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Many-body quantum geometric dipole
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Collective excitations of many-body electron systems can carry internal structure, tied to the quantum
geometry of the Hilbert space in which they are embedded. This has been shown explicitly for particle-hole-like
excitations, which carry a “quantum geometric dipole” (QGD) that is essentially an electric dipole moment
associated with the state. We demonstrate in this work that this property can be formulated in a generic way,
which does not require wave functions expressed in terms of single particle-hole states. Our formulation exploits
the density matrix associated with a branch of excitations that evolves continuously with its momentum K, from
which one may extract single-particle states allowing a construction of the QGD. We demonstrate the formulation
using the single-mode approximation for excited states of two quantum Hall systems: the first for an integrally
filled Landau level, and the second for a fractional quantum Hall state at filling factor v = 1/m, with m an
odd integer. In both cases we obtain the same result for the QGD, which can be attributed to the translational
invariance assumed of the system. Our study demonstrates that the QGD is an intrinsic property of collective
modes which is valid beyond approximations one might make for their wave functions.

DOLI: 10.1103/PhysRevB.111.035158

I. INTRODUCTION

In recent years the relevance of quantum geometry to con-
densed matter physics has become increasingly appreciated.
Its realization via Berry phases of single-particle states can
be used to understand the quantized Hall effect [1-3], as
well as related states with quantized linear response [4-8].
More generally, quantum geometry makes its presence felt
in single-particle transport in a variety of electron systems
[9-13]. Nonlinear transport can also be understood within
quantum geometric frameworks [14—18]. There are also im-
portant impacts of the quantum geometry of single-particle
states on collective ground states, most prominently ones in-
volving superconductivity or superfluidity [19-36].

The quantum geometry of single-particle states can also
impact properties associated with collective modes in a sys-
tem. For example, for insulating bands with nontrivial Berry
curvature, the spectrum of exciton energies deviates from the
usual simple hydrogenic form [37,38]. In metallic systems, the
single-particle geometry impacts plasmon dynamics [39,40].
For such collective modes, however, quantum geometry im-
pacts the system in a more direct way. In particular, for
systems with translational symmetry, collective modes carry
a momentum quantum number, and the continuous evolution
of the excited states with this momentum label allows other
possibilities to characterize the geometry and topology of
the Hilbert space in which they are embedded [41,42]. For
example, excitons, bound states of a particle and hole, usu-
ally in a band structure, carry an intrinsic Berry curvature,
distinct from those of the single-particle bands hosting the
constituents [41,42].

The fact that collective modes host internal structure with-
out analog in single-particle states suggests that they may have
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unique quantum geometric properties. Recently, this has been
demonstrated for neutral excitations that can be described by
particle-hole pairs. Specifically, one finds an intrinsic dipole
moment that can be understood in terms of the collective mode
wave-function evolution with its momentum. This quantum
geometric dipole (QGD) is a natural property of excitons
[43,44], and a direct consequence for two-dimensional sys-
tems is that an applied electric field £ induces exciton drift
perpendicular to that field, analogous to the £xB drift one
expects for charged particles in a magnetic field B [43,45].
An analogous QGD may be present for two-dimensional plas-
mons, which can be described as particle-hole excitations
across a Fermi surface [46]. The QGD for these excitations
results in an asymmetry of scattering from circularly symmet-
ric scattering potentials that is present only when the QGD
is nonvanishing [47]. In quasi-one-dimensional systems, plas-
mons may also carry a transverse dipole moment which is
closely related to the corresponding two-dimensional QGD in
the large wire width limit [48]. Interestingly, such transverse
dipole moments can also appear in excitons of quasi-one-
dimensional insulators [49].

The two-body forms for wave functions of these types
of excitations are convenient, and in many cases accurate,
approximations to their true many-body state. Nevertheless, in
almost all cases exact wave functions will contain corrections
that involve states with more than just a single particle-hole
pair. Moreover, some systems, particularly highly correlated
ones, may possess excitations with well-defined momenta that
are not well described in terms of an effective two-body state.
This raises the question of whether the QGD is a well-defined
concept which can be applied to more general wave-function
forms. In what follows, we demonstrate that indeed it is. We
introduce a formalism allowing a computation of the quantum

©2025 American Physical Society
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FIG. 1. Basic steps followed to find the QGD for a band n of many-body states {®, x} with momenta K. One begins by computing a
K-dependent density matrix ok, whose single-particle eigenstates ¢; 4 are divided into two groups, hole hosting (%;) and particle hosting (p;).
As continuous functions of ¢, these are denoted as DM bands. Cell-periodic functions of each type are then constructed for each DM band j,
and from these one can define connections associated with holes A (K)] and with particle A% (K)]. Their discrete difference defines the
quantum geometric dipole D(K). Details of each step are discussed in the main text.

geometric dipole of a many-body state with momentum K of
generic form. Briefly, the formalism involves using the density
operator associated with the system state for each K to define
a set of single-particle states. These states may be divided into
two groups, one which we call particle hosting, and the other
hole hosting, with some flexibility in precisely how states are
assigned to each group. With these two sets of states defined,
one then defines connections A (K) and A (K) associated
with particles and holes, respectively, which are analogs of the
Berry connection for single-particle band states [50]. Their
discrete difference represents the quantum geometric dipole
D(K), and we will show this has the natural interpretation of
an internal dipole moment for the many-body state. Figure 1
summarizes the basic steps we use to define the quantum
geometric dipole.

To demonstrate the validity of the approach, we consider
two explicit examples, in each case computing the QGD of
an excitation mode above a quantum Hall state [3,51]. These
may be found in two-dimensional electron gas systems im-
mersed in a perpendicular magnetic field BZ. The first of
our examples is the low-lying magnetoexciton mode above
an integrally filled Landau level. In the strong field limit,
this is well described by states involving a single electron
in an otherwise empty Landau level, bound to a single hole
in an otherwise filled Landau level [52-54]. In this limit, a
mode of momentum 7K carries an intrinsic dipole moment
p = eK x 2¢%, where ¢ = \/fic/eB, with ¢ the speed of light
and e the charge of an electron [52—54]. This has been shown
to be consistent with the QGD of this neutral mode, for
which one finds D = K x 2¢2 [43]. Moreover, this value of
D turns out to be precisely what is needed for the exciton
equations of motion to be effectively Lorentz invariant [43].
For this study, we adopt a different form for the magnetoex-
citon wave functions, specifically one generated using the
single-mode approximation (SMA) [55-57]. In this case the

state is not restricted to a single pair of Landau levels, and
so is not limited to strong fields, but it does fall into the
paradigm of (a linear combination of) single particle-hole pair
states. We find that our many-body approach to the QGD
produces exactly the same result as expected in the strong field
case (D = K x 2£2), as should be expected since the effective
Lorentz invariance in this problem does not require a strong
magnetic field.

Our second example involves magnetoplasmon excitations
above a partially filled lowest Landau level in a strong mag-
netic field, with filling factor (defined as the ratio of electron
density to magnetic flux density in the electron gas) v = 1/m,
with m an odd integer. For m = 3 and 5 such systems are
well known to support the fractional quantum Hall effect
(FQHE) [3,51,58]. Their ground states are qualitatively well
described by Laughlin-Jastrow wave functions [3,51,59,60],
with charged excitations of +e/m. The states may be qual-
itatively understood in terms of composite fermion theory
[61], in which a singular gauge transformation attaches flux
quanta to electrons (yielding “composite fermions”), such
that at the mean-field level, the ratio of particle density to
magnetic flux density is an integer. The state may then be
understood in terms of integrally filled Landau levels of com-
posite fermions [61]. This suggests a connection between
the magnetoplasmons of the fractionally filled system and
the magnetoexcitons of the integrally filled one. With the re-
duced magnetic flux, the effective magnetic length £* satisfies
£*2 = me?. These two observations suggest some tension be-
tween the reduced charge of the quasiparticles relative to the
integer case, which presumably lowers the dipole moment of
a collective mode, and the smaller effective magnetic field,
which tends to raise it.

The resolution of this tension can be found by direct cal-
culation of the QGD, D. To do this we use approximate
wave functions for the magnetoplasmons, generated using the
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SMA [56,57]. The computation of D for these states is more
involved than in the integral case, but, as we show below, it
may be carried through without further approximation beyond
the wave functions themselves. The final result is remarkably
simple, and is in fact identical to the result for integrally filled
Landau levels. This shows that the two effects discussed above
essentially cancel against one another.

While this precise cancellation is at first surprising, it is
in fact necessary that it should happen. We show this by
demonstrating that any state with well-defined momentum K
which lies fully in the lowest Landau must have an electric
dipole moment perpendicular to that momentum, with magni-
tude eK ¢2, where £ is the magnetic length associated with the
physical magnetic field. Thus, our many-body approach to the
QGD produces a correct result for the FQHE example. This
suggests that our formulation indeed gives physically sensible
results for states that cannot be described within a simple sin-
gle particle-hole paradigm. More generally, we see an internal
structure associated with the state which can be understood
quantum geometrically, without a priori assumptions that its
wave function has a particular form.

This paper is organized as follows. In Sec. II, we explain
in detail our method for computing the QGD of a many-body
state of generic form. Section III is devoted to our example of
the magnetoexciton excitation above a filled Landau level. In
Sec. IV, we present our analysis of the QGD for a fractional
quantum Hall state at filling factor v = 1/m with m an odd
integer, using excited states generated by the single-mode
approximation. While the details of this turn out to be in-
volved, the final result is quite simple. We show why this
is the case in Sec. V. Section VI summarizes our study, and
discusses possible future directions for this work. Our paper
also has three Appendixes. Appendix A presents a study of a
possible offset term that appears when connecting the quan-
tum geometric dipole to the physical electric dipole moment.
We argue that this is essentially a constant term for low-
energy excitations, which in many interesting cases vanishes.
Appendix B presents some details of the QGD calculation for
the magnetoexciton excitation above a filled Landau level, and
Appendix C for the fractional quantum Hall magnetoplasmon.

II. MANY-BODY QUANTUM GEOMETRIC DIPOLE

Our formal development of the quantum geometric dipole
(QGD) assumes the Hamiltonian commutes with some set
of translation operators T, i = 1, ..., D, where D is the di-
mensionality of the system, a; are primitive lattice vectors,
and [T, T,,]=0.In this situation eigenstates of the Hamilto-
nian |®, g) may be labeled by a momentum K (we herein
set i = 1), for which T, |®, k) = ¢®¥|d, k). We assume
®,,(K) varies continuously with K, and the index n provides
any further quantum numbers needed to specify the state.
The states are normalized as (P, x| Py k') = (K — K')8,,.-
For simplicity, in this work we focus on Hamiltonians and
eigenstates of spinless fermions.

For fixed n, from these states we can form as set of density
matrices pg (r, ') = (&, x| (r)¥ (r')| P, k), where ¥ (r) is
an annihilation field operator. (Since we will always work
within a fixed n subspace in what follows, for ease of notation
we hereon suppress the index n. Thus, the many-body states

=2
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FIG. 2. Qualitative inverse occupations 1/ ;4 of single-particle
states diagonalizing the density matrix pg. (a) Expected form for
metal with a single occupied DM band. Discontinuity in ;4 in-
dicates a Fermi surface. (b) Expected form for an insulator with
multiple occupied DM bands. Note that DM bands with very low
occupation (small 1 ; 4) float above the frames of these figures.

will be denoted as |Pk.) The density matrices have eigenval-
ues and eigenfunctions

/ dr o) )pk(r.r') = A Fe ).

In writing this, we have noted that the translation operators T,
commute with pk, so that the eigenfunctions and eigenvalues
of the latter can be labeled by a wave vector q, which in gen-
eral must be contained within the Brillouin zone associated
with the primitive lattice vectors. The index j labels different
discrete eigenstates of pg with fixed q. The single-particle
eigenfunctions ¢;§) will be the important quantities in the
analysis we describe below. It is interesting to note that an
analogous strategy can be used to interrogate the quantum
geometry and topology of a many-body ground state, by con-
structing single-particle eigenstates of a Green’s function [62].
However, there is no simple relationship between the eigen-
states of this operator and those of the excited-state density
matrix at the center of our own analysis.

The eigenstates ¢(K) are single particle in nature, and their

associated eigenvalues A4 q) may be viewed as an effective

occupation: Z Z A(K) |<1>(K)(r)|2 precisely reproduces the
fermion densny of the state |Pk), pk(r, r). Figure 2 illus-
trates possible expected qualitative behaviors for A(Ifl) We
note that as a function of q, the eigenvalues A 4, and the asso-
ciated states |¢;., q)) are organized into bands, analogous to but
distinct from energy bands of a single-particle Hamiltonian.
Because of the distinction, we denote the bands of density
matrix eigenstates as DM bands.

It is interesting to note that these eigenvalues and eigen-
states allow us to write the density matrix completely and
exactly in terms of single-particle states, as if one is dealing
with a system of noninteracting fermions:

pr(r, ) =) ¢l Ao ).

jq

In this sense, if applied to the ground state rather than an
excited state, our procedure bears resemblance to what is done
in density-functional theory, where the electron density of an
interacting system is written completely in terms of single-
particle states [63]. In that case the states are either fully
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occupied or unoccupied, so that one models the system as if it
isina pure state, and one only reproduces the density. In our
procedure, one reproduces the full density matrix, but to do
so we need to allow partial occupations, so that the system is
modeled by a noninteracting mixed state. We note that if our
procedure is applied to the system ground state, in the limit
of vanishing interactions, all the occupation eigenvalues )t(o)
will be either 0 or 1, and the sets of occupied and unoccupled
single-particle states will be precisely the same as one expects
in a standard band structure.

The key to our formulation of the many-body QGD is a
division of the states {¢;E)} into two groups, one of which
we call “hole-hosting states,” and the other “particle-hosting
states.” Qualitatively, these can be understood as analogs of
filled and empty states in a band structure. They will allow us
to define positively and negatively charged excitations, which,
together, facilitate the construction of the QGD. In situations
where the state | k) is a Slater determinant, the natural choice
for the hole-hosting states would be those for which A% — 1,
while the particle-hosting states would be those for which
A(K) = 0. More generally, we will require that the division

should be carried out in such a way that gradients of {qb(K)}
with respect to K are well defined, and such that the total
number of hole-hosting states should be equal to the number
of fermions in the system. Beyond this, there is some freedom
in choosing which group a given q)j(fl) should be placed in, as
in principle this does not affect the final result for the QGD.
However, when approximations are introduced, some choices
will work better than others. Presumably, the best results will
be obtained by assigning states with the largest values of )t(;?
to the hole-hosting states.

To define the QGD in this setting, we construct second-
quantized K-dependent spinor states

K — }u(p)(l‘ K)) )
|M](I', )> = | (h)(l‘ K)) ( )
where )
WP K) = Y giame oK), @)
qep;
i K)) = 3¢5 e T e). ()
qeh;

In these expressions, ~ denotes a sum over particle-
qep
J

hosting states in DM band j, Z eh; denotes a sum over

hole-hosting states in DM band j, and c( q) annihilates a parti-

cle of momentum ¢ in DM band j. Note that the construction
of |u§p )(r,K)) gives it nonzero contributions from particles
residing within the manifold of particle-hosting states, so that
> tu (.”)(r' K)|u(.”)(r' K)) may be interpreted as a density of
particles at position r, while Z (u (h)(r K)|u(h)(r K)) is the
corresponding hole density. Havmg constructed these states,
we endow them with two further properties. The first is their
behavior under translations, which we define to be

LK) = Y B+ a)e KT, Koy,
qepj

Z ¢(K)*(r + a)eﬂK (r+a)T C(K)T|(DK)
qeh;

Ta|u (r:K)) =

In these equations, it should be noted that 7}, is a translation
operator acting on kets representing second-quantized many-
body states, shifting all the particle positions by a. Formally,
the factors just to the left of T, in the equations above are
complex numbers, specified by the real parameters r and K. 7,
does not by itself act on these. To fully translate |u(‘" M (r; K))
the parameter r must also, separately, be translated The op-
erator 7, as constructed specifically acts on this set of states,
carrying out both the parameter shift and the translation of the
many-body ket.

It is not difficult to show |u§.” ’h)(r; K)) is invariant under

T,,, where a; is a primitive lattice vector. This is important in
that it means we are putting vectors at different K into a single
vector space [i.e., Egs. (2) and (3) represent affine connections
for the states [64]], so that taking derivatives with respect to K
becomes meaningful. The second is an inner product, which
we define as

(ujxluy k) = /dr<uj(r;K)|Mj'(r;K/))~ “

The integration over r in this expression is over all of real
space.
The quantum geometric quantity of interest to us is

D) =73 [k 9] - (3 )

=AM (K) — AP (K). (5)

From its form, we see that D(K) is a measure of how the states
|u;(r; K)) change as one moves through the parameter space
K, and in this sense it is a quantum geometric quantity. Phys-
ically it is essentially an electric dipole moment associated
with the many-body state |®k), in units where the fermion
charge is taken as unity. To see this, define

_(R®) _ e e K0
W_;,K(l')) = "Q/f( ( )> =e | (h)( K)) ’
iK uj(r;
which is a spinor obeying Bloch’s theorem [3] constructed
from the cell-periodic functions |u(” h)) One then has

D(K) = Z / dr{r[(y R @Y R @) = (Y IROYR )]

— (Y k()]0 Vk ¥k (D) ], (6)
where o, is a Pauli matrix. This expression is well defined
provided NI((W — N1(<h) = 0, where

NI((p) — Z (( (P) (r)|,¢.(P) (I‘)>>,
J

W = Yl

J

RO[¥ ).

In particular, the first integral on the right-hand side of Eq. (6)
is independent of the choice of origin of r, and the second
term, which can be rewritten as

dim Vi[(N = Ng)8(K — K],
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vanishes. Because D(K) is independent of the origin of co-
ordinates, it is clear that it represents information about the
internal structure of the excited state.

The quantities NI((” ) and NI((h ) have the interpretations of the
average number of particles in the particle-hosting states, and
the average number of holes in the hole-hosting states, respec-
tively. The requirement NI((p ) — Nl((h ) =0 can be imposed in a
simple way. It proceeds by noticing that the state |®x) can
be constructed starting from a Slater determinant in which all
the hole-hosting states are filled, and all the particle-hosting
states are empty. The excited state |Pk) is in principle a
linear combination of states in which different numbers of
fermions are excited out of the hole-hosting states into the
particle-hosting states. Because the excitation of a particle
out of the initial Slater determinant necessarily leaves a hole
behind, every term in this linear combination individually has

J

DK) = 3 [ deelluiolv!
J

h

k() = (Vi ®[vkm)]

equal numbers of particle and holes. Then the averages NI((” )
and NI((h ) must be equal.

Two comments are in order. First, from the above discus-
sion, one sees that if the total number of hole-hosting states is
equal to the total number of fermions in the system, we will al-
ways meet the condition NI((p ) — NI((h ) = 0. In what follows, we

enforce Nl({’ ) = N]((h) by adopting this condition on the number
of hole-hosting states. Second, this construction explains why
the precise choice of particle- and hole-hosting states does not
affect D(K): interchanging a pair of states between the two
groups changes (v (1)|¥ R (1)) and (¥ g ()[R (r)) by
precisely equal amounts, and NI((p ) — NI((h) still vanishes.

To complete the demonstration that D(K) represents a
dipole moment, we connect its form back to the density ma-
trix. With some algebra, one may show

= Z Z / drr ‘(ﬁ}fl)(r)’z — Tr(rpk) = R(()K) — Tr(rpk). @)

J qeh;

The last term is the dipole moment of the charge density
associated with |®g). The term RE)K) is the dipole moment
of the Slater determinant state formed by placing exactly one
fermion in each hole-hosting state. In general, this means
D(K) actually represents the deviation of the dipole moment
from that of a reference state.

Two further comments are in order. First, both the physical
dipole moment and that of the reference state depend on the
origin of coordinates. However, the QGD itself is independent
of this choice, as expected for a quantity that characterizes the
internal structure of the states [65]. Second, the reference state
dipole moment R(()K) may itself be K dependent. However, in
practical situations, it is not. Moreover, if we assume that the
set of hole-hosting states at K = 0, {qﬁ%}, does not pick some
direction in space (as should be possible, for example, of a
system with inversion symmetry), then it is natural to have
R(()K) = 0. We discuss the behavior of R(()K) in more detail in
Appendix A.

Equation (5) is our definition of the quantum geometric
dipole, formulated in a such a way that it can be constructed
for a general many-body state, without any specific assump-
tions about its form. To test its validity, we now consider
two concrete examples, both for excited states of quantum
Hall systems in two dimensions. Our first is the QGD of a
magnetoexciton, above a filled Landau level.

III. QGD FOR MAGNETOEXCITONS
ABOVE A FILLED LANDAU LEVEL

For two-dimensional electrons in a perpendicular magnetic
field, the noninteracting energy spectrum breaks up into Lan-
dau levels with energies /iw.(n + %), where w. = eB/mc is
the cyclotron frequency, B is the magnetic field, m the electron

(

mass, and » is a non-negative integer. Each of these Landau
levels is highly degenerate, with the number of states in a
Landau level (LL) being equal to the number of magnetic flux
quanta through the two-dimensional system. One way to label
the states in a Landau level is to imagine the electrons being
subject to an infinitesimal spatially periodic potential, with a
single magnetic flux quantum through each unit cell. In this
case the Landau level states can be written as eigenstates of
the magnetic translation group [3,43]. Each state in a Landau
level is then labeled by a unique wave vector.

The electron density pe; of such a system is parametrized
by the filling factor v = 27 £%p,;, where £ = \/hic/eB is the
magnetic length. When v is integral, the number of elec-
trons is sufficient to fully fill v Landau levels. In the strong
field limit, such a state forms a good approximation to the
ground state. Low-energy neutral excitations can be created
by exciting an electron out of the highest occupied Landau
level into the lowest unoccupied Landau level. By considering
linear combinations of such particle-hole states in which each
has a fixed momentum difference between the particle and
hole, one constructs a wave function for the excitation with
well-defined momentum [43] (see Fig. 3). Because the state
involves creating a bound-state particle-hole pair across a
single-particle energy gap, this excitation can be understood
as a magnetoexciton.

An alternative method for constructing these excitations,
which is less dependent on taking the strong field limit, is
the single-mode approximation (SMA) [56,57]. This involves
acting on the ground state with the density operator
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FIG. 3. Qualitative distinction between strong field wave function for magnetoexciton above a filled Landau level (left), and its wave
function in the single-mode approximation (SMA) (right). In the former, a particle is excited from the filled level into the lowest-lying empty
Landau level, and is given a boost of momentum K. In the SMA, the particle is excited into a linear combination of unoccupied Landau levels,
but is given the same momentum boost. Note that the actual wave functions involve linear combinations of states with different wave vectors

for the hole q (not shown).

where r; are the positions of the N particles in the sys-
tem. Such a state has momentum K, but also captures the
ground-state correlations expected to remain important in a
low-energy excitation [55]. In general one need not assume
the ground state has the form of a single filled Landau level to
apply the SMA; moreover, because of the form of QI(, the par-
ticle resides in a linear combination of higher Landau levels
(Fig. 3). One may show that this approximation produces the
correct exact excitation energy /iw, in the limit K — 0, and
also saturates the oscillator-strength sum rule [57].

As a first example, we apply our approach to computing
the QGD to the magnetoexciton of a single filled Landau level
(v = 1) as described by the SMA.

A. Density matrix pk (r, r’)

The first step in computing the QGD in this many-body
formulation requires we find eigenstates of the K-dependent
density operator

oK (r, 1) = /d2r2d2r3 coodiry

X Qx(r, 1y, ..., )Pk, 12, ..., 1y),  (8)
where ®g is the excited state wave function,
1 il
g = — 0OV, )

VNk

and W is the ground state, which we approximate as a filled
n = 0 Landau level. Nk normalizes this state. Although our
formalism allows for the possibility that the eigenstates of
pk (r, r') are K dependent, we will see in the thermodynamic
limit that there is no such dependence. The eigenstates turn
out to be the single-particle Landau level states.

To see this, we exploit the antisymmetry of Wy(r(, 1z, ...)
to write

! 1 *
pk(r,r’) = ./\T / d2r2d2r3 .. .der‘lfo (r,ry,r3, ..., ry)
K

X ‘Do(r/» rn,ri,..., rN)
% {eiK(r—r’) + (N _ 1)[eiK-(r—r2) + eiK.(rz—r’)]
+ NN — DK@}, (10)

In this approximation, W is a Slater determinant, consisting
of N'! terms, each a product of N single-particle states, all with
different momentum labels q, the sum of which should vanish.
The integrations over r; ... ry fix which pairs of terms in W
and W can yield nonzero values. For each term in the second
line of Eq. (10) there are N! nonvanishing terms. Thus, in the
large-N limit, the very last term dominates the result.

Because of this, in the thermodynamic limit, the density
matrix must have the form

pr(r, 1) =) aqdf o (o (), (11
q

where o are real numbers, and ¢y q are lowest Landau level
states. (Note in writing this, we have labeled the states with
a wave vector ¢, which is possible if one organizes the states
as eigenvectors of magnetic translations. This is discussed in
more detail in Sec. IV A.) It immediately follows that any
state of the lowest Landau level is an eigenstate of px with
nonzero eigenvalue, and all higher Landau level states are
zero eigenvalue states. Since at v = 1 there are N states in
a Landau level, we adopt the lowest Landau level states as
our hole-hosting states, and all higher Landau level states as
particle-hosting states.

B. Computation of the QGD

To compute the QGD we need explicit expressions for the
states defined in Egs. (2) and (3). The quantities |u3.p )(r;K))
and |u§.h)(r; K)) involve distinct sets of DM bands (in the case

of |u§.h)) only a single DM band is involved), but because one
sums over all the states in a DM band, some simplification is
possible. In particular, we can choose any form of basis states
that fully covers these DM bands to perform the sums. In

this application, a particularly simple choice involves eigen-

. . o 2
states of the noninteracting Hamiltonian H = (1V + ¢A)
with vector potential in the Landau gauge A = Bxjy. The
single-particle states are then

1

N ITn

efiXy/Zan(x _ X)ef(xfxf/zzz’

$nx (r) =
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with n the Landau level index, L, the extent of the system along the J direction, H, a Hermite polynomial, and X the guiding
center quantum number labeling states within a Landau level. (The use of guiding center states here rather than the magnetic
translation eigenstates described above is possible because we are summing over all states in the lowest Landau level. Either set
of states forms a basis for a full Landau level; the former is more convenient for the manipulations which follow.) In terms of
these states we have

) (1 K)) Juy” (1K) =

=Y $ux(®e ™7, x| k), Z Py x (e 7] (| PK),
X

where ¢, x annihilates an electron in state ¢, x. Note that, because the sets of particle- and hole-hosting states do not depend on
K, we have dropped the (K) superscript on the field operators.

To construct the QGD, we form the quantities

l—‘n(I(l s KZ) = «un,Kl |un,K2» =
X1,X

= Z <¢0,X2 |ei(l(l _KZ).r|¢H,X] )(CDKl }Cn,Xl CZ'XZ | CDK2>,

X1,X2

Z <¢n,X1 |ei(K]7K2)'r|¢n,Xz)<®Kl ’le,xl Cn, X, |®K2>’

n>0 (12)

n=0. (13)

Note that the first factors on the right-hand side of the above equations are single-particle matrix elements, while the second
factors are many-body matrix elements. In terms of these, from Eq. (5) we have

D(K) —i 11m VKZ |:Z r (Kl, Kz) — FQ(K], Kz):| (14)

n>0

The computations of )

n>0

I'(Ky, Ky) and T'y(Kj, K;) are somewhat involved but are in principle straightforward. We

present some details for these these in Appendix B. The results are

§ 1K) = S R K KR 4 0K,
n>0 NK‘NKZ
MoK, Ky) = L{l _ ei%.(Kl><K2)52/2—K12152/4—K2252/4} + O((SK)Z, (15)
N, Nk,

where 6K = K|

—K; and g = L,L,/27¢? is the degeneracy of a Landau level, with L,L, the system area. The normalization

factors are given by [57] N = (dJ()lQKQI(M)o) =g(1 — e’KZZZ/Z). Finally, from Eq. (14), we obtain

DK = ——
(K1) 1 — e~ K1/2 K> K,

=K, x 2¢0%.

This result is identical to that found previously [43] using a
different excited-state wave function for the magnetoexciton,
in which only a single Landau level was retained for the
particle excited out of the filled band. In the strong field limit,
the latter yields a lower excitation energy than the SMA wave
function we have used here [52-54,57]. The form of the QGD
in this context is important because an applied electric field £
couples to the electric dipole moment, causing a drift motion
with velocity vp = ¢(€ xB)/Bz, exactly the velocity at which
one must move relative to the laboratory frame for the electric
field to vanish [43]. This means the system is effectively
Lorentz invariant, and that the SMA wave function for the
magnetoexciton respects this symmetry.

The QGD found above is identical the to the electric dipole
moment of a magnetoexciton in units where the electron
charge magnitude e = 1 [52-54]. When represented in terms
of a pair wave function involving a single particle and a
single hole, this may be understood as a guiding center shift
between them that must be present when the state carries

lim Vi, {e @ ® K 40 sin[(2. Ky x Ky)e2/2]e KTE/A-KC/H 1)

(16)

(

a nonvanishing momentum K [66,67]. The analysis above
demonstrates that the dipole may alternatively be understood
as a manifestation of the quantum geometry inherent to a band
of magnetoexciton states.

Finally, we note that the magnetoexciton states above v =1
generated by the SMA represent a linear combination of states
with a single particle and a single hole, so that the QGD
associated with them could have been computed using the
methods of Ref. [43]. The present analysis shows that our
many-body approach also produces sensible results for such
states. We next turn our attention to an example that cannot
be represented in terms of single particle-hole pair states, and
so requires the method developed above to compute the QGD:
magnetoplasmons above a fractional quantum Hall state.

IV. QGD FOR MAGNETOPLASMONS
ABOVE A LAUGHLIN STATE

We next consider the QGD for a collective excitation above
a fractional quantum Hall state, specifically focusing on filling
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factors of the form v = 1/m, with m an odd integer. In a disk
geometry, the unnormalized ground state for such a filling is
well described by a Laughlin wave function,

lII(()m)(l'l,I‘z, )= H(Zi _Zj)ml_[e—IZk\2/4€2’ a17)
i<j k
where z; = x; — iy; is the particle position in complex no-
tation, and we have assumed the vector potential to be in
symmetric gauge A = g(—y, x, 0). This wave function has
well-defined total angular momentum, and so does not have
total momentum as a quantum number. While one may write
an analog of this state for electrons on a torus [60], allowing
for momentum quantum numbers, a fact which we will exploit
below, Eq. (17) is more convenient for explicit calculations.
We will see that in the thermodynamic limit, the absence of
translational invariance can be overcome.

It is well known that the low-energy charged excitations
above a Laughlin state carry charge +e/m [51,59]. In analogy
with the types of excitations discussed for filled Landau lev-
els, it is natural to think of the low-lying neutral excitations
as bound pairs of such quasiparticles with opposite charge.
This interpretation suggests that the SMA may work well
as an approximation for these states. An important caveat,
however, is that, in the very strong field limit (hw, — 00),
one expects that higher Landau levels will not be involved
in any low-energy excitation. Such excitations then involve
motion of electrons within a single Landau level. Concretely,
the (approximate) wave functions for these excitations take
the form [56,57]

L Sigm
): QK\IIO (I‘l,l'z,...), (18)

where NI((’”) is chosen to normalize the wave function, and

‘-IJl((m)(rl, r,...

N
=T K-
QK = Zpoe‘ K l.'P()
i=1
is the same operator as used in the last section, but projected
by the operator Py into the lowest Landau level (LLL). The

effect of acting on the partially filled Landau level with @]i(
is to introduce density-wave-like correlations [55-57], and
because of this it is natural to think these excitations as mag-
netoplasmons. The states \IJI(<'”) have been extensively studied
[56,57] and are known to have a number of sensible and
attractive properties as low-lying collective excitations.

A. Density matrix for v = 1/m Laughlin states
and its eigenstates

The eigenstates of the density matrices associated with
these states can be arrived at following reasoning analogous
what we followed for integrally filled Landau levels above. A
first observation is that the form of the density matrix,

pk(r, r) = /d2r2d2r3 AP (e, Ty, T, )

X W ey, 1, ),

has the property [ d*r p(r)pk(r, ') = 0 for any state ¢ that
lies outside the lowest Landau level. All such states are then

eigenstates of the density matrix, and naturally form part of
the particle-hosting states for this system. The zero eigen-
value, however, indicates that they will not contribute to the
QGD.

Because the number of states in the LLL exceeds the
number of electrons in the system, we need to divide these
into hole-hosting and particle-hosting groups. As discussed
above, the precise division does not in principle affect the final
result, provided all states are eigenstates of pk, the number
of hole-hosting states is the same as the number of electrons
in the system, and states within each group vary in such a
way that derivatives with respect to K are well defined. A
convenient way to proceed in this case is to consider placing
the system on a torus, for which an analog of the Laughlin
wave function, Eq. (17), may be written in terms of elliptic
0 functions [60]. Moreover, one may construct the low-lying
collective excitations using the SMA [68], in a way directly
analogous to that described above for the disk geometry.

The utility of considering the torus geometry is that eigen-
states of the Hamiltonian are simultaneously eigenstates of
a set of translation operators, such that they have good mo-
mentum quantum numbers. In particular, one may consider
magnetic translations of the form T; = ]_[];]=1 i Pixtyi/ 2,

Ty = [Tj=y €792, where pj. = $0y,. pjy = 1y, are
momentum operators for particle j, for classifying states in
the lowest Landau level. This imposes an effective square
lattice structure of lattice constant a, and provided there is one
magnetic flux quantum per unit cell (i.e., a®/272 = 1), Ty;
and 7,3 commute with each other as well as with the Hamilto-
nian. Imposing periodic boundary conditions such that there
are N, unit cells in the whole system, the eigenstates of the
Hamiltonian will have well-defined center-of-mass momen-
tum K with N, possible values. In particular, we must have
TaX\IlK = eiKX“\IlK, Tay‘lfK = eiK"a‘IJK.

It follows that the density matrix, viewed as an operator, is
invariant under translations, i.e., T, ok (r, r/)Ta‘1 = pk(r, 1),
where a = af or aj. Its eigenstates ¢ (r) (here the subscript
0 refers to the LLL) are themselves eigenstates of translations,
Tagho q(r) = €97 o(r), with the number of distinct values
of q being the same as the number of states in the LLL.
This means that varying K will not change the eigenstates of
the density matrix, and our particle-hosting and hole-hosting
state can be chosen in a K-independent way. In the following
section, we describe one way in which this can be done that
ultimately allows a computation of the QGD.

B. Formal expression for QGD

For concrete calculations, it is preferable to work with the
wave functions in Eqs. (17) and (18) than with their counter-
parts on the torus. However, this introduces a difficulty in that,
for any finite-size system, there is an edge which breaks the
translational symmetry. Well inside the bulk, we expect that,
locally, states for a disk and states for torus will be essentially
the same. To take advantage of this, we start with formal steps
best defined on the torus, and then carry through concrete
calculations for needed correlation functions in the disk ge-
ometry, for which the calculations are analytically tractable.
We assume the thermodynamic limit has been taken so that
the edge does not contribute to these correlation functions.
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To compute the QGD, we start with

P, K') = (fugg gl ) — ({146 )
= Y (Poq e TIg0.q) (Ukleh 4, co.q; | ¥K)
q1.9;€po

i(K—K')- T
— Y Do.g ™ Ig0,4,) (Wilo.q,¢) g [ W)
q2,q5€hy
(19)

The first and second terms of I' can be used to form the
particle and hole connections AP and A", respectively, by
taking gradients of these terms with respect to K. We then
have

DK) = -APK) + APK) = —i Jim Vi T(K, K).
(20)
Writing K = K — K’ allows us to express this as
DK) = —ia%(ir_r)lo [F'(K,K -K) - I'(K,K)]/8K, (21)

and from momentum conservation,

F(K, K —6K) = Y (¢o.q,l¢” " |¢h.q,-5x)

q1€po

x (WKleg g, €0.q:-5k | PK—5K)

= > (Bo.qrox|e” T Io.q,)

q2€hy
X (WK |C0,q,C5 g s | VK-5K).  (22)

Equations (21) and (22) raise a subtlety discussed in our
initial formulation of the QGD: since D is expressed as a
limit, we need I'(K, K — §K) to behave smoothly as §K — 0.
We can in fact guarantee this for both terms in Eq. (22)
separately, by a careful division of the states into the particle-
and hole-hosting groups, with a corresponding definition of
how the K — 0 limit is taken. To do this, we observe that if
q is among the particle-hosting states, then q + 6K must be as
well. Analogous relations should hold for values of q among
the hole-hosting states. One way to guarantee this is to group
m neighboring values of q, for example, along a row in the X
direction, into unit cells, assigning one of these to /( and the
remainder to py. The resulting unit cell has length 27 /N.a
in the § direction, and length 2wm/N.a in the % direction
(see Fig. 4). We then restrict values of K to discrete points,
one associated with each of these unit cells. This guarantees
that in Eq. (22), matrix elements are always between states
in the same sectors. 6K is then taken to be a discrete differ-
ence between the locations of nearby unit cells, and the limit
8K — 0 is accomplished by taking the thermodynamic limit
N, — 0.

It is interesting to note that this means the number of mo-
menta allowed to the magnetoplasmons above a given ground
state will be 1/m of the number of unit cells in the system,
which in this construction is the number of magnetic flux
quanta passing through it. On a torus, however, there are m
different ground states [3,60] upon which one may build a
magnetoplasmon in the SMA, so the total number of excited
states in a magnetoplasmon band is ultimately equal to the

q, . 5K, e
A S
B

dx

FIG. 4. Illustration of allowed wave vectors for single-particle
states for system with periodic boundary conditions. Blue points
represent particle-hosting states, red points are hole-hosting. The
lattice and the discrete difference vector §K = (6K, 6K, ) are con-
structed so that finite-difference approximations to the derivatives of
the single-particle states with respect to §K are always within the
particle- or hole-hosting states, so that the limit K — 0, taken in
the thermodynamic limit, behaves smoothly.

number of flux quanta through the system. We leave it to
future work to determine whether this counting remains valid
beyond the SMA.

Continuing with the calculation, we commute two of the
fermion operators to get

P(K,K)=> " ($0.q, 1€ 0., -sk) (WKl 4, C0.q,—s% | PK)
all q;
— N,8(K — K, 23)
where N, is the number of hole-hosting states. Since ulti-
mately we will have K very small, we expand for small

3K. Noting Zq] (\PK|cg_qlc0,q] |Wk) = VN, is the number of
electrons in the system, and that

> (B0.q, 1€ 0.q,—5K )€ 4, C0.q1-0K = Dsk-
allq
we arrive at
—t
I'K,K') = Z [(¥k|Qsk|WK) — Nu|8(K — K)
allq
= (vN, — N})§(K — K')

+ lim 5K - V,(Uk[O) Wk _q) + OGK?). (24)

Our construction requires the first term of the last line to
vanish, and the O(8K?) correction does not contribute to the
QGD. We finally arrive at the expression

D(K) = —i lim ¥ (k[ O [ ¥k q)- (25)
In arriving at this expression we have not made any specific

assumptions about the form of |Wk), except to say that it has a
well-defined momentum quantum number, which implies we
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are working on a torus. A concrete form of Eq. (25), however,
is most easily arrived at by working in the disk geometry.
To compute it we will work in the latter, assuming that the
thermodynamic limit has been taken, so that edge effects do
not enter. As we shall see, this can be written, in the SMA, in
terms of ground-state correlation functions.

To this end, it is convenient to write

D(K) = —i 1i_r)n Vq(“I'K%q@:leK*%q) (26)

= N(m) lim V o(WolQT_ KJQTqQT —4|Wo). (27)

In the second line of this, the normalizing factor has not been
acted upon by V, because it is even ¢, so that we may take
q — O directly in this term. This is one of the simplifica-
tions that follows from rewriting D(K) in the form shown in
Eq. (26).

C. QGD of the magnetoplasmon in the SMA

To carry out the concrete calculation, we use the techniques
discussed in Refs. [57,69], to derive, in a straightforward if

J

somewhat involved calculation,

0k 107 Ot
= 0" Qa0 4 + 3(q" KL — K )07 0k
—(1- e—(K*+§><K—%>ez/2)Qtijl

P K22

_ QTO(%CI*KKZ _ %qK*Ez)(l —e g4 /2) + O(qZ)
(28)

On the right-hand side of the above expression, wave vectors

are written in complex notation (e.g., ¢ = g, — ig,), and the

quantity Qf, is the same as the particle number vN,. The
derivation of Eq. (28) is provided in Appendix C.

The reason for writing the product of the three projected
operators on the left-hand side of Eq. (28) in the form
shown on the right-hand side is that, upon taking expectation
values, one obtains an explicit expression in terms of ground-
state_correlation functions. It is not difficult to show that
(\I-’Q|QiKJQJ;QI(?ﬂ |Wp) is even in q for a circularly sym-
metric statez:, ) thiszterm does not contribute to Eq. (27). The
remaining terms involve density-density correlation functions,
which may be expressed in terms of pair-correlation functions.
In particular,

(WolQ" 05| Wo) = / d*R / dzRZZ Wol8(R; — 1;)8(Ry — 1;)[Wo)e® R~

=X [ | 2&{ (Wol8(Ry — 1) W)(R; — Ry)

+ ) (Wold(R; — )8R, — r»|%>}e"l’"“"‘2>
i#]

= VN, + nj / d’R, / d*Rye™RiR)o(R) — Ry)

where ny = 2w ve? is the particle density, g(R) is the ground-
state pair-correlation function, and h(p) = f dZR[g(R) —
11¢®R | which has the property 7(0) = —1/ny. Note in writing
g in terms of the difference in particle positions R; — R;, we
have assumed the infinite-size limit has been taken, so that
there is no impact from the system edge and the correlations
are translationally invariant.

To compute the QGD we need to consider the expectation

value (WM@,K,% ﬁqEK,% |Wp). Some care must be taken

in considering the contribution of (V| Qtig | W) in Eq. (28).
For small but finite ¢, Eq. (29) shows this vanishes as g2, so
that this term does not contribute to the QGD. The absence
of any contribution from the §(q) term comes about because
the thermodynamic limit must be taken before taking q — O,
which is required when we use the disk geometry to compute
quantities that are translationally invariant in a system without
an edge.

VN, + (27 )*vN,no8(p) + vN.noh(p), (29)

(

With these considerations, we arrive at

lim V,(Wo|Q7_g_4 07, 0Tk _4| W)
q—0 2 2

= i(K x 2@2){(\DQ|QiKQI(|\yO> —WN,(1 - e—\KPeZ/z)}
= i(K x 26){vN.(1 4 noh(K)) — vN. (1 — e KI*¢/2)},
(30)

The normalization J\fl((m) for the excited state is calculated with
similar methods [57],

NP = (Wl QT_ Ok |Wo)

— (Wo|Q (O |Wo) + VN, (e K2 1),
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leading to the final result

VN.(1 + nph(K)) + vN, (e KFPE/2 _ 1)
VN:(1 + nofl(K) + (e—|K\2€2/2 _ 1))
=K x 30%. a1

DK) = (K x 20%)

We conclude this section with a few observations. First,
we have arrived at precisely the same relatively simple result
that we found for the inter-Landau-level exciton. The more
complicated internal correlations that play a role in interme-
diate steps of the analysis do not impact the final result. We
show below this is a result of the translational invariance of
the system. Second, there is a quite different way to formulate
the particle- and hole-hosting wave-function spaces than the
one we used. This involves composite fermions [61]. In the
mean-field approximation, the number of states in a composite
fermion Landau level is equal to the number of particles,
yielding a natural division between particle- and hole- hosting
states. However, to avoid introducing further approximations,
it is necessary that the hole-hosting states be written in such a
way that they all lie in the LLL of the original electron degrees
of freedom. Ultimately one arrives at Eq. (25), but the inter-
mediate steps are more involved than what is presented here
[70]. Alternatively, one can adopt a further approximation in
which the neutral excited state is simply a single particle-hole
pair across two composite fermion Landau levels, with no
LLL projection carried out. This turns out to produce [70] a
QGD that is m times larger than that of Eq. (31). This reflects
the large composite fermion magnetic length, and shows that
sacrificing the projection of the state into the electron LLL
introduces considerable error.

We now turn to this issue to demonstrate that the simple
result found in this section is an outcome of having a transla-
tionally invariant system, in a state that has a sharp momentum
quantum number, and lies fully in the LLL.

V. DIPOLE MOMENT IN A SINGLE LANDAU LEVEL

The result found for the magnetoplasmon above a Laughlin
state is actually generic for any many-body state of a transla-
tionally invariant system with well-defined momentum in a
single Landau level. In particular, there is a relation between
the center-of-mass (c.m.) position and the momentum. To see
this, we start with a many-body Hamiltonian in first quantiza-
tion,

| 2
H= X/: %<Pj + SA(I‘J‘)> + Z v(r; —r;).

i<j

Here it is convenient to work in Landau gauge, A(r) =
B(0,x,0), v(r) is an interelectron potential, and p; is the
momentum operator vector of the jth particle. In this gauge,
states with a total momentum K in the y direction are eigen-
states of ) _; p; ,. Consider the Landau level lowering operator
for the c.m. degree of freedom,

1 i
dem. = % ; |:£pj,x - Z(-xj + £2pj»)'):|’

which (by design) satisfies
1

[Ha acAmA] = _Wac.mn

If a state Wx with momentum K resides fully in a single Lan-
dau level, we must have (Vg |a.m |Wk) = (\IJK|aI'm'|\lfK) =0.
It follows

(Wk| Y pjalWk) = (Wk|P W) =0, (32)
J

(W D piy + %/ Wk) = (WP, + Ren /| Wk) = 0.
J

(33)
This gives the result
(Wl Xem | Wk) = —CK, (34)

which is one component of the result we obtained in the
previous section. For the other component, there is a subtlety.
In this formulation we should think of the system as having
periodic boundary conditions in the ¥ direction, and having
edges in the X direction. The state can in principle be compact
in the latter dimension, so that the boundaries are very far
away from the locations of the electrons. The problem is that
(\IIK|YC_m_|\IJK) is not uniquely defined.

The electron density is uniform along the periodic direction
of the cylinder , which we take to have size L,. To uniquely
define the y; coordinate, we fix an origin for coordinates of
the positions (x;, y;), and also a line at fixed x; for which y;
jumps by +L, when particle j passes through it. The value of
(Wk |Yem. |Wk) depends on the relative positions of the origin
and this cut line. However, whatever values we assign them,
(Wk|Yem.|Wk) will be the same for any K because Zj Vj
cannot be localized anywhere on the cylinder if W is an
eigenstate of »_; py ;. We can remove the arbitrariness by
choosing some reference state and considering only differ-
ences. Then

(W] D w1 W) — (Bo| Y rj| W) = —2KL> = —K x 2¢°.
J J

The overall — sign is present because the shift is in the
position of the electrons, which are negatively charged. Note
that in our general formulation of the QGD, we also found
it to be the deviation of the dipole moment from that of a
reference state R(()K). The latter is not expected to have any K
dependence in the thermodynamic limit for low-energy states,
and, with a judicious choice of origin, can be made to vanish.

We see then that the dipole moment for a lowest Landau
level state with a momentum quantum number, for a system
that is translationally invariant, generically takes the simple
form found in the last section. By contrast, we expect that
had the translational invariance been broken, for example by a
periodic potential, one would find deviations from this result.
This has been shown to be the case for particle-hole states in
Landau levels of Dirac-type Hamiltonians [43].

VI. SUMMARY AND DISCUSSION

In fermion systems that are not ferroelectric, the ground
state typically does not carry a static electric dipole moment.
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However, there may be dipole fluctuations carrying quan-
tum geometric information about the ground state [71,72].
By contrast, neutral excitations of a fermion system with a
momentum quantum number carry an internal structure which
is geometric in nature, a quantum geometric dipole, or QGD.
Previous work has demonstrated that this structure arises nat-
urally for states that are well described by particle-hole wave
functions [43,47,48]. In this work, we demonstrated that this
concept is not tied to a particular form for the excited-state
wave function, and can be defined in a way that can be ap-
plied to states |Pk) of any form, provided they are labeled
by a continuously varying wave vector K. The formulation
exploits the density matrix associated with |®k), allowing a
set of single-particle states to be defined. These states are then
divided into two groups, one of which is “particle hosting” and
the other “hole hosting,” with the number of states in the latter
group equal to the number of fermions in the ground state.
These collections of states are then exploited to define quan-
tities akin to Berry connections, whose difference is gauge
invariant [43], and is essentially the electric dipole moment
of the excitation, up to a factor of the charge carried by the
fermions.

To demonstrate that this formulation produces sensible re-
sults, we considered two concrete examples, both involving
excitations of a two-dimensional electron gas in the quantum
Hall regime. In the first we considered a magnetoexciton
above an integrally filled Landau level ground state. We use
the single-mode approximation (SMA) to generate approxi-
mate excited-state wave functions as a function of K. The
result reproduces the QGD of an inter-Landau-level exciton
in the strong magnetic field limit, in which only two Landau
levels (one for the hole, one for the electron) are involved
in the state. When substituted into semiclassical equations of
motion [43], this form is consistent with the Lorentz invari-
ance that leads to drift motion of the exciton in the presence
of an in-plane electric field.

In our second example, we considered magnetoplasmon
excitations above a Laughlin state of a partially filled Landau
level, again using the SMA. In this the details of the calcu-
lation were more involved, in particular requiring a careful
formulation of the division of states between particle and hole
hosting. This was accomplished by labeling single-particle
states by wave vectors, allowing a definition of gradients with
respect to K such that the particlelike and holelike connec-
tions AP and A™ are well defined. The resulting formal
expression for the QGD can be explicitly evaluated in terms
of correlation functions in the ground state, but the final result
does not involve these: one obtains precisely the result found
for the magnetoexciton described above. We demonstrated
this simple result must emerge due to the combination of
continuous translational invariance of the system, so that the
state itself can be assigned a momentum along some direction,
and the fact that the state lies fully in the lowest Landau level.

It is important to emphasize that the second example in-
volves a state that cannot be written as a linear combination
of single particle-hole pair states, demonstrating that to have
a QGD, a state need not have this particular form. And
while we have applied our formulation to two examples of
quantum Hall systems, this formulation is considerably more
general than this, and can in principle be applied to any

collection of neutral excitations with well-defined momenta,
above some many-body ground state, in general dimension-
ality. The challenge is that one needs explicit wave functions
to carry through calculations. It will be interesting to find fur-
ther examples of states falling outside the single particle-hole
paradigm for which the QGD may be computed. One interest-
ing possibility arises for ideal flat bands [73], which have been
formulated in the context of twisted van der Waals systems as
minimal models that capture the important aspects of the flat
bands believed to be present in these systems [74—76]. Among
these are models based on Landau levels [77], for which the
techniques used in our work could prove useful.

Short of this, one can apply our formulation to approximate
wave functions that involve small numbers of particle-hole
pairs, for example as corrections to a single particle-hole wave
function, to examine their impact on the dipole moment of
the excitation. Beyond computations of the QGD for different
collective modes, it will be useful to find their equations of
motion in applied electric and/or magnetic fields and deter-
mine how the QGD enters them [43]. Indeed, the result above
for the QGD of the magnetoplasmon above a Laughlin state
suggests its equations of motion may be similar to those of
a magnetoexciton above the integrally filled Landau level, in
which case the former result can again be understood as a
consequence of Lorentz invariance in the underlying Hamilto-
nian, as is the case for the latter. We leave these investigations
for future work.
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APPENDIX A: K DEPENDENCE OF R{*

To understand how R(()K) varies with K [cf. Eq. (7)], we ex-
amine its behavior for some excitations where we can generate
approximate explicit wave functions. As a first example, we
consider plasmon excitations in a metal with a single band and
a rotationally symmetric Fermi surface. Within the random
phase approximation (RPA), the wave function of such a state
has the form [46,47]

|Dk) = O Do),

where |®g) = T <, cfllO) is the approximate ground state, kg
the Fermi wave vector, |0) the vacuum state, and

Ox = D aq(K)e], xcq.

lql<kr

(A)

(A2)

The precise forms for the coefficients oq(K) may be written,
but are unimportant for our present purpose. The K-dependent
density matrix in this case is

ok (r, r) = (@, k¥ ()Y ()P, k)
= ¢q, ()¢, N

qi
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Here ¢¢(r) is the single-particle state created by the operator
CZI. We see that the eigenstates of pk(r, r’) are identical to
those of px—o(r, r’); all that changes is the average occupation
of the single-particle states. Moreover, it is not difficult to
show that aq(K) ~ 1/4/N., where N, is the number of unit
cells in the system, so that AE _pK=0) /N.. Thus, the
change in the density matrix with K is negligibly small in the
thermodynamic limit. Independent of this last fact, the natural
choice of hole-hosting states here is {¢q} with g < kf, inde-
pendent of K. It immediately follows that R(()K) is independent
of K for this system. Moreover, it vanishes if the system is
inversion symmetric.

As a second example we consider an insulating system
whose ground state may be approximated by a single filled
band, with quasiparticles which may reside in many higher-
energy bands, separated from the occupied band by a gap.
Within a Hartree-Fock approximation, each band j hosts a
set of single-particle states {¢; 4}, and we assume the j =0
band is completely filled in the Hartree-Fock ground state

J

+ _ N 5 ¥ ¥
<®K|C}1,ch2*q|q)K> - Z Z ®jsq (K)aj4~q2(K)<q>0|CO-Q1Cj3*q1+KC¢‘L]'1Cq’jZC}A,QerKCO»‘lZ|¢0)‘

41,92 j3,ja>0

Taking into account the occupations of the bands, one finds

|®y). Low-energy neutral collective modes of such systems
can typically be written in terms of some linear combination
of particle-hole pairs, in the same form as Eq. (A1), but with

Ok = 22 aK)e) g xcoa

q j>0

(A3)

The coefficients o q(K) may be found within the RPA
approximation, or within a time-dependent Hartree-Fock
approximation. In either case the precise form is again
unimportant for our present purpose, except to note that
o q(K) ~ 1/4/N,. In this case we have

p(r,x') = (Pk |y (0)y ()| Pk)
- Z Z ¢}kl»q(r)‘/).iz,q(r,)(@K|C;]chj2.q|CDK).
q ji.j
(A4)

We need to compute

(AS5)

¥ ¥ T _
(CD()'CO,q] cj3»¢11+KCj1,chzvqc_j4.q2+KC0»CI2|(I)0) = [Sjlqoajz»oamq(h - 8j1q08j2,08(I~Q1811,(12]81'3,]4 + 8q,.4:0/1./30 2. js0q.q+KSq.q 4K, (AD)

so that

2
(Pklct, (gl D) = | DY lotjy.q, (K {8,080 + & g kjrqK-

J3 qi#q

Equations (A4) and (A7)show that the K = 0 wave functions
once again diagonalize the density matrix, up to corrections
that vanish in the thermodynamic limit.

Equation (A7) points to what is needed for the density
matrix to develop K dependence in the thermodynamic limit:
one needs coherences between different bands that actually
change with K within the excited-state band. Such excitations
in general require rather high energy because this implies
correlations among the electrons that vary strongly away from
those of the ground state. In an excitation where the number of
particle-hole pairs above the ground state needed to describe
the state does not scale as the size of the system, the form of
the hole-hosting states does not in practice change with K in
the thermodynamic limit.

J

(A7)

APPENDIX B: CALCULATION OF )
AND T (Ky, K>)

rn (Kl ’ KZ)

n>0

In this Appendix, we present some details of the cal-
culations involved in the computation of the QGD for a
magnetoexciton state above a single filled Landau level, with
the state generated by the single-mode approximation (SMA).
In Sec. III B, one finds an expression for the QGD, Eq. (14),
that involves the quantities I',, defined in Egs. (12) and (13).
These latter quantities involve matrix elements that can be
explicitly evaluated. Specifically, one requires

(DK, lc) x, Cnx, | PK,)
1

_ T T
= m(q)dQchn,xl nx, Ok, | Po)s

with Of =3, Yy (@n,x, €% hu x,) ), Cny.x,.- Noting that, for n > 0,

i K-
Cnx Ok1P0) = Y D (B x,1€™ Ibux)enx €], x Cmyxo| Do)

X1,Xp ni,my

. )
=D {bux €™ Igo.x,)cnx )y, Cox,|Po)

Xi,X2 m

= (bux|e™ Io.x,)co.x, | Do),
X>
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we arrive at

(@0lOK, €}y, nx. Ok, 1P0) = Y (buo 1€ Ig0.x,) (Po.x,le ™ ¥ |, ) (B1)

X3
A similar calculation yields
5 5 —iK;- iKs-
(@01Qx, 0., .3, Qh, |0} = D D {d0.x,le™ 1 I x,) €™ o, ) (B2)
n3>0 X3
The quantities of interest can now be written as

1 172 . . .
Zrn(Kl,Kz>=[—] D7D (Bnxle™ T Io.x,) (o.x; e T 1By, Y, 1€ T x, )

>0 NN, X1, X2,X3 n>0

| 1/2 ) . .
Fo(K, Kp) = [—} DD ioxile ™ T x,) (x| €™ T I x ) (B0, [ TR (g0, )

N N, X1.X0,X3 n>0

This expression can be evaluated explicitly with use of the matrix element

2r¢ P12
iq- i ' qy + iqy )l PC/Ayr—n Y
(B le¥,0) = 000 7 [yT} ||

where L’Z ~" is an associated Laguerre polynomial, and in writing this we have assumed n’ > n. With some algebra, it is possible
to show

iKs- —iK;- i(K;—K>)-
D (Buxle™ T Iox,) (Bo.xa e T I x, ) (x| TR I 1)

X1,X2,X3

_ ﬁefié-(leKz)éz (Kay + iKpc)E ! (Kiy — iK1t nLo (K4 _K2)2£2 ef1<,252/471<22z2/467(1<]7K2)252/4
n! V2 V2 " 2 ’
—K,)*¢?
2

where g is the degeneracy of a Landau level. Noting that L)(x) ~ 1 — nx for small x, we can set LS[(K‘

] — 1 without

incurring any error in the final answer since we take only a single gradient and then set K, — K;. The last Gaussian factor may
be dropped for the same reason.
With these results, we can write

. . 5
2T K = ﬁe‘ﬁ“‘lXK2)€2/2—K12€2/4—K§£2/4{exp [(sz + ’sz)(zKly — Ky )l } - 1} + 05K’
n>0 K;/VK;,

- ﬁ{f’m‘l KL _ it KKK AR | oK,
K;/VK,
where K = K, — Kj. A similar calculation yields the result
8 i2-(K; xK)02/2—K242 J4—K2e% /4 2
To(Kp, Ky) = ——8 {1 — (KKl 2K EA-KC14) L 05K )2,
N, Vi { J

APPENDIX C: DERIVATION OF EQ. (28)

In Sec. IVC, Eq. (28) is introduced to allow an explicit evaluation of the QGD for a magnetoplasmon excitation above a
Laughlin state. In this Appendix, we provide some details of its derivation. The key technique involved is the projection of an
operator into the lowest Landau level (LLL). In circular gauge, a state in the LLL has the form ¢(r) = f (z)e"z‘z/ 4 where
z =x — iy is a complex representation of a particle position, and f is an analytic function of z. Consider an operator that is a
function only of position, for example, a potential energy. This may be written in the form V (z*, z). Suppose we are interested
in the projection of V¢ onto the LLL, which may be written as V ¢. The prescription for doing this is to make the replacement

_ 9
V(z,7*) >V ENV<z, 21323—),
Z

where it is understood that when V is applied to a LLL state such as ¢, the derivative operator acts only on f(z) and not the
Gaussian part of the wave function. The symbol N denotes normal ordering, in which, in a power-law expansion of V (z, 2 62 9 2),
factors of 2¢2 ;7 should always be placed to the left of factors of z. This method of implementing LLL projection was 1ntr0duced
in Ref. [69].
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As a basic example, consider the density operator

N

Ol = 3,

i=j

This may be rewritten in the form QI( = 21};1 2K HK' 1 where K = K, — iK, and z; = x; — iy;, and the projected operator
is formally

Ok = € e, 1

In what follows, we will make repeated use of Eq. (C1).

In Egs. (27) and (28) we encounter a product of three projected density operators E—K—gaqax—g , of which we need to
take an expectation value with respect to the Laughlin state. As explained in the main text, the result can be written in terms
of ground-state correlation functions if we rewrite the expression using terms where we have first taken products of density
operators, and then projected these terms into the LLL. To do this, consider a product of three projected density operators,

— — — L= Leogrs 1. = 1. Lig s Lops
QTKI QTqQTKZ — E eflKlZieflKl Z,‘eiqujeilq*Zjelezzkeilezk
ijk
_ Ze%imze%t&*zieéiqz,-e%iq*zie%thzie%iK;z,- + Z 031K\ o 3K % o 5 10% 531472 o 3K 51K 2
i i#k
+ Ze%iKli,-e%iKl*zie%iqZ,ve%iq*z_,-e%iK;Z,'g%iKz*z,- + 2 :e%iK]Z,e%iK]*z,-e%ique%iq*zje%il(zf_,e%iKz*zj
i#j i#]
Lig = 1ops 1. - 1 ligr= 1
+ § eZ’KIZieilKl Zfei’quei’q*zfeE’KZZkeE’Kz*zk’ (C2)
ij#k
where we have used the notation z; = 2¢;-. We then repeatedly use the operator identity ee” = efeel*51, valid when the
commutator [A, B] is a ¢ number, to bring this to the form

@K @q@K _ Ze%iKlfie%iKl*z,-e%iqiie%iq*zie%il(zfie%iK;‘zi
1 2
i

+ 29K 2 :eém 4V o5 KoZu o3 (K40 o 5KS 2 39K Z o3 K1+a)% 5 KT o5 (Ki+47 )2 o 5 K 2

ik i
] . o . 1 . o .
| KR 3 A KR o505 o5 KiK' oIl 3 A KR 30 KT KD o507
ij i
1 2 i Y i 1 2 i = g i i
+ 20Kt E 02 @Kz eI 5 (@ KDz 1K T _ p3q Kal E 2 TR o2 K% o2 (K )z o5 KT
ij i
+ 2 01K1% 505 o 1K Tk 1 K32 054725 3 KT 2

Ligr = Liges, Loz Loox 1= 1o 1 g2

_ 2 : 5iKZi 51K % ,519%i 551972 , 51K ,5iK3 2 59Kt il i _Of

= e e e € € € te (QK|+qQKz QK] +q+K2)
i

LKy 02 AT T T Lok (At ot F
+ezn ™ (QK1+K2 Qq - QK1+(1+K2) te2 ’ (QK1 Qq+K2 - QK|+q+K2)

+ E e2K1%i 3901 03K 3 K32 3072 3 KT (C3)

ij#k

We next focus on the first term in the last equality of Eq. (C3). Carrying out some more commutations brings this to the form
Z 031K1%i 031K % 3102 531072 o 51KT p3iK3% 3 (K Hq Kot KT K2) O Z o3 Kita+Ka )G , 5 (Ki+q"+K5 )z
i i

L gy o Y T E—
5 (K q+q* K2 +K [ K2)e* T
e QKI +q+Kz* (C4)
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Finally, we turn to the last term in Eq. (C3). This may be rewritten as

§ e%K}Z‘e%(ﬁje%Ksze%Kz*Zke%q*Zje%Kl*zi — E e%Klfie%qZ/e%Ksze%Kz"Zke%q*Zje%K]*Z,‘ _ E e%Kﬁie%qZ’e%Kﬁke%Kz*zke%q*z,’e%K{‘Zi

i j#k ijk

ik

— E e%Klzie%qz.fe%Kzzie%KZ*zig%q*zje%Kl*Zi_ E e%KlZie%que%KzzfgéKz*Zje%q*zje%Kl*z’

i#]

i#Jj

Y ebRitigbaip bRt Ki o405 1K1

l

_ Nt TNt _ Nt _ 1Kz LI(IZ' LK%k iKz*zk i(]*Z' LK?‘Z' ¥
=0k, 4%, = Ok, 1q+K, Zez lexeatrtertent Mea Tt + Ok Lk,

ik

2: 1Kz 547 iK% 5 KS i 072 L, i K T
—_ 2 te21% p2 L2 2% p2 Je2 1 J,—
€ ¢ ¢ € € ¢ QK1+q+K2

ij

i[(lz. iqf- i[(ﬁ. iK*z- iq*z. Lgss. +
— 2 te21% p2 Je2 2% p2 Je2 1
E e e e e e e + QK1+q+K2

ij

T ofof ¥ ¥ ¥ ¥ T of of
= QKI QqQKz + 2QK|+Q+K2 o QK1+qQK2 o QKH-Kz Qq B QKI Qq+K2‘ (€5
We can now combine Egs. (C3), (C4), and (C5) to arrive at the exact relation
T A — At ATt Lgkre? t Af LK K2 a oF Lk, 02 o of
07,0740k, = Ok, QuQxk, + (277" —1)0k 1Ok, + (27" = 1) 0k 1, Qq + (27" —1)0k 0.k,
B KiaHRad TRIKIE _ gaki _ 1Kl _ 30K 4 g 0f (C6)
Expanding Eq. (C6) to first nontrivial order in ¢, one finds
T AT AT At Aot 1, %02 f T 1 g 27 At
Q KIQ‘qQTKz - QK1 QqQK2 + jqu 14 QK]+qQK2 + 56] KZE QK] Qq+K2
1 g 2 ﬁ % * 1 prx 2 T—
+ (e — )0k, 1k, 00 + (3KT9€° + 307K l?) (750 = 1) 0k g5, + 0. (7

Substituting K; = —K — %q, K, =K- %q into this yields

T 5 o A + At 1 p*p2nt
0 —K—%qQ qQ Kféq = Qfo%quQKféq + ZCIK ()

T 1
7K+%qQK7%q + 349 Kt Qfo%qQ

K+3q

(e HOHDED ) GT G (1K g + LK) T 2 1)Q) + 0l (CB)

. . . T T T - . ) . .
Finally, setting ¢ — O in the Q_KH(]QK_%q and Q—K—%qQK+%q operators incurs only O(g~) errors because their coefficient

is linear in ¢ and the ground-state expectation value of these operators behaves smoothly as ¢ — 0. With this final change, one

arrives at Eq. (28) in the main text.
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