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ABSTRACT

We present an ab initio method for computing vibro-polariton and phonon-polariton spectra of molecules and solids coupled to the photon
modes of optical cavities. We demonstrate that if interactions of cavity photon modes with both nuclear and electronic degrees of freedom are
treated on the level of the cavity Born-Oppenheimer approximation, spectra can be expressed in terms of the matter response to electric fields
and nuclear displacements, which are readily available in standard density functional perturbation theory implementations. In this framework,
results over a range of cavity parameters can be obtained without the need for additional electronic structure calculations, enabling efficient
calculations on a wide range of parameters. Furthermore, this approach enables results to be more readily interpreted in terms of the more
familiar cavity-independent molecular electric field response properties, such as polarizability and Born effective charges, which enter into
the vibro-polariton calculation. Using corresponding electric field response properties of bulk insulating systems, we are also able to obtain
the T point phonon-polariton spectra of two dimensional (2D) insulators. Results for a selection of cavity-coupled molecular and 2D crystal
systems are presented to demonstrate the method.
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. INTRODUCTION

The coupling of electromagnetic field excitations of optical
cavities with matter has gained recent interest as a means of
manipulating material and molecular properties and processes.””
The modification of these excitations via optical cavities has been
reported experimentally for various characteristics, such as chemi-
cal reactivity,” optical spectra,”” relaxation dynamics and ultrafast
thermal modification,” intermolecular vibrational energy redistri-
bution,” enhancement of ferromagnetism,® and thermal control of
metal-to-insulator transition.”

At the same time, these experimental developments have
sparked theoretical developments of first-principles methods.'’ "’
In the vibrational strong coupling (VSC) regime, where a pho-
tonic (cavity) mode becomes resonant with a vibrational/phonon
mode, creating vibro-polaritonic states, the so-called cavity
Born-Oppenheimer approximation (CBOA)'“"” has been applied
successfully. The CBOA approach treats low-frequency cavity
modes, such as infrared modes, and nuclei as relatively slow-moving
components, in comparison with the fast-moving electrons.’” Thus,
CBOA treats photons and nuclei equally, allowing for the calcula-
tion of adiabatic potential energy surfaces (PESs). For the vibrational
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strong coupling regime, the CBOA has been applied to describe the
chemical reactivityHHS and the spectra of vibro-polariton states,"”
among others.”’ '

In this article, we present a methodology for obtaining the mod-
ification of vibrational modes in molecular systems and insulating
2D solids by coupling matter to low-frequency photon modes in
optical cavities. Results of this method are shown to be equivalent
to the linear response framework based on the CBOA'” but use only
the first-order electronic response to electric field and nuclei dis-
placement perturbations as an input. Using a mapping of the CBOA
energy functional to a finite field enthalpy, we can also utilize exist-
ing standard ab initio finite electric field response methods based on
the modern theory of polarization’”" to calculate the cavity mod-
ified phonon spectra in solids. We show that this formalism can
be generalized to multiple photon modes. Therefore, this mapping
allows us to have a clear understanding of the relation between PES
inside and outside the cavity. In addition, this method yields an
improvement in computational efficiency of the techniques previ-
ously developed'” for the linear response theory of vibro-polaritons
in insulating materials. We present several examples for modulation
of phonons in hexagonal boron nitride (h-BN), HfS;, as a transi-
tion metal dichalcogenide (TMD), and CO; and Fe(CO)s as two
molecular examples to demonstrate the method.

1. FORMALISM
A. Review of mean field CBOA

Within the dipole approximation, light is assumed to cou-
ple to matter through the dipole moment y of the matter sys-
tem, which has both nuclear and electronic contributions, i.e.,
p=u,+ 2 ZIRy. This is a reasonable assumption for charge-neutral,
nonmagnetic systems coupled to photon fields that are approxi-
mately spatially uniform across the matter charge distribution. The
minimal coupling Hamiltonian within the length gauge and dlpole
approx1mat10n is given by H= T + Tnuc + Tpht + VCOulOmb + lepole

with'*"?
N 1 N N
Vdipole = EZ (waQa - A(x 'M)za (1)

where g, corresponds to the local displacement field of photon mode
o with parameters w, and A4 characterizing the photon mode of
the empty cavity (which is in general dependent on the mirrors
and geometry) with w, representing the photon mode frequency,
Aq being a vector with direction indicating the mode photon mode
polarization, and magnitude 1nd1cat1ng the amplitude of photon
field oscillations at the matter position.”

Inthe CBOA, """ g are treated as “slow variables” along with
nuclei coordinates R;. An effective potential for these slow variables
is then constructed from the ground state energies of the electronic
Hamiltonian H,(R,q) = Te + Vcoutomb (R) + Vipole (R, q) solved at
static coordinates (R, q) yielding the system of equations,

H.(R,q)ly(R,q)) = URRq)|y(R,q)), )

(Touc + Tone + U(R,q))|O™P™) = Ej@™ M), 3)
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where U(R, q) corresponds to the solution of Eq. (2) with the lowest
energy U(R, q) occurring at an electronic ground state yy(R,q).”

In what follows, we will treat the electronic dipole squared
term [dipole-self energy (DSE)] in Vgipole [Eq. (1)] with a mean-field
approximation, where only leading order terms in A - j1 — (Ao - 1)
are retained; the dipole squared term may be approximated as

(- )" %20 (1)) Qo 1) = (Aa - (1)), 4)

where (- - -) is the expectation value evaluated for the electronic state
at fixed (R, q). To make the function dependence more explicit, a
dipole expectation value (/1) will be written as a function in terms of
the nuclei coordinate and electronic state as u(y, R). Then, U(R, q)
is found via a self-consistent solution to Eq. (2), where H. is replaced
with

zMF

MF(I//; R, q) = ’fe + VCoulomb(R) + Z %(w“q“)z
~ (@aga = Ao - (¥, R)) (Aa - 1)
1
- uw R )

This equation must be solved self-consistently so that y used to
construct the Hamiltonian is equal to the resulting ground state
Yu. Self-consistent electronic solutions can be found by extending
existing Kohn-Sham density functional theory (DFT) to incorporate
these terms arising from Vdipole with existing functionals.”'"*

We can consider a standard Kohn-Sham DFT functional e,
which takes some electronic variables ¢ along with nuclei coordi-
nates R and yields some energy, which is taken as an approximation
of the expectation value of the first two terms in Eq. (5),

E(W:R) N (Te + VCoulomb(R)>l//> (6)

which is minimized for fixed R at / so that one can consider a ground
state energy as a function of R,

&(R) = €(:R) = mine(ys ). @)

Then, the inclusion of Vdipole terms at a mean-field level corresponds
to working with a new functional,

UpiRa) =e(6R) + 1Y (uda = e k(BB (8)

which is minimized for fixed R, q at Yy so that one can consider a
ground state energy as a function of R, g,

U(R.q) = U(yuiR.q) = min U(y:R,q). ©)

The mean field CBOA approach reviewed in this section makes
use of several approximations. The dipole approximation neglects
spatial changes in the photon mode amplitude across the matter
and should be valid for larger photon wavelengths with appropriate
cavity matter geometries. The CBOA relies on electronic excitations
being higher energy than both nuclei displacements (e.g., vibrations)
and the relevant photon modes and should be valid for systems
with an electronic gap (e.g., molecules/insulators) in cavities where
the relevant photon modes have frequencies much smaller than the
gap. The self-consistent mean field approach for both the dipole
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squared term and the usual energy (€) via standard DFT function-
als is expected to be reasonable for systems not known to exhibit a
strongly correlated behavior.

B. Effective electric fields

In this work, we develop an alternative, but equivalent proce-
dure where cavity properties can be obtained using DFT calculations
with only finite electric field terms. For a given y, Eq. (5) has only one
electronic operator from V gipole and it is linear in . This is much like
a system in a static and uniform electric field. At a self-consistent
solution yy, it is as if there is an effective electric field coupling
linearly with the dipole operator given by E = Y, Aa Ea, Where

o :waQa_Aa'[ZU(R>q) (10)

and fiv(R,q) = u(Yu; R, q). Since Yy is a fixed point in a procedure
for finding self-consistent solutions to Eq. (5), the terms correspond-
ing to expectation values act as constants. So long as there is not a
lower energy state for the same effective electric field (e.g., as can
occur in ferroelectric materials in regions where 9*U/9q” < 0), then
the resulting electronic ground state yy will also be a fixed point of
a procedure self-consistently minimizing the enthalpy functional,

F(yR €) = e(ysR) ~ E(€) - u(yRy). (1)

This functional is minimized for fixed R, £ at ¥ » so that one can
consider a ground state enthalpy as a function of R, &,

F(R, &) = F(¥Rq) = mui/n F(y;R, E). (12)

Self-consistent minimization of this functional is already imple-
mented in many DFT codes either as a linear external potential or
via a Berry phase formalism to treat insulating systems with periodic
boundary conditions.”®

The relation between Egs. (8) and (12) is quite similar to the
relation between the static displacement field and static electric field
functionals identified in Ref. 31, which was presented in the context
of bulk dielectrics. Analogously to that work, we can derive the rela-
tion between Egs. (8) and (11) in terms of the Legendre transform
(LT) of Eq. (8). We start by defining &, to be the conjugate variable
to the quantity Dy := waqa. Then, so long as Eq. (8) is convex with
respect to q,, the LT of U(y, R, d), which we label as F(y, R, &), is
then given by

?f:: U_Z Daga) (13)
where
ou
&= Dy (14)
0%
Dy = — ) 1
¢, (15)

of which Eq. (14) provides a systematic means of arriving at Eq. (10).
The LT of U written in terms of &, is then

FWR ) =e(BR) ~ 3 Eaka-ir (1 R) - %Z £ (16

ARTICLE pubs.aip.org/aipl/jcp

This function differs from F only by the term —%Za &2, which is
constant for fixed &, and thus, minimizing F at fixed £ with respect
to ¥ would yield the same y » as defined in Eq. (12).

In terms of differentials, we have

ou ou
dUu = a—wdw+ a—RdR+ &dD, (17)
and using Eq. (15),
_ 084, 98 an
dg = al//dl//+ aRdR DdE. (18)

Since § := U — ¥, Du &, we also have

d¥ =dU - EAdD - DdE (19)
so that
ou ou
="—dy+ ——dR- DdE 2
ag 8wd1//+ 8RdR dE (20)

Since Z—T‘ |re = ‘;—U |rp, the electronic state ¥, which minimizes
& (and F) at fixed R, &, will also minimize U at fixed R, D. At the
electronic ground state, g—g =0, so the force F; on the Ith nuclei is
given by

du dF

Fr=-"|,=-2L
""74r,'"" T T dr,

le. (21)

Thus, forces on nuclei computed as derivatives of F with respect to
Ry are equal to those obtained from the corresponding derivatives of
U. The effective force Fy on the photon mode variable g, is

du du
=- 7‘R = —wo &> (22)

where Eq. (14) was used to arrive at the last equality.

It can be advantageous to compute properties of light-matter
coupled systems by transforming results obtained via Eq. (11) rather
than using a direct implementation of Eq. (5). Not only is Eq. (11)
already integrated into many first-principles codes, but also cavity
parameters such as A, w, enter only in the transformation, imple-
mented as a computationally cost-effective post-processing step, so
that a range of such parameters can be obtained from an initial
set of first-principles calculations. However, while it is simple to
obtain the electric field parameters (R, q) from a known iy (R, q),
this function cannot be obtained directly from electric field calcula-
tions where one instead can only access i (R, £) =u(¥ R, E). It
is only when R, g, £ are such that Eq. (10) is satisfied that g z(R, £)
= pu(R q).

In general, finding the electric field parameters yielding the
same state as (R, q) requires solving the system of equations,

Ea(R.q) = Waa — Ao 'ﬂf(K 2 A 5ﬁ(R"1)) (23)
B

for each function &:(R,q). If such a relation is solved, it can then
be used to obtain fu(R,q), U(R,q), and other properties of the
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light-matter coupled system by post-processing results computed
for the matter at static electric fields.

Note that no additional approximations have been introduced.
When a unique solution for the &(R,q) functions can be found,
the Kohn-Sham wavefunctions (and thus charge densities), which
minimize F of Eq. (11) at R, &(R,q) also minimize U of Eq. (8)
at R, g. While no additional approximations have been made, there
are some limits to when the relations can be utilized. As mentioned,
the mapping only applies in regions where %;2]
at large &, Eq. (11) may seize to have local minima as discussed
in Ref. 26, although individual steps in a self-consistent procedure
minimizing U can run into the same issue. Near the ground state
R, q in an insulating system, neither of these issues arise so that low
order response properties can be found, provided that they can also
be mapped between the (&, R) <> (¢, R) change of variables.

> 0. Furthermore,

C. Linear response framework

While in general solving Eq. (23) is non-trivial, properties such
as the vibro-polariton spectra can be obtained using only linear
terms in fi #(R, &) so that Eq. (23) becomes a linear problem. In this
section, we show how vibro-polariton modes and IR spectra can be
obtained from standard adiabatic response terms, namely the force
constant matrix, Born effective charges, and clamped ion polariz-
ability. Near the ground state values of R and &£ (and thus near
R and g), the dipole expectation value can be expanded to linear
order,

fi=fo+ Y, Zi ARy +xE, (24)
I

- di
dR;

where Z; are Born effective charges (Zj

polarizability tensor (y;; = j}g: ).

) and y is the

Then, Eq. (23) becomes

Eu = Wal\qu —Aa- > ZF ARy = haix > Mg &g, (25)
T 7

Aatho

Wq

where Aga = g — . This linear system can then be solved for &,

goc = Z [(H + X)il]aﬁ(a)ﬁAqﬁ —/\l; . Z ZI*ARI), (26)
B I

where I,g = 0, is an identity matrix and X,g = Az XAp- Note that this
A« dependence in X means that the effective field strength is not
monotonic in the coupling strength. Electronic ground states found
by minimizing energy via Eq. (5) at small, fixed, changes in q from
the A — 0 ground state value are then identical to states found via
fixed electric field calculations with E = 3", A4 &4 using Eq. (11) with
Ex given by Eq. (26).

We next construct a second order expansion of the energy
U in both nuclei coordinates and electric field terms and then use
this linear relation [Eq. (26)] to perform a change of coordinates
from the ( &q, Ry) basis to the desired (g, Rr) basis. Note that while
we have defined the adiabatic combined light-matter energy U as

ARTICLE pubs.aip.org/aipl/jcp

one computed self-consistently at fixed (R}, q,,), we can nevertheless
use Eq. (10) to express this energy as

U(R, &) = e(¥R) + %Z £, (27)

We can obtain the (total) derivative of e with respect to &x by apply-
ing the variation Hellmann-Feynman theorem to the F functional,
which states that d F/dEx = 0 F |0 Ey; thus,

de(¥5iR) _ iy
d&, - zﬁ: gﬁ"ﬁ (XA“ + dgazy: SYA)' . (28)

We focus on regimes near zero electric field and only expand energy
to second order so that the second term may be dropped. At zero
electric field, derivatives with nuclei are unchanged from the usual

21 -
force constant matrix given by Cyy = #g&. Then, the energy U to
second order in R, £ variables is given by

U= U(Ro, qo) + %C{]AR[AR/ + %(504; + /\ﬂ)(/\a) Eu 55. (29)

Using Eq. (26), this can be transformed to finally obtain the
second order energy in the Ry, q, coordinates,

U= U(Ro,qo) + %AR[C}]AR} + %[w,,,Aqu - /\aZIARI]
x [(T+X) ™ ay[wyAgy — Ly Z7ARy]. (30)

Equation (30) represents a key result of this work, with the CBOA
energy expressed to second order in nuclei displacements ARy and
cavity photon displacements g, using quantities involving only the
systems’ response to nuclei displacements and static electric fields.

As in Ref. 19, we can obtain IR absorption amplitudes from
the normal mode eigenvectors and the derivative of the polarization
with respect to each degree of freedom. Note that these quantities
represent photon absorption into matter degrees of freedom through
changes in the dipole moment both via displacements of nuclei and
via purely electronic changes obtained using the adiabatic electronic
polarizability (y). This is not to be confused with the macroscopic
absorption by the entire cavity-matter system, which includes the
absorption of incident photons into confined cavity modes.

To compute the IR response amplitude, we require an expres-
sion for i({g},{R}) to linear order in all g, and R;. Combining
Egs. (10) and (24),

f=fio+X| 20 Aa(@ada = Aa- i) | + 20 Z7AR: - (31)
with i = fio + A,
Ai+ Y (a)a- D =)D Aawal\qa + Y Z7 AR (32)

One can compute the 3 x 3 matrix A =1+ Y, yA«Al (where the
transpose indicates that this is an outer product), then

Aji = A*‘(XZ Aawalgo + Y z,-*ARi). (33)
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The IR amplitude for a given polariton mode is then proportional
to the magnitude of A given by Ref. 33 using the Ag, and AR;
eigendisplacements corresponding to that mode.

D. Extension to 2D periodic systems

To date, there have been only a handful of first-principles based
investigations of crystal systems coupled to cavities” * in part due
to several challenges not faced in molecules. One challenge is that
periodic systems coupled to arbitrary cavity photon modes necessi-
tate a beyond dipole approximation treatment. Another is that work-
ing with an electronic position operator (and consequently dipole
operator) requires some care in the context of periodic boundary
conditions. While we do not address the former issue beyond only
choosing to couple to modes that have a uniform field across the
entire crystal, the formulation of the problem in terms of electronic
responses to electric fields is useful in addressing the latter. Equa-
tion (30) relies only on the systems’ dielectric susceptibility, Born
effective charges, and force constant matrix; all these properties are
routinely computed for periodic solids. Some care must be taken
when adapting Eq. (30) to periodic solids as the dipole approxima-
tion is only compatible with certain cavity—-matter geometries and
the extrinsic quantities which enter Eq. (30) must be appropriately
replaced with corresponding intrinsic quantities.

For our treatment of extended solids to be valid in the context
of the dipole approximation, we require a cavity-matter geometry
where the cavity photon mode profile is approximately constant
over the matter (leading to a spatially uniform coupling strength).
We choose a geometry of a 2D system aligned parallel and placed
between two planar mirrors. Then, the confined zero momentum
photon modes couple uniformly to in-plane matter dipole fluctua-
tions. To handle periodic boundary conditions, we reformulate the
problem to one in which we deal with an energy per unit cell given
in terms of intrinsic properties of the system. Thus, we consider the
case where the entire cavity—matter system is periodic in two dimen-
sions with lattice vectors equal to those of the 2D unit cell of the
crystal. This sort of 2D periodic cavity + matter unit cell is illustrated
in Fig. 1(b). This geometry allows for a recovery of Bloch’s theorem,
which can be applied to both the matter and the cavity modes. Given
that we are still specialized to the dipole approximation, we then
treat only zero momentum (T point) excitations as beyond this point,

(6)) (b)

FIG. 1. Schematic illustrations of model matter + optical cavity systems. (a) A sin-
gle molecule coupled to cavity photon modes. (b) A mono-layer of a 2D material
arranged so that the cavity mirrors and the 2D plane of the system are parallel. The
parallelepiped passing from the upper mirror through the material to the lower mir-
ror represents the unit cell of the model used to perform calculations with periodic
boundary conditions.

ARTICLE pubs.aip.org/aipl/jcp

the cavity portion modes have spatially modulated coupling strength
over the crystal.

Then, the energy U can be considered an energy per unit cell if
the dipole p is taken to be a dipole per unit cell and the definitions of
photon displacement g, and coupling strength A, are also redefined
for this periodic context. This can be achieved with the following
substitutions for number of unit cells N: y — u/N, qa = qa//N,
and Ay = Ay\/N. One interpretation of this formulation is that the
zero momentum cavity eigenstates are normalized over the periodic
cavity-matter cell rather than over all space. Once these substitu-
tions are made and the parameters of electronic susceptibility tensor
x and Born effective charge Z* are given as derivatives of the mat-
ter dipole per unit cell rather than derivatives of the total dipole, the
application of Eq. (30) is essentially unchanged; the energy is now
interpreted as an energy per unit cell.

. METHODS

We compute the vibro-polariton spectra for two molecules
[CO; and Fe(CO)s] and the T'-point phonon-polariton spectra for
two 2D solids (BN and HIfS;) each with various cavity parameters
(wq and Aq) using the formalism developed in Sec. I1. For each sys-
tem, we focus on cavity parameters with a cavity photon mode in
resonance with the vibration mode with the largest magnitude mode
effective charge (Z, the change in dipole with respect to vibration
mode amplitude outside the cavity) where the photon mode polar-
ization (Ares) is aligned with Z7%. For each system, we compare the
|Ares| dependence of Rabi splitting and matter IR absorption with
and without the inclusion of the adiabatic electronic polarizability
(x) for both the cases of a single resonant cavity mode, as well as
with the inclusion of additional off-resonant cavity mode harmon-
ics. In the latter case, we choose the third relevant cavity harmonic
to be in resonance with the matter system to capture the increased
photon density of states at higher frequencies so that Ay = %Ares and
Wy = %a)m. For the two solid systems the cavity parameters are cho-
sen to be in resonance with in plane polarized IR active phonon
modes.

Matter vibrational modes, polarizabilities, and mode effective
charges are computed via density functional perturbation theory
(DFPT) using the Vienna Ab initio Simulation Package (VASP) den-
sity functional theory code’** with the PBE functional’ and an
energy cutoff of 520 eV. Calculations for molecular systems were
performed as T' point only calculations in a periodic box with at
least 17 A of vacuum between periodic images along each direction.
Calculations for 2D solid systems were performed on an 8 x 8 x 1

TABLE I. Selected matter properties. Units for the polarizability element y,, are given

in Bohr radii cubed (ag) for molecular systems and ag per unit cell (u.c.) for 2D crystal
systems.

System wres (meV)  x,, (a3) | Zik (\/ﬁ) Degenerate
CO, 312 26 0.75 False
Fe(CO)s 252 115 0.60 False
h-BN 165 37 (u.c.) 1.10 True
HIS, 18 316 (u.c). 0.98 True
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FIG. 2. Comparison of vibro-polariton splitting in CO, between explicit inclusion
of Viipole terms in Eq. (1) into the DFT energy functional'® (orange points) and
equivalent results obtained via electric field responses parameterizing the model
of Eq. (30) (blue curves).

Monkhorst-Pack grid*' where the third dimension (orthogonal to
the plane of the material) is treated as periodic with vacuum of
at least 23 A between periodic images. The most relevant matter
properties are presented in Table I.

The results in Fig. 2 were obtained using the Octopus
DFT code,” in order to provide a consistent comparison with
the direct implementation of the mean field CBOA functional.
There, both the effective field and direct CBOA methods used
linear response performed by finite differences, as described in
Ref. 19, where the results were further shown to be in agreement
with the time dependent QEDFT approach of Ref. 29. Detailed com-
putational parameters for this comparison (which are distinct from
all data presented outside Fig. 2) are the same as in Ref. 19.

IV. RESULTS AND DISCUSSION

We apply the developed methodology to two molecular sys-
tems [CO, and Fe(CO)s] and two 2D insulators (BN and HfS,).
Vibro-polariton spectra computed by this method are, as expected,
equivalent to those obtained via explicitly incorporating cavity para-
meters in the electronic structure calculation as was done in Refs. 19
and 29. A direct comparison between results obtained via the direct
inclusion of the mean field CBOA terms in the energy functional
and the effective field approach is shown in Fig. 2 for the case of a
CO; molecule coupled to a cavity mode. For each system, we present
vibro-polariton mode information for a cavity with a photon mode
in resonance with the phonon that has the largest IR absorption
amplitude. Results are presented for calculations where this resonant
cavity mode is the only photon mode included in the calculation
(labeled as Ny = 1, ares = 1) as well as for the case where seven cavity
harmonics are included with the third harmonic being the resonant
mode (labeled as N4 = 7, ares = 3). Each of these results is presented
with and without the inclusion of the adiabatic electronic interac-
tion; plots that artificially neglect this interaction are indicated with
the label “y — 0.”

Results for CO, with a cavity mode frequency wres # 300 meV /A
in resonant with the A, vibration mode are shown in Fig. 3. Out of
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FIG. 3. Computed vibro-polariton spectrum vs coupling strength (1) for CO,. The
thickness of curves is proportional to the IR absorption, while the color indicates
the sum of the absolute values of photon components of the mode eigenvector.
The right plots include the electronic polarizability term of Eqgs. (30) and (33), while
on the left, the value is set to zero. The spectra reveal that electronic polarizabil-
ity significantly influences the strong regime of light-matter coupling, as depicted.
Moreover, electronic polarizability can impact both the IR absorption and the pho-
ton components of the mode eigenvector. The lower plots indicate that calculations
are performed with a single photon mode, while in the upper two plots, seven pho-
ton mode harmonics are included with the third photon mode in resonance with an
IR active vibrational mode. In these upper two plots, coupling strength is scaled
linearly with mode frequency and the value on the horizontal axis indicates the
coupling strength of this third resonant mode.

the cases investigated in this work, this system has the closest resem-
blance to simple models involving a single matter mode “emitter”
as the relevant IR active vibration mode is well separated in energy
from other degree vibration modes. Indeed, Fig. 3(c) shows results
for only a single resonant photon mode with the adiabatic electronic
response (), which is artificially neglected, yielding the standard
Rabi splitting behavior with upper and lower polaritons (LPs) hav-
ing a similar photon character, IR response, and frequencies, which
change essentially linearly with coupling strength (1) with slopes of
opposite sign, but equal magnitude.

In contrast, when the electronic response is incorporated, even
the case of a single photon yields asymmetries between upper
and lower polaritons, which are seen in Fig. 3(d). This asymmet-
ric energy splitting arises largely from the A dependence of the
X term in Eq. (30). If we were to decouple the photon mode
from the nuclei vibration but not the electronic response, the pho-

tonic mode frequency would change as w(A) = w(0)/y/1+A%y.
Thus, as A increases, the photon mode is now partially in the
“dielectric medium” of the electronic state, leading to a change in
frequency, effectively detuning the photon and vibration modes.
This results in the nonlinear asymmetric splitting where the upper
mode polariton only increases slightly in frequency as in the large
A regime, its character resembles more of a pure vibration mode.
Changes in frequency due to hybridization between photon and
vibration modes are linear in the coupling strength, while changes

J. Chem. Phys. 161, 154104 (2024); doi: 10.1063/5.0230983
Published under an exclusive license by AIP Publishing

161, 154104-6

25:92:1.0 5202 Aen 22


https://pubs.aip.org/aip/jcp

The Journal

of Chemical Physics

resulting from electronic polarizability go as 1/7/1 + A%, so the lower
polariton decreases in frequency at small A similarly as in the Rabi
splitting case, while at large A, the changes are driven more by the
renormalization of the photon frequency by the electronic response.
In addition, the inclusion of the electronic response also leads to
an additional contribution to the IR amplitude; changes in pho-
ton g now lead to changes in matter dipole through the electronic
response. The upper polariton mode involves g and AR, which
favor oppositely oriented dipole moments; thus, the nuclear and
electronic changes in dipole moments are in opposite directions,
leading to a smaller overall IR amplitude in the upper polariton.
The lower polariton, however, involves photon and nuclear displace-
ments, which favor constructive changes in dipole and thus has a
larger peak. Furthermore, the electronic change in dipole due to
changes in g increases with coupling strength, leading to an increase
in the IR absorption of the lower polariton as A increases. While the
AR’ term can also yield asymmetry, this term is included in the
X — 0 results and is seen to have a much smaller effect compared
to the electronic response.

Figures 3(a) and 3(b) show the vibro-polariton spectra
when multiple cavity harmonics are included in the calculation.
Figure 3(a) shows results in the absence of the adiabatic electronic
response (x — 0) where there is some mixing of polariton states with
initially off-resonant cavity harmonics only at very strong coupling
strength. Otherwise, this picture is not so different than the single
cavity mode case in the region around the resonant vibration. How-
ever, when the electronic response is included [Fig. 3(b)], the spectra
are modified in several ways. Since the electronic system responds
(adiabatically) to photon displacements, even off-resonant modes
acquire an IR absorption strength and have their frequency renor-
malized as was the case with a single photon mode. Furthermore,
once the photon modes are dressed by the electronic response, they
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FIG. 4. Computed vibro-polariton spectrum vs coupling strength (1) for Fe(CO)s.
See the caption of Fig. 3 for details on interpreting the plot. The upper right plot
contains an inset with the vertical axis scaled to better see the A dependence in
the shown region. As observed here, the electronic polarizability can impact the
spectra, IR absorption, and the photon components of the mode eigenvector.
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FIG. 5. Computed vibro-polariton spectrum vs coupling strength (1) for h-BN as a
crystalline material. See the caption of Fig. 3 for details on the plot interpretation.

are no longer non-interacting even in the absence of interactions
with nuclear motion as can be seen in the coupling term between
Aq, and Aq,, in Eq. (30), which leads to some changes in frequency
even between modes that involve no nuclear motion.

These same effects can also be observed in the cases of
Fe(CO)s in Fig. 4, h-BN in Fig. 5, and HfS; in Fig. 6, although
the spectra of these systems contain a more complicated set of
features than CO,. Differences between how these effects mani-
fest in the vibro-polariton spectra of different systems can largely
be understood in terms of each system (free-space) vibrational
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FIG. 6. Computed vibro-polariton spectrum vs coupling strength (1) for HfS,.
Refer to the caption of Fig. 3 for details regarding the interpretation of the plot.
As shown here, the very sharp Rabi splitting of the lowest vibrational mode shown
in the plot is moderated in the strong coupling regime by including the electronic
polarizability in the calculation of the spectra.
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spectra, electric polarizability (x), and mode effective charges
Z*. These quantities, of which all can be computed with standard
(non-QED) density functional perturbation theory, are presented
in Table .

As can be seen in Fig. 4, Fe(CO)s exhibits a pronounced shift of
lower polaritons toward lower energies, as depicted in Fig. 4, when
the polarizability is incorporated into the vibro-polariton calcula-
tion. This is largely due to the relevant component of the polariz-
ability y being roughly four times the magnitude as in CO,. As in
CO3, the dipole moments of the system exhibit constructive changes
for AR and q in the lower polaritons, while in the upper polaritons
(UPs), these changes are destructive. Consequently, incorporating
the polarizability y leads to a reduction in the IR response in the
upper polaritons and an enhancement in the lower polaritons. Since
x is larger in Fe(CO)s, this effect sets in more rapidly with respect to
increases in A than in CO,. The frequency region near resonance in
Fe(CO)s also contains additional IR active modes, although in our
model setup, these are not polarized along the same direction as the
cavity photon modes do not couple.

Results for the T' point phonon-polariton spectra of h-BN
are presented in Fig. 5. Here, the resonant A = 0 IR active modes
are twofold degenerate due to the threefold rotational symmetry of
the crystal. As we only incorporated cavity photon modes with a sin-
gle linear polarization direction, the cavity Hamiltonian breaks this
symmetry so that at the resonant frequency, one vibrational mode
hybridizes with the cavity mode, leading to upper polaritons (UPs)
and lower polaritons (LPs), while another purely vibrational “dark”
remains at the A = 0 frequency. While the inclusion of electronic
response x is observed to lead to an increase in the photon char-
acter of the lower polariton with increases in A, in h-BN, this is seen
to occur even when artificially setting x to zero as can be seen from
the lighter color curve of the lower polariton in the bottom left panel
of Fig. 5. Aside from the effective detuning of the cavity mode, due
to electronic response, this change in mode character as the cou-
pling strength is increased can arise from mixing with other modes
of the system, but also from the change in effective vibrational energy
due to the ionic DSE. This latter effect becomes more prominent
(in terms of percent change of energy level) when the ratio of
ionic DSE to the A = 0 vibrational frequency is larger. This happens
for systems with larger Born effective charges and lower frequency
resonant IR vibrational modes.

Results for the I' point phonon-polariton spectra of HfS, are
presented in Fig. 6. The underlying physics of this system is sim-
ilar to that of h-BN, in that a threefold rotational symmetry leads
to a similar splitting of the degenerate phonons into UP, LP, and
dark modes. However, the differences in A = 0 spectraand ylead toa
qualitatively distinct spectra. Compared to the other systems studied
in this work, HfS; has relevant IR modes with frequencies an order
of magnitude lower and dielectric response is 3-10 times larger.
The lower initial frequency leads to a larger percentage increase in
the upper polariton mode frequency due to the ionic contribution
of the DSE, as here this energy is not as small compared to the
energy of the relevant vibration modes. In the lower-left panel, where
only a single photon mode is incorporated, this effect is seen to
lead to a positive curvature increase in upper polariton frequency
with A; however, the inclusion of electronic response y (right panels)
suppresses this feature by changing the A dependence of the AR;AR;
coefficient from ~ A% to A%/ (1 + yA*) as can be seen in Eq. (30).
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V. CONCLUSION

In conclusion, we have developed an ab initio approach for
computing the vibro-polaritonic spectra of cavity-coupled matter
systems from the matter response to nuclei displacements and
applied electric fields. This approach produces results equivalent to
previous work implementing a custom cavity Born-Oppenheimer
approximation (CBOA) energy functional' " into DFT. In contrast,
the method presented in this work uses commonly implemented
density-functional perturbation theory results to parameterize the
simple harmonic model in Eq. (30) where all cavity parameters
appear only in the model. This is achieved by making use of a map-
ping between the established finite electric field enthalpy functional
in DFT calculations”® and the CBOA energy functional. We illus-
trate the method with example calculations of the vibro-polaritonic
spectra of molecular systems CO, and Fe(CO)s and the 2D solids
h-BN and HfS,. While we use DFPT results to parameterize Eq. (30),
we note that the parameters of the matter subsystem (polarizability,
Born effective charges, and vibrational modes) can also be accessed
by (non-cavity) experiments so that experimental results may be
compared to those of the model for the interpretation of polaritonic
spectra. Unlike simple two-level models, Eq. (30) can capture asym-
metric and nonlinear splitting and other physics. Deviations from
the model may then indicate effects beyond the dipole, mean-field,
CBO approximations or effects of collective coupling. This relation
between electric field response and previous CBOA formulations
presented in this work has implications for the understanding of the
physics captured in the CBOA, practical implementation of CBOA
calculations, and the interpretation of experimental measurements.

ACKNOWLEDGMENTS

We acknowledge funding from NSF via Grant No. EES-
2112550 (NSF Phase I CREST Center IDEALS) and startup funding
from the City College of New York. All calculations were per-
formed using the computational facilities of the Flatiron Institute.
The Flatiron Institute is a division of the Simons Foundation.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

John Bonini: Conceptualization (equal); Data curation (lead);
Formal analysis (lead); Funding acquisition (equal); Investiga-
tion (lead); Methodology (lead); Project administration (equal);
Resources (equal); Software (lead); Supervision (equal); Validation
(lead); Visualization (lead); Writing - original draft (lead); Writing -
review & editing (lead). Iman Ahmadabadi: Formal analysis (sup-
porting); Investigation (supporting); Methodology (supporting);
Visualization (supporting); Writing - original draft (supporting);
Writing - review & editing (equal). Johannes Flick: Conceptual-
ization (equal); Funding acquisition (equal); Investigation (equal);
Methodology (equal); Project administration (equal); Resources
(equal); Supervision (lead); Writing - review & editing (equal).

J. Chem. Phys. 161, 154104 (2024); doi: 10.1063/5.0230983
Published under an exclusive license by AIP Publishing

161, 154104-8

25:92:1.0 5202 Aen 22


https://pubs.aip.org/aip/jcp

The Journal

of Chemical Physics

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES

T. W. Ebbesen, “Hybrid light-matter states in a molecular and material science
perspective,” Acc. Chem. Res. 49, 2403-2412 (2016).

2F. . Garcia-Vidal, C. Ciuti, and T. W. Ebbesen, “Manipulating matter by strong
coupling to vacuum fields,” Science 373, eabd0336 (2021).

3 A. Thomas, L. Lethuillier-Karl, K. Nagarajan, R. M. A. Vergauwe, ]. George, T.
Chervy, A. Shalabney, E. Devaux, C. Genet, J. Moran, and T. W. Ebbesen, “Tilting
a ground-state reactivity landscape by vibrational strong coupling,” Science 363,
615-619 (2019).

“A. Cygan, A. J. Fleisher, R. Ciurylo, K. A. Gillis, J. T. Hodges, and D. Lisak,
“Cavity buildup dispersion spectroscopy,” Commun. Phys. 4, 14 (2021).

5]. George, T. Chervy, A. Shalabney, E. Devaux, H. Hiura, C. Genet, and T. W.
Ebbesen, “Multiple Rabi splittings under ultrastrong vibrational coupling,” Phys.
Rev. Lett. 117, 153601 (2016).

6B. Liu, V. M. Menon, and M. Y. Sfeir, “Ultrafast thermal modification of strong
coupling in an organic microcavity,” APL Photonics 6, 016103 (2021).

7B. Xiang, R. F. Ribeiro, M. Du, L. Chen, Z. Yang, . Wang, J. Yuen-Zhou, and W.
Xiong, “Intermolecular vibrational energy transfer enabled by microcavity strong
light-matter coupling,” Science 368, 665-667 (2020).

8 A. Thomas, E. Devaux, K. Nagarajan, G. Rogez, M. Seidel, F. Richard, C. Genet,
M. Drillon, and T. W. Ebbesen, “Large enhancement of ferromagnetism under
a collective strong coupling of YBCO nanoparticles,” Nano Lett. 21, 4365-4370
(2021).

°G. Jarc, S. Y. Mathengattil, A. Montanaro, F. Giusti, E. M. Rigoni, R. Sergo,
F. Fassioli, S. Winnerl, S. Dal Zilio, D. Mihailovic, P. Prelovsek, M. Eckstein, and
D. Fausti, “Cavity-mediated thermal control of metal-to-insulator transition in
1T-TaS,,” Nature 622, 487-492 (2023).

197, Flick, N. Rivera, and P. Narang, “Strong light-matter coupling in quantum
chemistry and quantum photonics,” Nanophotonics 7, 1479-1501 (2018).

""M. Ruggenthaler, D. Sidler, and A. Rubio, “Understanding polaritonic chem-
istry from ab initio quantum electrodynamics,” Chem. Rev. 123, 11191-11229
(2023).

12], J. Foley 1V, J. F. McTague, and A. E. DePrince III, “Ab initio methods for
polariton chemistry,” Chem. Phys. Rev. 4, 041301 (2023).

'5A. Mandal, M. A. D. Taylor, B. M. Weight, E. R. Koessler, X. Li, and P.
Huo, “Theoretical advances in polariton chemistry and molecular cavity quantum
electrodynamics,” Chem. Rev. 123, 9786-9879 (2023).

], Flick, M. Ruggenthaler, H. Appel, and A. Rubio, “Atoms and molecules
in cavities, from weak to strong coupling in quantum-electrodynamics (QED)
chemistry,” Proc. Natl. Acad. Sci. U. S. A. 114, 3026-3034 (2017).

'5]. Flick, H. Appel, M. Ruggenthaler, and A. Rubio, “Cavity Born-Oppenheimer
approximation for correlated electron-nuclear-photon systems,” J. Chem. Theory
Comput. 13, 1616-1625 (2017).

16]. Galego, C. Climent, F. J. Garcia-Vidal, and J. Feist, “Cavity Casimir-Polder
forces and their effects in ground-state chemical reactivity,” Phys. Rev. X9, 021057
(2019).

'7]. A. Campos-Gonzalez-Angulo and J. Yuen-Zhou, “Polaritonic normal modes
in transition state theory,” ]. Chem. Phys. 152, 161101 (2020).

8X. Li, A. Mandal, and P. Huo, “Cavity frequency-dependent theory for
vibrational polariton chemistry,” Nat. Commun. 12, 1315 (2021).

19]. Bonini and J. Flick, “Ab initio linear-response approach to vibro-polaritons
in the cavity Born-Oppenheimer approximation,” . Chem. Theory Comput. 18,
2764-2773 (2022).

M. R. Fiechter and J. O. Richardson, “Understanding the cavity
Born-Oppenheimer approximation,” J. Chem. Phys. 160, 184107 (2024).

2YE. W. Fischer and P. Saalfrank, “Beyond cavity Born-Oppenheimer: On non-
adiabatic coupling and effective ground state Hamiltonians in vibro-polaritonic
chemistry,” ]. Chem. Theory Comput. 19, 7215-7229 (2023).

ARTICLE pubs.aip.org/aipl/jcp

227, Schnappinger and M. Kowalewski, “Ab initio vibro-polaritonic spectra
in strongly coupled cavity-molecule systems,” J. Chem. Theory Comput. 19,
9278-9289 (2023).
25T, Schnappinger, D. Sidler, M. Ruggenthaler, A. Rubio, and M. Kowalewski,
“Cavity Born-Oppenheimer Hartree-Fock ansatz: Light-matter properties of
strongly coupled molecular ensembles,” J. Phys. Chem. Lett. 14, 8024-8033
(2023).
24D Sidler, T. Schnappinger, A. Obzhirov, M. Ruggenthaler, M. Kowalewski, and
A. Rubio, “Unraveling a cavity-induced molecular polarization mechanism from
collective vibrational strong coupling,” |. Phys. Chem. Lett. 15, 5208-5214 (2024).
25R. D. King-Smith and D. Vanderbilt, “Theory of polarization of crystalline
solids,” Phys. Rev. B 47, 1651-1654 (1993).
261, Souza, J. Ihiguez, and D. Vanderbilt, “First-principles approach to insulators
in finite electric fields,” Phys. Rev. Lett. 89, 117602 (2002).
27C. Schifer, M. Ruggenthaler, V. Rokaj, and A. Rubio, “Relevance of
the quadratic diamagnetic and self-polarization terms in cavity quantum
electrodynamics,” ACS Photonics 7, 975-990 (2020).
281n general, the photon and nuclei kinetic energy operators can act on the elec-
tronic wave function through the parametric dependence, leading to an effective
vector potential on the slow variables as well as additional terms in the scalar
potential. Since we will be investigating dynamics near ground states of non-
magnetic systems with an electronic gap (Eg;), a gauge can be chosen to make
the vector potential term vanish. Contributions to the scalar potential are on the
2

order of (£ )%, which we neglect as we will be considering vibrational coupling
‘gap

systems with electronic gaps larger than the photon mode frequencies.

297, Flick and P. Narang, “Cavity-correlated electron-nuclear dynamics from first
principles,” Phys. Rev. Lett. 121, 113002 (2018).

30y may represent the charge density or a Kohn-Sham wavefunction; for our pur-
poses, these are just the electronic variables; particular functionals are minimized
with respect to and from which we can evaluate dipole moments.

3TM. Stengel, N. A. Spaldin, and D. Vanderbilt, “Electric displacement as the
fundamental variable in electronic-structure calculations,” Nat. Phys. 5, 304-308
(2009).

525, Latini, D. Shin, S. A. Sato, C. Schifer, U. De Giovannini, H. Hiibener,
and A. Rubio, “The ferroelectric photo ground state of SrTiO3: Cavity materials
engineering,” Proc. Natl. Acad. Sci. U. S. A. 118, €2105618118 (2021).

333, Latini, E. Ronca, U. De Giovannini, H. Hiibener, and A. Rubio, “Cavity
control of excitons in two-dimensional materials,” Nano Lett. 19, 3473-3479
(2019).

341.-T. Lu, D. Shin, H. Hiibener, U. De Giovannini, S. Latini, M. Ruggenthaler,
and A. Rubio, “Cavity engineered phonon-mediated superconductivity in MgB,
from first principles quantum electrodynamics,” arXiv 2404.08122 (2024).

35 Please note that commercial software is identified to specify procedures. Such
identification does not imply recommendation by National Institute of Standards
and Technology (NIST).

%6p. E. Blochl, “Projector augmented-wave method,” Phys. Rev. B 50,
17953-17979 (1994).

37G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector
augmented-wave method,” Phys. Rev. B 59, 1758-1775 (1999).

38G. Kresse and J. Furthmiiller, “Efficient iterative schemes for ab initio total-
energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169-11186
(1996).

39G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys.
Rev. B 47, 558-561 (1993).

“497. P, Perdew and A. Zunger, “Self-interaction correction to density-functional
approximations for many-electron systems,” Phys. Rev. B 23, 5048-5079 (1981).
“TH. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,”
Phys. Rev. B 13, 5188-5192 (1976).

“2N. Tancogne-Dejean, M. J. T. Oliveira, X. Andrade, H. Appel, C. H. Borca, G.
Le Breton, F. Buchholz, A. Castro, S. Corni, A. A. Correa, U. De Giovannini, A.
Delgado, F. G. Eich, J. Flick, G. Gil, A. Gomez, N. Helbig, H. Hiibener, R. Jestidt,
J. Jornet-Somoza, A. H. Larsen, I. V. Lebedeva, M. Liiders, M. A. L. Marques, S. T.
Ohlmann, S. Pipolo, M. Rampp, C. A. Rozzi, D. A. Strubbe, S. A. Sato, C. Schéfer,
I. Theophilou, A. Welden, and A. Rubio, “Octopus, a computational framework
for exploring light-driven phenomena and quantum dynamics in extended and
finite systems,” J. Chem. Phys. 152, 124119 (2020).

J. Chem. Phys. 161, 154104 (2024); doi: 10.1063/5.0230983
Published under an exclusive license by AIP Publishing

161, 154104-9

25'92:10 G20z Aen zg


https://pubs.aip.org/aip/jcp
https://doi.org/10.1021/acs.accounts.6b00295
https://doi.org/10.1126/science.abd0336
https://doi.org/10.1126/science.aau7742
https://doi.org/10.1038/s42005-021-00517-3
https://doi.org/10.1103/physrevlett.117.153601
https://doi.org/10.1103/physrevlett.117.153601
https://doi.org/10.1063/5.0031560
https://doi.org/10.1126/science.aba3544
https://doi.org/10.1021/acs.nanolett.1c00973
https://doi.org/10.1038/s41586-023-06596-2
https://doi.org/10.1515/nanoph-2018-0067
https://doi.org/10.1021/acs.chemrev.2c00788
https://doi.org/10.1063/5.0167243
https://doi.org/10.1021/acs.chemrev.2c00855
https://doi.org/10.1073/pnas.1615509114
https://doi.org/10.1021/acs.jctc.6b01126
https://doi.org/10.1021/acs.jctc.6b01126
https://doi.org/10.1103/physrevx.9.021057
https://doi.org/10.1063/5.0007547
https://doi.org/10.1038/s41467-021-21610-9
https://doi.org/10.1021/acs.jctc.1c01035
https://doi.org/10.1063/5.0197248
https://doi.org/10.1021/acs.jctc.3c00708
https://doi.org/10.1021/acs.jctc.3c01135
https://doi.org/10.1021/acs.jpclett.3c01842
https://doi.org/10.1021/acs.jpclett.4c00913
https://doi.org/10.1103/physrevb.47.1651
https://doi.org/10.1103/physrevlett.89.117602
https://doi.org/10.1021/acsphotonics.9b01649
https://doi.org/10.1103/physrevlett.121.113002
https://doi.org/10.1038/nphys1185
https://doi.org/10.1073/pnas.2105618118
https://doi.org/10.1021/acs.nanolett.9b00183
http://arxiv.org/abs/2404.08122
https://doi.org/10.1103/physrevb.50.17953
https://doi.org/10.1103/physrevb.59.1758
https://doi.org/10.1103/physrevb.54.11169
https://doi.org/10.1103/physrevb.47.558
https://doi.org/10.1103/physrevb.47.558
https://doi.org/10.1103/physrevb.23.5048
https://doi.org/10.1103/physrevb.13.5188
https://doi.org/10.1063/1.5142502

