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Abstract  

Rotational inertia mechanisms offer innovative possibilities for mitigating the effects of 

dynamic loads on structures. While conventional approaches to structural response modification 

involve modifying stiffness, strength and damping, a promising alternative lies in the variable 

inertia rotational mechanism (VIRM), which represents a novel approach for variably shifting the 

effective mass of a structure. Despite its potential, the vibration mitigation effectiveness of the 

VIRM under seismic loads and its influence on frequency shifts with complex loading 

environments remain a gap in current understanding. This study explores the impact of the VIRM 

on a two-degree-of-freedom (2DOF) structure subjected to white noise loading and seismic ground 

motions. Through a numerical assessment of this structure with single and multiple VIRMs and 

considering different inertance ratios and load amplitudes, this study seeks to investigate the 

frequency shifts and the efficacy of VIRM in reducing structural response. The findings of this 

study highlight the potential of VIRM’s to alter natural frequencies and mitigate structural 

response under different load scenarios. This study addresses existing gaps in knowledge and 

contributes valuable insights into the interplay of VIRM parameters, frequency shifts, and the 

effectiveness of VIRMs for enhancing structural performance and seismic protection.  

Keywords: Variable inertia, Instantaneous frequency, Incremental dynamic analysis, Seismic, 

Passive control  



2 
 

1 Introduction 

Civil engineering structures can experience adverse effects when subjected to dynamic 

loads such as seismic excitation and wind. The behavior and response of a structure can be 

modified by altering the stiffness, strength, and damping of that structure [1], [2], [3], [4], [5]. 

However, alternative passive control devices utilizing supplemental rotational inertia mechanisms 

(RIMs) have been developed to modify the effective mass of a structure [6], [7], [8], [9], [10]. 

Arakaki et al. first proposed using a rotary damper in the late 1990s, which combines a ball screw 

assembly and cylindrical mass rotating inside a chamber filled with a viscous fluid, to modify the 

seismic response of structures [6], [11]. These supplemental rotational inertia devices transform 

the relative displacement between the terminals to rotational motion of a flywheel. In the force-

current analogy, these devices function as a mechanical counterpart of an electrical capacitor. This 

analogical relationship was initially identified by Smith, who introduced the term ‘inerter’ in 2002 

for any mechanical arrangement where the resultant force is proportional to the relative 

acceleration between its two terminals [7].  

Inerters can be physically realized with mechanical mechanisms such as a ball-screw or 

rack and pinion assembly with a flywheel, or with fluid-based or electromagnetic-based 

mechanisms [7], [12], [13], [14], [15]. The output force of an inerter is proportional to the relative 

acceleration between its terminals. The constant of proportionality is called inertance and has the 

same units as mass. One of the distinguishing features of the inerter is its mass amplification effect. 

Due to this mass amplification effect, the inerter can produce substantial inertial mass with 

minimal physical mass.  

Upon its conceptual development and initial experimental validation, the inerter has been 

studied in vehicle mechanics and dynamics to control suspension vibration [16], [17] and has also 
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been proposed for wind and seismic protection of civil structures. In civil structures, these 

mechanisms are often combined with other control applications, such as tuned mass dampers, 

viscous dampers, toggle braces, external rocking walls, negative stiffness devices, and friction 

pendulums, to enhance performance [18], [19], [20], [21], [22], [23], [24]. These systems are 

examined in applications, such as optimal design and seismic protection of building structures 

[25], [26], improving base isolation systems [8], [27], and mitigating wind-induced vibration of 

tall buildings [18], [28] and cable-stayed bridges [23], [24].  Researchers have also investigated 

inerter-based devices in multi-degree-of-freedom (MDOF) structures to examine the natural 

frequency changes [29] and enhance performance of tuned damper systems [25], [30], [31]. 

Furthermore, inerter-based dampers, such as multi-tuned damper inerter [32] and multi-tuned 

liquid column damper inerter [33], have been investigated to control the seismic vibration of 

adjacent high-rise buildings.    

While inerters are characterized by linear behavior and constant resulting inertance, 

another branch of research explores nonlinear mechanisms with variable inertance [34], [35], [36], 

[37], [38]. Variable inertance can be produced in multiple ways including exploiting geometrically 

nonlinear configurations of otherwise linear inerters [34], [39] or by modifying the rotational 

inertia of the mechanism’s flywheel  [37], [38], [40], [41], [42], [43], [44]. This study considers 

one such mechanism, called the variable inertia rotational mechanism (VIRM), which employs a 

flywheel that contains masses that can move within the flywheel and thus produce variations in 

the flywheel’s rotational inertia [37], [38], [40], [41], [42]. This variable rotational inertia can 

cause notable modifications to the dynamics of the host structure, thereby VIRMs offer a potential 

for integration into vibration control strategies.  
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In vehicle systems research, VIRMs have demonstrated improvements in rider comfort, 

better road handling and safety, and decreased suspension deflection under most circumstances 

[40], [41]. VIRMs have also been studied to increase power absorption bandwidth, increase 

vibration mitigation, and enhance stability in power systems, such as hydraulic motors, diesel 

generators, wave energy converters, and wind turbine rotors [37], [42], [43], [44], [45]. However, 

many of these studies have considered active and semi-active versions of the VIRM, not the 

passive VIRM [44], [45], [46]. 

While applications in other fields have been considered in different research studies, the 

investigation of the potential of VIRMs in civil engineering structures is less developed. 

Furthermore, the authors are unaware of any VIRM implemented in civil engineering structures. 

The existing research has yet to investigate the impact of VIRMs under seismic ground motion or 

random noise. While limited studies on VIRM indicate effectiveness in reducing the response 

amplitude of dynamic systems, their influence on instantaneous frequency has not been fully 

studied. Additionally, the effect of VIRMs on MDOF system dynamics remains unexplored. As a 

result, there is a notable gap in understanding the impact of variable rotational inertia on the 

frequency shifts and response of MDOF systems subjected to seismic ground motion and random 

noise.  

The novelty of this study is that it aims to address these gaps in knowledge and numerically 

evaluate the frequency shifts and effectiveness of VIRM in reducing the response of a two-degree-

of-freedom (2DOF) structure. This investigation includes scenarios with a structure with single 

and multiple passive VIRMs that is subjected to seismic ground motion and white noise loading. 

The study also explores the effect of VIRM inertance ratios and changes in load amplitude on the 

frequency shifts and response reduction. The computed response quantities for the 2DOF structure 
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with VIRMs will be compared to those of a structure with fixed inertia rotational mechanisms 

(FIRMs).  

This paper is structured as follows. In Section 2, the mechanics of the VIRM and 

mathematical models of a 2DOF structure with one or two VIRMs are described. Section 3 

introduces the parameters of the structure and the loading considered in this study as well as the 

response measures that will be used to evaluate the effect of the VIRM. The impact of VIRM on 

natural frequency shifts is presented in Section 4, while Section 5 discusses the impact of the 

VIRM on an H2 response measure. Section 6 presents results from incremental dynamic analyses 

investigating the effects of VIRM on the response of the structures to various ground motions. The 

impact of the inertance ratio and loading amplitude are also considered in the results presented in 

Sections 4, 5 and 6. Finally, the study is summarized and conclusions are presented in Section 7. 

2 Equations of motion of 2DOF structure with variable inertia rotational mechanism  

Figure 1(a) depicts the 2DOF primary structure that is considered in this numerical study, 

which has two identical VIRMs attached between the ground and the first floor and between the 

first and the second floors. In Figure 1(b), the two DOF primary structure has one VIRM that is 

attached between the ground and the first floor of the structure. In both Figure 1(a) and Figure 

1(b), the first and second story masses are �௦భand �௦మ , and �௦భ , �௦మ, �௦భ and �௦మ  are the stiffness 

and the viscous damping coefficients of the two stories. In this study, two other RIM configurations 

are investigated in the 2DOF primary structure: one where the two VIRMs are replaced with two 

identical fixed inertia rotational mechanisms (FIRMs) and another where the single VIRM is 

replaced with a single FIRM. In comparison to a VIRM, all components of a FIRM maintain a 

fixed configuration irrespective of the flywheel’s rotational velocity.  



6 
 

The VIRM considered in this study is shown in Figure 2 and utilizes a ball screw 

mechanism to transfer the relative translational motion of a story of the structure in to rotational 

motion of the device’s flywheel. In this study, the VIRM features a flywheel hub with four 

symmetrically spaced guide tracks and four discrete masses on the guide tracks that are connected 

to the flywheel hub with trilinear stiffness elements, as illustrated in Figure 2. It is assumed that 

the slider masses in each flywheel are synchronously moving with the same radial motion. The 

motion of the VIRM slider masses are damped with each slider mass modeled as connected to a 

viscous damper with coefficient sdc ; however, as in the example physical realization shown in 

Figure 2a, this slider damping may result from inherent damping in the slider instead of a discrete 

viscous damping source. When the flywheel is at rest, the masses are located at an initial radial 

position, x0, near the center of the flywheel. As the flywheel rotational velocity increases, 

centrifugal force drives the masses to move radially outward, while the springs attached to the 

flywheel masses make the masses slide back toward their original position given decreases in the 

rotational velocity. The radial movement of the masses causes a restoring force in the springs that 

increases with the change in the radial position of the masses. 

 The mathematical model of the springs assumes a trilinear elastic force-displacement 

relationship that has a relatively low stiffness at the center (ksd) between two relatively stiff penalty 

spring segments (kp), as illustrated in Figure 2(c). When the flywheel masses approach the upper 

bound contact point (Rubc) near the end nut or the lower bound contact point (Rlbc) near the flywheel 

hub, as shown on Figure 2, the penalty spring stiffness segments work to further restrain the 

movement of the slider masses. This behavior mimics the behavior of springs that would stiffen 

as they approach being fully compressed. 
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Figure 1. (a) 2DOF primary structure with two VIRMs (2VIRM structure) (b) 2DOF primary 

structure with one VIRM (1VIRM structure) 

The rotational velocity of the flywheel of the VIRM is proportional to the relative velocity 

between the two attachment points on the structure. The relationship can be expressed as  
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where �̇ଵ and �̇ଶ are the rotational velocities of the two VIRM flywheels, and �̇௦భ , �̇௦మ , and �̇௚ are 

the absolute velocities of �௦భ, �௦మ and the ground. α1 and α2 are the proportionality coefficients 

governing this relationship. In this study, α1= α2 =α and � = ଶగఘ  for a ball-screw mechanism where 

  is the lead of the ball-screw. 
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Figure 2. (a) Potential realization of VIRM, (b) Schematic diagram of the VIRM flywheel, (c) 

Trilinear force displacement relationship for the spring connected to the slider mass 

The equations defining the restoring force of the trilinear spring (�௕௦ௗ೔(�௜)) as a function 

of the radial displacement of the slider masses of the VIRM in the ith story (xi) are 
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The moment of inertia of the flywheel of the VIRM can be divided into constant and 

variable parts. The constant portion of the VIRM moment of inertia is  

 2 2 2
constant

1 3 1
12 4 2i sd sd sd cJ n m d h m r        

  (3) 

where ni, msd, dsd, hsd, mc and r are the number of sliders in the VIRM in the ith story, slider masses, 

slider diameter, slider height, mass of the flywheel without the sliders, and radius of the flywheel, 

respectively. The variable part of the moment of inertia is related to the radial position of the slider 

masses; when the slider masses move along the guided slot of the VIRM flywheel, the moment of 

inertia changes. The mass effects provided by the VIRM to the structure increase as the moment 
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of inertia of the VIRM increases. Besides the ability of the slider masses to move during the 

response of the structure, the VIRM and FIRM flywheels have the same physical properties. The 

moment of inertia of the flywheel of the VIRM and FIRM flywheels in the ith story can be 

expressed as 

 
2

constant

2
constant

i

i

VIRM i sd i

FIRM i sd

J J n m x

J J n m y

 
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  (4) 

The fixed position of the slider mass of the FIRM is denoted by y in Equation (4). In this 

study, y is set as either x0, the initial position of the masses in the VIRM, or Rubc, the upper bound 

contact point.  

The equations of motion of the 2DOF primary structure with two VIRM, which is shown 

in Figure 1(a) and hereafter referred to as the 2VIRM structure, can be derived using the 

Lagrangian method. The detailed derivation is presented in the Appendix. For this derivation, it is 

assumed that the two VIRMs have identical properties. The Lagranges’ equation of motion in 

generalized coordinates can be defined as 

   ,  1,2,3, 4;i
i i i

d V p t i
dt q q q

  
   

  
  (5)

where q1, q2, q3, q4 are the displacements relative to the ground of the two masses of the primary 

structure (�௦భ and  �௦మ) and the radial displacements of the slider masses in the two VIRMs (x1 and 

x2); T and V denote the kinetic energy and potential energy of the dynamic system, respectively.   

The kinetic energy of the system can be formulated from the motion of the masses of the 

structure’s floors, rotation of the flywheels, and radial and tangential velocity of the slider masses 

in the flywheels. The potential energy includes the elastic energy stored in all the springs, including 
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elastic energy stored in the springs related to the structural stiffness (�௦భ , �௦మ) and the VIRM 

stiffness (ksd, kp). The gravitational effect on the slider mass movement is not considered here. The 

non-conservative forces include the externally applied forces as well as the damping forces 

associated with the VIRM slider masses and the inherent damping of the structure.  

The equations of motion of the 2VIRM structure subjected to an absolute ground 

acceleration are 
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 (6) 

The equations of motion for the primary structure with 1 VIRM in its first story, which is shown 

in Figure 1(c) and hereafter referred to as the 1VIRM structure, are shown in Equation (7). Note 

that the  
1 1bsdF x  in Equation (6)  and Equation (7), and  

2 2bsdF x  in Equation (6) are the 

expressions of the nonlinear spring restoring force of the VIRM’s attached at the 1st and 2nd story, 

respectively, as established in Equation (2). 
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  (7) 

In order to evaluate the impact of the VIRM, comparisons will be made to cases where the 

VIRMs are replaced with FIRMs. The system where identical FIRMs are placed in each story of 

the primary structure is referred to as the 2FIRM structure and the system where a FIRM is 
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positioned in just the 1st story is referred to as the 1FIRM structure. The equations of motion for 

the 2FIRM structure and 1FIRM structure are shown in Equation (8) and Equation (9), 

respectively. Note that the systems in Equation (8) and Equation (9) are the natural result of the 

systems in Equations (6) and Equation (7) with the slider masses fixed at radial position y. 
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Additional comparisons will be made with the primary structure without a VIRM or FIRM. 

This structure will be referred to as the no control structure and the equations of motion are similar 

to the structures with FIRM, excluding the moment of inertia terms. For convenience, the 

following ratios are defined and will be utilized throughout this paper.

  th* / :flywheel mass ratio; : i  mode natural frequency of the 

primary structure without VIRM/FIRM; / 2 : primary structure damping ratio;
i i

i

flywheel sd c s s

s s s s

n m m m

c m

 

 

 


        

3 System parameters and response measures 

This section presents the parameters of the systems and the loading parameters utilized in 

the analysis of these systems. The range of possible mass effects that are produced by the VIRM 

given these parameters is also presented. Furthermore, the response measures used in the 

subsequent section to evaluate system dynamics and performance are introduced.  
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3.1 System and analysis parameters 
The results of numerical simulations will be used to compare the dynamic behavior and 

response of the systems described in the previous section (Equations (6)-(9)). These numerical 

simulations are performed using the MATLAB implicit solver [47] with an output frequency set 

at 4000 Hz. The structure is excited using a band-limited white noise (BLWN) ground acceleration 

with a frequency range of 1 to 15 Hz, as well as seismic loading. The broadband excitation provided 

by the BLWN is well-suited for investigating the resulting changes in the structure’s dynamic 

properties. Using the 50 seismic records of the FEMA P695 far-field and near-field earthquake 

sets [48], differences in the seismic response of the structural configurations are assessed with a 

specific focus on median maximum story drift and acceleration.  

The system parameters selected for this study are shown in Table 1. The resulting natural 

frequencies of the structure and linearized natural frequencies of the slider mass are between 1-10 

Hz. The structural damping coefficients were selected so that the 2DOF structure itself has 2% 

inherent damping in each mode and the resulting physical damping coefficients were utilized for 

the other structural configurations.  

Table 1. System parameter values 

Symbol  Description Value  

1 2s sm m  First and second story mass 300 kg 

1 2s sk k   First and second story stiffness 320000 N/m 

1( )nocontrol   1st mode natural frequency (no control) 3.21 Hz 

2 ( )no control   2nd mode natural frequency (no control) 8.41 Hz 

s   Damping ratio in each mode of the primary system 
without VIRM/FIRM  

2% 

flywheel   Flywheel mass ratio  0.003, 0.008, 0.015  

cm   Flywheel mass (without sliders) 0.5 kg 
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1 2n n   Number of sliders in the VIRM in the 1st and 2nd 
story 

4 

sdc  Slider damping coefficient 5 Ns/m  

sdk   Slider soft stiffness 30 N/m 

pk   Slider penalty stiffness 6000 N/m 

sdd   Slider diameter 0.02 m 

sdh  Slider height 0.015 m 

R   Flywheel radius 0.1 m 

0x   Initial position 0.02 m 

ubcR   Radial position of the upper penalty spring 0.095 m 

lbcR   Radial position of the lower penalty spring 0.005 m 

   Proportionality constant between relative structure 
velocity and flywheel angular velocity 

200 (rad/m) 

 
Depending on the radial position of the slider masses in the flywheel, the moment of inertia 

of the flywheels of the VIRM change, as well as the mass effects they provide. The inertance 

 1 2 12 2 1, ,VIRM VIRM VIRMb b b  and inertance ratios  1 22 2 1, ,VIRM VIRM VIRM     are defined as,  
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  (10) 

Figure 3 presents the effect of flywheel mass changes and the changes in slider mass 

position on the inertance ratios of the VIRM in the 2VIRM and 1VIRM structures. The figure 

shows that the inertance ratio increases as the sliders move out radially. This increase in inertance 

ratios with respect to slider position is consistent across all flywheel mass ratios considered for the 

2VIRM and 1VIRM structures. Additionally, the inertance ratio of the 2VIRM structure is 

comparatively higher than the 1VIRM structure, particularly at higher flywheel mass ratios and 
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greater slider displacement. For instance, at flywheel mass ratio of 0.015, the maximum inertance 

ratio of the 2VIRM structure is 5.5, compared to 3 for the 1VIRM structure. 

 
Figure 3. Inertance ratios across different flywheel mass ratios and a range of slider mass radial 

positions (a) 
12VIRM , (b) 

22VIRM  and (c) 1VIRM . Note that marker legends are Blue: 

0.002flywheel  Orange: 0.003flywheel  , Yellow: 0.008flywheel  , Purple: 0.012flywheel  , 

Green: 0.015flywheel  , and Sky blue: 0.018flywheel  ,  '*' denotes FIRM (at Rubc), 'o' denotes 

FIRM (at x0)  

3.2 Response Measures 
As described in the following sub-sections, various response measures are computed to 

assess the dynamic behavior and response in this study.  The shifts in the natural frequencies are 

evaluated using wavelet transforms. Other natural frequency measures considered include 

instantaneous frequency  IF  and weighted average instantaneous frequency. Peak time-history 

responses and an estimated 2H  norm analog  2H  are used to investigate structural performance 

changes with the VIRM. The natural frequency measures and the estimated H2 norm analog are 

evaluated considering BLWN loading, while median peak responses from seismic ground motions 

are determined from a study utilizing incremental dynamic analysis. 
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3.2.1 Natural Frequency Measures 

3.2.1.1 Wavelet Transform 

The wavelet transform is a tool that can be used to assess vibrational energy distribution in 

the time and frequency domains. The Morlet wavelet is adopted as the mother wavelet for its 

simplistic time-domain and frequency-domain analytical forms. As wavelet transforms capture the 

temporal variability of frequency content, this tool can be effective in examining how the 

nonlinearity of the VIRM impacts the structure’s effective natural frequency over the duration of 

the analysis time considered.  

3.2.1.2 Instantaneous Frequency  

The IF  represents the preferred vibration frequency of a dynamic system. In a linear 

system, the IF  remains constant and matches the system’s natural frequency. However, for 

nonlinear systems, the IF  continuously changes with the response of the system. In this study, 

the  IF  is estimated by an eigenvalue analysis of the tangent mass and tangent stiffness matrices 

at each time step during the response of the system. These matrices for a n-DOF system can be 

evaluated using Equation (11), where Fint contains the internal forces of the nonlinear structure, 

which is a function of the system DOF  u  and the derivatives of the DOFs  ,u u  .   

   

,1 ,1 ,1 ,1 ,1

1 2 1 2

,2 ,2 ,2

1 2

, , ,

1 2

.... .

....

;
. . . .

. . . .

....

, , , ,

n

n

n n n

n

    

    

  

   
   

 

  

  

 
 
 
 
 
 
 
 
 
 
 
 

int int int int int

int int int

int int

int int int

t t

F F F F F

u u u u u

F F F

u u uF F
u u

F F F

u u u

K u u u M u u u

 


   

,1

,2 ,2 ,2

1 2

, , ,

1 2

...

....

. . . .

. . . .

....

n

n

n n n

n





  

  

  

  

 
 
 
 
 
 
 
 
 
 
 
 

int

int int int

int int int

F

u

F F F

u u u

F F F

u u u



  

  

(11) 



16 
 

Unlike the addition of the FIRM, the addition of the VIRM adds an additional degree-of-

freedom. Hence, the eigenvalue analysis yields three IF  for the 1VIRM structure and four IF  

for the 2VIRM structure at each time step. The IF  presented in this study at each time step are 

the two IF  that have the most significant engagement of the primary structure, as judged by 

evaluating their mode shapes, and thus provide information most relevant to the behavior of the 

primary structure. The resulting two eigen frequencies are then sorted in descending order and are 

denoted by 
1IF  and 

2IF , respectively.  

3.2.1.3 Weighted Average Instantaneous Frequency 

As the IF  changes over time, the weighted average instantaneous frequency, w , is 

derived in order to present information on the overall frequency behavior of the structure. The w  

is determined by averaging the time-history of the IF , utilizing a weight factor corresponding to 

the structure’s total energy time-history response, as defined in Equation (12). This averaging is 

performed on both 
1IF  and 

2IF , with results for the two instantaneous frequencies denoted by 

1w  and 
2w , respectively. The w  can then be normalized using the natural frequencies  1 2,    

of the no-control structure,  

   1 2

1 2
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1 2

1
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    (12) 

where Wi and i  are the total energy and IF  of the structure at time step, respectively, and n is 

the total number of time steps in the response considered.   
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3.2.2 Performance Measures 

3.2.2.1 2H  norm analog 

The 2H  norm quantifies system variance amplification; thus, in theory, could be used to 

assess the impact of the VIRM on the response of the primary structure under dynamic loading. 

Typically, the 2H  norm is analytically determined for a linear time invariant system using a 

frequency response function; however, this method is not possible for a structure with a VIRM as 

it is nonlinear. Alternatively, this study uses a response measure known as the 2H  norm analog, 

which will be denoted by 2H . The 2H  is determined by taking the square of the area under the 

estimated frequency response function of the structure’s interstory displacement response due to 

the ground acceleration over a bounded frequency range of 1-15 Hz, which aligns with the 

frequency range of the band-pass filtered white noise loading used. The 2H  of each configuration 

considered is normalized by the 2H  of the no-control structure, expressed as 

  
 

2

2

H RIM configuration
H nocontrol

 


   (13) 

3.2.2.2 Incremental Dynamic Analysis Curves 

Incremental dynamic analysis (IDA) is performed to quantify the impact of the VIRM on 

structural performance considering seismic loads. This analysis involves performing multiple 

nonlinear dynamic analyses of a structural model subjected to a suite of ground motions, with each 

ground motion scaled to several intensity measures. This process generates IDA curves that 

represent key measures of the resulting structural response parameterized against the intensity 

measures for each ground motion. In this study, the maximum absolute interstory displacement 

and maximum absolute story acceleration are chosen as the key structural response measures.  
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The IDA is performed using a set of 50 ground motions, sourced from the FEMA P695 

dataset, encompassing both far-field and near-field earthquakes [48]. The near-field earthquake 

records consist of ground motions with and without pulse, with a total of 14 instances each. The 

ground motions are scaled in two steps, as outlined in Equation (14) and (15). Initially, a  

normalization factor obtained from FEMA P695 [48] is used to adjust the peak ground velocity of 

each ground motion to align with the median of the set. Subsequently, a scaling factor is employed 

to tailor the normalized ground motion to the targeted intensity measure for the specific analyses.  

 , ,* *g applied g recordedx normalization factor scaling factor x    (14) 

The IDA curves generated in this study use the spectral intensity, ST, as the intensity 

measure. In the expression for ST in Equation (15), SNRT represents the median 5% damped spectral 

acceleration of the normalized record set at the first mode period of the uncontrolled structure.  

 *T NRTS S scaling factor   (15) 

Obtained through linear interpolation of values from FEMA P695 using the uncontrolled 

structure's first mode period (0.2784 s) [48], the precise SNRT values for near-field and far-field 

earthquakes are 0.9837 g and 0.7767 g, respectively.  

Typically, the IDA is performed until a particular limit state, such as collapse or yield, of 

a structure is reached. As the structure models employed in this study are simplified and do not 

account for material nonlinearity and collapse, the analysis is performed up to a predetermined 

spectral intensity of 2g, rather than a selected limit state.  

To capture and compare the overall trends derived from the results of the IDA, the 

responses of the RIM configurations are normalized against the no control case and the median 
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responses are computed by aggregating the results from seismic records at each intensity level for 

each configuration. Furthermore, the median absolute deviation is computed as a measure 

analogous to standard deviation but employing medians. 

4 Frequency Shifts 

In this section, instantaneous frequency  IF , weighted average instantaneous frequency 

 w , and wavelet transforms are used to evaluate the impacts of the different RIM configurations 

on the structure’s natural frequencies when subjected to white noise loading. These measures for 

the structures with the VIRM are compared to the measures for the structures with the FIRM with 

slider masses locked at the initial location, FIRM (at x0), and with the slider masses locked at Rubc, 

FIRM (at Rubc).  

Figure 4 presents the IF  for the structures with different RIM configurations subject to 

white noise loading with different amplitudes. This figure shows that the IF  continuously vary 

for the structures with VIRM; this is due to the movement of the sliders in the VIRM flywheel 

during the response of the system. Figure 4 also shows that in all the cases, the IF  of the structures 

with VIRM are initially at its maximum and identical to the constant IF  of the structures with 

FIRM (at x0), as expected due to the resting position of the slider masses. The range of variation 

in the IF  depend on the amplitude of the system loading and response. As the load amplitude 

increases, a decrease in the overall lower value of the 
1IF  and 

2IF  are observed for the structures 

with VIRM. For example, the minimum value of 
2IF  for the 2VIRM structure is 4.91 Hz with 

white noise amplitude of 0.13 ms-2 and 2.77 Hz when the load amplitude is 1.03 ms-2. At the low 

load amplitude of 0.13 ms-2, although IF  is continuously shifting for both the 1VIRM and 2VIRM 
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structures, the IF  is closer to the 1FIRM (at x0) and 2FIRM (at x0), respectively. Furthermore, 

lower values of  IF  are consistently observed for the 2VIRM structure, in comparison to the 

1VIRM structure, at the two higher load amplitudes, particularly for 
2IF . This is due to the higher 

inertance ratio supplied from the attachment of the two VIRMs in the structure and aligns with 

research on inerters in MDOF structures [29], [49].   

 
Figure 4. Instantaneous frequency of the structure with different RIM configurations (one RIM 

(a-c) and two RIMs (d-f)) with flywheel mass ratio of 0.008 under RMS white noise amplitudes: 

(a, d) 0.13 ms-2, (b, e) 0.30 ms-2, (c, f) 1.03 ms-2  

To investigate the effect of different RIM configurations and the load amplitude on the 

natural frequency shifts and the response of the primary structure, the story drifts and the wavelet 

transforms of those drifts are plotted in Figure 5. Note that, the relative displacement between the 

2nd and 1st floors  2 1s su u  and between the 1st and ground floors  1s gu u  are defined as the 2nd 

story drift and 1st story drift, respectively. Figure 5 shows the time-histories and wavelet 
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transformations of the 2nd story drift given the white noise loading with RMS amplitude of 1.03 

ms-2, which is the same loading considered in Figure 4c, f. It is observed in Figure 5a that the 

2VIRM structure has the lowest 2nd story drift compared to other RIM structures. While Figure 5a 

also shows that the 1VIRM structure has an overall lower 2nd story drift time-history amplitude 

than the 1FIRM structure, the maximum drift amplitudes of both the configurations are more 

similar than the overall response. 

Figure 5b, c, d, and e, depict the wavelet transforms of the 2nd story drift of the 2VIRM, 

2FIRM, 1VIRM and 1FIRM structures, respectively. In these subplots, the darker shading 

indicates higher amplitude 2nd story drift response at the time and frequency of the shading. 

Furthermore, the different wavelet transforms in this figure are plotted such that a direct 

comparison of relative amplitude can be made when comparing the shading of the different 

subplots. The wavelet plots show an important 2nd mode response for the 1VIRM structure and a 

dominant 1st mode response for the 1FIRM and 2FIRM structures. In contrast, the 2VIRM 

structure shows a small 1st mode response and no noticeable distinct 2nd mode response. The reason 

for a missing distinct 2nd mode response is that, as seen in Figure 4f, the 2nd mode frequency of the 

2VIRM structure has reduced to be, at times, nearly the same as the 1st mode frequency.  

The influence of load amplitude on the natural frequency shifts can be investigated using 

the normalized weighted average instantaneous frequencies  
1 2

Ψ ,Ψ
w w   (see Figure 6 and Figure 

7). These figures present the normalized weighted average instantaneous frequency, as defined in 

Section 3.2.1.3, versus the white noise RMS amplitude for different flywheel mass ratios. Figure 

6 shows that the first mode normalized weighted average instantaneous frequency  
1

Ψ
w  of the 

1VIRM and 2VIRM structures closely match each other for the load amplitudes considered and 
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that 
1

Ψ
w  reduces as the load amplitude increases for both the 1VIRM and 2VIRM structures for 

all the flywheel mass ratios. As the FIRM structures are linear, their 
1

Ψ
w  does not vary with load 

amplitude. However, as the flywheel mass ratio increases, 
1

Ψ
w  decreases for both the structures 

with FIRM and VIRM. Additionally, 
1

Ψ
w  is slightly higher for the 1FIRM structure than the 

2FIRM structure for all flywheel mass ratios. 

 
Figure 5. 2nd story drift and corresponding wavelet comparison of the structures with RIMs with 

a flywheel mass ratio 0.008 for a white noise RMS amplitude 1.03 ms-2: (a) 2nd story drift, 

wavelet transform of (b) 2VIRM, (c) 2FIRM, (d) 1VIRM and (e) 1FIRM structures 

 
 

Figure 6. Normalized weighted average instantaneous frequency of the first mode, 
1

Ψ
w , of 

various RIM configurations, over a range of white noise amplitudes and for different flywheel 

mass ratios: (a) 0.003, (b) 0.008, and (c) 0.015 
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Figure 7 shows the second mode normalized weighted average instantaneous frequency 

 
2

Ψ
w  for different flywheel mass ratios and a range of white noise amplitudes. As with the 

1
Ψ

w  

seen in Figure 6, the 1FIRM structure has a higher 
2

Ψ
w  than the 2FIRM structure; however, in 

the case of 
2

Ψ
w , the difference in this value between the 1FIRM and 2FIRM structures is large. 

Figure 7 shows that the 1VIRM structure has a significantly larger 
2

Ψ
w  compared to the 2VIRM 

structure; however, with the VIRM, the amplitude of 
2

Ψ
w  for both the 1VIRM and 2VIRM 

structures reduce with higher load amplitude. 

 
Figure 7. Normalized weighted average instantaneous frequency of the second mode, 

2
Ψ

w , of 

various RIM configurations, under a range of white noise amplitudes and for different flywheel 

mass ratios: (a) 0.003, (b) 0.008, and (c) 0.015 

The results shown in this section demonstrate that, at a high enough amplitude of system 

response, a VIRM in the first story or VIRM in both stories can be used to shift both effective 

natural frequencies of the two-story structure examined. The resulting shifts in the 1st mode are 

similar for the 1VIRM or 2VIRM structures; however, the shifts in the 2nd mode are much less 

significant for the 1VIRM structure. 

w
2
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5 2H  Response Measure 

This section presents the results of the normalized 2H  measure,  , from the ground motion 

to story drift frequency response functions to investigate the performance of the VIRM in 

controlling the interstory displacement of the primary structure. This measure is evaluated for 

various amplitudes of white noise loading and different flywheel mass ratios.  

The effect of flywheel mass ratios and the load amplitudes on the story drifts of the primary 

structure with different RIM configurations is presented in Figure 8. This figure shows that the 

performance of the structures with the FIRM remains unchanged as the loading amplitude 

increases, which is expected as the FIRM is linear. Note that,   of the structures with the FIRM 

is determined both when the slider masses are locked at x0 and locked at Rubc. While higher 

flywheel mass ratios reduce the overall natural frequency of the FIRM,   for the different FIRM 

configurations is sometimes less than one and sometimes more than one. This indicates that the 

effect of the FIRM on system performance is not always positive. As the FIRM only produces a 

constant effective mass and resulting change in system dynamics, it is believed that the change in 

  for the FIRM structures is mostly a result of the interaction of the specific time history of the 

finite duration white noise loading and the new shifted system dynamics. Furthermore, one can 

see that with the two larger flywheel mass ratios considered, the changes in performance of the 

FIRM are often much larger than for the smallest flywheel mass ratio. This is logical as the larger 

mass effects will produce larger shifts in the system dynamics and the resulting response will 

naturally have more dissimilarities to the response in the uncontrolled case.  

Unlike for the structures with the FIRM, it is seen from the results in Figure 8 that   is 

always less than 1 for the structures with the VIRM. The   performance of the 1VIRM and 

2VIRM structures are consistent at low load amplitudes, but increases in amplitude cause their 
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behavior to diverge. At higher load amplitudes, the   for the structures with the VIRM reduces 

and eventually reaches somewhat of a plateau with the 2VIRM structure always having a smaller 

value of  . As flywheel mass ratios increase, a distinct improvement in the performance of the 

structures with the VIRM is observed, resulting in lower minimum   values with higher flywheel 

mass ratios. The difference in results for the structures with VIRM and structures with FIRM help 

to illustrate that large mass effects are not alone sufficient to consistently mitigate response and 

that the nonlinear nature of the VIRM is an important factor in the overall superior performance 

shown here with the VIRM.   

Both the 1VIRM and 2VIRM structures have similar performance at controlling the 1st 

story drift, but the 2VIRM configuration is better at reducing the 2nd story drift compared to the 

1VIRM configuration. This is logical as the 1VIRM configuration does not include a VIRM in the 

second story. Similarly, the absence of a FIRM in the second story in the 1FIRM structure 

coincides with poor performance in reducing the 2nd story drift.   
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Figure 8. Normalized 2H ,  , of the 2nd story drift and 1st story drift of the primary structure 

with RIMs of different flywheel mass ratios: (a,d) 0.003, (b,e) 0.008, and (c,f) 0.015, over a 

range of white noise RMS amplitudes. 

Considering a pair of flywheel mass ratios, the influence of RIMs on the frequency 

response function (FRF) curves of the ground excitation to the primary structure’s 2nd and 1st story 

drifts are depicted in Figure 9. Additionally, the frequency response curve for the no control case 

is included for reference. The peaks of the FRFs in this figure are utilized to discuss the system 

natural frequencies, including changes in peak frequency and amplitude, highlighting the overall 

impact of RIMs on the FRF curves. As the FIRM possesses linear properties, the FRFs for the 

FIRM structures are characterized by smooth curves. In contrast, the nonlinear behavior of the 

VIRMs results in non-smooth FRF curves for the VIRM structures.  
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Figure 9. Frequency response curves of 2nd story and 1st story drift under a normalized RMS 

white noise amplitude of 0.30 ms-2 for different structural configurations with RIM flywheel 

mass ratios: (a-b) 0.008, and (c-d) 0.015 

Figure 9, as expected, shows that all of the RIMs lead to reductions in the effective system 

frequencies seen in the FRFs compared to the no control structure. These reductions in frequencies 

are more pronounced for the structures with VIRM than the structures with FIRM. The figure also 

shows that for the 2VIRM structure there appears to be only one dominant effective frequency, the 

1st mode frequency. In both story drifts, the 1st mode peak amplitude of the 1VIRM structure is 

similar to the 2VIRM structure for both flywheel mass ratios considered; however, the 1VIRM 

structure also has a distinct 2nd mode with a significant peak in the FRF. This high 2nd mode peak 

amplitude of the 1VIRM structure is the reason for its larger H2 response measure, as shown in 

Figure 8. 

6 Incremental Dynamic Analysis 

This section presents the findings of a parametric incremental dynamic analysis (IDA) of 

the 2DOF structure subjected to the suite of considered ground motions across a range of spectral 

intensity, ST, values. Different RIM configurations and flywheels with various sizes of slider 

masses are considered in this analysis.  
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An example of the interstory displacement time-history responses from one ground motion 

at one spectral intensity for one set of flywheel slider masses is shown in Figure 10. In this section, 

the resulting response over the suite of ground motions at each spectral intensity is used to calculate 

two measures to evaluate the response of the systems, the maximum absolute story drift (MASD) 

and the maximum absolute story acceleration (MASA). These measures for the structures with 

RIM configurations are normalized against the no control case and median normalized MASD and 

MASA values are determined for multiple ground motions.  

 
Figure 10. Time history of 2nd story drift for the different structure configurations: (a) 2VIRM, 

(b) 2FIRM, (c) 1VIRM, (d) 1FIRM, and (e) No control, under Kobe earthquake at a spectral 

intensity of 1 ms-2. The RIM structures have a flywheel mass ratio of 0.008 

Figure 11 shows the resulting ST vs MASD curves from the IDAs of the 2DOF structure 

with different RIM configurations. Each single line represents results for a specific ground motion 

scaled with increasing spectral intensity. Differences between the lines indicate the differences in 

response when subjected to different ground motions given each ground motion’s unique temporal 

and frequency characteristics. As the FIRM structures are linear, the MASD increases linearly with 

increasing scaled amplitude for individual earthquake records. For the 1VIRM and 2VIRM 

structures, the IDA curves exhibit an initially linear response when the ground motion intensity is 

low. During these low intensities, the sliders in the VIRM remain very close to the initial positions, 

resulting in behavior resembling that of the 1FIRM and 2FIRM structures (at x0). However, as the 
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ground motion intensity increases, the slider masses have more significant radial motion, leading 

to a nonlinear response that causes the IDA curves for the 1VIRM and 2VIRM structures to deviate 

from the initial linear segments. As the ground motion intensity increases, the MASD generally 

exhibits an increasing trend for the VIRM structures, although not necessarily monotonically. The 

median response for each configuration across all seismic records at each intensity level, as 

depicted in Figure 11, shows the overall trend from the IDA results.  

The median normalized MASD IDA curves for RIM configurations with different flywheel 

mass ratios and the no control case are presented in Figure 12. Due to the normalization, x-axis 

values below one indicate the RIM's effectiveness in mitigating structural response compared to 

the no control structure. The shaded region of the plots represents the median absolute deviation 

(MAD) of the normalized response. The vertical normalized curves for the structures with FIRM 

signify that the ground motion intensity does not impact the effectiveness of the linear FIRM. At 

the lower flywheel mass ratio of 0.003, the 1FIRM structure has a lower median response than the 

2VIRM structure. However, as the flywheel mass ratio increases, the 2FIRM structure has a lower 

median response than the 1FIRM structure. Figure 12 shows that at low spectral intensities, the 

2VIRM structure is more effective than the 1VIRM structure at reducing the median MASD. 

However, as the spectral intensity increases, the 2VIRM and 1VIRM structures show similar 

performance in terms of reducing the maximum absolute story drift. The figure also shows that the 

increase in flywheel mass ratios reduces the median normalized MASD response of the structures 

with VIRM and FIRM.  



30 
 

 
Figure 11. IDA curves showing spectral acceleration (ST) vs maximum absolute story drift 

(MASD) of the (a) 2VIRM, (b) 1VIRM, (c) 2FIRM, and (d) 1FIRM structures, with a flywheel 

mass ratio of 0.008 

In addition to drift performance, another important parameter to consider is the impact of 

these devices on the acceleration response of the structures. Figure 13 presents the median 

normalized MASA for the RIM configurations with different flywheel mass ratios and no control 

structure. Similar trends are observed for the median normalized MASA as the median normalized 

MASD for the FIRM structures which shows that the 2FIRM structure has lower median response 

than the 1FIRM structure at the higher flywheel mass ratios and the opposite for the lowest 

flywheel mass ratios considered. While the normalized median response for the 2FIRM structure 

reduces as the flywheel mass ratios increase, the normalized median response for the 1FIRM 

structure changes much less significantly. In the low flywheel mass ratio case, both the 1VIRM 

and 2VIRM structures were more effective in reducing story acceleration than their counterparts 

with FIRM at higher intensities. The performance of the 2VIRM structure seen in this figure is 

also comparable to the normalized MASD performance shown in Figure 12.  
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Figure 12. ST vs median normalized MASD IDA curves considering the different RIM 

configurations and flywheel mass ratios (a) 0.003, (b) 0.008, and (c) 0.015 

 
Figure 13. ST vs median normalized MASA IDA curves considering the different RIM 

configurations and flywheel mass ratios (a) 0.003, (b) 0.008, and (c) 0.015 

The most notable difference in the MASA results shown in Figure 13 compared to the 

MASD results shown in Figure 12 is the performance of the 1VIRM structure. While the 1VIRM 

structure exhibits comparable performance to the 2VIRM structure in reducing normalized 

maximum absolute story drifts, it is significantly less effective in reducing normalized maximum 

absolute acceleration as the flywheel mass ratio increases. At a flywheel mass ratio of 0.015, there 

are multiple instances where the normalized median MASA of the 1VIRM structure approaches 

and occasionally exceeds that of the 1FIRM structure. The poor performance of the 1VIRM 
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structure at higher flywheel mass ratios in terms of acceleration response, compared to other RIM 

configurations, is likely because the 1VIRM structure was shown to be largely ineffective at 

reducing the higher mode response.  

7 Conclusion 

This study investigates the use of a variable inertia rotational mechanism (VIRM) for the 

passive vibration control of a multi-degree-of-freedom structure subjected to base excitation. The 

study examines the response of a 2DOF structure, in which the VIRM is employed in two 

configurations: (a) in the 2VIRM structure, one VIRM is employed between the ground and 1st 

floor and another VIRM is employed between the 1st and the 2nd floor and (b) in the 1VIRM 

structure, only one VIRM, positioned between the ground and the 1st floor, is employed. Similar 

structures with fixed inertia rotational mechanisms (FIRM) are also examined in this study to draw 

comparisons with the structures with VIRM. The equations of motion of the different structural 

configurations are formulated and described. The natural frequency and 2H  response measures 

were assembled from the time-history analysis of the structure under white noise base loading. 

Incremental dynamic analyses were performed to evaluate the maximum absolute story 

displacement and maximum absolute acceleration response given a suite of seismic ground 

motions. The following key results were observed from this study. 

 The effective natural frequency of the structures with a VIRM depends on the load amplitude 

and flywheel mass ratios. Higher flywheel mass ratios or load intensities led to decreases in 

effective natural frequencies for both the 1VIRM and 2VIRM structures. 

 The 2VIRM structure was found to be much more effective than the 1VIRM structure at 

reducing the effective second mode natural frequency. 
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 The performance of the VIRM in response mitigation is strongly influenced by the intensity of 

the loading. At low load intensities, VIRMs and FIRMs (slider masses fixed at initial positions) 

have a similar impact on the responses of the structures. At higher load intensities, improved 

response reduction is observed for the structures with VIRM, especially the 2VIRM structure. 

 Higher flywheel mass ratios contribute to enhanced performance at reducing story drifts for 

the 2VIRM and 1VIRM structures; however, the 1VIRM structure performance deteriorated 

at reducing story accelerations with increasing flywheel mass ratios. 

 Although a single VIRM can have a large impact on the response of the structure, to effectively 

mitigate the response at each story and in each mode, VIRMs would be needed at each story. 

The exploration of the VIRM’s behavior and its impact on frequency shifts and structural 

response done in this study presents a compelling case for its efficacy in structural control. Some 

of the results of these study would be likely true for more complex structures, such as the relative 

advantages of distributing VIRM rather than concentrating at a particular story; however, it is 

unclear how the performance of the VIRM would change in a more modally rich environment.   

Further parametric investigation of the VIRM as a passive control device for structures under 

diverse loading scenarios and considering more realistic models of structures is imperative for 

further evaluating the effectiveness of the VIRM. 
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Appendix 
The parameter notations of the system properties are presented in Section 2. The equation of 

motion of the system can be obtained using Lagrange’s equation, The Lagrangian, L, is defined as 

 L T V    (A.1) 

where T and V are the kinetic and potential energy of the system, respectively. The kinetic energy 

is the contribution of the structure motion, rotational velocity of the VIRM flywheel and the slider 

mass velocities. The potential energy is the energy stored in the structure’s springs, and the 

VIRM’s nonlinear spring. The gravitational effect on the VIRM slider movement is not considered 

in this derivation. While gravity would have no impact on a horizontally positioned flywheel, it is 

an open question if the gravitational effect on a VIRM with a vertically positioned flywheel would 

be important. The potential energy of the VIRM trilinear springs can be expressed as 

      

 

      

2 2
0 0

2
0

2 2
0 0

1 1 ;
2 2

1 ;
2

1 1 ;
2 2

i

i sd lbc i p i lbc i sd lbc i lbc i lbc

sd i sd lbc i ubc

i sd ubc i p i ubc i sd ubc i ubc i ubc

n k R x n k x R n k R x x R x R

V n k x x R x R

n k R x n k x R n k R x x R x R

        
 
     
 
         

(A.2) 

Here, i presents the VIRM attachment at the ith story. In the 2VIRM configuration, there will be 

two potential energies,  1 2
,sd sdV V , from the two VIRMs at each story. As this potential energy 

depends on the radial position of the slider masses, there could be a total of nine pairs of 
1sdV and 
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2sdV expressions between the two VIRMs. The kinetic energy, potential energy, and the virtual 

work of the non-conservative forces, NCW  , of the 2VIRM structure is formulated as 

   2 1 2VIRM VIRM1 1 2 1 2

2 2 2 2 2 2
1 2 1 1 2 2

1 1 1 1 1 1
2 2 2 2 2 2g s gs s s sd sdu u u J JT m u m n m x n m x               (A.3) 

        
1 1 2 2 1 1 2

2 2

1 2
1 1
2 2s s g s s s sd sdV k u u k u u V x V x           (A.4)

     2 2 1 2 1 1 1 2 1 2 2 2 1 21 1 1 2 2 2NC s s s s s s g s s s s s s sd sdW c u c c u c u u c u c u P t u n c x x n c x x                    (A.5) 

The multiple slider masses in a VIRM are assumed to be moving synchronously with the same 

radial motion. 

Lagrange’s equation for the structure in generalized coordinates is given as 

   ,  1,2,3, 4;i
i i i

d V p t i
dt q q q

  
   

  
  (A.6) 

where q1, q2, q3, q4 are the displacements relative to the ground of the two masses of the primary 

structure (�௦భ and  �௦మ) and the radial displacements of the slider masses in the two VIRMs (x1 and 

x2); T and V denote the kinetic energy and potential energy of the dynamic system, respectively.  

The resulting equations of motion can be expressed as
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In the above equations, 
1 2
,bsd bsdF F  represents the restoring force from the trilinear springs 

of the VIRM in the 1st and 2nd story and can be expressed as 

 

   
 

   

0

0

0

,
, , 1,2;

,
i

sd lbc p i lbc i lbc

bsd sd i lbc i ubc

sd ubc p i ubc i ubc

k R x k x R x R
F k x x R x R i

k R x k x R x R

    
      
     

  (A.8) 

Equation (A.7) is the equations of motion of the 2VIRM structure. The same approach can 

be taken to derive the equations of motion of the 1VIRM structure. As the 1VIRM structure does 

not have a VIRM at the 2nd story, the parameter of the that VIRM will be removed from the kinetic 

energy, potential energy and the non-conservative forces in Equations (A.3), (A.4) and (A.5). 


