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ABSTRACT 

 Thermostat settings in residential buildings 
impact both energy bills and health. While residents can 
only control indoor temperature through thermostats, 
there is a lack of understanding about the impacts of 
adjusting thermostat settings on energy consumption 
and thermal comfort. This knowledge gap makes it 
challenging to balance cost-effective and thermally 
comfortable behaviors, which could ultimately 
exacerbate disparities in dwelling conditions. This study 
presents a framework to optimize adaptive temperature 
setpoint schedules through parametric building energy 
modeling and explore energy usage strategies that 
reconcile energy reduction with thermal comfort for 
residents. The study consists of 1) defining simulation 
scenarios, 2) optimizing adaptive setpoint schedules in 
building energy models, and 3) developing energy usage 
strategies. By providing expected utility fees and thermal 
sensation levels for each strategy, this study assists 
residents in making informed decisions regarding 
adaptive thermostat settings for balancing economic and 
health challenges. This study promotes a sustainable and 
equitable built environment by equipping all 
populations, especially low-income households, with 
adaptable and actionable approaches. 
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1. INTRODUCTION 
Extreme outdoor temperatures impact the 

operations of indoor heating and cooling systems, 
necessitating costly adaptive responses to these severe 
weather conditions. According to the U.S. Energy 
Information Administration (EIA), nearly one-third of U.S. 
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households face challenges paying their energy bills [1]. 
This financial strain often compromises their ability to 
maintain safe and healthy indoor temperatures [2, 3].  

Adjusting temperature setpoint schedules instead of 
maintaining a fixed setpoint can reduce building energy 
consumption. However, these changes can adversely 
affect thermal comfort [4], especially for those facing 
health vulnerabilities and energy poverty. Therefore, it is 
essential to jointly analyze the impacts of temperature 
setpoint profiles on both energy consumption and 
thermal comfort and understand how setpoint 
modifications influence these metrics [5]. 

Although previous studies [6, 7] and associated 
energy assistance programs [8] recognize the 
importance of addressing energy poverty in low-income 
households, there is still a lack of understanding 
regarding the impact of indoor temperature control on 
energy bills and thermal comfort. Specifically, it remains 
unclear how adjustments in temperature setpoint 
schedules can affect energy costs compared to a fixed 
setpoint in residential buildings and what trade-offs exist 
between energy use and thermal comfort when 
residents control indoor temperatures through 
thermostats. 

Therefore, this paper uses simulation-based and 
data-driven methods to explore energy usage strategies, 
considering energy consumption and occupants’ thermal 
comfort. It aims to provide a comprehensive 
understanding of the implications of setpoint 
temperature adjustments on energy bills and thermal 
comfort, ultimately contributing to more effective 
energy management strategies for low-income 
households. 

2. LITERATURE REVIEW 

2.1 Adaptive setpoint temperatures 
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Several studies have shown that adjusting indoor 
temperature setpoints offers significant potential for 
energy savings [9, 10, 11, 12]. Since additional savings 
can especially be achieved through optimal selections 
[13], researchers are increasingly focused on 
investigating how HVAC system operations can be 
optimized under specific climate or occupancy 
conditions [13, 14, 15]. Despite the progress in 
commercial and office buildings, there is a noticeable gap 
in research focusing on residential settings. There is also 
a lack of goals and strategies for addressing energy 
conservation and occupant comfort from the perspective 
of energy poverty. Therefore, it is necessary to research 
optimizing setpoint temperatures under various climate 
conditions and occupancy information, considering 
different scenarios for alleviating energy poverty. 

2.2 Multi-objective optimization 

A multi-objective optimization (MOO) problem 
requires the simultaneous satisfaction of numerous 
different objectives [16]. Due to the inherently 
conflicting nature of these objective functions, an MOO 
problem has no unique solution but rather a set of non-
dominated, Pareto optimal solutions [17]. Pareto 
optimality can be defined as the state where resources 
are allocated as efficiently as possible so that improving 
one criterion will not worsen other criteria [18].  

Genetic Algorithms (GAs) are a heuristic search and 
optimization technique inspired by natural evolution. 
GAs can facilitate the discovery of more efficient and 
optimized solutions by starting from non-optimized 
ones, combining them, and introducing random disorder 
elements until converging into optimal solutions [19]. 
Building energy simulations coupled with GAs has proven 
promising in identifying optimal solutions to complex 
energy efficiency problems [20, 21, 22, 23]. Within Rhino 
and Grasshopper, various plugins (e.g. Galapagos and 
Octopus) can be utilized to perform simulation 
optimization. However, using them, research has 
primarily focused on optimizing building design elements 
according to specific objectives. This study shifts the 
focus from building form to optimizing time-specific 
setpoints, bringing energy-efficient and thermally 
comfortable behavior options directly to residents’ 
fingertips. 

3. MATERIAL AND METHOD 

This study is composed of 1) defining simulation 
scenarios, 2) optimizing adaptive setpoint schedules in 
building energy models, and 3) developing energy usage 

strategies for energy poverty. Figure 1 shows the overall 
research framework. 

3.1 Defining simulation scenarios  

Various simulation scenarios were established based 
on energy bills and indoor thermal comfort. Energy bills 
are measured by EUI (Energy Use Intensity, kWh/m²), 
and indoor thermal comfort is assessed using PMV 
(Predicted Mean Vote) values. EUI is a crucial measure, 
reflecting the total energy consumed by the building, 
normalized to its area, allowing for comparisons across 
different building types and designs. In addition, PMV is 
an index estimated based on indoor space conditions 
such as air temperature, relative humidity, and air 
velocity, predicting the mean value of votes of a group of 
occupants on a seven-point thermal sensation scale. 
Within the PMV index, +3 indicates too hot, while -3 
indicates too cold. Setting different target EUI and PMV 
values for each scenario allows residents to choose 
between energy usage and comfort based on their 
economic situations. The ultimate goal is to derive each 
scenario’s optimal time-of-day heating and cooling 
setpoints. 

3.2 Optimizing adaptive setpoint schedules in 
building energy models 

A parametric energy model was developed to 
optimize and simulate the energy performance of a 
building under various adaptive setpoint schedules. 
Using Rhino and Grasshopper, along with Honeybee and 
Ladybug plugins, the model incorporates the EUI and 
PMV metrics to assess energy efficiency and thermal 
comfort [24].  

A multi-objective optimization approach is adopted 
using the Octopus tool in Grasshopper to address the 
trade-offs between energy efficiency and thermal 
comfort. Octopus is a plug-in for applying evolutionary 
principles to parametric design and problem-solving [25]. 
It allows the search for many goals at once, producing a 
range of optimized trade-off solutions between the 

Figure 1. Research framework 
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extremes of each goal. EUI and PMV values were linked 
to the Octopus for multi-objective search and 
optimization. The EUI was determined by summing only 
the annual heating and cooling loads. The PMV was 
calculated by averaging the values for a year and then 
converting them to an absolute value, as a PMV closer to 
zero indicates better thermal comfort. Therefore, the 
primary objective of using the Octopus plugin was to 
minimize EUI and PMV values in this study.  

We applied weighting factors to the objectives to 
account for the different priorities in each scenario. For 
example, in Scenario 1, a weight of 0.2 was applied to the 
EUI and 0.8 to the PMV. The gene pool, generating 
random values for setpoints by time according to the 
objective, was also linked to the Octopus genome. 

3.3 Developing energy usage strategies 

Based on the simulation results, we proposed energy 
usage strategies, including heating and cooling setpoint 
schedules for each scenario. These schedules also 
presented the expected utility costs and the thermal 
sensation level. Following these strategies, residents can 
adjust their thermostats according to their economic 
situation, balancing energy consumption and thermal 
comfort. 

4. RESULTS 
A sample simulation was conducted for total 

scenarios under Cold-Humid climate conditions (Figure 
2b). The single-family sample building model from 
Honeybee GitHub was used for the simulation [26] 
(Figure 2a). The population size and maximum 
generation numbers in Octopus were set to 10 and 50, 
respectively. The heating setpoint range was set 
between 15 to 21°C, and the cooling setpoint range was 
set between 23 to 28°C.  Among the generated results, 
the setpoint schedule that most closely approached the 
two objectives simultaneously was selected. 

As a result, the setpoint schedule was visualized as a 
graph for winter (heating) and summer (cooling). To 

address setpoint fluctuations throughout the day, we 
divided the time into four periods—night and early 
morning, morning, afternoon, and evening—and 
calculated the average setpoints for each period. 
Specifically, the periods were defined as follows: night 
and early morning from 9:00 PM to 6:00 AM, morning 
from 7:00 AM to 11:00 AM, afternoon from 12:00 PM to 
4:00 PM, and evening from 5:00 PM to 8:00 PM. 
Additionally, the expected utility costs and thermal 
sensation levels were presented alongside the schedules 
to make them easier for residents to understand (Figure 

Figure 2. Sample modeling 

Figure 3. Energy usage strategies 
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3). The building model used in this study has an area of 
145 m², and the US electricity rate of $0.178 (price per 
kWh) was applied for the calculation [27]. 

5. DISCUSSION 
We compared the EUI and PMV values between 

adaptive and fixed setpoints under the same conditions 
(Table 1). When the heating setpoint was fixed at 21°C 
and the cooling setpoint at 23°C, the results showed an 
EUI of 153.81 kWh/m² and an average PMV of 0.87 (the 
corresponding predicted percentage of dissatisfied (PPD) 
is 21%). Conversely, when the heating setpoint was fixed 
at 15°C and the cooling setpoint at 28°C, the EUI was 
73.34 kWh/m², with an average PMV of 1.73 (PPD is 
63%). The simulation results for fixed setpoints achieve 
only one objective: either a PMV close to 0 or a low EUI. 
In contrast, the adaptive setpoints proposed in this study 
demonstrate the ability to meet both objectives 
simultaneously, as set for each scenario. 

 

Table 1. Comparison of EUI and PMV values 

 Fixed 
setpoints  

Adaptive setpoints 
SC1 SC2 SC3 SC4 

EUI  153.81 
73.34 113.09 114.21 114.75 115.53 

PMV 
(PPD) 

0.87 (21%) 
1.73 (63%) 

1.24 
(37%) 

1.23 
(37%) 

1.22 
(36%) 

1.21 
(36%) 

 
The optimized heating and cooling setpoints 

demonstrated in the results can reduce energy 
consumption and improve building energy management. 
This leads to lower energy costs for residents, which is 
crucial in areas with high energy prices or environmental 
sensitivities. The schedules are also designed to maintain 
a thermally comfortable indoor environment, enhancing 
resident satisfaction in both heating and cooling 
scenarios. This approach supports a healthy indoor 
climate while conserving energy.  

However, the EUI values calculated in this study are 
relatively high, inevitably leading to very large utility fees 
in the proposed strategy. This reflects a limitation 
stemming from the lack of detailed HVAC system design. 
The default EUI values calculated based on the fixed 
setpoints presented earlier are also notably high. 
Therefore, modeling an HVAC system that is finely tuned 
to the specifics of residential buildings would make it 
possible to achieve more appropriate EUI values and 
utility fees. Additionally, a more detailed assessment of 
thermal sensation is needed. Detailed descriptions of 
thermal sensation could be provided, tailored to each 
season or occupant schedule. For example, a description 
for Strategy 1 might state, “Suitable for occupants who 

are mostly active indoors in the morning or evening and 
are away during the midday hours.” 

The findings of this study can be integrated into 
smart home automation systems, allowing optimized 
setpoints to be automatically applied via smart 
thermostats. This enables residents to achieve optimal 
energy efficiency without manual adjustments and 
provides a foundation for systems that monitor and 
adjust energy use in real time. For this, additional 
simulations across various climates and building profiles 
are needed to refine the strategy further. By considering 
occupant schedules, more personalized and occupant-
centered strategies can be developed. The parametric 
nature of the model allows for easy modification and 
expansion, facilitating the efficient development of 
optimal solutions for different scenarios. 

6. CONCLUSIONS 
This study explores energy usage strategies for 

residents by optimizing adaptive temperature setpoint 
schedules through parametric building energy modeling 
and a multi-objective optimization approach. By 
providing expected utility costs and thermal sensation 
levels for each strategy, the research aids residents in 
making informed decisions that improve their indoor 
environment while conserving energy. This study 
contributes to a more sustainable and equitable built 
environment by offering practical and adaptable 
strategies for managing indoor temperatures across 
diverse populations. Future research should focus on 
implementing these strategies in real-world settings, 
accounting for different climate conditions and building 
types, to validate the modeling results. 
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