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Abstract

Rotational inertia mechanisms offer innovative possibilities for mitigating the effects of
dynamic loads on structures. While conventional approaches to structural response modification
involve modifying stiffness, strength and damping, a promising alternative lies in the variable
inertia rotational mechanism (VIRM), which represents a novel approach for variably shifting the
effective mass of a structure. Despite its potential, the vibration mitigation effectiveness of the
VIRM under seismic loads and its influence on frequency shifts with complex loading
environments remain a gap in current understanding. This study explores the impact of the VIRM
on a two-degree-of-freedom (2DOF) structure subjected to white noise loading and seismic ground
motions. Through a numerical assessment of this structure with single and multiple VIRMs and
considering different inertance ratios and load amplitudes, this study seeks to investigate the
frequency shifts and the efficacy of VIRM in reducing structural response. The findings of this
study highlight the potential of VIRM’s to alter natural frequencies and mitigate structural
response under different load scenarios. This study addresses existing gaps in knowledge and
contributes valuable insights into the interplay of VIRM parameters, frequency shifts, and the

effectiveness of VIRMs for enhancing structural performance and seismic protection.
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1 Introduction

Civil engineering structures can experience adverse effects when subjected to dynamic
loads such as seismic excitation and wind. The behavior and response of a structure can be
modified by altering the stiffness, strength, and damping of that structure [1], [2], [3], [4], [5].
However, alternative passive control devices utilizing supplemental rotational inertia mechanisms
(RIMs) have been developed to modify the effective mass of a structure [6], [7], [8], [9], [10].
Arakaki et al. first proposed using a rotary damper in the late 1990s, which combines a ball screw
assembly and cylindrical mass rotating inside a chamber filled with a viscous fluid, to modify the
seismic response of structures [6], [11]. These supplemental rotational inertia devices transform
the relative displacement between the terminals to rotational motion of a flywheel. In the force-
current analogy, these devices function as a mechanical counterpart of an electrical capacitor. This
analogical relationship was initially identified by Smith, who introduced the term ‘inerter’ in 2002
for any mechanical arrangement where the resultant force is proportional to the relative

acceleration between its two terminals [7].

Inerters can be physically realized with mechanical mechanisms such as a ball-screw or
rack and pinion assembly with a flywheel, or with fluid-based or electromagnetic-based
mechanisms [7], [12], [13], [14], [15]. The output force of an inerter is proportional to the relative
acceleration between its terminals. The constant of proportionality is called inertance and has the
same units as mass. One of the distinguishing features of the inerter is its mass amplification effect.
Due to this mass amplification effect, the inerter can produce substantial inertial mass with

minimal physical mass.

Upon its conceptual development and initial experimental validation, the inerter has been

studied in vehicle mechanics and dynamics to control suspension vibration [16], [17] and has also



been proposed for wind and seismic protection of civil structures. In civil structures, these
mechanisms are often combined with other control applications, such as tuned mass dampers,
viscous dampers, toggle braces, external rocking walls, negative stiffness devices, and friction
pendulums, to enhance performance [18], [19], [20], [21], [22], [23], [24]. These systems are
examined in applications, such as optimal design and seismic protection of building structures
[25], [26], improving base isolation systems [8], [27], and mitigating wind-induced vibration of
tall buildings [18], [28] and cable-stayed bridges [23], [24]. Researchers have also investigated
inerter-based devices in multi-degree-of-freedom (MDOF) structures to examine the natural
frequency changes [29] and enhance performance of tuned damper systems [25], [30], [31].
Furthermore, inerter-based dampers, such as multi-tuned damper inerter [32] and multi-tuned
liquid column damper inerter [33], have been investigated to control the seismic vibration of

adjacent high-rise buildings.

While inerters are characterized by linear behavior and constant resulting inertance,
another branch of research explores nonlinear mechanisms with variable inertance [34], [35], [36],
[37], [38]. Variable inertance can be produced in multiple ways including exploiting geometrically
nonlinear configurations of otherwise linear inerters [34], [39] or by modifying the rotational
inertia of the mechanism’s flywheel [37], [38], [40], [41], [42], [43], [44]. This study considers
one such mechanism, called the variable inertia rotational mechanism (VIRM), which employs a
flywheel that contains masses that can move within the flywheel and thus produce variations in
the flywheel’s rotational inertia [37], [38], [40], [41], [42]. This variable rotational inertia can
cause notable modifications to the dynamics of the host structure, thereby VIRMs offer a potential

for integration into vibration control strategies.



In vehicle systems research, VIRMs have demonstrated improvements in rider comfort,
better road handling and safety, and decreased suspension deflection under most circumstances
[40], [41]. VIRMs have also been studied to increase power absorption bandwidth, increase
vibration mitigation, and enhance stability in power systems, such as hydraulic motors, diesel
generators, wave energy converters, and wind turbine rotors [37], [42], [43], [44], [45]. However,
many of these studies have considered active and semi-active versions of the VIRM, not the

passive VIRM [44], [45], [46].

While applications in other fields have been considered in different research studies, the
investigation of the potential of VIRMs in civil engineering structures is less developed.
Furthermore, the authors are unaware of any VIRM implemented in civil engineering structures.
The existing research has yet to investigate the impact of VIRMs under seismic ground motion or
random noise. While limited studies on VIRM indicate effectiveness in reducing the response
amplitude of dynamic systems, their influence on instantaneous frequency has not been fully
studied. Additionally, the effect of VIRMs on MDOF system dynamics remains unexplored. As a
result, there is a notable gap in understanding the impact of variable rotational inertia on the
frequency shifts and response of MDOF systems subjected to seismic ground motion and random

noise.

The novelty of this study is that it aims to address these gaps in knowledge and numerically
evaluate the frequency shifts and effectiveness of VIRM in reducing the response of a two-degree-
of-freedom (2DOF) structure. This investigation includes scenarios with a structure with single
and multiple passive VIRMs that is subjected to seismic ground motion and white noise loading.
The study also explores the effect of VIRM inertance ratios and changes in load amplitude on the

frequency shifts and response reduction. The computed response quantities for the 2DOF structure



with VIRMs will be compared to those of a structure with fixed inertia rotational mechanisms

(FIRMs).

This paper is structured as follows. In Section 2, the mechanics of the VIRM and
mathematical models of a 2DOF structure with one or two VIRMs are described. Section 3
introduces the parameters of the structure and the loading considered in this study as well as the
response measures that will be used to evaluate the effect of the VIRM. The impact of VIRM on
natural frequency shifts is presented in Section 4, while Section 5 discusses the impact of the
VIRM on an Ha response measure. Section 6 presents results from incremental dynamic analyses
investigating the effects of VIRM on the response of the structures to various ground motions. The
impact of the inertance ratio and loading amplitude are also considered in the results presented in

Sections 4, 5 and 6. Finally, the study is summarized and conclusions are presented in Section 7.

2 Equations of motion of 2DOF structure with variable inertia rotational mechanism
Figure 1(a) depicts the 2DOF primary structure that is considered in this numerical study,
which has two identical VIRMs attached between the ground and the first floor and between the
first and the second floors. In Figure 1(b), the two DOF primary structure has one VIRM that is
attached between the ground and the first floor of the structure. In both Figure 1(a) and Figure

1(b), the first and second story masses are m, and mg,, and kg, kg, ¢s, and cg, are the stiffness

and the viscous damping coefficients of the two stories. In this study, two other RIM configurations
are investigated in the 2DOF primary structure: one where the two VIRMs are replaced with two
identical fixed inertia rotational mechanisms (FIRMs) and another where the single VIRM is
replaced with a single FIRM. In comparison to a VIRM, all components of a FIRM maintain a

fixed configuration irrespective of the flywheel’s rotational velocity.



The VIRM considered in this study is shown in Figure 2 and utilizes a ball screw
mechanism to transfer the relative translational motion of a story of the structure in to rotational
motion of the device’s flywheel. In this study, the VIRM features a flywheel hub with four
symmetrically spaced guide tracks and four discrete masses on the guide tracks that are connected
to the flywheel hub with trilinear stiffness elements, as illustrated in Figure 2. It is assumed that
the slider masses in each flywheel are synchronously moving with the same radial motion. The
motion of the VIRM slider masses are damped with each slider mass modeled as connected to a

viscous damper with coefficient ¢, ; however, as in the example physical realization shown in

Figure 2a, this slider damping may result from inherent damping in the slider instead of a discrete
viscous damping source. When the flywheel is at rest, the masses are located at an initial radial
position, xo, near the center of the flywheel. As the flywheel rotational velocity increases,
centrifugal force drives the masses to move radially outward, while the springs attached to the
flywheel masses make the masses slide back toward their original position given decreases in the
rotational velocity. The radial movement of the masses causes a restoring force in the springs that

increases with the change in the radial position of the masses.

The mathematical model of the springs assumes a trilinear elastic force-displacement
relationship that has a relatively low stiffness at the center (k) between two relatively stiff penalty
spring segments (k), as illustrated in Figure 2(c). When the flywheel masses approach the upper
bound contact point (R.») near the end nut or the lower bound contact point (R.c) near the flywheel
hub, as shown on Figure 2, the penalty spring stiffness segments work to further restrain the
movement of the slider masses. This behavior mimics the behavior of springs that would stiffen

as they approach being fully compressed.
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Figure 1. (a) 2DOF primary structure with two VIRMs (2VIRM structure) (b) 2DOF primary
structure with one VIRM (1VIRM structure)

The rotational velocity of the flywheel of the VIRM is proportional to the relative velocity

between the two attachment points on the structure. The relationship can be expressed as

b =a,(i, —1i,) "

02 = a2 (us2 - usl )

where 6, and 6, are the rotational velocities of the two VIRM flywheels, and . Uy, and U, are

the absolute velocities of m; , m,, and the ground. a; and a; are the proportionality coefficients

governing this relationship. In this study, o= a> =a and a = %ﬂ for a ball-screw mechanism where

p s the lead of the ball-screw.
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Figure 2. (a) Potential realization of VIRM, (b) Schematic diagram of the VIRM flywheel, (c¢)

Trilinear force displacement relationship for the spring connected to the slider mass

The equations defining the restoring force of the trilinear spring (Fpgq,(X;)) as a function

of the radial displacement of the slider masses of the VIRM in the i story (x;) are

E’“di (x) - ksd (Rlbc _x0)+kp (xi _thc)’ X; < thc

F;sd, (xi) = ksd (x‘ - xO ) ’Rlbc < xi < Rubc (2)

) = ksd (Rubc - xO) + kp (‘xl - Rubc ) ’x[ 2leuhc

The moment of inertia of the flywheel of the VIRM can be divided into constant and

variable parts. The constant portion of the VIRM moment of inertia is

Jconsta.nt = (é nimsd (% dsd2 + hsd2 J + % mcrz ) (3)

where n;, msa, dsa, hsa, mc and r are the number of sliders in the VIRM in the i story, slider masses,
slider diameter, slider height, mass of the flywheel without the sliders, and radius of the flywheel,
respectively. The variable part of the moment of inertia is related to the radial position of the slider
masses; when the slider masses move along the guided slot of the VIRM flywheel, the moment of
inertia changes. The mass effects provided by the VIRM to the structure increase as the moment
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of inertia of the VIRM increases. Besides the ability of the slider masses to move during the
response of the structure, the VIRM and FIRM flywheels have the same physical properties. The
moment of inertia of the flywheel of the VIRM and FIRM flywheels in the i story can be

expressed as

2
+nm,x,

2 @)

+nimxdy

constant

J FIRM, — J,

constant

J, VIRM, — J,

The fixed position of the slider mass of the FIRM is denoted by y in Equation (4). In this
study, y is set as either xo, the initial position of the masses in the VIRM, or R, the upper bound

contact point.

The equations of motion of the 2DOF primary structure with two VIRM, which is shown
in Figure 1(a) and hereafter referred to as the 2VIRM structure, can be derived using the
Lagrangian method. The detailed derivation is presented in the Appendix. For this derivation, it is
assumed that the two VIRMs have identical properties. The Lagranges’ equation of motion in

generalized coordinates can be defined as

Ao L (), i=123.4 (5)
dt dq; 0q; 0q,

where q1, g2, q3, g4 are the displacements relative to the ground of the two masses of the primary
structure (ug, and ug, ) and the radial displacements of the slider masses in the two VIRMs (x; and

x2); T and V denote the kinetic energy and potential energy of the dynamic system, respectively.

The kinetic energy of the system can be formulated from the motion of the masses of the
structure’s floors, rotation of the flywheels, and radial and tangential velocity of the slider masses

in the flywheels. The potential energy includes the elastic energy stored in all the springs, including



elastic energy stored in the springs related to the structural stiffness (ks , k;,) and the VIRM

stiffness (ksq4, kp). The gravitational effect on the slider mass movement is not considered here. The
non-conservative forces include the externally applied forces as well as the damping forces

associated with the VIRM slider masses and the inherent damping of the structure.

The equations of motion of the 2VIRM structure subjected to an absolute ground

acceleration are

o 2/ . o 2/ - . 2. . 2 - . :
m_i +JV,RM105 (”s, —ug)—JV,RMza (us2 —u‘vl)+(2nlmsdxla usl)xl—(2n2msdx2a (“‘vz —u, ))x2

5108

+(cs2 +e, )usl —c u, —c i, -1-(ks1 —i—ks2 )usl —kszus2 —kslug =—m_u

S &

. 2 . . . . . _ ..
— U )+2n2msdx2a (us2 —, )xz +k, (uSZ — )—CSZuSl +c u, =-m i, (6)

. 2 .
mszusz+JVIRM2a (U 5,78

S2

2
. 2/ - . .
msdxl _msdxla (usl _ug) +F;)xd1 ('xl ) +cxdxl - 0

2
. 2/ - . .
Mg, X, =My X, (usz —U ) +F (xz ) +c, X, =0

The equations of motion for the primary structure with 1 VIRM in its first story, which is shown

in Figure 1(c) and hereafter referred to as the 1 VIRM structure, are shown in Equation (7). Note
that the F,, (x,) in Equation (6) and Equation (7), and F,, (x,) in Equation (6) are the

expressions of the nonlinear spring restoring force of the VIRM’s attached at the 1% and 2" story,

respectively, as established in Equation (2).

.. 2 - 2. . . . _ ..
myiig +Jyp, & (usl ug)+{2nmsdx1a usljx1 +(Csz+csljus] —Cg i, +[ksl+kszjus1 — kg ug, =—mgiiy

my, i, +ksz (uSz “Us, )+CS2 (dsz i JZ_mSZZZg (7)

v 2 . 2 .
mg %—m ,x,0 Uy +Fbs dl(x1)+cs dxl—O

In order to evaluate the impact of the VIRM, comparisons will be made to cases where the
VIRMs are replaced with FIRMs. The system where identical FIRMs are placed in each story of

the primary structure is referred to as the 2FIRM structure and the system where a FIRM is
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positioned in just the 1 story is referred to as the 1FIRM structure. The equations of motion for
the 2FIRM structure and 1FIRM structure are shown in Equation (8) and Equation (9),
respectively. Note that the systems in Equation (8) and Equation (9) are the natural result of the

systems in Equations (6) and Equation (7) with the slider masses fixed at radial position y.

m i, +JF,RM]05 (usl —ug)—JF,RMza (us2 —u )Jr(cs2 +c )usl —c U, —c U,

+(k, +k, Yu, —k u, =-m_ii )

58

m i +J gy, & (us2 —u )+ks2 (uSZ —u )—cSZuSl ‘e, u, =-m_u

S8 S8

mgiig +J,,, & i Jr(c52+cs]jusl —Cy Ul +(ksl+kszjusl —kgug, =—mygii,

FIRM ( 9)

my, ti, +ksz (usz —Ug, )+Cs2 (l;‘sz —l, ):_msz ’;ig

Additional comparisons will be made with the primary structure without a VIRM or FIRM.
This structure will be referred to as the no control structure and the equations of motion are similar
to the structures with FIRM, excluding the moment of inertia terms. For convenience, the

following ratios are defined and will be wutilized throughout this paper.

H et = (n*m, +m_)/m, :flywheel mass ratio; @, : i'" mode natural frequency of the

primary structure without VIRM/FIRM; & =c, /2m @, : primary structure damping ratio;

3 System parameters and response measures

This section presents the parameters of the systems and the loading parameters utilized in
the analysis of these systems. The range of possible mass effects that are produced by the VIRM
given these parameters is also presented. Furthermore, the response measures used in the

subsequent section to evaluate system dynamics and performance are introduced.
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3.1 System and analysis parameters

The results of numerical simulations will be used to compare the dynamic behavior and
response of the systems described in the previous section (Equations (6)-(9)). These numerical
simulations are performed using the MATLAB implicit solver [47] with an output frequency set
at 4000 Hz. The structure is excited using a band-limited white noise (BLWN) ground acceleration
with a frequency range of 1 to 15 Hz, as well as seismic loading. The broadband excitation provided
by the BLWN is well-suited for investigating the resulting changes in the structure’s dynamic
properties. Using the 50 seismic records of the FEMA P695 far-field and near-field earthquake
sets [48], differences in the seismic response of the structural configurations are assessed with a

specific focus on median maximum story drift and acceleration.

The system parameters selected for this study are shown in Table 1. The resulting natural
frequencies of the structure and linearized natural frequencies of the slider mass are between 1-10
Hz. The structural damping coefficients were selected so that the 2DOF structure itself has 2%
inherent damping in each mode and the resulting physical damping coefficients were utilized for

the other structural configurations.

Table 1. System parameter values

Symbol Description Value
m, =m_ First and second story mass 300 kg
k, =k, First and second story stiffness 320000 N/m
@, (no control) 1* mode natural frequency (no control) 321 Hz
@, (no control) 2" mode natural frequency (no control) 8.41 Hz
g Damping ratio in each mode of the primary system | 2%
without VIRM/FIRM
H pyssneet Flywheel mass ratio 0.003, 0.008, 0.015
m, Flywheel mass (without sliders) 0.5 kg
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n =n, Number of sliders in the VIRM in the 1% and 2" | 4
story
Cy Slider damping coefficient 5 Ns/m
k, Slider soft stiffness 30 N/m
k, Slider penalty stiffness 6000 N/m
d, Slider diameter 0.02 m
h, Slider height 0.015m
R Flywheel radius 0.1m
X, Initial position 0.02 m
e Radial position of the upper penalty spring 0.095m
e Radial position of the lower penalty spring 0.005 m
o Proportionality constant between relative structure | 200 (rad/m)
velocity and flywheel angular velocity

Depending on the radial position of the slider masses in the flywheel, the moment of inertia

of the flywheels of the VIRM change, as well as the mass effects they provide. The inertance

(bMRM1 ,bz,,IRM2 ,bU,IRMl ) and inertance ratios (ﬂMRMl ,ﬂz,,,RMz Ny f— ) are defined as,

2 2

_ 2. — 2. —
bZVIRMl - JVIRM,la + JV[RM,Za 4 bZVIRMZ - JVIRM,Za 4 blVIRM - JVIRM,la

(10)

_ szIRMl _ bZVIRMZ . _ blVIRM .
> IBIV[RM =

ﬁZVIRM - ;ﬂZVIRM - )
" m_+m om +m mg +m

81 Sy 851

Figure 3 presents the effect of flywheel mass changes and the changes in slider mass
position on the inertance ratios of the VIRM in the 2VIRM and 1VIRM structures. The figure
shows that the inertance ratio increases as the sliders move out radially. This increase in inertance
ratios with respect to slider position is consistent across all flywheel mass ratios considered for the
2VIRM and 1VIRM structures. Additionally, the inertance ratio of the 2VIRM structure is

comparatively higher than the 1VIRM structure, particularly at higher flywheel mass ratios and
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greater slider displacement. For instance, at flywheel mass ratio of 0.015, the maximum inertance

ratio of the 2VIRM structure is 5.5, compared to 3 for the 1 VIRM structure.

_/"Lflywhf:el:O'002 - _/"Lflywheel:O'O03 ’uflywheel:O'008
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Figure 3. Inertance ratios across different flywheel mass ratios and a range of slider mass radial

positions (a) S,z > (b) Boyirys, a1d (€) By, - Note that marker legends are Blue:
Hppieas = 0.002 Orange: p, ., =0.003, Yellow: u, .., =0.008, Purple: z, .., =0.012,
Green: ., =0.015, and Sky blue: p, ., ., =0.018, "*" denotes FIRM (at Ruxc), '0' denotes

FIRM (at x0)

3.2 Response Measures

As described in the following sub-sections, various response measures are computed to
assess the dynamic behavior and response in this study. The shifts in the natural frequencies are

evaluated using wavelet transforms. Other natural frequency measures considered include

instantaneous frequency (a)IF) and weighted average instantaneous frequency. Peak time-history

responses and an estimated /, norm analog (f] 2) are used to investigate structural performance

changes with the VIRM. The natural frequency measures and the estimated H, norm analog are
evaluated considering BLWN loading, while median peak responses from seismic ground motions

are determined from a study utilizing incremental dynamic analysis.
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3.2.1 Natural Frequency Measures

3.2.1.1 Wavelet Transform

The wavelet transform is a tool that can be used to assess vibrational energy distribution in
the time and frequency domains. The Morlet wavelet is adopted as the mother wavelet for its
simplistic time-domain and frequency-domain analytical forms. As wavelet transforms capture the
temporal variability of frequency content, this tool can be effective in examining how the
nonlinearity of the VIRM impacts the structure’s effective natural frequency over the duration of

the analysis time considered.
3.2.1.2 Instantaneous Frequency

The w,. represents the preferred vibration frequency of a dynamic system. In a linear
system, the @, remains constant and matches the system’s natural frequency. However, for
nonlinear systems, the @,. continuously changes with the response of the system. In this study,
the @, is estimated by an eigenvalue analysis of the tangent mass and tangent stiffness matrices

at each time step during the response of the system. These matrices for a n-DOF system can be

evaluated using Equation (11), where Fint contains the internal forces of the nonlinear structure,

which is a function of the system DOF (u) and the derivatives of the DOFs (u,1i).

i aF‘int.l aF‘inl,l 6Finl.] | [ 81.?inl,l al.?int.] aF‘int.l ]
ou  ow,  ow oi,  ou, o
aF‘int.z aF‘int,Z aF‘inl.Z 8F‘im.2 aF‘inLZ aEnt.Z
) u ow,  ou . oF dii oh, o,

K (wui)=—==| ’ M, (wui)=—2= : (11)
ou . . . . ou . . . .

aEnt.rl aEnl.n aEnl.n 8Enl.n aEnt.n aEnt.rl

| ou,  ou,  ou | | oi, ou,  ai, |
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Unlike the addition of the FIRM, the addition of the VIRM adds an additional degree-of-

freedom. Hence, the eigenvalue analysis yields three @, for the 1VIRM structure and four o,
for the 2VIRM structure at each time step. The @, presented in this study at each time step are
the two @, that have the most significant engagement of the primary structure, as judged by

evaluating their mode shapes, and thus provide information most relevant to the behavior of the
primary structure. The resulting two eigen frequencies are then sorted in descending order and are

denoted by w,. and @

', » Tespectively.

3.2.1.3 Weighted Average Instantaneous Frequency

As the o, changes over time, the weighted average instantaneous frequency, @, is
derived in order to present information on the overall frequency behavior of the structure. The @,
is determined by averaging the time-history of the ., utilizing a weight factor corresponding to
the structure’s total energy time-history response, as defined in Equation (12). This averaging is
performed on both ;. and @, , with results for the two instantaneous frequencies denoted by

@, and @, , respectively. The @, can then be normalized using the natural frequencies (0, ,)

of the no-control structure,

=

[ W w-M/
o, =¥ =—yY == (12)

where Wi and o, are the total energy and . of the structure at time step, respectively, and 7 is

the total number of time steps in the response considered.
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3.2.2 Performance Measures

3.2.2.1 H, norm analog

The H, norm quantifies system variance amplification; thus, in theory, could be used to
assess the impact of the VIRM on the response of the primary structure under dynamic loading.
Typically, the H, norm is analytically determined for a linear time invariant system using a
frequency response function; however, this method is not possible for a structure with a VIRM as
it is nonlinear. Alternatively, this study uses a response measure known as the A, norm analog,
which will be denoted by H ,. The H , 1s determined by taking the square of the area under the

estimated frequency response function of the structure’s interstory displacement response due to

the ground acceleration over a bounded frequency range of 1-15 Hz, which aligns with the

frequency range of the band-pass filtered white noise loading used. The H , of each configuration

considered is normalized by the H, of the no-control structure, expressed as

H 5 (RIM conﬁguration)

X= =
H, (nocontrol)

(13)

3.2.2.2 Incremental Dynamic Analysis Curves

Incremental dynamic analysis (IDA) is performed to quantify the impact of the VIRM on
structural performance considering seismic loads. This analysis involves performing multiple
nonlinear dynamic analyses of a structural model subjected to a suite of ground motions, with each
ground motion scaled to several intensity measures. This process generates IDA curves that
represent key measures of the resulting structural response parameterized against the intensity
measures for each ground motion. In this study, the maximum absolute interstory displacement

and maximum absolute story acceleration are chosen as the key structural response measures.
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The IDA is performed using a set of 50 ground motions, sourced from the FEMA P695
dataset, encompassing both far-field and near-field earthquakes [48]. The near-field earthquake
records consist of ground motions with and without pulse, with a total of 14 instances each. The
ground motions are scaled in two steps, as outlined in Equation (14) and (15). Initially, a
normalization factor obtained from FEMA P695 [48] is used to adjust the peak ground velocity of
each ground motion to align with the median of the set. Subsequently, a scaling factor is employed

to tailor the normalized ground motion to the targeted intensity measure for the specific analyses.

X, wpiica = NOTmalization factor* scaling factor* X, ,....eq (14)

The IDA curves generated in this study use the spectral intensity, St, as the intensity
measure. In the expression for St in Equation (15), Snrt represents the median 5% damped spectral

acceleration of the normalized record set at the first mode period of the uncontrolled structure.
S; = Syer *scaling factor (15)

Obtained through linear interpolation of values from FEMA P695 using the uncontrolled
structure's first mode period (0.2784 s) [48], the precise Snrr values for near-field and far-field

earthquakes are 0.9837 g and 0.7767 g, respectively.

Typically, the IDA is performed until a particular limit state, such as collapse or yield, of
a structure is reached. As the structure models employed in this study are simplified and do not
account for material nonlinearity and collapse, the analysis is performed up to a predetermined

spectral intensity of 2g, rather than a selected limit state.

To capture and compare the overall trends derived from the results of the IDA, the

responses of the RIM configurations are normalized against the no control case and the median
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responses are computed by aggregating the results from seismic records at each intensity level for
each configuration. Furthermore, the median absolute deviation is computed as a measure

analogous to standard deviation but employing medians.

4 Frequency Shifts
In this section, instantaneous frequency (a),F ) , weighted average instantaneous frequency
(a)w) , and wavelet transforms are used to evaluate the impacts of the different RIM configurations

on the structure’s natural frequencies when subjected to white noise loading. These measures for
the structures with the VIRM are compared to the measures for the structures with the FIRM with
slider masses locked at the initial location, FIRM (at X¢), and with the slider masses locked at Ry,

FIRM (at Rubc).

Figure 4 presents the @, for the structures with different RIM configurations subject to
white noise loading with different amplitudes. This figure shows that the @,. continuously vary

for the structures with VIRM; this is due to the movement of the sliders in the VIRM flywheel

during the response of the system. Figure 4 also shows that in all the cases, the @), of the structures
with VIRM are initially at its maximum and identical to the constant @,. of the structures with

FIRM (at xo), as expected due to the resting position of the slider masses. The range of variation

in the ®,. depend on the amplitude of the system loading and response. As the load amplitude
increases, a decrease in the overall lower value of the ;. and @, are observed for the structures
with VIRM. For example, the minimum value of @, for the 2VIRM structure is 4.91 Hz with

white noise amplitude of 0.13 ms™ and 2.77 Hz when the load amplitude is 1.03 ms™2. At the low

load amplitude of 0.13 ms™, although @), is continuously shifting for both the I VIRM and 2VIRM
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structures, the @, is closer to the 1IFIRM (at xo) and 2FIRM (at xo), respectively. Furthermore,
lower values of @, are consistently observed for the 2VIRM structure, in comparison to the
1VIRM structure, at the two higher load amplitudes, particularly for @, . This is due to the higher

inertance ratio supplied from the attachment of the two VIRMs in the structure and aligns with

research on inerters in MDOF structures [29], [49].
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Figure 4. Instantaneous frequency of the structure with different RIM configurations (one RIM
(a-¢) and two RIMs (d-f)) with flywheel mass ratio of 0.008 under RMS white noise amplitudes:
(a, d) 0.13 ms™, (b, e) 0.30 ms?, (c, f) 1.03 ms™

To investigate the effect of different RIM configurations and the load amplitude on the
natural frequency shifts and the response of the primary structure, the story drifts and the wavelet

transforms of those drifts are plotted in Figure 5. Note that, the relative displacement between the

2" and 1% floors (us2 —u, ) and between the 1* and ground floors (usl - ug) are defined as the 2™

story drift and 1% story drift, respectively. Figure 5 shows the time-histories and wavelet
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transformations of the 2" story drift given the white noise loading with RMS amplitude of 1.03
ms™2, which is the same loading considered in Figure 4c, f. It is observed in Figure 5a that the
2VIRM structure has the lowest 2™ story drift compared to other RIM structures. While Figure 5a
also shows that the 1VIRM structure has an overall lower 2" story drift time-history amplitude
than the 1FIRM structure, the maximum drift amplitudes of both the configurations are more

similar than the overall response.

Figure 5b, ¢, d, and e, depict the wavelet transforms of the 2™ story drift of the 2VIRM,
2FIRM, 1VIRM and 1FIRM structures, respectively. In these subplots, the darker shading
indicates higher amplitude 2" story drift response at the time and frequency of the shading.
Furthermore, the different wavelet transforms in this figure are plotted such that a direct
comparison of relative amplitude can be made when comparing the shading of the different
subplots. The wavelet plots show an important 2"¢ mode response for the 1VIRM structure and a
dominant 1% mode response for the 1FIRM and 2FIRM structures. In contrast, the 2VIRM
structure shows a small 1%t mode response and no noticeable distinct 2" mode response. The reason
for a missing distinct 2"¢ mode response is that, as seen in Figure 4f, the 2" mode frequency of the

2VIRM structure has reduced to be, at times, nearly the same as the 1% mode frequency.

The influence of load amplitude on the natural frequency shifts can be investigated using

the normalized weighted average instantaneous frequencies (‘Pm P ) (see Figure 6 and Figure
W’ @,

7). These figures present the normalized weighted average instantaneous frequency, as defined in

Section 3.2.1.3, versus the white noise RMS amplitude for different flywheel mass ratios. Figure

6 shows that the first mode normalized weighted average instantaneous frequency (‘I’mw1 ) of the
IVIRM and 2VIRM structures closely match each other for the load amplitudes considered and
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that ¥, - reduces as the load amplitude increases for both the I VIRM and 2VIRM structures for
all the flywheel mass ratios. As the FIRM structures are linear, their ¥,  does not vary with load
amplitude. However, as the flywheel mass ratio increases, ‘I’mw1 decreases for both the structures

with FIRM and VIRM. Additionally, ¥, is slightly higher for the 1FIRM structure than the

2FIRM structure for all flywheel mass ratios.
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Figure 5. 2" story drift and corresponding wavelet comparison of the structures with RIMs with

a flywheel mass ratio 0.008 for a white noise RMS amplitude 1.03 ms: (a) 2™ story drift,
wavelet transform of (b) 2VIRM, (c) 2FIRM, (d) 1VIRM and (e) 1FIRM structures
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Figure 6. Normalized weighted average instantaneous frequency of the first mode, ¥_ , of
w

various RIM configurations, over a range of white noise amplitudes and for different flywheel

mass ratios: (a) 0.003, (b) 0.008, and (c) 0.015
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Figure 7 shows the second mode normalized weighted average instantaneous frequency

(‘P% ) for different flywheel mass ratios and a range of white noise amplitudes. As with the ‘PWH1
seen in Figure 6, the 1FIRM structure has a higher leW than the 2FIRM structure; however, in
the case of ¥, , the difference in this value between the 1FIRM and 2FIRM structures is large.
Figure 7 shows that the 1 VIRM structure has a significantly larger ‘I’WH2 compared to the 2VIRM
structure; however, with the VIRM, the amplitude of leW for both the 1VIRM and 2VIRM

structures reduce with higher load amplitude.
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Figure 7. Normalized weighted average instantaneous frequency of the second mode, ¥_ , of

@, ’
various RIM configurations, under a range of white noise amplitudes and for different flywheel

mass ratios: (a) 0.003, (b) 0.008, and (c) 0.015
The results shown in this section demonstrate that, at a high enough amplitude of system
response, a VIRM in the first story or VIRM in both stories can be used to shift both effective
natural frequencies of the two-story structure examined. The resulting shifts in the 1% mode are
similar for the IVIRM or 2VIRM structures; however, the shifts in the 2" mode are much less

significant for the 1 VIRM structure.
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5 H, Response Measure
This section presents the results of the normalized H , measure, X, from the ground motion

to story drift frequency response functions to investigate the performance of the VIRM in
controlling the interstory displacement of the primary structure. This measure is evaluated for

various amplitudes of white noise loading and different flywheel mass ratios.

The effect of flywheel mass ratios and the load amplitudes on the story drifts of the primary
structure with different RIM configurations is presented in Figure 8. This figure shows that the
performance of the structures with the FIRM remains unchanged as the loading amplitude
increases, which is expected as the FIRM is linear. Note that, ¥ of the structures with the FIRM
is determined both when the slider masses are locked at xy and locked at Ru.s.. While higher
flywheel mass ratios reduce the overall natural frequency of the FIRM, X for the different FIRM
configurations is sometimes less than one and sometimes more than one. This indicates that the
effect of the FIRM on system performance is not always positive. As the FIRM only produces a
constant effective mass and resulting change in system dynamics, it is believed that the change in
Y for the FIRM structures is mostly a result of the interaction of the specific time history of the
finite duration white noise loading and the new shifted system dynamics. Furthermore, one can
see that with the two larger flywheel mass ratios considered, the changes in performance of the
FIRM are often much larger than for the smallest flywheel mass ratio. This is logical as the larger
mass effects will produce larger shifts in the system dynamics and the resulting response will

naturally have more dissimilarities to the response in the uncontrolled case.

Unlike for the structures with the FIRM, it is seen from the results in Figure 8 that ¥ is
always less than 1 for the structures with the VIRM. The X performance of the 1VIRM and

2VIRM structures are consistent at low load amplitudes, but increases in amplitude cause their
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behavior to diverge. At higher load amplitudes, the X for the structures with the VIRM reduces
and eventually reaches somewhat of a plateau with the 2VIRM structure always having a smaller
value of X . As flywheel mass ratios increase, a distinct improvement in the performance of the
structures with the VIRM is observed, resulting in lower minimum X values with higher flywheel
mass ratios. The difference in results for the structures with VIRM and structures with FIRM help
to illustrate that large mass effects are not alone sufficient to consistently mitigate response and
that the nonlinear nature of the VIRM is an important factor in the overall superior performance

shown here with the VIRM.

Both the 1VIRM and 2VIRM structures have similar performance at controlling the 1%
story drift, but the 2VIRM configuration is better at reducing the 2™ story drift compared to the
1 VIRM configuration. This is logical as the 1 VIRM configuration does not include a VIRM in the
second story. Similarly, the absence of a FIRM in the second story in the 1FIRM structure

coincides with poor performance in reducing the 2" story drift.
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Figure 8. Normalized A ,, 2, of the 2" story drift and 1% story drift of the primary structure

with RIMs of different flywheel mass ratios: (a,d) 0.003, (b,e) 0.008, and (c,f) 0.015, over a

range of white noise RMS amplitudes.

Considering a pair of flywheel mass ratios, the influence of RIMs on the frequency
response function (FRF) curves of the ground excitation to the primary structure’s 2" and 1% story
drifts are depicted in Figure 9. Additionally, the frequency response curve for the no control case
is included for reference. The peaks of the FRFs in this figure are utilized to discuss the system
natural frequencies, including changes in peak frequency and amplitude, highlighting the overall
impact of RIMs on the FRF curves. As the FIRM possesses linear properties, the FRFs for the
FIRM structures are characterized by smooth curves. In contrast, the nonlinear behavior of the

VIRMSs results in non-smooth FRF curves for the VIRM structures.
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Figure 9. Frequency response curves of 2™ story and 1° story drift under a normalized RMS
white noise amplitude of 0.30 ms for different structural configurations with RIM flywheel
mass ratios: (a-b) 0.008, and (c-d) 0.015

Figure 9, as expected, shows that all of the RIMs lead to reductions in the effective system
frequencies seen in the FRFs compared to the no control structure. These reductions in frequencies
are more pronounced for the structures with VIRM than the structures with FIRM. The figure also
shows that for the 2VIRM structure there appears to be only one dominant effective frequency, the
1°" mode frequency. In both story drifts, the 1% mode peak amplitude of the 1VIRM structure is
similar to the 2VIRM structure for both flywheel mass ratios considered; however, the 1VIRM
structure also has a distinct 2"¢ mode with a significant peak in the FRF. This high 2" mode peak
amplitude of the 1VIRM structure is the reason for its larger H> response measure, as shown in

Figure 8.

6 Incremental Dynamic Analysis

This section presents the findings of a parametric incremental dynamic analysis (IDA) of
the 2DOF structure subjected to the suite of considered ground motions across a range of spectral
intensity, St, values. Different RIM configurations and flywheels with various sizes of slider

masses are considered in this analysis.
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An example of the interstory displacement time-history responses from one ground motion
at one spectral intensity for one set of flywheel slider masses is shown in Figure 10. In this section,
the resulting response over the suite of ground motions at each spectral intensity is used to calculate
two measures to evaluate the response of the systems, the maximum absolute story drift (MASD)
and the maximum absolute story acceleration (MASA). These measures for the structures with
RIM configurations are normalized against the no control case and median normalized MASD and

MASA values are determined for multiple ground motions.

3 3 3 3 3
A5><10 5><10 5><1O 5><1O 5><1O
£
&

S
a\l 0
8
=
=]
[\ -5

-5 -5 -5
0 50 100 O 50 100 0O 50 100 0 50 100 0O 50 100
(@) Time (sec) (b) Time (sec) (c) Time (sec) (d)  Time (sec) (e) Time (sec)

Figure 10. Time history of 2" story drift for the different structure configurations: (a) 2VIRM,
(b) 2FIRM, (c) 1VIRM, (d) 1FIRM, and (e) No control, under Kobe earthquake at a spectral
intensity of 1 ms™. The RIM structures have a flywheel mass ratio of 0.008

Figure 11 shows the resulting St vs MASD curves from the IDAs of the 2DOF structure
with different RIM configurations. Each single line represents results for a specific ground motion
scaled with increasing spectral intensity. Differences between the lines indicate the differences in
response when subjected to different ground motions given each ground motion’s unique temporal
and frequency characteristics. As the FIRM structures are linear, the MASD increases linearly with
increasing scaled amplitude for individual earthquake records. For the 1VIRM and 2VIRM
structures, the IDA curves exhibit an initially linear response when the ground motion intensity is
low. During these low intensities, the sliders in the VIRM remain very close to the initial positions,

resulting in behavior resembling that of the 1FIRM and 2FIRM structures (at x9). However, as the
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ground motion intensity increases, the slider masses have more significant radial motion, leading
to a nonlinear response that causes the IDA curves for the 1 VIRM and 2VIRM structures to deviate
from the initial linear segments. As the ground motion intensity increases, the MASD generally
exhibits an increasing trend for the VIRM structures, although not necessarily monotonically. The
median response for each configuration across all seismic records at each intensity level, as

depicted in Figure 11, shows the overall trend from the IDA results.

The median normalized MASD IDA curves for RIM configurations with different flywheel
mass ratios and the no control case are presented in Figure 12. Due to the normalization, x-axis
values below one indicate the RIM's effectiveness in mitigating structural response compared to
the no control structure. The shaded region of the plots represents the median absolute deviation
(MAD) of the normalized response. The vertical normalized curves for the structures with FIRM
signify that the ground motion intensity does not impact the effectiveness of the linear FIRM. At
the lower flywheel mass ratio of 0.003, the 1 FIRM structure has a lower median response than the
2VIRM structure. However, as the flywheel mass ratio increases, the 2FIRM structure has a lower
median response than the 1FIRM structure. Figure 12 shows that at low spectral intensities, the
2VIRM structure is more effective than the 1VIRM structure at reducing the median MASD.
However, as the spectral intensity increases, the 2VIRM and 1VIRM structures show similar
performance in terms of reducing the maximum absolute story drift. The figure also shows that the
increase in flywheel mass ratios reduces the median normalized MASD response of the structures

with VIRM and FIRM.
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Figure 11. IDA curves showing spectral acceleration (St) vs maximum absolute story drift
(MASD) of the (a) 2VIRM, (b) 1VIRM, (c) 2FIRM, and (d) 1FIRM structures, with a flywheel

mass ratio of 0.008

In addition to drift performance, another important parameter to consider is the impact of
these devices on the acceleration response of the structures. Figure 13 presents the median
normalized MASA for the RIM configurations with different flywheel mass ratios and no control
structure. Similar trends are observed for the median normalized MASA as the median normalized
MASD for the FIRM structures which shows that the 2FIRM structure has lower median response
than the 1FIRM structure at the higher flywheel mass ratios and the opposite for the lowest
flywheel mass ratios considered. While the normalized median response for the 2FIRM structure
reduces as the flywheel mass ratios increase, the normalized median response for the 1FIRM
structure changes much less significantly. In the low flywheel mass ratio case, both the 1 VIRM
and 2VIRM structures were more effective in reducing story acceleration than their counterparts
with FIRM at higher intensities. The performance of the 2VIRM structure seen in this figure is

also comparable to the normalized MASD performance shown in Figure 12.
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Figure 12. St vs median normalized MASD IDA curves considering the different RIM
configurations and flywheel mass ratios (a) 0.003, (b) 0.008, and (¢) 0.015
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Figure 13. St vs median normalized MASA IDA curves considering the different RIM
configurations and flywheel mass ratios (a) 0.003, (b) 0.008, and (¢) 0.015

The most notable difference in the MASA results shown in Figure 13 compared to the
MASD results shown in Figure 12 is the performance of the 1 VIRM structure. While the 1VIRM
structure exhibits comparable performance to the 2VIRM structure in reducing normalized
maximum absolute story drifts, it is significantly less effective in reducing normalized maximum
absolute acceleration as the flywheel mass ratio increases. At a flywheel mass ratio of 0.015, there
are multiple instances where the normalized median MASA of the 1VIRM structure approaches

and occasionally exceeds that of the 1FIRM structure. The poor performance of the 1VIRM
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structure at higher flywheel mass ratios in terms of acceleration response, compared to other RIM
configurations, is likely because the 1VIRM structure was shown to be largely ineffective at

reducing the higher mode response.

7 Conclusion

This study investigates the use of a variable inertia rotational mechanism (VIRM) for the
passive vibration control of a multi-degree-of-freedom structure subjected to base excitation. The
study examines the response of a 2DOF structure, in which the VIRM is employed in two
configurations: (a) in the 2VIRM structure, one VIRM is employed between the ground and 1%
floor and another VIRM is employed between the 1 and the 2™ floor and (b) in the 1VIRM
structure, only one VIRM, positioned between the ground and the 1* floor, is employed. Similar
structures with fixed inertia rotational mechanisms (FIRM) are also examined in this study to draw

comparisons with the structures with VIRM. The equations of motion of the different structural

configurations are formulated and described. The natural frequency and H , response measures

were assembled from the time-history analysis of the structure under white noise base loading.
Incremental dynamic analyses were performed to evaluate the maximum absolute story
displacement and maximum absolute acceleration response given a suite of seismic ground

motions. The following key results were observed from this study.

e The effective natural frequency of the structures with a VIRM depends on the load amplitude
and flywheel mass ratios. Higher flywheel mass ratios or load intensities led to decreases in
effective natural frequencies for both the 1VIRM and 2VIRM structures.

e The 2VIRM structure was found to be much more effective than the 1VIRM structure at

reducing the effective second mode natural frequency.
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e The performance of the VIRM in response mitigation is strongly influenced by the intensity of
the loading. At low load intensities, VIRMs and FIRMs (slider masses fixed at initial positions)
have a similar impact on the responses of the structures. At higher load intensities, improved
response reduction is observed for the structures with VIRM, especially the 2VIRM structure.

e Higher flywheel mass ratios contribute to enhanced performance at reducing story drifts for
the 2VIRM and 1VIRM structures; however, the 1 VIRM structure performance deteriorated
at reducing story accelerations with increasing flywheel mass ratios.

e Although a single VIRM can have a large impact on the response of the structure, to effectively

mitigate the response at each story and in each mode, VIRMs would be needed at each story.

The exploration of the VIRM’s behavior and its impact on frequency shifts and structural
response done in this study presents a compelling case for its efficacy in structural control. Some
of the results of these study would be likely true for more complex structures, such as the relative
advantages of distributing VIRM rather than concentrating at a particular story; however, it is
unclear how the performance of the VIRM would change in a more modally rich environment.
Further parametric investigation of the VIRM as a passive control device for structures under
diverse loading scenarios and considering more realistic models of structures is imperative for
further evaluating the effectiveness of the VIRM.
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Appendix

The parameter notations of the system properties are presented in Section 2. The equation of

motion of the system can be obtained using Lagrange’s equation, The Lagrangian, L, is defined as
L=T-V (A.1)

where T and V are the kinetic and potential energy of the system, respectively. The kinetic energy
is the contribution of the structure motion, rotational velocity of the VIRM flywheel and the slider
mass velocities. The potential energy is the energy stored in the structure’s springs, and the
VIRM’s nonlinear spring. The gravitational effect on the VIRM slider movement is not considered
in this derivation. While gravity would have no impact on a horizontally positioned flywheel, it is
an open question if the gravitational effect on a VIRM with a vertically positioned flywheel would
be important. The potential energy of the VIRM trilinear springs can be expressed as

1 1
n; Eksd (Rlbc X )2 +n, Ekp (xz —R,, )2 +nk,, (thc — X )(x; —-R,, );x[ <Ry,

AN
S
Il

n; %ksd (x —X )2 3Ry <X, <R, (A.2)

1
i l_kp (xi _Rubc )2 +niksd (Rubc _XO)(xi _Rubc);x' >R

n %ksd (Rubc - X, )2 +n,

Here, i presents the VIRM attachment at the i story. In the 2VIRM configuration, there will be

two potential energies, (VS iV, ) , from the two VIRMs at each story. As this potential energy

depends on the radial position of the slider masses, there could be a total of nine pairs of ¥, and
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V., expressions between the two VIRMs. The kinetic energy, potential energy, and the virtual

work of the non-conservative forces, oW, , of the 2VIRM structure is formulated as

1 o2 1 A 2, 1 : 1 . 1 .
T =5m, (us1 +ug) +Ems2 (us2 +ug) +§JVIRMI 07 +EJVIRM2022 +n, > M, X +n, 5 M, %% (A3)
V:lk (u —u )2+lk (u —u )2+V (x)+V (x) (A4)
2 5 K g 2 55 S5 S sd, 1 sd, 2

W :(cszus2 —(cs1 +e, )us1 +cslug)8us1 +(c u, —cu +P(t))6u

5,8

| Ty Xi0X, —MyC X,0x, (ALS)

S

The multiple slider masses in a VIRM are assumed to be moving synchronously with the same

radial motion.
Lagrange’s equation for the structure in generalized coordinates is given as

Aot G0 OV (e), i=1,2,3,4; (A6)
dt g, 0q;, 0q,

where g1, g2, q3, g4 are the displacements relative to the ground of the two masses of the primary

structure (us, and ug, ) and the radial displacements of the slider masses in the two VIRMs (x; and

x2); T and V denote the kinetic energy and potential energy of the dynamic system, respectively.

The resulting equations of motion can be expressed as

" 2/ - . 2/ . " 2. . 2/ - . .
mu, + JVIRMl o (”x, —u, ) - JV[RM2 a (usz —Ug ) + (2nlmsdxla U )xl - (2n2msd‘x2a (“sz —Ug )) Xy

+(cs2 +c, )usl —c u, —cu, +(ksl +kS2)u5] —ku, —ku,=-mi,
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. 2 . 2/ - . . . - .
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In the above equations, F,, ,F, , represents the restoring force from the trilinear springs

of the VIRM in the 1% and 2™ story and can be expressed as

ksd (Rlbc - xO ) + kp (xi _Rlbc ) b xi < Rlbc
Fyy = ko (x[ _XO)’Rlbc <X, <R, =12
ksd (Rubc - xO ) + kp (xi - Rubc )’ xi 2 Rubc‘

(A.8)

Equation (A.7) is the equations of motion of the 2VIRM structure. The same approach can
be taken to derive the equations of motion of the 1 VIRM structure. As the 1 VIRM structure does
not have a VIRM at the 2" story, the parameter of the that VIRM will be removed from the kinetic

energy, potential energy and the non-conservative forces in Equations (A.3), (A.4) and (A.5).
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