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Abstract— Expertise scarcity and high cost of data an-
notation hinder the development of artificial intelligence
(Al) foundation models for medical image analysis. Transfer
learning provides a way to utilize the off-the-shelf foun-
dation models to address the clinical challenges. How-
ever, such models encounter difficulties when adapting to
new diseases not presented in their original pre-training
datasets. Compounding this challenge is the limited avail-
ability of example cases for a new disease, which fur-
ther leads to the poor performance of the existing trans-
fer learning techniques. This paper proposes a novel
method for transfer learning of foundation Vision-Language
Models (VLMs) to efficiently adapt them to a new dis-
ease with only a few examples. Such an effective adap-
tation of VLMs hinges on learning the nuanced repre-
sentation of new disease concepts. By capitalizing on
the joint visual-linguistic capabilities of VLMs, we intro-
duce disease-informed contextual prompting in a novel
disease prototype learning framework, which enables VLMs
to quickly grasp the concept of the new disease, even
with limited data. Extensive experiments across multi-
ple pre-trained medical VLMs and multiple tasks show-
case the notable enhancements in performance com-
pared to other existing adaptation techniques. The code
will be made publicly available at https://github.com/
RPIDIAL/Disease-informed-VLM-Adaptation.

Index Terms—Vision-Language Model, Foundation
Model, Transfer Learning, Model Adaptation, New Disease,
COVID-19.

[. INTRODUCTION

N medical image analysis, developing large artificial intelli-

gence (AI) models at local clinical sites is often impeded by
the scarcity of expertise and the high costs associated with data
annotation [1], [2]. Against this backdrop, transfer learning [3],
[4] has emerged as a crucial strategy. It leverages existing
pre-trained foundation models, developed on large, publicly
available datasets, to adapt to the specific needs of data-limited
local clinical sites. This scheme effectively addresses the
challenges of limited local expertise and the cost of annotating
medical data, enabling more efficient deployment of advanced
diagnostic technologies [5]-[7]. Among the various foundation

Asterisk indicates corresponding author.

J. Zhang, G. Wang and P. Yan are with the Department of Biomedical
Engineering and Center for Biotechnology and Interdisciplinary Studies,
Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

M. K. Kalra is with the Department of Radiology, Massachusetts
General Hospital, Harvard Medical School, Boston, MA, USA.

This research was partially supported by the National Science Foun-
dation (NSF) under the CAREER award OAC 2046708.

(a)n H

i Diseasefinformed
Disease-related visual information Adaptation

Learning the concept
of the new disease

“A chest X-ray radiograph of a
patient  with  COVID-19. The
radiograph  presents bilateral,
patchy and ground-glass opacities 1
in the lung regions ...” 1

I

= Disease-related clinical knowledge

A radiologist-inspired multi-
modal learning of the new
emerging disease diagnosis

Fig. 1. The framework overview. (a) DiCoP produces prompts informed
by specific diseases. (b) DPL enables learning disease representations
with limited data.

models, Vision-Language Models (VLMs) stand out as a
distinct category integrating both visual and linguistic informa-
tion. This multimodal nature leads to good generalizability of
VLMs, making them particularly valuable in scenarios marked
with data scarcity, a frequent challenge in medical settings,
especially at local clinical sites. Recent advancements in pre-
training Vision-Language Models (VLMs), such as Contrastive
Languagelmage Pre-training (CLIP) [8]-[14], have demon-
strated impressive domain adaptation capabilities. Integrating
natural language processing allows foundation models to learn
better visual representations with an appropriate alignment
with textual concepts than using image data alone. However,
efficiently improving the generalizability of medical VLMs
on unseen diseases with few image samples still requires
the development and implementation of novel techniques in
transfer learning.

In this work, we aim to tackle the challenge of adapting
VLMs for computer-assisted diagnosis using medical images.
Specifically, we focus on enabling pre-trained medical VLMs
to understand a new disease that is entirely absent from the
pre-training dataset. Several methods have been proposed for
transfer learning of VLMs. Adapter-based approaches, such as
linear probing [8], CLIP-Adapter [15], and Tip-Adapter [16],
adopt a classifier to tailor pre-trained visual encoders on
new tasks, by only tweaking the final layers. Alternatively,
prompting-based methods, like CoOp [17], CoCoOp [6], and
KgCoOp [18], focus on optimizing learnable prompts without
actual text inputs, prioritizing performance over the acquisition
of meaningful concepts. The recent method MaPLe [7] utilizes
dual-modality prompts to adapt CLIP to new domains, yet
it demands extensive data for fine-tuning and is not suitable
for diseases with limited data. More importantly, recent works
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on transfer learning on VLMs [19], [20] showed that large-
scale VLMs excel at recognizing common objects but may
struggle with visual concepts that rarely appeared in their pre-
training data. This observation indicates that the efficacy of
VLMSs could diminish when the relevant categories are only
sparsely represented in the training data. This problem can
often occur in medical imaging and image analysis, especially
when adapting existing models to a newly identified disease
with only few samples, for instance, diagnosing COVID-19
with existing models during the early stage of the outbreak.

Drawing inspiration from how clinicians assimilate new
medical discoveries with only limited clinical cases, we in-
troduce a novel framework for disease-informed adaptation
of pre-trained VLMs. As depicted in Figure [I] radiologists
typically acquire knowledge about new diseases by analyzing
information in two steps. They first observe disease-specific vi-
sual patterns in medical images. After that, they integrate these
observations with clinical knowledge obtained from radiology
reports and relevant literature. Our multimodal adaptation
strategy seeks to replicate the learning process of clinicians by
integrating both visual and linguistic information with disease-
specific insights. More specifically, our research contends that
effective representation learning of disease concepts is central
to the success of adapting VLMs. The contributions of our
work are four-fold as follows.

1) We consider a clinically significant adaptation task that
leverages the visual-linguistic capabilities of VLMs to prepare
for the diagnosis of a newly identified disease. In our work, we
use the emergence of COVID-19 pneumonia as an exemplar
use case to illustrate how the proposed scheme can enhance
preparedness and response capabilities for future health crises.

2) We propose Disease-informed Contextual Prompting
(DiCoP), a method that harnesses the clinical knowledge to
craft prompts for representing the concept of the new disease,
COVID-19 pneumonia. The prompts highlight the disease
characteristics with descriptive attributes, such as texture,
shape, and location. To overcome the problem that crafted
prompts lack instance specifics, we further propose to enrich
the textual prompts with instance-specific features derived
from image context.

3) We introduce Disease Prototype Learning (DPL) to
address the lack of structural regulation in the latent space of
CLIP-based VLMs [21], which is critical for recognizing the
new target diseases. The DPL framework fine-tunes the image
encoder to actively learn the prototypes of diseases, and reg-
ularizes the geometric structure of the learned representations
for the downstream visual recognition tasks.

4) Extensive experiments across multiple evaluation tasks
demonstrate the effectiveness, efficiency, and generalizability
of the proposed VLM adaptation framework.

A preliminary version of this work [5] was accepted for
MICCALI 2024. This paper presents significant enhancements
over our initial submission, including new technical devel-
opments, evaluations on additional datasets, and further nu-
merical experiments across various evaluation tasks. These
comprehensive additions contribute substantially to advancing
the field of VLM adaptations in medical image analysis.

Il. RELATED WORKS
A. Vision-Language Models

The convergence of computer vision and natural language
processing has given rise to a new group of foundation models,
namely Vision-Language Models (VLMs). VLMs marry visual
and linguistic models to achieve cross-modal comprehension
and reasoning capabilities. This integration has been pivotal
in advancing tasks that require both visual understanding [22]
and language reasoning [23], [24]. Groundbreaking models
such as CLIP [8] and ALIGN [25] have further bridged the
gap between language models and vision tasks, showcasing the
feasibility of cross-modal applications. Since the introduction
of CLIP in 2021, medical VLMs have also been developed,
including but not limited to BioViL [11], MedCLIP [13],
MGCA [12], CheXzero [14], LLaVA-Med [26], PLIP [10],
and CONCH [27]. All these methods significantly outperform
the corresponding vision-only models in medical domain,
demonstrating the great potential of vision-language founda-
tion models.

B. Adaptation of VLMs to Downstream Tasks

Two main strategies for adapting pre-trained Vision-
Language Models (VLMs) to downstream tasks are adapter-
based methods and prompt tuning methods. Adapter-based
approaches like linear probing [8], CLIP-Adapter [15], and
Tip-Adapter [16] utilize a classifier to adapt pre-trained visual
encoders to new tasks by adjusting only the final layers.
While this method of selective modification allows for efficient
adaptation, it also introduces significant limitations. Primarily,
by focusing changes on the final layers, these approaches
may fail to leverage lower level nuanced features that could
be crucial for complex tasks. This limitation may lead to
suboptimal outcomes, requiring more comprehensive task-
specific modifications. Furthermore, while minimal changes
preserve the core architectures developed during initial train-
ing, they might not provide sufficient adaptability to accurately
represent and capture the unique features of new tasks, poten-
tially compromising the model’s performance across various
settings.

Prompt tuning techniques use task-related tokens to enhance
task-specific knowledge. For example, filling various class
names into the template of “a photo of a [CLS]” in
CLIP [8] creates textual embeddings for zero-shot predic-
tions. However, these static, hand-crafted prompts often fail
to capture the complexities of specific tasks. To address
this problem, CoOp [17] introduces learnable soft prompts
from few-shot samples, which, however, do not vary across
different instances of the same task. To remedy this, Co-
CoOp [6] provides image-conditional contexts for each image,
enhancing textual prompts with visual contexts. Similarly,
KgCoOp [18] adds standard language template (“a photo
of a [CLS]”) into the global learning of soft prompts.
Despite these advancements, CoOp-based methods primar-
ily focus on optimizing prompts rather than incorporating
clinical knowledge for diagnosing newly identified diseases.
This approach often prioritizes performance over meaningful
conceptual understanding.
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Fig. 2. Framework overview. (a) Disease-informed Contextual Prompting (DiCoP) produces prompts informed by specific diseases. (b) Disease
Prototype Learning (DPL) enables learning disease representations with limited data.

A recently developed method, MaPLe [7], combines
adapter-based and prompt tuning methods to enhance the
adaptation of CLIP to new domains through dual-modality
prompt tuning. While this approach introduces significant
advancements, it requires substantial amount of data for fine-
tuning. This poses a challenge for diseases with limited
available data, restricting the applicability of such methods
in scenarios where collecting extensive datasets is impractical
or impossible.

C. Prototype Learning

The presented work in this paper leverages prototype learn-
ing to facilitate the representation learning of new diseases.
The aim of prototype learning is to group similar items
into a unified embedding as a prototype. van den Oord et
al. illustrated that images can be represented in discrete
forms [28], and Ramesh et al. established the efficacy of
prototype learning for tasks involving cross-modality interac-
tions [29]. Chen et al. developed a vision-language memory
bank specifically for radiology report generation [30]. Unlike
report generation models, VLMs must preserve detailed visual
information during the pre-training phase to ensure precise
representation of boundaries and lesions in subsequent tasks.
We utilize prototype learning for sentence representation in
medical reports, converting a continuous embedding space into
a categorical one. Our method ensures the retention of both
overarching concepts and intricate details, thereby maintaining
structural integrity and fidelity at various levels.

D. Transfer Learning in Medical Image Analysis

Transfer learning has become a foundational element in
the field of medical image analysis [3], [4], addressing the

challenge of limited labeled data, which is a common ob-
stacle in medical settings [1], [2]. This technique involves
leveraging knowledge gained from one task or data domain
and applying it to another related task or domain. In medical
image analysis, where acquiring and annotating large datasets
can be prohibitively expensive and time-consuming, transfer
learning proves particularly beneficial [31], [32]. Models pre-
trained on large datasets of general images can be fine-tuned
with a relatively small set of local medical images to achieve
substantial improvement in accuracy. This approach not only
speeds up the training process but also enhances model gener-
alizability, especially in tasks like disease diagnosis [33], organ
segmentation [34], and tumor detection [35]. Recent studies
have demonstrated the effectiveness of transfer learning in
various applications [6], [7], [36], showcasing its versatility
and potential to bridge the gap between data scarcity in
medical domains and the need for highly accurate medical
diagnostic tools.

1. METHODS

Our method utilizes medical VLMs pre-trained with CLIP
to diagnose newly identified diseases. Effective representation
learning is key for VLMs to understand new or unseen
diseases. Our proposed approach is inspired by the process
depicted in Fig. [T] where radiologists learn about new diseases
through aligning the disease-specific visual patterns with exist-
ing clinical knowledge from literature. Similarly, our method
approaches the representation learning of new disease concepts
in two steps. First, we introduce Disease-informed Contextual
Prompting (DiCoP), which connects the concepts of new
diseases with established clinical knowledge through textual
prompts. These prompts emphasize the characteristics of a
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disease using descriptive attributes, including texture, shape,
and location. Then, we employ Disease Prototype Learning
(DPL) to facilitate the representation learning of new disease
categories. The goal of DPL is to consolidate cases with
similar medical findings into a unified prototype embedding.
This prototype embodies the abstract concept of a new disease,
effectively representing its distinctive characteristics.

As shown in Fig. a CLIP model comprises a text
encoder E; and a vision encoder E, for image encoding. Let
{(v;, y,-)}l.]\:f , denote a labeled image dataset of target diseases.
The images v; are grouped into C categories, each for a distinct
disease or condition. Our proposed DiCoP method first utilizes
clinical knowledge, specifically from manually crafted short
text prompts by radiologists with hands-on experience with
the new disease. The image and text encoders, E, and E;,
encode each (v;,t;) pair, using the [CLS] token to derive
global visual and linguistic representations f/, f" € R
respectively. We freeze the pre-trained text encoder to prevent
it from overfitting to the small set of hand-crafted prompts.
The rest of this section presents the technical details.

A. Disease-informed Contextual Prompting (DiCoP)

Drawing on insights from the prior research on general im-
age analysis [6], [19], [20], [37], we believe incorporating both
clinical knowledge and image-specific features into contextual
prompts is critical for enhancing the transferability of VLMs.
The key of adapting pre-trained VLMs to new/unseen diseases
is to link the concepts of new diseases with the existing
clinical knowledge. For instance, radiological descriptions of
texture attributes can aid in illustrating pneumonia. Through
this approach, the concept of pneumonia is connected to the
pre-existing radiology corpus via linguistic semantics by the
text encoder E,. We thus propose creating contextual prompts
with notable attributes of the target categories. In particular,
we develop descriptive contextual prompts using the template

Prompty kC:l = Desi(basic) @ Desi(texture) 0
® Desi(location) ® Desg(shape),

where @ symbolizes the concatenation of descriptions Desg(-)
for the k,, disease category, covering each attribute (tex-
ture, location, shape). The three attributes recommended by
radiologists are the most common and significant attributes
for comprehensively establishing new medical concepts with
clinical knowledge. These attributes selected are fundamental
to the description and understanding of pathological features
in radiographs. Desi(basic) desribes critical identifiers like
the type of disease or condition, which establishes the context.
Texture and shape provide specific visual cues that are crucial
for distinguishing different pathologies, while location helps
pinpoint the exact area of interest within an organ, thus aiding
in precise diagnostics. These are crucial for distinguishing
between disease manifestations, essential for accurate diagno-
sis. We initialized the attribute descriptions Des(-) with the
assistance of a radiologist who has over 15 years of experience
in thoracic imaging. This step ensures that the generated
prompts accurately reflect relevant clinical knowledge.

To preserve the linguistic capability of VLMs to process
free-form text, and enhance contextual understanding [38],
we prepared three candidate prompts with the same semantic
meaning for each attribute by leveraging the prior text augmen-
tation research [38], [39]. In this work, GPT-4 was employed
to rephrase the manually crafted Desg(-) into two additional
augmented prompt variants, which were subsequently verified
for correctness by the radiologist. All prompt candidates are
reported in Appendix-A] To formulate Prompty, one Desg(-)
was randomly selected from the three candidates for each
attribute. We further randomly shuffle the order of the selected
elements Desg(+), to increase the diversity of Prompty. This
process significantly varies the text prompts for each sample
within the same category, i.e., t; = Augmentation(Prompty)
if i € Sg.

Considering the visual diversity of images within the
same category, we combine general clinical knowledge-based
prompts with specific image variability to create more infor-
mative contextual prompts. As depicted in Fig. [2| an Image
Feature Projector Py is introduced to project a visual [CLS]
token f;” to an image-specific representation f* = P(f). The
dimensionality of image-specific representation f; matches
the contextual tokens from the Text Embedding Layer as in
Fig.[2L f7 is then added to each contextual token embedding,
except for the [CLS] token. We denote the representation of
text-only prompts as { fkt }f\:’ , and the representations enriched
with image-specific features as { f/** }t.A:’ |- An image-text align-
ment loss L;;, is defined to encourage the model to maximize
the cosine similarity between the matched images and prompts,
while reducing the similarity between unmatched pairs

1 N eXP(fl-V : fiHX/TI)
Lz = —

2N i | log (Z]A;l exp(f}’ 'fl-Hs/ﬁ))

2)
exp(f[v : f,‘HS/Tl)

+ )
log (X, exp(fy - £1%/70))

where 7] is a temperature hyperparameter.

B. Word Embedding for a New Disease

Our proposed adaptation approach is motivated by the
need to handle newly identified diseases, a more challenging
problem than previous VLM adaptation works [6], [7], [17],
[18], [40], since neither the vision model nor the language
model has encountered these diseases before. For example,
considering the term of “COVID-19” disease, it should be
recognized as a singular term that identifies the Coronavirus
Disease 2019. Yet, not only is the language model unfamiliar
with the concept of this new disease, but its tokenizer also
splits “COVID-19” into four tokens: “cov”, “##1id”, “-”,
and “19”.

To address this challenge, we update both Word Tokenizer
and Text Embedding Layer of the language model for VLMs
as shown in Fig. 3] Specifically, for the word tokenizer, we
treat “COVID-19” as a singular term, assigning it a new
word token and ID. Taking ClinicalBERT tokenizer [41] as
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Fig. 8. Update of the Word Tokenizer and Text Embedding Layer of the
language model in a given VLM.

an example, of which the original token IDs are between “1”
and “30522”, the new token ID of “COVID-19” would be
“30523”. In addition, we introduce a trainable text embed-
ding vector to learn a representation of the newly defined
“COVID-19” token ID. Throughout training, all other token
embeddings remain fixed, except for the newly introduced
trainable text embedding vector. This approach preserves the
original linguistic semantics learned during VLM pre-training,
while acquiring the word embeddings of a new disease.

C. Disease Prototype Learning (DPL)

With both DiCoP generated prompts and a limited number
of new image samples, we are able to finetune medical
VLMs to learn representations of new diseases. However,
the original CLIP-based VLMs do not impose geometric
constraints on the representations within each modality. For
example, mismatched samples from the same category could
not be explicitly differentiated in the latent space. This intra-
modality inconsistency [21] may limit the transfer of VLMs
to downstream classification tasks, such as disease diagnosis.
To address the challenge, we propose to learn explicit repre-
sentations of each disease category.

More specifically, we employ a set of trainable vectors
{mk}l | to represent C distinct disease prototypes. As pre-
sented in Fig. [ each prototype my is initialized by the
text-only representation flz, encoded from clinical description
Prompt; without any image-specific features. We then si-
multaneously finetune the model and learn the prototypes by
minimizing the cosine similarity between samples grouped
under the same category and their respective prototype miy.
Meanwhile, we maximize the separability between different
disease prototypes. The total prototype learning loss L,z is
defined as

fV ft+S
Z| 2l e [P
e k(k Zex (mk m])

3)

where 7, is another temperature hyperparameter and 1; is a
weighting factor.

Given the limited samples for adaptation, the learned disease
prototypes my may overfit to these scarce samples. To mitigate
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Fig. 4. The computation of text-only representations f,ﬁ and the
initialization of the prototypes representations my .

this issue, we utilize the text-only representation fk’ , encoded
from the clinical description Prompty, as concept anchors
to regularize the model’s embedding my. This regularization
ensures that the learned prototypes align more closely with
clinical knowledge rather than being overly tailored to the
limited data. We update f/, the representations of the concept
anchors, at the end of every training epoch to reflect the
changes in the text embedding layer during training. We
designed a regularization term for the cross-entropy loss to
minimize ¢;-norm distance between the disease prototypes
m;. and the representations f; of the disease-informed textual
prompts as

N c
1 A2
Lregfce:_N;log(pi)'yi"'E;”mk_fktHZa (4)
where A, is a weighting factor and p; denotes the prediction
probabilities by projecting the image feature to each prototype

pi = Softmax([fl.v cmy, fmo, . f) mc]). 5)

D. Overall Model Training and Inference

The vision model E,, image feature projector Ps, the
updated text embedding layers of the language model and the
representations {my }iC:1 of all disease prototypes are optimized
simultaneously by minimizing the total loss

Liotar = Lita + Lproto + Lreg—ce- (6)

During inference, diagnosis relies solely on the vision model
E, and the concatenation of prototype representations M, by
computing the probability of each category according to Eq.[3}

IV. EXPERIMENTS AND RESULTS
A. Experimental Setup

1) Network Architectures: To demonstrate the effectiveness
of our proposed method, we evaluated the adaptation perfor-
mance of two representative large scale pre-trained medical
VLMs, BioViL [11] and MGCA [12]. Both models adopt
BERT as their language model architecture. BioViL and
MGCA were selected as they represent the two most common
types of CLIP-based medical VLMs within the realm of chest
X-ray diagnosis. BioViL exemplifies medical VLMs with a
CNN-based architecture for global alignment of image-text
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TABLE |
10-RUN AVERAGE RESULTS OF COVID FINDING AND ALL FINDINGS ON COVID-X WITH 1% TRAINING DATA. THE RESULTS ARE SHOWN FOR BOTH
BioVIL (LEFT) AND MGCA (RIGHT) MODELS. THE BEST PERFORMANCE IS IN BOLD AND THE SECOND BEST IS UNDERLINED.

| I BioViL MGCA

Category \ Method || COVID-19 finding All findings COVID-19 finding All findings
| || Precision Recall Acc Weighted F1 || Precision Recall Acc Weighted F1
Linear probing of ImageNet Init. [42] 0.636(0.035)" 0.5100.041)* 0.5860.040)* 0.5880.0400* 0.6790.035)* 0.5900.038)* 0.6480.036)" 0.6470.036*
vision encoders CheXpert Init. [43] 0.6430.036)" 0.5570.040* 0.6020.040)* 0.6030.039)* 0.6820.036)* 0.6080.037)* 0.651.0379* 0.6520.037)*
Linear Probing [8] 0.6600.033)* 0.6010.037)* 0.6230.037)* 0.6210.038)* 0.6880.033)* 0.6410.037* 0.6470.036)" 0.6470.036*
Adapters CLIP-Adapter [15] 0.6250.034)* 0.64500.03* 0.6380.033)* 0.6400.033)* 0.6920.031)* 0.6680.032)* 0.6700.032)* 0.6700.032*
Tip-Adapter [16] 0.6280.037)* 0.6440.035)* 0.6370.034) 0.6410.039* 0.696(0.033)* 0.6630.031)* 0.6750.031)* 0.6760.031)*
CoOp [17] 0.665(0.035)" 0.628(0.036)* 0.6380.036)" 0.6360.037)* 0.703.031)* 0.666(0.032)* 0.6810.027)* 0.682(0.024)*
Prompt tuning CoCoOp [6] 0.6430.038) 0.7030.030* 0.662(0.035)" 0.6580.038)* 0.6650.033)* 0.7070.017)* 0.6880.033) 0.6880.033)*
KgCoOp [18] 0.6740.037* 0.6970.035)* 0.6740.036) 0.6800.036)* 0.7470.030* 0.7140.028) 0.7260.03)* 0.7280.03n*
MaPLe" [7] - - - - 0.8620015*  0.69%400m)*  0.7720014) 0.7720014)+
Disease-informed | DiCoP + DPL (ours) || 0.7370030) 0.7810.026) 0.7580.030) 0.7620028 || 0.8900.009) 0.735(0.033) 0.8000.014) 0.8050.014)

* p < 0.05 in the one-tailed paired Student’s r-test with our method.

T MaPLe is designed for transformer-based VLMs, thus, is not applicable to BioViL with CNN-based vision encoders.

representations. In contrast, MGCA employs a transformer-
based architecture with both global and local alignment,
enabling detailed analysis of specific image regions. All the
existing medical VLMs, including PLIP [10], Med-CLIP [13],
CXR-CLIP [44], and CheX-zero [14], belong to one of the two
categories. Therefore, demonstrating the effectiveness of our
proposed adaptation method on these two models sheds light
on the broader applicability of our method.

2) Datasets: In this paper, we demonstrate our adaptation
approach on diagnosing COVID-19 pneumonia using VLMs
pre-trained without any knowledge of COVID-19. The experi-
ments in our work involve the following three public datasets.

MIMIC-CXR Dataset [45] consists of 227,943 image-
report pairs and serves as the primary dataset for pre-training
chest X-ray foundation models, including BioViL. and MGCA.
Developed prior to the COVID-19 pandemic, MIMIC-CXR
dataset does not contain any COVID-19 pneumonia cases.

COVID-x(v6) Dataset [46] plays a crucial role in adapting
pre-trained models such as BioViL and MGCA by facilitating
the learning of COVID-19 disease concepts. This open-access
benchmark dataset consists of 13,975 chest X-ray images,
which lack accompanying text information, from 13,870 pa-
tient cases. As a multi-national chest X-ray dataset, it is
specifically curated for a 3-way classification task that dis-
tinguishes COVID-19 pneumonia, non-COVID-19 pneumonia,
and normal cases.

COVID-sev [47] comprises 580 COVID-19 and 784 no-
finding images, sourced from [48]-[51]. Additional annota-
tions by two expert radiologists include binary masks of
COVID-19 infected regions and COVID-19 severity scores on
a scale of 0 (no symptoms) to 6 (most severe).

CheXpert [52] is a 2D chest X-ray dataset containing
191,229 frontal chest radiographs. We only utilized the frontal
chest radiographs for a multi-label classification task including
five individual binary labels: atelectasis, cardiomegaly, consol-
idation, edema, and pleural effusion.

RSNA (v2) [53] dataset comprises 29,700 frontal view chest
radiographs. The primary task associated with this dataset is
binary classification, which involves categorizing each chest
image as either normal or pneumothorax positive.

3) Data Split and Preprocessing: Due to the overlap be-
tween COVID-x [46] and COVID-sev [47], we excluded 503
COVID-19 images from COVID-x. These removed images are
from the Radiography Database [49], [54] and COVID Chest
X-Ray Dataset [50]. The remaining 29, 131 images of COVID-
x were randomly split into training and validation subsets in
a 7 : 1 ratio. The original 400 validation images of COVID-
x were repurposed as the test set. All images were resized
to 512 x 512 pixels for BioViL and 224 x 224 pixels for
MGCA. The training and validation sets were used to adapt
medical VLMs to COVID-19 using the proposed methods.
We then evaluated the diagnosis performance of the adapted
models on the test set of COVID-x. For COVID-sev, we kept
its original training, validation, and test subsets as described
in [47]. The training and validation sets are utilized for the
linear probing of the adapted medical VLMs on the COVID-19
severity estimation task. Since no further training is required,
the entire COVID-sev dataset is used to assess the performance
of the adapted VLMs on COVID-19 visual grounding. For
the CheXpert dataset, following the previous work [55], we
reserve the expert-labeled validation set to serve as our test
data and randomly select 5,000 radiographs from the training
dataset for validation purposes. For the RSNA dataset, in
accordance with reference [55], we divide the dataset into
training, validation, and test sets, in the ratio of 70:15:15,
respectively.

4) Disease Description and Prompt Preparation: We crafted
prompts corresponding to the three diagnostic categories, i.e.,
COVID-19 pneumonia, non-COVID pneumonia, and healthy
individuals in COVID-x, using the template outlined in Eq.
Alongside these templates, three trainable disease prototypes
were developed to accurately represent the characteristics of
these categories. This setup enhances the adapted VLMs’ abil-
ity to learn and diagnose diseases effectively. Detailed exam-
ples of the prompts are provided in Appendix-A] To leverage
medical knowledge from a large language model for automat-
ically drafting approximately correct clinical prompts for each
descriptive attribute (texture, shape, and location), we use the
following sample query to prompt GPT-4: “Please detail the
radiographic features of COVID-19, normal pneumonia, and
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healthy patients, focusing on their texture, shape, and location.
Structure your response using bullet points for clarity.” This
automated generation of descriptive attributes can significantly
reduce the time and effort required for our radiologists to
create prompts from scratch. To generate concept anchors f;
in Eq. E], we randomly selected the candidate De s (-) for each
attribute and concatenated the prompts according to Eq. [I]

B. Training Details

When adapting the VLMs, we keep their text encoders
frozen. Due to the computational expense of directly fine-
tuning the large vision encoders, we adopted two distinct
finetuning frameworks: LoRA [56] (rank r = 4 and scaling
a = 4) and layer-wise learning rate decay [57] (decay factor
B = 0.9) to finetune MGCA and BioViL on COVID-x
training set, respectively. LoRA, known for its efficiency in
finetuning transformer-based models, was selected for refining
the MGCA model due to its ability to adapt parameters
effectively without extensive retraining. Conversely, weight
decay fine-tuning, which is traditionally preferred for CNN-
based encoders, was used for the BioViL model. This approach
leverages the strengths of each tuning method to optimize the
respective architectures of the VLMs.

All the trainable model parameters, including the updated
text embedding layers, the image feature projector, the image
encoder, and the prototypes, are trained for 100 epochs with
a batch size of 128, using a learning rate of 0.0005 and
the AdamW optimizer for both BioViL and MGCA. We
empirically set the temperature parameters 7 = 7, = 0.07
and weighting factors 4; = A, = 0.1 in all the experiments.
Detailed analysis on the effects of these hyperparameters on
the model diagnosis performance is presented in Sec.
All experimental settings in this paper can be accommodated
on a single NVIDIA A100 GPU.

C. Method Effectiveness

We first demonstrate the effectiveness of our method by
comparing it with three kinds of methods. In our comparison,
we include adapter-based methods, such as linear probing
[8], CLIP-Adapter [15], and Tip-Adapter [16], as well as
prompting-based approaches like CoOp [17], CoCoOp [6],
KgCoOp [18], and MaPLe [7]. Additionally, to highlight the
potential of VLMs over traditional single-modal models, we
also evaluate the performance of vision-only models [42], [43]
pre-trained on datasets like ImageNet [58] and CheXpert [52].
For a fair comparison, these vision-only models utilize the
same architectures as the vision encoders in the compared
VLMs, specifically the ResNet-50 in BioViL and the ViT-
B/16 in MGCA. All baseline methods are trained following
their original settings.

To mitigate the impact of randomness, we reported the mean
metric values and standard deviation across 10 runs on the test
set. In each run, we randomly selected 1% of the COVID-x
training data to fine-tune the models. The diagnosis perfor-
mance evaluated on the COVID-x test set is presented in Ta-
ble[l] First, the linear probing of vision-only models generally
performed the worst among all methods. This demonstrates

the significant advantage of multimodal foundation models
over traditional single-modal encoders. This finding indicates
that pre-trained VLMs can be quickly adapted for diagnosing
newly identified diseases. The superior performance of VLMs
could attribute to the use of both visual and textual data during
training, which enhances their ability to understand visual
contexts with semantic language associations. In addition,
among the compared adaptation methods, the adapter-based
methods generally perform the worst, indicating that simply
tweaking the additional classifier may not effectively leverage
the capabilities of VLMs in the downstream tasks.

Our approach significantly (p < 0.05 with Students t-
test) outperformed other prompting-based methods in almost
all the cases. This underscores DiCoP’s advantage over opti-
mizing prompts without clinical knowledge and demonstrates
DPL’s benefit in tailoring VLMs to less represented diseases,
thereby avoiding overfitting on scarce data. Additionally, we
observed that the choice of pre-trained medical VLMs has a
substantial impact on the final results, with MGCA typically
outperforming BioViL. This discrepancy can be attributed to
the differences in their architectural designs and alignment
strategies. Unlike BioViL, which utilizes a CNN-based vision
encoder focusing on conventional image-text feature align-
ment, MGCA incorporates a more advanced transformer-based
architecture. In addition, MGCA performs both global and
local image-text feature alignments, enabling a more detailed
analysis of specific image regions. As a result, MGCA not
only excels in downstream tasks [11], [12] but also shows
significant improvements in our newly introduced disease
adaptation tasks.

D. Representation Visualization

To gain more insights into the capabilities of the meth-
ods, we visualized the geometric structures of the learned
representations for our method and three baselines using t-
SNE [59] on both the validation and test sets of COVID-
x. The results are shown in Fig. 5| In this study, we take
BioViL as the backbone VLM for instance. Similar results on
MGCA model can be found on our Github project page. All
methods used only 1% of the training set to adapt BioViL to
COVID-19 in this study. Linear probing (a) and Tip-Adapter
(b) show less effective separation between non-COVID-19 and
COVID-19 pneumonia samples, highlighting the inadequacies
of basic final layer tuning in adapting pre-trained medical
VLMs to new diseases. In contrast, our method (d) achieved
significantly better contrastive separation compared to other
three baseline methods on both the validation and test sets,
corroborating the outstanding results reported in Table [I}

Fig. [5] also shows the alignment between the learned visual
and linguistic representations. To ensure a fair comparison, we
standardized the text input for the language encoder. The text
prompts were formatted as “This is a chest X-ray
image of [class name]” for each class. CoCoOp (c)
not only struggled to distinguish disease categories but also
failed to align the visual representations (o) of each medical
finding with the corresponding linguistic representations (A)
of the prompt. This indicates its limitation in taking up
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Fig. 5. t-SNE visualization of the latent space from a random batch of COVID-x samples from the validation set (first row) and test set (second

row), showing the feature distribution from (a) Linear probing [8], (b) Tip-Adapter [16], (c) KgCoOp [18], and (d) our method.

clinical knowledge from textual inputs and lacking geometric
regularization during the VLM adaptation. Additionally, as
shown in Fig. [5[d), the learned prototypes (0) of our method
not only effectively separate different medical findings but also
remain close to the correct text input representations. This
validates the effectiveness of the overfitting regularization term

in Eq. 4

E. Data Efficiency

At the onset of the pandemic, the scarcity of data for newly
identified diseases posed a significant challenge. To address
this, we evaluated the data efficiency of the adapted VLMs by
testing their diagnostic performance with varying proportions
of training data. We adapted pre-trained medical VLMs using
only a specific percentage of samples randomly selected from
the COVID-x training set. The diagnostic performance on the
COVID-x test set is shown in Fig. [} Notably, our method
outperforms other baselines in all metrics, particularly when
the number of training data samples is small. That can be
very useful for preparing pre-trained VLMs for diagnosing
newly identified diseases even at the early days. This success
is attributed to the integration of the DiCoP on incorporating
clinical knowledge of new diseases into pre-trained VLMs and
DPL on discovering the patterns of new diseases through latent
space regularization.

F. Phrase Grounding

To illustrate the effectiveness of locating clinical findings
described in human language on chest X-ray images, we
conducted a phrase grounding evaluation of the adapted
BioViL and MGCA models. Both VLMs were trained us-
ing 1% of the COVID-x training set and evaluated on all

COVID-19 samples in the COVID-sev dataset. We tried to
locate the text prompt formatted as “This is an chest
X-ray image of a patient with COVID-19.” on
each COVID-19 sample via visualizing the correlation be-
tween text embedding and vision patch representations.

More specifically, for each image-prompt pair, the image
is passed to the image encoder to obtain a grid of P patch
representations V = [v{, vy, ..., vp|. For MGCA, P equals the
number of input image patches to ViT, i.e. number of visual
tokens. For BioViL, we adhered to the approach described
in the original paper [11], setting a grid of P = 16 X 16 on
the output feature map produced by ResNet-50 vision encoder.
Similarly, the textual prompt is embedded via the text encoder
and projected to the joint space to obtain f’. The cosine simi-
larity score between f7 and entries of V produces a similarity
map S = [cos(v] - f7),cos(v] - f'),....cos(v] - f")]. The
similarity map is normalized to the range of [0, 1], resized to
the dimensions of the input image using Bicubic interpolation,
and then thresholded to produce visual grounding contours.
These contours are depicted as red outlines in Fig. [7] The
visual grounding contours are then evaluated against the
radiologist annotations, marked as the blue contours in Fig.

To quantitatively assess the visual grounding of our method
compared to baselines, we present the mean intersection
over union (mloU) and contrast-to-noise ratio (CNR) metrics
in Table [l The mloU for the visual grounding contours
and radiologist annotations is calculated by averaging across
thresholds [0.5,0.6,0.7]. The CNR measures the ratio of the
summed similarity scores within and outside radiologist anno-
tations, independently of thresholds. Our method outperforms
others across both BioViL and MGCA models for COVID-19
findings, demonstrating enhanced alignment and correctness
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Fig. 6. Data efficiency evaluation on BioViL (left) and MGCA (right). <

Panels (a1), (b1), and (c1) display the all-class classification accu-
racy, recall, and precision of diagnosing COVID-19, respectively, using
BioViL. Panels (a2), (b2), and (c2) present the same metrics for MGCA.

of learned visual-linguistic representations, facilitated by the
DiCoP module.

TABLE Il
10-RUN AVERAGE RESULTS OF COVID-19 PHRASE GROUNDING
EVALUATION ON COVID-SEV. THE BEST PERFORMANCE IS IN BOLD
AND THE SECOND BEST IS UNDERLINED.

Method I BioViL MGCA
I CNR mloU I CNR mloU

ImageNet Init. 0.7320.011)* 0.1430.006* 0.7370.013)* 0.1520.006)*
CheXpert Init. 0.7440.012* 0.146(0.005)* 0.7460.012)* 0.1590.005)*
Linear Probing 0.831w.011)* 0.1930.005)* 0.8500.012)* 0.1970.005)*
CLIP-Adapter 0.8320.011)* 0.202(0.005)* 0.8520.012)* 0.2110.004*
Tip-Adapter 0.865(0.012)* 0.2240.004)* 0.872.011* 0.233(0.005)*
CoOp 0.92900.012)* 0.2130.004)* 0.9660.011)* 0.243(0.006)*
CoCoOp 0.9420.010* 0.2280.005)" 0.9800.010* 0.2570.005)*
KgCoOp 0.9470.013)* 0.256(0.004) 0.9980.011)* 0.270(0.002)
MaPLe' - - 10100010 0.267000"
Ours || 1025000 0.2730003 || 1.098(0010) 0.3010.002)

* p < 0.05 in the one-tailed paired Student’s r-test with our method.
" MaPLe is not directly applicable to VLMs that use CNN-based vision encoders.

G. Severity Estimation

To further assess the capabilities of disease information-
guided visual representations and their applicability beyond
diagnosis, we incorporated a disease severity risk estimation
task. We utilized the vision encoders of the BioViL and MGCA
models from Sec. [V-C| adapted using 1% of the COVID-
X training set. We conducted linear probing on the output
of the vision encoders using the COVID-sev training set.
Given that severity estimation is an ordinal regression task,

mloU = 0.16, CNR = 0.83| |[mloU = 0.28, CNR = 0.83

Fig. 7. Visual grounding visualization of the adapted MGCA (rows 1
and 2) and BioViL (rows 3 and 4) on four randomly selected COVID-19
examples. The first column is the radiologist’'s annotation of the COVID-
19 infected regions. The second and third columns show the overlay
of the Bicubic interpolated similarity score map, with the red contours
thresholded at 0.5 and 0.6, respectively.

we employed the consistent ordinal rank loss (CORAL) [60]
to fine-tune the linear layer and assessed performance using
mean absolute error (MAE) and R-squared score (R?) on the
COVID-sev test set. The results, presented in Table m, show
that our method surpasses others in COVID-19 severity esti-
mation across both BioViL and MGCA models. This success
underscores the significant potential of disease information-
guided visual representations not only in diagnosing but also in
capturing quantifiable information about disease progression.

H. Hyper-parameter Sensitivity Analysis

To validate the significance of two loss weighting factors
Ap in the Lyror0 and Ay in Lyeg_ce, We conducted a sen-
sitivity analysis on the BioViL model, which were trained
using various proportions of the COVID-x training dataset
and subsequently evaluated on the COVID-x test set. The
results are presented in Fig. [8] In the experiments, we initially
set 11 = A = 0.1. When analyzing the sensitivity to one
parameter, the other parameter is fixed.

In Fig. a), when A; € [0.05,0.50] regularizes the strong
separability between different disease prototypes, our method
stably outperforms other baselines with different proportion
of training data. Fig. [§(b) presents the inconsistent behav-
ior of models adapted with different proportion of samples
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10-RUN AVERAGE RESULTS OF COVID-19 SEVERITY ESTIMATION ON
COVID-sEV. THE BEST PERFORMANCE IS IN BOLD AND THE SECOND

TABLE Il

BEST IS UNDERLINED.

Method [ BioViL MGCA
[| MAE() R() |  MAE() R%(T)

ImageNet Init. 0.667* 0.005) 0.852*0.005) 0.652 0.004) 0.875% 0.004)
CheXpert Init. 0.625% 0.005) 0.886*0.005) 0.579% 0.004) 0.903* 0.005)
Linear Probing 0.492* 0.005) 0.897* 0.005) 0.489* 0.004) 0.906" 0.005)
CLIP-Adapter 0.447* 0.004) 0.901%0.004) 0.422*0.003) 0.907* 0.005)
Tip-Adapter 0.447* 0.004) 0.905" 0.004) 0.425% 0.003) 0.912% 0.005)
CoOp 0.386% 0.002) 0.909* 0.004) 0.374% 0.003) 0.915% 0.005)
CoCoOp 0.358"0.002) 0.916" 0.003) 0.338%0.002) 0.930" 0.003)
KgCoOp 0.342%0.002) 0.927* 0.002) 0.330% 0.001) 0.933%0.003)
MaPLe' - - 0.314%000n  0.947*0.003)
Ours || 0.303000 09340004 | 0.2650001) 0.9750.003)

* p < 0.05 in the one-tailed paired Student’s t-test with our method.

T MaPLe is not directly applicable to VLMs that use CNN-based vision encoders.

when increasing the debiasing weight A,. For models adapted
with more training samples (100% or 50% training data),
too strong debiasing (1 > 0.20) can degrade the model
performance. However, in data-scarce scenarios (1% or 10%
training data), model performance improves gradually as the
debiasing weight A, increases within [0.01,0.20]. This ob-
servation indicate the effect of the regularization term in
Eq. [ for helping align the models learning closer to clinical
knowledge rather than being narrowly tailored to the limited
data. Considering the trade-off debiasing effect of 1, we fixed
Ay = 0.01 for all experiments for overall decent performance.
Fig.[8|c) shows that the model performance is initially increase
and then get stable if the LoRA rank r > 4. To balance
computational efficiency with model performance, we selected
r = 4 for our settings, optimizing the number of fine-tuning
parameters. Fig. [§(d) illustrates that the performance initially
improves as the scaling factor @ increases, but subsequently
declines when @ becomes overly large. Fig. [8(e) presents
that the performance initially improves as the decay rate 3
increases, but subsequently gets stable for 8 € [0.9,0.99]. The
phenomenon is more pronounced in the data-scarce scenarios
(training proportions of 1% or 10%). This can be explained by
the use of a large decay rate, which allows us to focus tuning
on the final layers of the vision model while keeping the earlier
layers relatively unchanged. This strategy helps enhance model
performance and prevents overfitting, especially when the
number of training samples is limited. Fig. [§f) and (g) show
that the model performance increases initially, and then stays
stable as the temperature parameters increase. It is because the
early-stop acceleration is adopted to control the perturbation
strength.

I. Generalizability of the Adapted Medical VLMs

It is paramount to ensure the model generalizability after
model adaptation, especially when VLMs are adapted with
limited samples. In this study, our image encoder was fine-
tuned using a dataset containing a small number of new disease
samples. We have thus measured the effectiveness of our
model on two downstream tasks to evaluate its generalizability.
The two tasks are the five-class multi-label classification on the
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Fig. 8. Sensitivity analysis of the two loss weighting factors (a) 4; and
(b) A, on the BioViL model. (c) is the LoRA rank factor r, and (d) is
the scaling factor a in LoRA. (e) is the rate decay used in BioViL vision
model adaptation. (f) and (g) are the temperature coefficients ; and ;.

CheXpert dataset and the binary pneumonia classification task
on the RSNA dataset, which do not involve the new COVID-
19 diseases. We employed zero-shot classification and few-
shot linear probing (with 1%, 10% and 100% of training set)
to test both the original and adapted VLMs. We evaluated the
mean Area Under the Receiver Operating characteristic Curve
(AUROC) and standard deviation across 10 runs on the test
set. The results are presented in Table [[V]

Compared with the original BioViL and MGCA, their
adapted versions present similar performance without statisti-
cal significance (none of cases having p < 0.05) on CheXpert
and the RSNA datasets. These results reaffirm the good
generalizability of our adapted medical VLMs. By successfully
navigating the challenges posed by limited samples, our VLM
adaptation method remains broadly applicable and effective
across the diverse downstream tasks of medical imaging
diagnostics.

J. Ablation Studies

To evaluate the effectiveness of each component in our
method, we conducted an ablation study using the BioViL
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TABLE IV
10-RUN AVERAGE PERFORMANCE OF MODEL GENERALIZABILITY ANALYSIS ON CHEXPERT AND RSNA DATASETS.

CheXpert (AUROC) RSNA (AUROC)
Ablated modules zero-shot % 10% T00% zoro-shot % 0% T00%
DiCoP Original 0.8110.002) 0.862(0.002) 0.8680.002) 0.8760.002) 0.8310.002) 0.8810.002) 0.8840.002) 0.8910.002)
Adapted * 0.806(0.003) 0.86000.002) 0.866(0.002) 0.876(0.003) 0.835(0.002) 0.8830.002) 0.885(0.002) 0.892(0.002)
DPL Original 0.8290.002) 0.8880.003) 0.8910.002) 0.8970.002) 0.836(0.002) 0.8910.003) 0.8990.030) 0.9080.003)
Adapted * 0.825(0.003) 0.885(0.002) 0.89000.002) 0.896(0.002) 0.8410.002) 0.891(0.002) 0.9010.003) 0.9080.002)

* Two-sided paired Students t-test was applied to test the statistical difference between the original model and our adapted model. None of the test has p < 0.05.
Thus, the null hypothesis, “there is no difference between the original and adapted VLMs should be accepted in all the comparisons.

model adapted with just 1% of the COVID-x training data.
This approach illustrates how each component contributes
to the overall performance under scenarios of data scarcity.
We evaluate the diagnostic performance (Acc) and phrase
grounding performance (mloU) of ablated models. The re-
sults, displayed in Table demonstrate the efficacy of the
components within the proposed DiCoP and DPL modules.

TABLE V
10-RUN AVERAGE ABLATION STUDY OF BIOVIL MODEL ADAPTED WITH
1% COVID-X TRAINING SET.

Ablated modules Diagnosis Phrase Grounding
(Ace) (mlIoU)
full model 0.758(0.030) 0.273(0.003)
‘ no txt token & emb. H 0.7440.032* 0.2530.003)*
DiCoP | no txt aug. || 0747009 0.256(0.004*
‘ no txt of COVID-19 H 0.7320.033* 0.24500.004)*
| no txt of all diseases || 0.724003" 0.2330.004*
‘ no Eg H 0.7270.036)* 0.2180.004)*
‘ w/0 Litq H 0.6840.035)" 0.2190.005)*
DPL | wio Lproto || 0.697000* 0.216(0.005)*
‘ Lyeg-ce = Lee H 0.6880.037)* 0.1970.005)*

* p < 0.05 in the one-tailed paired Student’s t-test with full model.

1) Effectiveness of DiCoP: We evaluated the effectiveness
of each proposed modules in DiCoP. Each module was re-
moved from the full model in a leave-one-out fashion. The
ablated modules include 1) no update on the word tokenizer
and embeddings layer (no txt token & emb.) in Fig. 2)
no the text augmentations (no xt aug.), 3) removing the
descriptive attributes from Eq. [T] of the COVID-19 class (no
txt of COVID-19), 4) removing the descriptive attributes of
all classes (no txt of all diseases), and 5) no image-specific
features (no Eg). The columns 3-7 in Table |V| demonstrates
performance declines relative to the full model upon removing
each component, indicating the efficacy of all components.
The updated text tokenizer and embedding layer represent
significant technical advancements over our MICCAI work
(Acc=0.741) [5], markedly improving the overall performance
of the full model. We observed that the absence of textual
descriptions for all diseases (no txt of all diseases) had the
most significant impact on overall performance. This under-
scores the importance of integrating disease-informed clinical
knowledge into the prompt generation. In addition, we noticed
that removing the text encoder (i.e., without the loss of L;;,)
results in a degradation of model performance from 0.758 to
0.684, which indicates that image-text alignment loss carries
additional information. The [CLS] token of the language
encoder fused both image specific features and disease-related

textual information from prompts, instead of simply distilling
the image-specific features.

2) Efficacy of the loss terms in DPL: We analyzed the
efficacy of the loss terms in the DPL framework. Specifically,
we disabled 1) the image-text alignment loss w/o Li;q, 2)
the prototype learning loss w/o Lyror0, and 3) the debias
term by replacing L,cg_c. With regular cross-entropy loss
(Lreg—ce — Lce). BEach loss term is excluded in a leave-
one-out manner. Columns 8-10 in Table [V] show significant
declines in model performance compared to the full model,
underscoring the contribution of each loss term. We noted that
the most significant decline in overall performance occurred
when Lp,010 and the debias term in L.q_c. Were removed.
This demonstrates the critical role these components play in
regularizing the latent space of the VLMs, facilitating the
learning of new disease concepts efficiently while preventing
overfitting to limited samples.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we present an adaptation framework to
leverage the visual-linguistic capabilities of VLMs to prepare
for the diagnosis of a newly identified disease, using the
emergence of COVID-19 pneumonia as an exemplar use case.
To address this challenge, we introduced a disease-informed
adaptation method with two key contributions. Firstly, DiCoP
leverages clinical knowledge to craft prompts that effectively
represent the concepts of the newly identified disease. Sec-
ondly, we propose DPL to tackle the lack of structural
regulation in the latent space of CLIP-based VLMs. Em-
pirical analyses confirm the effectiveness and efficiency of
our method across various VLMs and tasks, including the
disease diagnosis, phrase grounding, and severity estimation.
Our method particularly excels under conditions of limited
data availability, which mirrors the early stages of a pandemic
when data for model adaptation is scarce.

One limitation of our study is its focus on validating our
method with CLIP-based VLMs. Nonetheless, the proposed
DiCoP and DPL modules can be applied to other VLMs.
Another limitation of our work is that we only considered
COVID-19 pneumonia as a new disease due to the limited
availability of medical imaging datasets. Our study focused
on three COVID-related datasets, representing a range of chal-
lenges and tasks associated with this widely known disease.
The integration of DiCoP with DPL could pave the way for
advancements in disease-informed computer-aided diagnosis,
potentially expanding its applications to other new disease-
related medical image analysis tasks in the future.



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

TABLE VI
THE EXAMPLE MANUALLY-CRAFTED PROMPTS FOR COVID-X DATASET.

Findings (Condition Attributes Prompt Candidate 1 Prompt Candidate 2 Prompt Candidate 3
categories)

Desy(basic) "A chest X-ray image of a patient "A radiograph of a COVID-19 "An X-ray image showing a patient
with COVID-19.” patient.” diagnosed with COVID-19.”

Desk(texture) "Texture Patterns include "Texture patterns feature "Texture patterns exhibit
bilateral, patchy and bilateral, patchy, and bilateral, patchy, and
ground-glass opacities (GGO) ground-glass opacities in the ground-glass opacities (GGO) in
in the lungs. These opacities lungs, which may differ in the lungs, varying in density and
can vary in density and density and distribution.” distribution.”
distribution.”

COVID-19 pneumonia Desg(shape) "The opacities can have irregular "The opacities may exhibit "The opacities often feature
shapes, appearing as hazy areas irreqgular contours, manifesting irregular forms, presenting as
with fuzzy borders.” as hazy regions with indistinct blurred areas with indeterminate

edges.” boundaries.”
Desi(location) || "The opacities are commonly “The opacities typically appear “Opacities are often found in the

located in the peripheral regions
of the lungs, particularly in
the lower lobes. They may involve
multiple lung segments of both
chest sides.”

in the peripheral areas of the
lungs, especially in the lower
lobes, and can affect multiple
segments of both sides of the
chest.”

peripheral parts of the lungs,
mainly within the lower lobes,
and may affect several lung
segments on both sides of the
chest.”

Desg(basic)! "A chest X-ray image of a patient

with pneumonia.”

"A radiograph displaying the lung
condition of a patient diagnosed
with pneumonia.”

"An X-ray image of a pneumonia
patient.”

"Textual Patterns can include
areas of increased lung density
due to inflammatory infiltrates.”

Desk(texture)

"Textual patterns may feature
regions of heightened lung
density resulting from
inflammatory infiltrates.”

"Textual patterns can display
areas of elevated lung
density caused by inflammatory
infiltrates.”

Non-COVID-19 pneumonia Desg(shape) ”In non-COVID pneumonia, "Opacities can present with a "The distribution of opacities
opacities may have a lobar or lobar or segmental distribution, can be either lobar or segmental,
segmental distribution, depending | varying according to the specific | based on the type of non-COVID
on the type of pneumonia.” type of pneumonia. pneumonia.

Desg(location)|| "The location of pneumonia "The position of pneumonia "Pneumonia opacities can appear
opacities can vary but is opacities varies, usually in various locations but commonly
often seen in specific lobes or observed in particular lobes or manifest in specific lobes or
segments of the lung.” segments of the lung.” segments of the lung.”

Des.k(basic)l "A chest X-ray image of normal ”"A chest X-ray showing the lungs ”An X-ray image of the chest from
healthy individual.” of a normal, healthy individual.” a healthy individual”

Desk(texture) "No respiratory symptoms or ”In the absence of respiratory "Without respiratory symptoms or
underlying lung conditions, symptoms or pre-existing lung pre-existing lung conditions, a
chest typically show clear lung conditions, a chest X-ray chest X-ray typically shows clear
fields with no areas of abnormal generally reveals clear lung lung fields without any abnormal
opacities.” fields free from any abnormal opacities.”

opacities.”
Healthy individuals Desy(shape) "No hazy areas with fuzzy "There are no unclear regions "There are no indistinct areas
borders.” with blurred boundaries.” with blurred edges.”

Desk(location) || "The whole lung fields appear "The entire lungs seem uniform "The whole lung fields presents

homogeneous and translucent
without any irregularities or
opacities.”

and translucent, devoid of
any irregularities or areas of

opacity.”

as homogeneous and translucent,
lacking any irregularities or

opacities.”

! The default prompt template setting in the previous work.

APPENDIX

A. Disease-informed Prompts

Using the GPT-4 input queries mentioned above, we au-
tomatically generated three candidates for each descriptive
attribute (texture, shape, and location) based on our predefined
template. These prompts were then manually revised with the
help of a radiologist, ensuring that they are medically accurate.
The complete set of prompt candidates for each attribute of
every medical finding category is listed in Table [VI]
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