2 Motivation

We were originally creating a controller for a drone in virtual neighborhood simulated using AirSim (see
Figure 7). The drone would fly at a fixed height and knew where obstacles were before hand. We created
a grid-world abstraction of the problem and created a controller that we were able to verify navigated
correctly under certain assumptions. One of the assumptions was that the drone would always move
at most one tile at a time. While it is simple to ensure that this is the case, it requires flying the drone
slowly at all times, which is not desirable. Flying the drone at faster speeds, however, created both safety

12 Verification of BT with Monitors

Figure 7: A screenshot of the drone flying in AirSim and a grid visualization.

and liveness violations. Thus by equipping our BT with the described monitors, we were able to safely
increase speed without compromising safety. Finally, we were able to utilize nuXmv to verify that the
BT M is safe (see Section 6 for details).

5.3 Results

All results (Figure 8) were generated on a computer with a 24 core 13th Gen Intel(R) Core(TM) i7-13700K
and 64GB of DDR5 RAM. Results were run in a quiet environment when no other user run processes
were active. The code for the experiments is available at 3.

5.4 Analysis

Timing We ran 10000 simulation runs with 1000 iterations (number of times the drone tried to move)
and took the median for both Copilot and BehaVerify. To ensure that we are comparing only the monitors,
we also ran a version of the code with no monitor with the same settings. This monitorless value was then
subtracted out from the timing results for both BehaVerify and Copilot. We believe that the timing results
demonstrate that the monitors generated by BehaVerify and Copilot are reasonably close. As expected,
the dense fixed grid pattern produces a far more linear timing relation than the sparse random grid. This is
because the number of obstacles in the dense fixed grid is always greatly increasing, while the number of
obstacles in the sparse random setup is random, and it is the number of obstacles that is largely responsible
for the complexity of monitoring the specifications.

3https://github.com/verivital/behaverify/tree/main/REPRODUCIBILITY/2024_FMAS_BTM

https://github.com/verivital/behaverify/tree/main/REPRODUCIBILITY/2024_FMAS_BTM

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 13

Figure 8: Top left: file sizes of safety monitors for dense fixed. Top right: file sizes of safety monitors for
sparse random. Bottom left: median time (in seconds) for safety and liveness monitors on dense fixed.
Bottom right: median time (in seconds) for safety and liveness monitors on sparse random. We did not
include the size of liveness monitors as it did not change with the size of the grid. The timing results are
the median of 10000 runs. Each run had 1000 iterations (number of times the drone tried to move). We
subtracted how long it took to run the code without a monitor.

File Size We measured the file size as an indicator of the complexity of the monitoring algorithm. While
BehaVerify clearly generates larger files than Copilot, we do not believe that the difference is sufficient to
prefer Copilot’s Monitors. This is in contrast to NuRV, which is discussed below in Subsection 5.5.

Correctness The safety monitors that Copilot generated worked as intended, but the liveness monitor
had an issue: it would report a violation with a one-step delay. Specifically, if a violation occurred in the
ith state, then Copilot would report it in the i+1th step. This behavior is documented in the Copilot tutorial
in example 7 4. By contrast, both the safety and liveness monitors generated by BehaVerify worked as
intended, ensuring the drone functioned as intended.

This brings us to an important note about how our process is laid out. While BehaVerify is capable of
generating monitors, the generated Python code can utilize any provided monitor. Indeed, we confirmed
that it is possible to utilize Copilot for the safety monitor and BehaVerify for the liveness monitor and that

4https://copilot-language.github.io/downloads/copilot_tutorial.pdf

https://copilot-language.github.io/downloads/copilot_tutorial.pdf

14 Verification of BT with Monitors

Figure 9: The graph shows the time (in seconds)
to verify that the BT M is safe (does not crash into
obstacles). The verification was done with nuXmv.
Liveness specifications are considerably harder to
verify, with the 9 by 9 sparse grid taking about 25
minutes to verify. As this is the easiest grid we have
for this task, we did not complete liveness verification
for any other grids.

this works as intended.

5.5 NuRV

Because BehaVerify creates .smv files, we originally tried using the output of BehaVerify as input to
NuRV. Unfortunately, a variety of issues prevented this from being feasible. For instance, NuRV monitors
are aware of the transition system. This enable NuRV monitors to potentially detect violations well in
advance or to verify liveness conditions, but it also means the files are much larger. To combat this, we
created simplified .smv models with much simpler transition systems. This proved ineffective; the smallest
file generated by NuRV was 26.04 MB, while the largest file generated by BehaVerify was 582 KB.

6 Design Time Verification

BehaVerify was originally created for Design Time Verification. As such, when approaching the topic
of Runtime Verification, we were interested if we could use Design Time Verification for the Runtime
Monitors. As such, we translated the monitors that were created by BehaVerify back into the DSL for
BehaVerify and then utilized nuXmv to verify that the BT with monitors satisfied both the safety and
liveness specification. While we created such translations for each combination of grid type and grid
size presented in Section 5, some of the resulting models proved to complex for liveness analysis in
nuXmv. The results for safety verification can be seen in Figure 9. As you can see, it is entirely feasible
to use design time verification to confirm that the safety monitors are correct and ensure the system works
as intended. If the safety monitor is removed, nuXmv will demonstrate that the system is not safe by
providing a counter example trace resulting in a crash. If the liveness monitor is removed, nuXmv will
demonstrate that the system can get stuck in a loop by providing a counter example trace.

The liveness situation is somewhat trickier, as the specifications are substantially harder to verify.
However, considering the fact that the same liveness monitor is used for all grids and that we verified it for
one grid, even this limited verification process can provide some evidence to indicate that the monitor is
correct. As with the safety monitor, the removal of the liveness monitor results in a specification violation
that nuXmv detects. In this case, nuXmv returns a counterexample where the drone becomes stuck in a
loop, going back and forth between two points without reaching the destination.

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 15

7 Conclusions and Future Work

We presented a formal problem statement for incorporating contingency monitors within BTs, thus creating
BT Ms. On the implementation side, we expanded the DSL of BehaVerify to incorporate these monitors,
and demonstrated that our code is capable of generating implementations of the monitors that are on par
with existing tools. However, our overall approach also brings the advantage of Design Time Verification
for the entire BT M. We subsequently hope to expand the target range of BehaVerify, specifically to create
.cpp implementations that make use of BehaviorTrees.cpp.

Acknowledgements

The material presented in this paper is based upon work supported by the National Science Foundation
(NSF) through grant numbers 2220426 and 2220401, the Defense Advanced Research Projects Agency
(DARPA) under contract number FA8750-23-C-0518, and the Air Force Office of Scientific Research
(AFOSR) under contract numbers FA9550-22-1-0019 and FA9550-23-1-0135. Any opinions, findings,
and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily
reflect the views of AFOSR, DARPA, or NSF.

References

[1] Auryn Robotics: Tutorial 02: Blackboard and Ports. Available at https://www.behaviortree.dev/docs/tutorial
-basics/tutorial_02_basic_ports.

[2] Stanley Bak, Deepti K. Chivukula, Olugbemiga Adekunle, Mu Sun, Marco Caccamo & Lui Sha (2009): The
System-Level Simplex Architecture for Improved Real-Time Embedded System Safety. In: 2009 15th IEEE
Real-Time and Embedded Technology and Applications Symposium, pp. 99–107, doi:10.1109/RTAS.2009.20.

[3] Andreas Bauer, Martin Leucker & Christian Schallhart (2011): Runtime Verification for LTL and TLTL. ACM
Trans. Softw. Eng. Methodol. 20(4), doi:10.1145/2000799.2000800.

[4] Oliver Biggar & Mohammad Zamani (2020): A Framework for Formal Verification of Behavior
Trees With Linear Temporal Logic. IEEE Robotics and Automation Letters 5(2), pp. 2341–2348,
doi:10.1109/LRA.2020.2970634.

[5] Oliver Biggar, Mohammad Zamani & Iman Shames (2021): An Expressiveness Hierarchy of Behav-
ior Trees and Related Architectures. IEEE Robotics and Automation Letters 6(3), pp. 5397–5404,
doi:10.1109/lra.2021.3074337.

[6] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea
Micheli, Sergio Mover, Marco Roveri & Stefano Tonetta (2014): The nuXmv Symbolic Model Checker. In:
CAV, pp. 334–342. Available at http://dx.doi.org/10.1007/978-3-319-08867-9_22.

[7] Alessandro Cimatti, Chun Tian & Stefano Tonetta (2019): NuRV: A nuXmv Extension for Runtime Verification.
In Bernd Finkbeiner & Leonardo Mariani, editors: Runtime Verification, Springer International Publishing,
Cham, pp. 382–392, doi:10.1007/978-3-030-32079-9_23.

[8] Michele Colledanchise, Giuseppe Cicala, Daniele E. Domenichelli, Lorenzo Natale & Armando Tacchella
(2021): Formalizing the Execution Context of Behavior Trees for Runtime Verification of Deliberative Policies.
In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE Press, pp.
9841–9848, doi:10.1109/IROS51168.2021.9636129.

[9] Michele Colledanchise & Petter Ögren (2014): How Behavior Trees modularize robustness and safety in hybrid
systems. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1482–1488,
doi:10.1109/IROS.2014.6942752.

https://www.behaviortree.dev/docs/tutorial-basics/tutorial_02_basic_ports
https://www.behaviortree.dev/docs/tutorial-basics/tutorial_02_basic_ports
https://doi.org/10.1109/RTAS.2009.20
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1109/LRA.2020.2970634
https://doi.org/10.1109/lra.2021.3074337
http://dx.doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-030-32079-9_23
https://doi.org/10.1109/IROS51168.2021.9636129
https://doi.org/10.1109/IROS.2014.6942752

16 Verification of BT with Monitors

[10] Michele Colledanchise & Petter Ögren (2016): How Behavior Trees generalize the Teleo-Reactive paradigm
and And-Or-Trees. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 424–429, doi:10.1109/IROS.2016.7759089.

[11] Michele Colledanchise & Petter Ögren (2017): How Behavior Trees Modularize Hybrid Control Systems
and Generalize Sequential Behavior Compositions, the Subsumption Architecture, and Decision Trees. IEEE
Transactions on Robotics 33(2), pp. 372–389, doi:10.1109/TRO.2016.2633567.

[12] Antoine El-Hokayem & Yliès Falcone (2018): Bringing Runtime Verification Home. In Christian Colombo
& Martin Leucker, editors: Runtime Verification, Springer International Publishing, Cham, pp. 222–240,
doi:10.1007/978-3-030-03769-7_13.

[13] EpicGames (2021): Behavior tree overview. Available at https://docs.unrealengine.com/4.27/en-US/Interactiv
eExperiences/\ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/.

[14] Angelo Ferrando, Rafael C. Cardoso, Michael Fisher, Davide Ancona, Luca Franceschini & Viviana Mascardi
(2020): ROSMonitoring: A Runtime Verification Framework for ROS. In Abdelkhalick Mohammad, Xin Dong
& Matteo Russo, editors: Towards Autonomous Robotic Systems, Springer International Publishing, Cham,
pp. 387–399, doi:10.1007/978-3-030-63486-5_40.

[15] Angelo Ferrando & Vadim Malvone (2022): Towards the Combination of Model Checking and Runtime
Verification on Multi-agent Systems. In Frank Dignum, Philippe Mathieu, Juan Manuel Corchado & Fer-
nando De La Prieta, editors: Advances in Practical Applications of Agents, Multi-Agent Systems, and
Complex Systems Simulation. The PAAMS Collection, Springer International Publishing, Cham, pp. 140–152,
doi:10.1007/978-3-031-18192-4_12.

[16] Paul Gastin & Denis Oddoux (2001): Fast LTL to Büchi Automata Translation. In Gérard Berry, Hubert
Comon & Alain Finkel, editors: Computer Aided Verification, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 53–65, doi:10.1007/3-540-44585-4_6.

[17] Felipe Gorostiaga & César Sánchez (2021): HLola: a Very Functional Tool for Extensible Stream Runtime
Verification. In Jan Friso Groote & Kim Guldstrand Larsen, editors: Tools and Algorithms for the Construction
and Analysis of Systems, Springer International Publishing, Cham, pp. 349–356, doi:10.1007/978-3-030-
72013-1_18.

[18] Zhaoyuan Gu, Nathan Boyd & Ye Zhao (2022): Reactive Locomotion Decision-Making and Robust Motion
Planning for Real-Time Perturbation Recovery. In: 2022 International Conference on Robotics and Automation
(ICRA), pp. 1896–1902, doi:10.1109/ICRA46639.2022.9812068.

[19] Thomas Henn, Marcus Völker, Stefan Kowalewski, Minh Trinh, Oliver Petrovic & Christian Brecher (2022):
Verification of Behavior Trees using Linear Constrained Horn Clauses. In Jan Friso Groote & Marieke
Huisman, editors: Formal Methods for Industrial Critical Systems, Springer International Publishing, Cham,
pp. 211–225, doi:10.1007/978-3-031-15008-1_14.

[20] G.J. Holzmann (1997): The model checker SPIN. IEEE Transactions on Software Engineering 23(5), pp.
279–295, doi:10.1109/32.588521.

[21] Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter Ögren & Christian Smith (2022): A survey of Behavior
Trees in robotics and AI. Robotics and Autonomous Systems 154, p. 104096, doi:10.1016/j.robot.2022.104096.

[22] Alejandro Marzinotto, Michele Colledanchise, Christian Smith & Petter Ögren (2014): Towards a unified
behavior trees framework for robot control. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5420–5427, doi:10.1109/ICRA.2014.6907656.

[23] Huang Peishan, Hong Weijiang, Chen Zhenbang & Wang Ji: MoVe4BT: Modeling & Verification For BT.
Available at https://move4bt.github.io/. Accessed: 2023-12-14.

[24] Ivan Perez, Frank Dedden & Alwyn Goodloe (2020): Copilot 3. Technical Report Technical Report NASA/TM-
2020-220587, NASA.

[25] Ivan Perez, Anastasia Mavridou, Tom Pressburger, Alwyn Goodloe & Dimitra Giannakopoulou (2022):
Automated Translation of Natural Language Requirements to Runtime Monitors. In Dana Fisman & Grigore

https://doi.org/10.1109/IROS.2016.7759089
https://doi.org/10.1109/TRO.2016.2633567
https://doi.org/10.1007/978-3-030-03769-7_13
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/\ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/\ArtificialIntelligence/BehaviorTrees/BehaviorTreesOverview/
https://doi.org/10.1007/978-3-030-63486-5_40
https://doi.org/10.1007/978-3-031-18192-4_12
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/978-3-030-72013-1_18
https://doi.org/10.1007/978-3-030-72013-1_18
https://doi.org/10.1109/ICRA46639.2022.9812068
https://doi.org/10.1007/978-3-031-15008-1_14
https://doi.org/10.1109/32.588521
https://doi.org/10.1016/j.robot.2022.104096
https://doi.org/10.1109/ICRA.2014.6907656
https://move4bt.github.io/

S. Serbinowska, N. Potteiger, A. Tumlin, T. Johnson 17

Rosu, editors: Tools and Algorithms for the Construction and Analysis of Systems, Springer International
Publishing, Cham, pp. 387–395, doi:10.1007/978-3-030-99524-9_21.

[26] Fangbo Qin, De Xu, Blake Hannaford & Tiantian Hao (2023): Object-Agnostic Vision Measurement Frame-
work Based on One-Shot Learning and Behavior Tree. IEEE Transactions on Cybernetics 53(8), pp. 5202–5215,
doi:10.1109/TCYB.2022.3181054.

[27] Serena S. Serbinowska & Taylor T. Johnson (2022): BehaVerify: Verifying Temporal Logic Specifications For
Behavior Trees. In: Software Engineering and Formal Methods: 20th International Conference, SEFM 2022,
Berlin, Germany, September 26-30, 2022, Proceedings, Springer-Verlag, Berlin, Heidelberg, pp. 307–323,
doi:10.1007/978-3-031-17108-6_19.

[28] D. Seto, B. Krogh, L. Sha & A. Chutinan (1998): The Simplex architecture for safe online control system
upgrades. In: Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 6,
pp. 3504–3508 vol.6, doi:10.1109/ACC.1998.703255.

[29] D. Seto & L. Sha (1999): A Case Study on Analytical Analysis of the Inverted Pendulum Real-Time Control
System. Technical Report, DTIC and NTIS. 10.21236/ADA373286.

[30] Shital Shah, Debadeepta Dey, Chris Lovett & Ashish Kapoor (2018): AirSim: High-Fidelity Visual and
Physical Simulation for Autonomous Vehicles. In Marco Hutter & Roland Siegwart, editors: Field and Service
Robotics, Springer International Publishing, Cham, pp. 621–635, doi:10.1007/978-3-319-67361-5_40.

[31] Christopher I. Sprague & Petter Ögren (2022): Continuous-Time Behavior Trees as Discontinuous Dynamical
Systems. IEEE Control Systems Letters 6, pp. 1891–1896, doi:10.1109/LCSYS.2021.3134453.

[32] Daniel Stonier: PyTrees Module API. Available at https://py-trees.readthedocs.io/en/devel/modules.html.
Accessed: 2023-12-14.

[33] Alexander Will, Aidan Collins, Robert Grizzard, Smitha Gautham, Patrick Martin, Evan Dill & Carl Elks
(2023): An Integrated Runtime Verification and Simulation Testbed for UAM Hazard Assessment. In: 2023
53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental
Volume (DSN-S), pp. 42–48, doi:10.1109/DSN-S58398.2023.00023.

[34] Sebastián Zudaire, Felipe Gorostiaga, César Sánchez, Gerardo Schneider & Sebastián Uchitel
(2021): Assumption Monitoring Using Runtime Verification for UAV Temporal Task Plan Execu-
tions. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 6824–6830,
doi:10.1109/ICRA48506.2021.9561671.

[35] Petter Ögren (2020): Convergence Analysis of Hybrid Control Systems in the Form of Backward Chained
Behavior Trees. IEEE Robotics and Automation Letters 5(4), pp. 6073–6080, doi:10.1109/LRA.2020.3010747.

[36] Petter Ögren & Christopher I. Sprague (2022): Behavior Trees in Robot Control Systems. Annual Review of
Control, Robotics, and Autonomous Systems 5(Volume 5, 2022), pp. 81–107, doi:10.1146/annurev-control-
042920-095314.

https://doi.org/10.1007/978-3-030-99524-9_21
https://doi.org/10.1109/TCYB.2022.3181054
https://doi.org/10.1007/978-3-031-17108-6_19
https://doi.org/10.1109/ACC.1998.703255
https://doi.org/10.1007/978-3-319-67361-5_40
https://doi.org/10.1109/LCSYS.2021.3134453
https://py-trees.readthedocs.io/en/devel/modules.html
https://doi.org/10.1109/DSN-S58398.2023.00023
https://doi.org/10.1109/ICRA48506.2021.9561671
https://doi.org/10.1109/LRA.2020.3010747
https://doi.org/10.1146/annurev-control-042920-095314
https://doi.org/10.1146/annurev-control-042920-095314

	Introduction
	Introduction
	Related Work
	Related Work
	Preliminaries
	Preliminaries
	Linear Temporal Logic
	Linear Temporal Logic
	Buchi Automata
	Buchi Automata
	Behavior Tree Overview
	Behavior Tree Overview
	Leaf Nodes
	Decorator Nodes
	Composite Nodes

	Formal Definition of Behavior Trees
	Formal Definition of Behavior Trees

	Problem Statement and Methodology
	Problem Statement and Methodology
	Formal Definition of Behavior Trees with Monitors
	Formal Definition of Behavior Trees with Monitors
	Problem Statement
	Problem Statement
	BehaVerify
	BehaVerify
	Monitors

	Generating Implementations
	Generating Implementations
	Command Creation
	Monitor

	nuXmv Model Generation
	nuXmv Model Generation

	Monitor Comparison
	Monitor Comparison
	Scenarios
	Scenarios
	Motivation
	Motivation
	Results
	Results
	Analysis
	Analysis
	Timing
	File Size
	Correctness

	NuRV
	NuRV

	Design Time Verification
	Design Time Verification
	Conclusions and Future Work
	Conclusions and Future Work

