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A Dbasic feature of superconductors is flux quantization, which leads to periodicity of superconducting

parameters with magnetic field. This periodicity is crucial for understanding basic concepts, such as elementary
charge, symmetry of the order parameter, etc. In quantum circuit applications the periodicity is utilized for
maximizing design performance. These applications rely on the fact that the periodicity is well defined for a
given superconducting structure. We use scanning SQUID imaging and numerical simulations to show that, in

realistic nanoscale devices, the periodicity depends on the temperature and the actual geometric details of the
structure, specifically, the width of the wires that define the superconducting network. This should be taken into
account in any experiment or application based on complex superconducting structures.
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I. INTRODUCTION

One of the basic concepts in superconductivity is the quan-
tization of flux, in units of &y = h/2e, which manifests itself
in diverse ways [1-5]. At temperatures below the supercon-
ducting transition temperature 7¢, flux quantization leads to
the appearance of superconducting vortices, forming vortex
matter in type II superconductors. A well-known and early
manifestation of this is the Little-Parks effect (LPE), i.e., the
periodic oscillation of the critical temperature [3,6,7], critical
current [8] (I¢), or the critical field [9-11] (H¢) as a function
of magnetic flux in a superconducting loop. More generally,
any nonuniform or periodic structure exhibits signatures of
such periodicity. For example, in a periodic structure with a
single type of hole in each unit cell, the periodicity of T¢ as a
function of flux per unit cell corresponds to the field required
to accommodate one superconducting unit of flux (¢ = %)
through each unit cell: Bperiod = ®o/Aceli, Where Aceyp is the
geometric area of the unit cell. When one considers periodic
networks with holes of different sizes, such as a kagomé
network, the same idea works but can play out in somewhat
more complicated ways, except now the periodicity is given
by the change in the B field such that the smallest hole is
being penetrated by one extra ®(. For example, in the kagomé
lattice, with two triangular holes of geometric area A, and one
hexagonal hole of area A, = 6A, per unit cell, a change of one
®, through the triangular hole corresponds to a change of 8P,
through the unit cell.
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The exact determination of such periods is crucial both
for applications and for basic physics [12,13]. An accurate
measurement of the periodicity can be used to determine
the basic charge unit in the system. Notably, the factor 2e
in the definition of the flux quantum represents the charge
of a Cooper pair, the elementary charge carrier in a con-
ventional superconductor. In disordered superconductors and
strongly correlated materials, the observation of unusual os-
cillation patterns may indicate more exotic states of matter;
e.g., a topological phase [14], or coexisting charge order
and superconductivity [15]. In applications, the periodicity
is crucial for the design and operation of quantum com-
puting elements like qubits and superconducting quantum
interference devices (SQUIDs). Examples include the manip-
ulation of topological states and the development of sensitive
magnetometers [16,17].

The LPE is indeed universal because it describes physics
near the critical point, where the important length scales in
the problem, such as the London penetration depth A;, and the
coherence length &, both diverge and, in particular, are much
larger than the size of the unit cell a and the width w of the
wires that make up the network.

The goal of our paper is to demonstrate, experimentally
and theoretically, that this universality in the periodicity with
respect to B is lost in kagomé networks at temperatures where
a, w > Az, &, and that device geometry and structural details
play key roles in setting the periodicity. This holds for any pe-
riodic network in which there are multiple holes with different
areas in a unit cell.

In contrast to the LPE physics described above, at lower
temperatures where these length scales turn finite, a more
complex behavior arises, which depends on details of the

©2024 American Physical Society


https://orcid.org/0000-0002-4978-944X
https://orcid.org/0000-0001-7407-5935
https://orcid.org/0000-0002-6929-4604
https://orcid.org/0000-0001-8225-3578
https://orcid.org/0000-0001-8047-6241
https://orcid.org/0000-0002-1270-2670
https://ror.org/03kgsv495
https://ror.org/03kgsv495
https://ror.org/02k3smh20
https://ror.org/03kgsv495
https://ror.org/01kg8sb98
https://ror.org/01kg8sb98
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.214514&domain=pdf&date_stamp=2024-12-18
https://doi.org/10.1103/PhysRevB.110.214514

XI WANG et al.

PHYSICAL REVIEW B 110, 214514 (2024)

network structure. The physics behind this lack of universality
is conceptually simple. For T" < T¢, assuming w > Ap, §,
the flux through each hole in the network must be strictly
quantized to an integer multiple of ®,. The actual areas of the
triangular holes A; and the hexagonal holes A, are no longer
in the same ratio as the geometric areas in the w — 0 limit.
Furthermore, the presence of quantized fluxes in the holes
sets up supercurrents, which generate magnetic moments. The
supercurrents have kinetic energy, the quantized fluxes have
magnetic field energy, and the magnetic moments have inter-
action energy. The system needs to find an arrangement of
quantized fluxes, which minimizes these competing terms. We
will show that true periodicity with B is lost, but an approx-
imate periodicity emerges, which depends on the ratio of the
actual areas of the holes A” . We will also show that at generic
values of total flux, there are a large number of competing
states very close in energy, leading to freezing in local minima
atlow 7.

The plan of this paper is as follows: In Sec. II, we pro-
vide a brief recapitulation of the LPE based on the treatment
of Alexander [9]. This shows why at and near either T or
H¢ the problem can be considered linear, and also why the
thickness of the wires does not matter for the LPE. In Sec. III,
we present the experimental results obtained with a scanning
SQUID on both square and kagomé networks. The square
lattice follows the LPE periodicity, but the kagomé results
show a clear deviation from the LPE periodicity of 8@, per
unit cell for the kagomé lattice. In Sec. [V we present a simple
model with only one free parameter incorporating the terms in
the energy mentioned above, and show that it reproduces the
experimental data quite well. In Sec. V we present some pat-
terns of flux “fillings” for the two types of holes in the kagomé
lattice, which appear at commensurate values of the flux per
unit cell, and compare them to the results obtained from our
model. Finally, in Sec. VI, we summarize our findings and
explore some open questions.

II. PERIODICITY WITH RESPECT TO B NEAR T AND H¢

The conventional way of studying the periodicity of super-
conducting structures is by the LPE, where the resistance very
close to the critical temperature is recorded as a function of
the magnetic field [3,18]. Our brief introduction to the theory
of the LPE will follow de Gennes [6,7] and Alexander [9].
We start with a thin wire (w < Az, §) implying that any
variation of the superconducting order parameter A across the
width of the wire is negligible, leaving it to vary along the
length of the wire. This leads to the following Landau-
Ginzburg free-energy functional for A:
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7 is the unit vector along the wire, and
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A is the vector potential. Close to criticality, one makes the
following well-justified approximations. (i) One neglects the
nonlinear term in Lg;, because A is very small near criticality.

where o =

(ii)) Now one considers a wire with its transverse dimensions
much smaller than its length, implying that A depends only
on the position along the wire. (iii) One now solves the
equations of motion for A in the wire between sites i and j,
provided the endpoint values A; and A; are specified. The
solution is [6,7,9]
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where £;; is the length of the wire joining sites i and j and
s is a length variable measuring the position along the wire.
The next step is to apply current conservation at each vertex,
leading to the coupled linear equations [6,7,9]
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The critical temperature or applied magnetic field B is reached
when this set of equations has no solutions with nonzero A. A
key assumption in the solution of these equations is that since
the superconductor is close to critical, screening supercurrents
will be vanishingly small. Thus, the material is unable to
screen the B field, implying that the B field is uniform, thus
specifying A completely. This fact is what makes the solution
so universal and independent of the width of the wires.

Based on this approach, we present the 7¢ versus field for
the square and the kagomé lattices in Figs. 1 and 2. As can be
seen, the square lattice ¢ is periodic when the flux through
each unit cell increases by ®(, while the kagomé lattice has a
period of 8®,.

III. LOW-TEMPERATURE RESULTS FOR THE SQUARE
AND KAGOME LATTICES

An alternative way of investigating the periodicity is to
track the flux trapped in the structure by magnetic imaging. In
recent decades, there have been several techniques employed
to do this, such as scanning Hall microscopy [20], mag-
netic decoration [21], and scanning SQUID microscopy [22].
In this paper, we use the last of these to map the static
magnetic landscape of superconducting Nb networks [see
Fig. 1(a)] [23-25].

We begin with the simple case of a square lattice, for which
we generated maps of the flux trapped in the grid cells after
cooling it down through 7 in the presence of a fixed magnetic
field. The evolution of flux patterns in this device is shown
in Fig. 1(b). It is seen that each cell sequentially fills with a
single @, resulting in two distinct value levels, corresponding
to the presence of n+ 1 versus n flux quanta. The pattern
evolves periodically, roughly displaying three distinct flux
patterns: staircase and checkerboard at 1/3 and 1/2 fillings,
respectively, and random near empty or full fillings.

As the magnetic field is increased, more cells are occupied,
and when each cell accommodates one @, a new flux-filling
cycle begins [Fig. 1(c)]. These observations are consistent
with previous findings using a scanning Hall probe [20]. The
periodicity extracted by locally imaging the flux patterns is
identical to the periodicity of the LPE on the same structure, as
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FIG. 1. Periodicity in a square cell network. (a) Illustrations of scanning SQUID measurement on a square and a kagomé lattice
superconducting network. The lattice spacing is a and the width of the wires is w. (b) Flux trapped in the square network shows random
configuration (filling factor 0.831), staircase (0.311), and checkerboard (0.484). In these images dark (light) color means lower (higher)
amount of flux. For a quantitative explanation of the values and for raw data, see Figs. S1 and S2 within the Supplemental Material [19]. The
flux difference between cells of different color amounts to one @y, see Fig. S3 within the Supplemental Material [19]. (c) Occupation vs flux
per unit cell. Each data point is calculated from a magnetic flux map showing the flux trapped in the network. Blue, random distribution; green,
staircase; black, checkerboard. Insets are flux maps demonstrating the different configurations at filling factor 1.125, 1.413, and 1.532. Scale
bar is 50 um. (d) Calculated LP effect using the approach of Ref. [9].

shown in Fig. 1(d). This periodic behavior is well understood, ones that contain shapes of different sizes. For example, the
as shown in previous experiments on a different structure with ~ flux configurations in triangular [28] and dice [29] lattices
arrays of isolated rings [26,27]. were mapped by magnetic decoration. However, with limited

The situation becomes much less trivial when dealing repetitions, these studies focused only on one or two com-
with patterns with more complicated unit cells, specifically mensurate filling factors. More complicated structures have
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FIG. 2. Periodicity of the fillings of hexagons and triangles in a kagomé cell network as a function of flux. (a) Scanning SQUID images
of representative flux configurations of the kagomé cell network. See Figs. S1 and S2 within the Supplemental Material [19] for raw data and
the deconvolution process. The left two scans marked in red and blue show isolated and diagonal hexagon configurations, as the hexagons
are slowly occupied while the triangles are empty. The right image (purple) shows the flux configuration when triangles are gradually filled.
(b) Occupation vs flux per unit cell in the kagomé network for both triangle and hexagon cells. The arrows mark the magnetic field where the
three images in panel a were taken. Each data point represents the occupation level extracted from the data, for both hexagons and triangles.
Different symbol colors point to the level of flux in the pattern. The data captures three flux levels for the triangular and 11 for the hexagonal
cells. For example, the blue arrow indicates that all triangles are at zero filling, with half of the hexagons filled by one &, while the other
half is filled by two ®. (c) Calculated LP effect using the approach of Ref. [9]. (d) Results from theoretical simulations, based on the actual
ratio of areas of the holes in the device, A, /A, = 7.84. The ratio o/g was varied to fit the results of the simulation as closely as possible to
the experiments, leading to «/g = 0.0824. Note that in addition to the proper ratio of periods between the fillings of hexagonal holes and the
triangular holes, the nonmonotonic filling of the hexagonal holes as the triangular holes become active is also reproduced.
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been studied in the context of the LPE, including aperiodic
structures like Penrose tilings [30,31], structures with tiles of
irrational area ratios [32,33], and the kagomé lattice [34-36].
Here, we focus on a kagomé lattice, with a unit cell that
is composed of a hexagon and two triangles that share a
side, focusing on much lower temperatures than one does
in LPE studies. In this paper, we studied a kagomé network
that was fabricated by standard lithography techniques and
had a hexagon side length of 8 um and a non-negligible line
width of 1 wm. The structure was composed of 50-nm-thick
Nb sputtered on a Si substrate.

Following the flux-filling maps of the kagomé grid as a
function of the field, we find that the hexagonal cells are
“active” throughout most of the @, cycle, showing randomly
filled hexagons, diagonal chains, and random holes [Fig. 2(a)].
The periodic hexagon filling cycle repeats itself over most of
the field range, except for fields close to the half-filling of the
triangular cells [Fig. 2(b)]. Interestingly, only in that narrow
field range are the triangular cells “active”. This behavior
occurs because the energy cost of cell filling is inversely
proportional to the area of the hole A. At small magnetic
fields, the flux partially occupies the lower energy sites (the
hexagons), forming patterns with increasing flux density that
minimize the system energy. At high enough fields, it becomes
energetically favorable to fill the triangles and their occupa-
tion takes over [Fig. 2(b)].

Surprisingly, the filling of the holes does not repeat when
the applied magnetic flux through a unit cell is incremented by
8®(, which would be the natural period for the LPE [3,34,35]
since it represents an integral number of flux through each
plaquette (a hexagon and two triangles). Indeed, the periodic-
ity extracted from the SQUID measurements, 8.5, and that
expected from the LPE, 8®, [Fig. 2(c)], show a clear discrep-
ancy. Very shortly, in the next section, we will propose and
analyze a theoretical model, which explains this observation,
and show that, depending on geometric details of the system,
this difference in the periodicities can be much larger (see
Sec. IV and Fig. 6 within).

Each point in Fig. 2(b) represents data extracted from a
single cool-down at a specific field. Repeated cool-downs
under the same field consistently yield the same results for the
average occupations, although the images produced can vary
significantly. For instance, we conducted eight cool-downs at
a filling factor of 4.3, and the resulting occupations have a
standard deviation of 0.014 for the triangle occupation and
0.019 for the hexagon occupation. Since this is smaller than
the symbol size in the figures, we do not present error bars
explicitly. Figure 3 displays data from four of these eight
cool-downs at 4.3 fillings, illustrating the fact that while all
show the same average occupations, the individual images
(and thus the flux configurations) differ markedly from one
another.

The occupation curve [Fig. 2(b)] exhibits interesting fea-
tures, such as the skipped cycles of the triangles mentioned
above. In the following, we list some of these features and use
direct imaging of the flux configuration images to resolve their
meaning.

Starting from zero filling and moving upward, just before
the triangles begin to activate (filling 2-3), there is a small
peak in the triangles’ occupancy. The images reveal that the
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FIG. 3. Changes in the flux pattern of the kagomé network upon
cycling the temperature above 7¢ and cooling back down. [(a)—(d)]
Scanning SQUID images of flux configurations at fillings 4.3®,
from different cool-downs. At this flux filling the average occupation
of the triangles is one-half. The typical pattern at this magnetic
field is complicated and changes upon temperature cycling. But the
averaged occupations of triangles and hexagons are similar in each
images. The deconvolution process, and the raw data are described
in Figs. S1 and S2 within the Supplemental Material [19]. [(e)—(f)]
Corresponding flux filling maps of panels (c) and (d). The flux levels
represented by different colors are noted near the symbols.

location of filled positive hexagonal cells forms clusters, and
while preferring to sit together they repel positive filling of the
triangles. The triangle filling is suddenly larger than zero (see
Fig. 4). Around the filling factor 4, as the triangles’ occupancy
slowly increases, there is a sudden peak (or significant noise)
observed in the occupation values.

Surprisingly, after the filling of the triangles is completed
and the hexagonal filling returns to normal activity, there is
a sudden increase in the triangles’ occupancy around 5-6
filling. This activity appears stronger than the one near the
peak observed at 2-3 filling. As explained in the next section,
in our model this behavior is a consequence of the magnetic
interactions between flux plaquettes.

IV. THEORETICAL MODEL AND RESULTS

The crucial difference between T close to T¢, as is the case
in the LPE, and T « T, is the fact that in the LPE case the B
field is uniform, and the problem is linear.
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FIG. 4. Data showing an effective repulsion between the occupa-
tions of triangles and hexagons. [(a)—(f)] Scanning SQUID images
of flux configurations of the kagomé cell network between a flux
filling of 2 and 3. Flux per unit cell: 2.14, 2.41, 2.35, 2.54, 2.75, and
2.99. Before the triangles become active at filling 3, hexagons with
occupation 3 (yellow) repel triangles with occupation 1 (yellow). At
a flux filling of 3 only the hexagons are occupied. The deconvolution
process, and the raw data are described in Figs. S1 and S2 within the
Supplemental Material [19]. (e)—(1) Corresponding flux filling maps
of panels (a)—(f).

As mentioned in the Introduction, for T < T we have
A, & < a, w, which means that the B field vanishes inside
the superconducting segments of wire. Recall that the width
of the wires is about 1 um, whereas niobiuim for 7 < T¢
has Ay =~ 0.04 um, & ~ 0.05 wum. The only caveat is that the
thickness of the entire Niobium layer from which the network
is made is d & 0.05 um. Thus, the model that we present
below should be thought of as an idealization of the real
situation.

In the ideal situation with d > A;, the flux penetrating
each hole has to be quantized and be an integer multiple of
®(. Here, we will proceed with this simpler model and discuss
deviations for the realistic case d ~ Ay, later.

The quantized fluxes in the holes are supported by cir-
culating supercurrents in the network. In principle, the flux
through a particular hole i depends on the currents throughout
the network, but we make the simplifying assumption that the
supercurrent circulating around a particular hole, and thus the
magnetic moment m; associated with that hole, depends only
on ¢;. As we show within the Supplemental Material [19], the
magnetic moments associated with the hole i is m; \/Xiqﬁi,
where A; is the area of the hole i. Importantly, A; is different
from the geometric area A; of a plaquette of a lattice with in-
finitely thin wires (see Fig. 5), because of the nonzero width w
of each wire in the network. Once we make this assumption, it

FIG. 5. Kagomé network with a lattice spacing a and wire width
w. Note that area of a plaquette A; (with i = for triangle, i = h
for hexagon, demarcated by solid blue lines) can be significantly
different from the area of the corresponding hole in the network A;
(demarcated by dashed red lines). For conditions close to criticality,
such as the LPE, it is the plaquette areas A; that matter, while at very
low temperatures, when the fluxes through the holes are quantized, it
is the areas of holes A; that matter.

is straightforward to write down a classical energy functional

for the ¢;,
A¢ 2
E({cb})—az ‘r’ WL

i#j R; i

—y ﬁ 3 JE¢i. @)

Here, the first term is the dipole-dipole interaction between
m; and m;, with R; denoting the position of the geomet-
ric center of the hole i. The second term, the self-energy
of the flux ¢;, models the sum of the magnetic field en-
ergy of the flux going through the ith hole and the kinetic
energy of the supercurrent producing ¢;, with d being the
thickness of the wire in the z direction. The last term is
the coupling of the magnetic moment to the external field.
The coupling constants in the model are v, g, y.By demand-
ing that all the externally applied field goes through the holes
(see the Supplemental Material [19]), one determines y in
terms of «, g. Assuming very low T « T, we use simulated
annealing to find the minimum energy configurations, for
which the overall energy scale is unimportant. Thus, there is
only one free parameter in the model, the ratio /g, which
we fit to the experiment. As shown in Fig. 2(d), this simple
model does a good job of reproducing the experimentally
observed periodicity, including the nonmonotonic filling of
the hexagonal holes when the triangular hole is being filled.

Let us delve deeper into the physics behind the discrep-
ancy between LPE and flux configuration periodicities. The
key quantity in determining the flux penetration into a super-
conductor is the penetration depth A, which is replaced by
Aot = A2 /d for thin films of thickness d. At T, A — 00
so that the magnetic field penetrates the entire film uniformly.
This is the LPE regime. In a continuous film, for 7 < T, Aeg
is finite and a magnetic field penetrates in a nonuniform way,
maximized at locations where the superconducting order pa-
rameter is zero (randomly located superconducting vortices).
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FIG. 6. Dependence of the approximate period of flux periodicity
of the filling pattern on the kagomé lattice AP on the width w of
the wires. (a) A® as a function of A, /A,. The period varies roughly
linearly with the ratio of the actual areas, indicating its importance.
(b) and (c) The filling of the triangular holes vs external flux at
A,/A, =6.7and A, /A, = 10.4 for (b) and (c), respectively.

In a network, the location of these zeros is dictated by the
geometry, as the film contains holes.

In this respect, the behavior is very different at 7 and well
below T¢. In the LPE regime 7' < T, the penetration depth is
infinite and hence A, > w, whereas T < T represents the
opposite limit where Ao << w. Thus, in the low-temperature
regime of our experiment, the flux does not penetrate the wire
beyond a surface layer of thickness ~A.s. This leads us to
model the holes in the lattice through which the magnetic flux
must be quantized, encircled by supercurrent loops generating
magnetic dipole moments. The competition between the self-
energy of the dipoles, their interactions with one another, and
their coupling to the applied field determine the configurations
of fluxes through the holes. Importantly, any periodicity of
configurations is determined by the areas of the holes in the
lattice, rather than the areas of the ideal plaquettes, so that the
periodicity necessarily present in the LPE regime is modified.
The model is able to broadly reproduce the behavior observed
in the experiment [Fig. 2(d)] by tuning a single adjustable
phenomenological parameter.

To demonstrate the role of the nonzero width w of the wire,
we carried out simulations of our model with varying w/a,
where a is the lattice spacing defined in Fig. 1(a). This leads
to varying ratios A, /A,. As illustrated in Fig. 6, we find that as
this ratio increases, the period of the triangle filling increases.
This occurs because the self-energy of the triangular holes
increases relative to that of the hexagonal holes as the ratio
A, /A, increases, and they become harder to fill. It is important
to note that because of the nonlinear nature of the energy
functional, and the fact that the fluxes ¢; are constrained to
be integral, there is only an approximate periodicity. We can
thus understand that the difference between the LPE and the

low-temperature behavior of a superconducting wire array
originates in the difference between minimizing the energetic
phase stiffness cost at 7, and the energetics of localizing its
associated magnetic flux, which becomes dominant at low
temperature.

The above discussion was based on the idealized as-
sumption that the thickness of the superconductor d > A;.
However, in the experiment, d ~ Aj. Clearly, the B field will
not be exactly zero within the superconductor, but will decay
away from the holes. This can be taken into account by intro-
ducing an “effective” area for each hole A; ¢fr, Aper Whose
values lie between the geometric areas of the corresponding
plaquettes, and the actual areas of the holes. In fact, even
in the ideal case, we should have done this, because our
estimate for the field energy assumes that the field is uniform
in the hole, while in reality it would be largest near the center
of the hole and be smaller near the superconducting wires.
There is enough freedom in the three parameters «, g, y to
accommodate these complicating effects. Thus, we conclude
that the model continues to be valid, provided we interpret
the parameters «, g, ¥ to incorporate correction factors for
the difference between the actual areas of the holes and their
effective area.

V. CONFIGURATIONS AT SPECIAL VALUES OF FLUX

In Sec. III we pointed out some interesting features of
the data as the flux is varied. It turns out that the model
can reproduce gross features of the data. For example, in the
region of flux when the triangles are changing their filling,
there is a nonmonotonic behavior of the hexagon filling. This
is correctly reproduced by the model. In addition, while the
triangles are inactive, only two flux fillings of the hexagon are
ever observed. However, in the region where the triangles are
active, a third occupation of the hexagons is observed in the
data, and reproduced by the model.

The features of the data that the model fails to reproduce
mainly concern sharp features such as the kinks in the triangle
filling at flux per unit cell of 4. We believe this is the result
of the small number of samples observed at this filling. The
theoretical curve is the average of thousands of simulated
annealing runs for each value of flux.

This brings up the issue of whether the experimental mea-
surements correspond to samples in thermal equilibrium, or
whether the configurations are frozen in local energy minima.
Later in this section we will show scanning SQUID images
at the same flux filling, but for different cool-downs, showing
direct evidence that very different configurations are seen for
different cool-downs (Fig. 3). We can also examine the same
question in the model. There is a sharp dichotomy in the
model results depending on whether the flux per unit cell is
such that the triangles are active. For values of flux when the
triangles are quiescent, although there are many distinct local
minima accessed by simulated annealing, there is very little
scatter in the values of the average occupations of the two
types of holes. However, when the triangles are active, the
scatter in the average occupations increases substantially. This
trend is seen in Fig. 7, which shows the average occupations
of the triangles and hexagons versus the energy of the local
minimum at three different values of flux per unit cell.
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to a lack of self-averaging.

These results suggest that in regions of flux where the
triangles are actively filling, there is a lot more diversity in
low-energy configurations accessible to the sample. Thus, one
can expect more variations between samples, or even between
different cool-downs of the same sample.

To examine this further, we look at the comparison between
the experimental and theoretical configurations at the same
value of flux. The parameters of the model have been fixed
at the values that best fit the occupations versus flux data, as
described in Sec. I'V.

Figure 8 shows some experimental patterns as the filling
changes around a filling of 4®, when the triangles are active.
Panels (a)—(f) show the scanning SQUID images, with (a)
corresponding to the lowest flux filling per unit cell of 3.68®,
and (f) corresponding to the highest flux filling of 4.14®,. The
corresponding flux filling maps extracted from the data are
shown in panels (g)—(1). Remarkably, in this region, we find
domains that exhibit distinct structural patterns, each with a
unique motif. For example, hexagons at filling 4® are almost
always surrounded by empty triangles, hexagons at filling 3®,
are surrounded primarily by triangles with zero flux, while
hexagons with filling 2& are surrounded primarily by trian-
gles at filling @ . As the flux per unit cell increases, we see the
domains with hexagons at filling 4®, surrounded by empty
triangles growing. The size of these domains is ~100 um in
the fields we examined.

In Fig. 9, we show some configurations obtained from sim-
ulated annealing based on our model, for the same sequence of
fillings as in Fig. 8. As before, the theoretical results are much
more regular than the experimental ones. However, we see the
same motifs as in the experiment, namely, hexagons at 4®,
surrounded by empty triangles, hexagons at 3@, surrounded
by a mix of empty and singly filled triangles, and hexagons
at 2® surrounded by singly filled triangles. This gives us re-
newed confidence that our model is getting the short-distance
physics approximately correct. Furthermore, the domains with
4d, hexagons surrounded by empty triangles grow as the
flux filling increases, just as in the experiment. However, the
domains in the simulation are far more regular. We attribute

this to the disorder present in real samples, which is absent
in the model. Each hole in a real sample has a slightly differ-
ent area and shape, leading to small variations in the on-site
energy and the magnetic moments associated with each hole.
Another possibility is that the model is missing some resid-
ual short-range interactions, arising from our neglect of the
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VI. CONCLUSIONS
In conclusion, we have studied the low-temperature distri-

To summarize, by comparing the configurations seen in ex-
bution of quantized magnetic flux in a superconducting wire

periment to those seen in the simulation we conclude that the
theoretical model has the correct short-distance physics, but
fails to account for the sizes of domains seen in experiment.

inevitable disorder present in real samples. Furthermore,
This discrepancy probably results from a combination of the

hexagons at filling 3®y seem to form a smaller fraction of
hexagons in the simulation. In other words, the hexagon filling
has a broader distribution in the simulation than in the exper-
iments. This is actually evident in the comparison between
Fig. 2(b) and Fig. 2(d). The experimental data shows only
two nontrivial fillings of the hexagons, whereas the model
shows three nontrivial fillings. The source of this discrepancy
is unclear to us at present, though it must be rooted in the

approximations we have made in constructing the model.
disorder inherent in real samples, and the approximations

made in the model.
array in a kagomé lattice with two different areas of plaque-

ttes. We found two periodicities related to the same geometry.
Near the critical temperature 7¢ the length scales related to

superconductivity (the London penetration depth A; and the
the unit cell a or the thickness of the wires w making up the

coherence length &) are much larger than the dimensions of
network. The resulting periodicity of T with respect to flux
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FIG. 9. Selected images of flux configurations of the kagomé cell
network near fillings 4, based on simulated annealing of the model of
Sec. IV. We use the same sequence of flux fillings as in Fig. 8. Flux

Figure 3 shows some experimental flux filling configu-

rations for different cool-downs at a flux filling of 4.3 per
In Fig. 10 we show four theoretical configurations from

shapes of the holes, which could account for the difference
in configurations. However, our model seems to contain the
correct short-distance physics, which suggests that disorder is
our model at the same filling of 4.3®, per unit cell. There are
several differences between the experimental and theoretical

the likely reason for the differences between the experiment

and our model results.
unit cell. Panels (a)—(d) show the scanning SQUID images,

filling per unit cell are (a) 3.68, (b) 3.86, (c) 3.96, (d) 4.01, (e) 4.15,
while panels (e) and (f) show the flux filling in the triangles
and hexagons extracted from panels (c) and (d) respectively,
with the colors identified with different fillings. Now, we see
hexagons at filling 2@ surrounded exclusively by triangles at
unit filling, hexagons at filling 3®, and 4P, surrounded by a
mix of empty and singly filled triangles. Hexagons with 3®
seem to dominate, with far fewer hexagons filled with 2d, or
4P,.

results. The main difference is that the model configurations
consist of large domains of almost periodic arrangements,
whereas the experimental configurations are much more ran-
dom. As discussed above, this is likely attributable to the

and (f) 4.14.
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is the universal Little-Parks periodicity, which is 8® per unit
cell for the kagomé lattice. However, for T < T, such that
a,w > Ar, &, the physics becomes nonuniversal. Now each
hole in the lattice must have a flux that is strictly quantized in
units of ®(. The distribution of these fluxes is governed by an
energy functional containing the kinetic energy of the super-
currents around each hole, which we model as a “self-energy”
of the flux occupying a hole, and the interaction energy of
the magnetic moments thus formed. Making simplifying as-
sumptions, we have constructed a simple model with only one
free parameter, which reproduces many gross features of the
data.

These findings have several important implications for both
fundamental research and applied physics. The approximate
periodicity we observe at low temperatures, governed by the
ratio of the areas of the holes rather than the geometric areas
of the plaquettes, suggests that device design and interpreta-
tion of experimental data in superconducting networks must
carefully account for such geometric details. Moreover, our
observation that self-averaging may be lost in certain flux
regimes highlights the need for further investigation into the
metastability and energy landscape of such systems, particu-
larly in the context of quantum computing and other precision
applications that rely on stable and predictable superconduct-
ing behavior.

Looking forward, several questions remain open. For ex-
ample, how does the presence of disorder or variations in
hole shapes and sizes further impact the flux configurations
and periodicity in real-world devices? Additionally, what

are the implications of these findings for other complex su-
perconducting networks, such as those with different lattice
symmetries or inhomogeneous materials? These questions
point to a rich field of future research, where understanding
the interplay between geometry, temperature, and magnetic
flux could lead to new insights and technological advances.
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