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ABSTRACT

Thermostat settings in residential buildings
impact both energy bills and health. While residents can
only control indoor temperature through thermostats,
there is a lack of understanding about the impacts of
adjusting thermostat settings on energy consumption
and thermal comfort. This knowledge gap makes it
challenging to balance cost-effective and thermally
comfortable behaviors, which could ultimately
exacerbate disparities in dwelling conditions. This study
presents a framework to optimize adaptive temperature
setpoint schedules through parametric building energy
modeling and explore energy usage strategies that
reconcile energy reduction with thermal comfort for
residents. The study consists of 1) defining simulation
scenarios, 2) optimizing adaptive setpoint schedules in
building energy models, and 3) developing energy usage
strategies. By providing expected utility fees and thermal
sensation levels for each strategy, this study assists
residents in making informed decisions regarding
adaptive thermostat settings for balancing economic and
health challenges. This study promotes a sustainable and
equitable built environment by equipping all
populations, especially low-income households, with
adaptable and actionable approaches.
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1. INTRODUCTION

Extreme outdoor temperatures impact the
operations of indoor heating and cooling systems,
necessitating costly adaptive responses to these severe
weather conditions. According to the U.S. Energy
Information Administration (EIA), nearly one-third of U.S.

households face challenges paying their energy bills [1].
This financial strain often compromises their ability to
maintain safe and healthy indoor temperatures [2, 3].

Adjusting temperature setpoint schedules instead of
maintaining a fixed setpoint can reduce building energy
consumption. However, these changes can adversely
affect thermal comfort [4], especially for those facing
health vulnerabilities and energy poverty. Therefore, it is
essential to jointly analyze the impacts of temperature
setpoint profiles on both energy consumption and
thermal comfort and understand how setpoint
modifications influence these metrics [5].

Although previous studies [6, 7] and associated
energy assistance programs [8] recognize the
importance of addressing energy poverty in low-income
households, there is still a lack of understanding
regarding the impact of indoor temperature control on
energy bills and thermal comfort. Specifically, it remains
unclear how adjustments in temperature setpoint
schedules can affect energy costs compared to a fixed
setpoint in residential buildings and what trade-offs exist
between energy use and thermal comfort when
residents control indoor temperatures through
thermostats.

Therefore, this paper uses simulation-based and
data-driven methods to explore energy usage strategies,
considering energy consumption and occupants’ thermal
comfort. It aims to provide a comprehensive
understanding of the implications of setpoint
temperature adjustments on energy bills and thermal
comfort, ultimately contributing to more effective
energy management strategies for low-income
households.

2. LITERATURE REVIEW

2.1 Adaptive setpoint temperatures
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Several studies have shown that adjusting indoor
temperature setpoints offers significant potential for
energy savings [9, 10, 11, 12]. Since additional savings
can especially be achieved through optimal selections
[13], researchers are increasingly focused on
investigating how HVAC system operations can be
optimized under specific climate or occupancy
conditions [13, 14, 15]. Despite the progress in
commercial and office buildings, there is a noticeable gap
in research focusing on residential settings. There is also
a lack of goals and strategies for addressing energy
conservation and occupant comfort from the perspective
of energy poverty. Therefore, it is necessary to research
optimizing setpoint temperatures under various climate
conditions and occupancy information, considering
different scenarios for alleviating energy poverty.

2.2 Multi-objective optimization

A multi-objective optimization (MOO) problem
requires the simultaneous satisfaction of numerous
different objectives [16]. Due to the inherently
conflicting nature of these objective functions, an MOO
problem has no unique solution but rather a set of non-
dominated, Pareto optimal solutions [17]. Pareto
optimality can be defined as the state where resources
are allocated as efficiently as possible so that improving
one criterion will not worsen other criteria [18].

Genetic Algorithms (GAs) are a heuristic search and
optimization technique inspired by natural evolution.
GAs can facilitate the discovery of more efficient and
optimized solutions by starting from non-optimized
ones, combining them, and introducing random disorder
elements until converging into optimal solutions [19].
Building energy simulations coupled with GAs has proven
promising in identifying optimal solutions to complex
energy efficiency problems [20, 21, 22, 23]. Within Rhino
and Grasshopper, various plugins (e.g. Galapagos and
Octopus) can be utilized to perform simulation
optimization. However, using them, research has
primarily focused on optimizing building design elements
according to specific objectives. This study shifts the
focus from building form to optimizing time-specific
setpoints, bringing energy-efficient and thermally
comfortable behavior options directly to residents’
fingertips.

3. MATERIAL AND METHOD

This study is composed of 1) defining simulation
scenarios, 2) optimizing adaptive setpoint schedules in
building energy models, and 3) developing energy usage
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Figure 1. Research framework

strategies for energy poverty. Figure 1 shows the overall
research framework.

3.1 Defining simulation scenarios

Various simulation scenarios were established based
on energy bills and indoor thermal comfort. Energy bills
are measured by EUI (Energy Use Intensity, kWh/m?),
and indoor thermal comfort is assessed using PMV
(Predicted Mean Vote) values. EUI is a crucial measure,
reflecting the total energy consumed by the building,
normalized to its area, allowing for comparisons across
different building types and designs. In addition, PMV is
an index estimated based on indoor space conditions
such as air temperature, relative humidity, and air
velocity, predicting the mean value of votes of a group of
occupants on a seven-point thermal sensation scale.
Within the PMV index, +3 indicates too hot, while -3
indicates too cold. Setting different target EUl and PMV
values for each scenario allows residents to choose
between energy usage and comfort based on their
economic situations. The ultimate goal is to derive each
scenario’s optimal time-of-day heating and cooling
setpoints.

3.2 Optimizing adaptive setpoint schedules in
building energy models

A parametric energy model was developed to
optimize and simulate the energy performance of a
building under various adaptive setpoint schedules.
Using Rhino and Grasshopper, along with Honeybee and
Ladybug plugins, the model incorporates the EUI and
PMV metrics to assess energy efficiency and thermal
comfort [24].

A multi-objective optimization approach is adopted
using the Octopus tool in Grasshopper to address the
trade-offs between energy efficiency and thermal
comfort. Octopus is a plug-in for applying evolutionary
principles to parametric design and problem-solving [25].
It allows the search for many goals at once, producing a
range of optimized trade-off solutions between the
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Figure 2. Sample modeling

extremes of each goal. EUl and PMV values were linked
to the Octopus for multi-objective search and
optimization. The EUIl was determined by summing only
the annual heating and cooling loads. The PMV was
calculated by averaging the values for a year and then
converting them to an absolute value, as a PMV closer to
zero indicates better thermal comfort. Therefore, the
primary objective of using the Octopus plugin was to
minimize EUl and PMV values in this study.

We applied weighting factors to the objectives to
account for the different priorities in each scenario. For
example, in Scenario 1, a weight of 0.2 was applied to the
EUI and 0.8 to the PMV. The gene pool, generating
random values for setpoints by time according to the
objective, was also linked to the Octopus genome.

3.3 Developing energy usage strategies

Based on the simulation results, we proposed energy
usage strategies, including heating and cooling setpoint
schedules for each scenario. These schedules also
presented the expected utility costs and the thermal
sensation level. Following these strategies, residents can
adjust their thermostats according to their economic
situation, balancing energy consumption and thermal
comfort.

4. RESULTS

A sample simulation was conducted for total
scenarios under Cold-Humid climate conditions (Figure
2b). The single-family sample building model from
Honeybee GitHub was used for the simulation [26]
(Figure 2a). The population size and maximum
generation numbers in Octopus were set to 10 and 50,
respectively. The heating setpoint range was set
between 15 to 21°C, and the cooling setpoint range was
set between 23 to 28°C. Among the generated results,
the setpoint schedule that most closely approached the
two objectives simultaneously was selected.

As a result, the setpoint schedule was visualized as a
graph for winter (heating) and summer (cooling). To
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Figure 3. Energy usage strategies

address setpoint fluctuations throughout the day, we
divided the time into four periods—night and early
morning, morning, afternoon, and evening—and
calculated the average setpoints for each period.
Specifically, the periods were defined as follows: night
and early morning from 9:00 PM to 6:00 AM, morning
from 7:00 AM to 11:00 AM, afternoon from 12:00 PM to
4:00 PM, and evening from 5:00 PM to 8:00 PM.
Additionally, the expected utility costs and thermal
sensation levels were presented alongside the schedules
to make them easier for residents to understand (Figure



3). The building model used in this study has an area of
145 m?, and the US electricity rate of $0.178 (price per
kWh) was applied for the calculation [27].

5. DISCUSSION

We compared the EUl and PMV values between
adaptive and fixed setpoints under the same conditions
(Table 1). When the heating setpoint was fixed at 21°C
and the cooling setpoint at 23°C, the results showed an
EUI of 153.81 kWh/m? and an average PMV of 0.87 (the
corresponding predicted percentage of dissatisfied (PPD)
is 21%). Conversely, when the heating setpoint was fixed
at 15°C and the cooling setpoint at 28°C, the EUIl was
73.34 kWh/m?, with an average PMV of 1.73 (PPD is
63%). The simulation results for fixed setpoints achieve
only one objective: either a PMV close to 0 or a low EUI.
In contrast, the adaptive setpoints proposed in this study
demonstrate the ability to meet both objectives
simultaneously, as set for each scenario.

Table 1. Comparison of EUI and PMV values

Fixed Adaptive setpoints

setpoints SC1 SC2 SC3 SC4
EUI 153.81

73.34 113.09 114.21 114.75 115.53

PMV  0.87 (21%) 1.24 1.23 1.22 1.21
(PPD)  1.73(63%) (37%) (37%) (36%) (36%)

The optimized heating and cooling setpoints
demonstrated in the results can reduce energy
consumption and improve building energy management.
This leads to lower energy costs for residents, which is
crucial in areas with high energy prices or environmental
sensitivities. The schedules are also designed to maintain
a thermally comfortable indoor environment, enhancing
resident satisfaction in both heating and cooling
scenarios. This approach supports a healthy indoor
climate while conserving energy.

However, the EUI values calculated in this study are
relatively high, inevitably leading to very large utility fees
in the proposed strategy. This reflects a limitation
stemming from the lack of detailed HVAC system design.
The default EUI values calculated based on the fixed
setpoints presented earlier are also notably high.
Therefore, modeling an HVAC system that is finely tuned
to the specifics of residential buildings would make it
possible to achieve more appropriate EUI values and
utility fees. Additionally, a more detailed assessment of
thermal sensation is needed. Detailed descriptions of
thermal sensation could be provided, tailored to each
season or occupant schedule. For example, a description
for Strategy 1 might state, “Suitable for occupants who

are mostly active indoors in the morning or evening and
are away during the midday hours.”

The findings of this study can be integrated into
smart home automation systems, allowing optimized
setpoints to be automatically applied via smart
thermostats. This enables residents to achieve optimal
energy efficiency without manual adjustments and
provides a foundation for systems that monitor and
adjust energy use in real time. For this, additional
simulations across various climates and building profiles
are needed to refine the strategy further. By considering
occupant schedules, more personalized and occupant-
centered strategies can be developed. The parametric
nature of the model allows for easy modification and
expansion, facilitating the efficient development of
optimal solutions for different scenarios.

6. CONCLUSIONS

This study explores energy usage strategies for
residents by optimizing adaptive temperature setpoint
schedules through parametric building energy modeling
and a multi-objective optimization approach. By
providing expected utility costs and thermal sensation
levels for each strategy, the research aids residents in
making informed decisions that improve their indoor
environment while conserving energy. This study
contributes to a more sustainable and equitable built
environment by offering practical and adaptable
strategies for managing indoor temperatures across
diverse populations. Future research should focus on
implementing these strategies in real-world settings,
accounting for different climate conditions and building
types, to validate the modeling results.
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