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Abstract

Fairness of artificial intelligence and machine learning models, often caused
by imbalanced datasets, has long been a concern. While many efforts aim to
minimize model bias, this study suggests that traditional fairness evaluation
methods may be biased, highlighting the need for a proper evaluation scheme
with multiple evaluation metrics due to varying results under different crite-
ria. Moreover, the limited data size of minority groups introduces significant
data uncertainty, which can undermine the judgement of fairness. This paper
introduces an innovative evaluation approach that estimates data uncertainty
in minority groups through bootstrapping from majority groups for a more
objective statistical assessment. Extensive experiments reveal that tradi-
tional evaluation methods might have drawn inaccurate conclusions about
model fairness. The proposed method delivers an unbiased fairness assess-
ment by adeptly addressing the inherent complications of model evaluation
on imbalanced datasets. The results show that such comprehensive evalua-
tion can provide more confidence when adopting those models.

Keywords: Fairness, Deep learning, Evaluation metrics, Data uncertainty,
Medical imaging.

1. Introduction

In recent years, the fairness of machine learning models has become a
critical concern [1], especially in medical imaging tasks such as disease di-
agnosis [2, 3], organ segmentation [4], and image registration [5]. A com-
monly used criterion for assessing fairness in these areas is ”equalized odds,”
which requires consistent model performance across different demographic
cohorts, (e.g., specific races and genders) [6]. The most frequent cause for
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the deviation from equalized odds is the imbalance in datasets, where some
demographic groups are significantly underrepresented [7, 8]. This discrep-
ancy is exacerbated in medical data due to barriers in access and disparities
in healthcare standards, leading to larger discrepancies compared to general
datasets [9]. As a result, models trained on these skewed datasets typically
show higher accuracy for majority groups but underperform for minority
groups. This disparity can lead to higher rates of misdiagnosis in underrep-
resented groups, causing harm not only to individuals but also to society as
a whole [10].

Most research on model fairness to date has focused on mitigating the
performance gap between the majority and the minority groups. However,
this paper underscores the necessity of conducting a thorough fairness evalu-
ation before implementing mitigation strategies. Traditional equalized odds
based methods emphasize model accuracy comparison among different sub-
groups. Yet, in the medical imaging domain, relying solely on accuracy can
be misleading, as other crucial metrics like sensitivity, specificity, and the
F1 score also play significant roles. Experiments in this study demonstrate
that under different evaluation metrics, the judgment of model fairness might
differ or even become contradictory. For instance, one subgroup with higher
accuracy than another might exhibit a lower F1 score. Such discrepancies are
more likely in datasets with imbalanced labels, a common issue in medical
imaging [11]. Considering this fact, and that the Receiver Operating Charac-
teristic (ROC) curve comprehensively reflects model performance, this paper
adopts the ROC curve as its evaluation metric. Our study further demon-
strates that extreme dataset imbalance additionally hampers the accurate
evaluation of model fairness, misleadingly suggesting fairness when it is not.
To address this critical gap, an evaluation methodology is designed to offer
a more holistic assessment of model fairness.

Traditional approaches to assessing model fairness involve separate eval-
uations on different demographic groups to identify any disparities in perfor-
mance. However, the reliability of such assessments can be compromised by
the limited size of test sets for minority groups. Although cross-validation [12]
and bootstrapping [13] are commonly employed strategies for small datasets,
previous studies have highlighted the uncertainty associated with these meth-
ods in biomedical contexts, where sample sizes are only in the hundreds [14].
This uncertainty introduces a significant margin of error in the performance
evaluation of minority groups, rendering it challenging to ascertain whether
observed performance gaps come from model bias or the inherent uncertainty

2



of the testing process. To circumvent this issue, our study introduces an ap-
proach that leverage bootstrapping of data from the majority group. The
architecture our proposed evaluation method on ROC curves is shown in
Figure 1. When the sample sizes of two groups are similar, conventional
bootstrapping method can be adapted to fairness evaluation, in which both
groups are bootstrapped the same number of samples as their original data
sizes. However, in scenarios where there is a substantial disparity in the sizes
of the majority and minority groups, modifications to the traditional boot-
strapping approach are necessary to accommodate the significant differences
in data sizes. The core concept involves simulating a distribution of test
results by bootstrapping the majority group data to match the size of the
minority group data. This enables statistical testing to determine whether
the performance of the minority groups deviates significantly from that of
the majority group simulations. A comparative analysis of ROC curves from
both groups is undertaken [15], which involves testing both hypotheses of the
majority group outperforming the minority group and vice versa. A model
is considered to exhibit fairness issues if there is a significant imbalance in
the occurrence of small p-values favoring one hypothesis over the other.

2. Materials and Method

2.1. Problem Definition

In this section, we focus on the situation when a large difference in the
number of data samples exists between different groups. Given an imbalanced
dataset S = {{xi, yi, zi}, i ∈ 1, ..., T}, where xi is a data sample, yi is the
class label, and zi ∈ {0, 1} is the demographic group. Suppose {zi = 0} rep-
resents the majority group, which contains M samples in total, and {zi = 1}
represents the minority group with N samples. A classification model fθ(·)
trained on this dataset may exhibit performance discrepancies between sub-
groups in the absence of bias mitigation strategies. The concept of equalized
odds is mathematically defined as

P (fθ(xi) = yi|zi = 0) = P (fθ(xi) = yi|zi = 1). (1)

A model is deemed unfair if there exists a substantial difference in accuracy
across demographic groups, quantified as

|P (fθ(xi) = yi|zi = 0)− P (fθ(xi) = yi|zi = 1)| ≥ ϵ, (2)
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Figure 1: Comparison of (a) conventional evaluation method, (b) recommended bootstrap-
ping method whenM andN have similar values, and (c) proposed evaluation method when
M ≫ N .

where ϵ is a predefined threshold. In medical imaging domain, however,
accuracy should not be the only consideration. The definition of equalized
odds is expended into

|F (fθ(xi, zi = 0))− F (fθ(xi, zi = 1))| ≥ ϵ, (3)

where F (fθ(xi)) can be any evaluation metrics. Nonetheless, the evaluation of
performance in the minority group is often marred by significant uncertainty
due to small sample sizes:

F̃ (fθ(xi, zi = 1)) = F (fθ(xi, zi = 1))± δ, (4)
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where δ represents the uncertainty. Consequently, the observed performance
gap, if any, becomes

|F (fθ(xi), zi = 0))− F̃ (fθ(xi), zi = 1))| ≥ ϵ. (5)

Given that the relationship between uncertainty δ and fairness threshold
ϵ is not clearly established, determining the fairness of the model remains
challenging. The subsequent sections will explore methods to approximate
δ through bootstrapping techniques applied to the majority group, thereby
facilitating a more accurate evaluation of the model’s fairness. A hypothesis
is made that when the sample size is the same, a fair model should have
the same uncertainty on both the majority and minority groups. Impor-
tantly, this hypothesis does not necessitate identical feature distributions or
characteristics between the two groups. Instead, it demands that the model
demonstrates similar performance across these groups when excluding the
influence of sample size.

2.2. Fairness Evaluation

We discuss the evaluation in two different scenarios. The first situation
is when the evaluation metric is a scalar value and the second one involves
the compound metrics like Receiver Operating Characteristic (ROC) curves.
When the evaluation metric is a scalar value Fj, such as accuracy or sen-
sitivity, consider a testing dataset where the majority group comprises M
samples and the minority group comprises N with M ≫ N . The process
starts with bootstrapping N samples from the majority group and comput-
ing the performance metric

F̂j(fθ(xi, zi = 1)), j ∈ [1, . . . , k] (6)

for each iteration. This process is repeated k times to generate a series
of performance values. It is reasonable to assume that the distribution of
these bootstrapped performance values approximates a normal distribution.
Consequently, a p-value can be calculated using a t-test for assessing the
statistical significance of the difference. As k increases, the test approximates
a z-test due to the large sample size. A small p-value indicates a statistically
significant deviation of the minor group’s performance from the bootstrapped
performance distribution of the majority group, suggesting potential fairness
issues within the model.
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For evaluation metrics involving ROC curves, the approach differs from
that of single-value metrics due to the nature of ROC curves, which is rep-
resented a series of points rather than a single value. In this scenario, the
bootstrapping methodology remains consistent with that used for single-value
metrics. That is bootstrapping the same number of cases as the minority
from the majority. However, for each set of bootstrapped samples, an ROC
curve is generated. Subsequently, an ROC z-test is conducted to compare
the ROC curve of the minority group against each bootstrapped ROC curve
from the majority group. This comparison is framed within two one-sided
hypotheses: the majority group outperforms the minority group and the re-
verse scenario. As a result, for each bootstrapped sample, two p-values, p1
and p2 corresponding to two hypothesises are calculated. This procedure is
repeated across all bootstrapped samples. If the frequency of either suffi-
ciently small p1 or p2 values is significantly different, it indicates a potential
fairness issue within the model. For example, if the frequency of p1 is much
higher than p2, it indicates on more bootstrapped samples of the majority
group, the model out performs the minority group. A Binomial test is then
performed to judge whether there is significant difference between the two
p-values [16, 17].

2.3. Dataset and Preprocessing

The National Lung Screening Trail (NLST) dataset contains 10,395 sub-
jects who underwent lung cancer screening low-dose helical computed to-
mography (LDCT), which has also been used to detect cardiovascular dis-
ease (CVD) [18]. Each subject was labeled as either CVD-positive or CVD-
negative to conduct CVD screening. The demographic breakdown of the
dataset includes 9,704 White subjects, 309 Black or African American sub-
jects, 178 Asian subjects, and a nominal count of subjects from other racial
backgrounds. Within the context of this research, White subjects are desig-
nated as the majority group, while Black or African American subjects are
identified as the minority group. Each subject underwent several CT exams,
and in total there are 41871 CT exams, 40,681 from White and 1,189 from
Black or African American. A state-of-art segmentation model is applied to
segment heart region from the whole 3D CT volumes, and the results are used
to train deep learning models to predict CVD risks. The dataset categorizes
the CT exam outcomes into two labels: ‘0’ indicating a normal result and ‘1’
signifying the presence of CVD. For the White group, 28412 exams are used
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for training, and 12641 for test. For Black or African American group, 818
exams are used for training, 371 for test.

2.4. Implementation Details

Two deep neural network models were developed to implement the eval-
uation strategies proposed in this study. The first model is ResNet18 3D,
which retains the original structure of ResNet18 but modifies the convolu-
tional kernels to process 3D data[19, 20]. The second model, originating
from the work of Chao et al. [18], employs an architecture of Tri-2D network
consisting of three 2D ResNet branches. This model decomposes the origi-
nal 3D CT volumes into 2D slices across three orthogonal planes - sagittal,
coronal, and axial - and processes these slices separately in each ResNet18
branch. Additionally, an attention mechanism is incorporated within each
branch to enhance feature extraction capabilities. The features extracted
from the three branches are subsequently merged to produce the model’s fi-
nal output. Comparative analyses have shown that this multi-branch model
with attention mechanisms surpasses the performance of the 3D ResNet18
model on the NLST dataset.Both models underwent training for 20 epochs
with a batch size of 32.

3. Results

3.1. Evaluation with conventional method

Conventional evaluation outcomes were obtained under multiple evalua-
tion metrics. Subsequent difference testing between the two subgroups high-
lighted in Table 1 reveals the average bootstrapping outcomes alongside the
p-values from the difference assessments across several evaluation metrics.
For both evaluated models, the White subgroup demonstrated significantly
higher accuracy compared to the Black or African American subgroup. Con-
versely, metrics such as Precision, Recall, and F1 score favored the latter,
presenting an inverse relationship. Table 2 delineates the confusion matrices
for both the White and Black or African American subgroups concerning the
ResNet 3*2D model specifically. These matrices elucidate a predominance
of negative classes over positive ones within both groups, with the Black
or African American subgroup exhibiting a notably low incidence of false
negatives. This distribution elucidates the observed discrepancy where the
White subgroup surpasses in accuracy, while the Black or African American
subgroup excels in precision, recall, and F1 score metrics.
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Table 1: Performance comparison between the subgroups of White and Black or African
American.

Metric ResNet 3D ResNet 3*2D

White B/AA p White B/AA p

Accuracy 0.844 0.776 <0.05 0.851 0.825 <0.05
Precision 0.678 0.812 <0.05 0.633 0.845 <0.05
Recall 0.494 0.580 <0.05 0.578 0.597 <0.05
F1 Score 0.572 0.677 <0.05 0.604 0.699 <0.05

Note: B/AA stands for Black or African American. p is the p value of difference tests.

Table 2: Confusion matrices for the ResNet 3*2D.

Predicted
Positive Negative

A
ct
u
al Positive 1, 422 825

Negative 1, 038 8, 985

(a) White

Predicted
Positive Negative

A
ct
u
al Positive 71 13

Negative 48 239

(b) Black or African American.

3.2. Single Evaluation Metrics

In this section, the accuracy is chosen as an example to show the impact
of data uncertainty and the effectiveness of the proposed method. Although
the disparity in performance metrics suggests that both models may exhibit
fairness issues, the uncertainty of testing results needs to be further consid-
ered. To address this issue on uncertainty and rigorously assess the reliability
of test results, bootstrapping techniques were applied to the data from the
White group, using a sample size of 371 (matching the test sample size of the
Black or African American group) and conducting 10,000 iterations. Given
the extensive number of bootstrap samples, the resulting distribution of per-
formance metrics is presumed to follow a normal distribution, allowing for
the application of a z-test to evaluate the statistical significance of the ob-
served performance disparities between the groups. The accuracy of each
model was evaluated across the bootstrapped samples, with the distribution
of these accuracy illustrated in histograms (referenced as Figure 2). The
accuracy achieved on the Black or African American group is denoted by a
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Figure 2: Histograms of the bootstrapped samples from White group.The red line stands
for the results from minority group. The further it is from the distribution of majority
group, the larger probability the model has fairness problems..

Table 3: The results of bootstrapped sample groups of majority groups and z-test between
minority group and those sample groups.

Model Mean Accuracy Accuracy on Minority p

ResNet 3D 0.846 ± 0.018 0.776 1e-4
ResNet 3*2D 0.851 ± 0.018 0.825 0.076

red line within these histograms. Utilizing the mean and standard devia-
tion derived from these distributions, the p-value for the performance of the
Black or African American group was calculated, with the outcomes detailed
in Table 3. For a result to be considered statistically significant and indica-
tive of a deviation from the expected distribution, the p-value must be lower
than the threshold of 0.05. Based on this criterion, the ResNet 3D model is
identified as having fairness issues due to its statistically significant devia-
tion. In contrast, the results for the ResNet 3x2D model do not definitively
confirm fairness concerns, as the p-value does not conclusively fall below the
established threshold.

3.3. ROC Curve as Metrics

In this section, we demonstrate the application of our method using the
ROC curve as the evaluation metric. Figure 3 displays the ROC curves for
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Figure 3: ROC curves of both models on majority and minority groups.

both the White and the Black or African American subgroups. Notably, the
ROC curves for the White group display a smoother trajectory compared to
those of the Black or African American group, underscoring the increased
uncertainty in the results for the Black or African American group due to
its smaller sample size. For each bootstrapped sample, an ROC curve was
generated and subsequently compared to the ROC curve of the Black or
African American group using the ROC z-test. This comparison was struc-
tured around two null hypotheses: the first, denoted as “greater”, posits that
the model performs better on the bootstrapped White group samples than on
the Black or African American group; the second, denoted as “less”, assumes
the inverse. The outcomes of these comparisons, including the count of sig-
nificant p-values under each hypothesis and the p-value from a Binomial test
(assuming a Null Hypothesis rate of 0.2), are summarized in Table 4. The
results reveal that, for the “greater” hypothesis, the Binomial test p-values
for both models are notably low, suggesting that a considerable proportion
of the bootstrapped samples from the White group led to model performance
that surpassed that of the Black or African American group. This finding
underscores fairness issues within both models. Interestingly, while the accu-
racy metric alone did not conclusively reveal fairness concerns for the ResNet
3x2D model, the ROC curve analysis did. This discrepancy underscores the
importance of using multiple evaluation metrics to provide a comprehensive
assessment of a models fairness.
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Table 4: Accuracy of different subgroups. “greater” stands for the number of significant p-
values under hypothesis “greater”, and “less” stands for the number of significant p-values
under hypothesis “less”.

Model “greater” “less” p (Binomial test)

ResNet 3D 2,414 22 2.8e-24
ResNet 3*2D 2,360 22 4.7e-16

3.4. Ablation study

To validate the efficacy of the proposed evaluation methods, an abla-
tion study was conducted focusing on the within-group variability for the
White group, aimed at quantifying uncertainty. Initially, a subset of the
White group, equivalent in size to the Black or African American group,
was selected to serve as the “anchor” group. Subsequently, bootstrapping
experiments were conducted comparing this “anchor” group against the re-
maining samples from the White group. Unlike the prior setup, the null
hypothesis for these comparisons was modified to assess whether “the two
ROC curves are significantly different”. The frequency of significant p-values
was tallied for each comparison. This procedure was iterated 100 times, with
a new “anchor” group selected for each iteration, thereby generating a dis-
tribution of significant p-value counts. The distribution of these counts is
depicted in Figure 4, illustrating the variability in significant p-values across
the different “anchor” groups. The findings indicate that, for a majority
of the “anchor” groups, the count of significant p-values was relatively low,
suggesting minimal within-group variability. However, there were instances
of “anchor” groups exhibiting an anomalously high number of significant p-
values, potentially highlighting the presence of “hard cases” or data points
that deviate substantially from the group’s distribution [21, 22]. This anal-
ysis not only underscores the robustness and applicability of the proposed
evaluation methods but also illustrates their potential utility in enhancing
data curation processes, particularly in the identification and examination of
challenging cases or outliers.

3.5. Effect on post processing mitigation methods

In this section, we discuss the impact of our proposed evaluation meth-
ods on existing bias mitigation techniques. Mitigation methods are com-
monly categorized into three groups: pre-processing, intra-processing, and

11



0 2000 4000 6000 8000
Number of significant p-values

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

Figure 4: Histograms of the number of significant p-values for each “anchor” group.

post-processing [23]. Since our approach focuses on model evaluation with-
out affecting the training process, it is naturally compatible with both pre-
processing and intra-processing methods. However, post-processing meth-
ods, which directly influence model evaluation, may not integrate seamlessly
with our techniques. To illustrate this, we conducted an experiment where
we applied threshold adjustment [6], a widely implemented post-processing
strategy, to balance accuracy and then assessed the performance gaps across
various metrics. The basic idea is to modify the decision boundary or thresh-
old used to classify instances. Usually, a model uses a probability threshold
of 0.5 to decide between two classes. This threshold might be adjusted dif-
ferently for different demographic groups to achieve fairness. However, when
doing this, only one evaluation metric can be considered. As a result, while
the gap of target metric might decrease with the new thresholds, the gap un-
der other metrics might increase. In the experiment, we set accuracy as the
metric to apply threshold adjustment, and calculated the performance gap
under various evaluation metrics. The findings, presented in Table 5, show
that while the accuracy gap between demographic groups was narrowed, the
gaps under some other evaluation metrics might be enlarged. These results
suggest that in scenarios with significant data imbalances across groups, pre-
processing or intra-processing methods might be more effective than post-
processing approaches.
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Table 5: Performance comparison between the subgroups after threshold adjustment

Metric ResNet 3D ResNet 3*2D

White B/AA gap White B/AA Gap

Accuracy 0.831 0.786 0.045 ↓ 0.846 0.821 0.023 ↓
Precision 0.585 0.736 0.152 ↑ 0.705 0.818 0.112 ↓
Recall 0.560 0.518 0.041 ↑ 0.397 0.571 0.173 ↑
F1 Score 0.572 0.607 0.036 ↓ 0.508 0.671 0.163 ↑

Note: Gap represents the absolute value of the difference between groups. ↓ means the
gap is smaller after threshold adjustment, and ↑ means the gap is larger.

4. Discussion

The experiments conducted provide several critical insights. First, the
choice of evaluation metrics significantly influences the determination of
model fairness, highlighting the need for a comprehensive evaluation ap-
proach [24, 25]. In Sections 3.1 and 3.2, we illustrated how a model deemed
fair under one metric may be identified as unfair under another. The ROC
curve emerges as a robust option when a single evaluation metric is neces-
sary, providing a balanced view of model fairness. Secondly, the importance
of accounting for data uncertainty in the assessment of model fairness is high-
lighted. Specifically, the restricted sample size of testing data for minority
groups can introduce performance discrepancies. Third, the ablation study
suggests that minority groups could be considered as presenting challenging
cases within the broader context of the majority group, a notion that finds
relevance in clinical settings. The minor anatomical variations across dif-
ferent racial groups contribute to this scenario [26], emphasizing the critical
need for the inclusion of high-quality medical data from diverse populations,
particularly those representing minority groups. Further, given that our find-
ings are based on a single dataset, we advocate for further validation of our
methodology across a variety of datasets to confirm and possibly recalibrate
the sample size considerations we have suggested. For now, we suggest that
our evaluation method is particularly useful in scenarios where there is a
noticeable disparity in sample sizes between groups.

13



5. Conclusions

While the majority of research in the domain of fairness has concentrated
on addressing and mitigating bias within models, this paper posits that the
evaluation of model fairness is equally crucial and presents its own set of chal-
lenges. The evaluation methodologies introduced herein effectively navigate
through model biases and data uncertainties to provide a nuanced assessment
of fairness across models. Despite the efficacy of these evaluation techniques,
it is important to note that this study does not propose direct interventions
for rectifying fairness issues. The task of completely neutralizing disparities
in performance, especially given the significant variations within the dataset,
remains a formidable challenge. Recently, the rapid advancement of gen-
erative models[27], such as diffusion models [28], offers promising avenues
for addressing the limitations posed by data scarcity. Another potential ap-
proach would be to take multimodal information into account when develop
AI models [29][30]. Nonetheless, achieving comprehensive fairness in ma-
chine learning models is an ongoing endeavor that requires continued effort
and innovation.
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