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Abstract 

In any visual search experiment, observers will make errors. Those errors can be 

categorized as “deterministic”: If you miss this target in this display once, you will 

definitely miss it again. Alternatively, errors can be “stochastic”, occurring randomly 

with some probability from trial to trial. To empirically categorize errors in a simple 

search task, our observers searched for the letter “T” among “L” distractors, with each 

display presented twice. When the letters were clearly visible (white letters on a gray 

background), the errors were almost completely stochastic (Exp 1). An error made on 

the first appearance of a display did not predict that an error would be made on the 

second appearance. When the visibility of the letters was manipulated (letters of 

different gray levels on a noisy background), the errors became a mix of stochastic and 

deterministic. Lower contrast targets produced more deterministic errors. (Exp 2). 

Using the stimuli of Exp 2, we tested whether errors could be reduced by a “mindless 

AI” intervention that guided attention around the display but knew nothing about the 

content of that display (Exp3a,b). This had no effect, but a slightly less mindless AI that 

knew the location of all items, did succeed in reducing deterministic errors (Exp3c). 

(205 Words) 

  



 

1. Introduction 

Individuals routinely fail to report or respond to visual stimuli that are clearly visible, 

“right in front of their eyes”. In some cases, the missed item is unexpected. The Simons 

and Chabris (1999) gorilla is the most famous example of such “inattentional blindness” 

(Koivisto et al., 2004; Kuhn & Tatler, 2011; Mack & Rock, 1998; Macknik et al., 2008; 

Simons, 2000; Simons & Chabris, 1999). Inattentional blindness has been invoked as 

an explanation for some real-world errors; for example, how a driver may fail to notice 

an unexpected road user before a road accident or, more benignly, how an audience 

member may be induced to believe that something has materialized from nothing in a 

magic show. Various factors might contribute to these effects. For instance, some 

researchers have proposed that a failure to see some highly noticeable objects is due to 

an illusion that the space behind an occluding foreground object is experienced as 

empty (“the illusion of absence”, Ekroll et al., 2021). As a result of this illusion, 

observers might have a misleading sense of security without checking whether the blind 

spot is really empty, or even be mistakenly convinced that a fixated spot is empty 

without taking a second look. Ekroll et al (2021) proposed this illusion as an important 

contributor to 'looked-but-failed-to-see' (LBFTS) errors in driving situations.  

Missed gorillas and other examples of inattentional blindness are dramatic but they 

are far from the only type of LBFTS error. Clearly visible targets are routinely missed 

even when the searcher knows that such targets are part of their ongoing task. In typical 

LBFTS driving accidents, the driver will generally know that they should be watching 



for pedestrians, turning vehicles, etc. In medical settings, when a clinician fails to report 

an “incidental finding”, it will not be a missed gorilla (Drew et al., 2013). It is more 

likely to be a secondary, but clinically significant finding that the clinician knows might 

occur in this setting (Lumbreras et al., 2010). Indeed, a missed item can be the actual 

target of a search (Hovda et al., 2022). The search for typos in a manuscript would be a 

relevant example for many readers of this paper of a clearly visible but not reported 

stimulus. In breast radiology, perhaps 70% of missed lesions on mammograms are 

visible enough to attract radiologists’ visual attention but a plethora of different factors, 

including satisfaction of search, incorrect background sampling, and incorrect first 

impressions result in diagnostic errors (Gandomkar & Mello-Thoms, 2019).  

Some efforts have been devoted to look at factors that influence the occurrence of 

miss errors within clinical settings. For example, Wolfe et al. (2017) developed the 

“mixed hybrid search” paradigm as a laboratory task with which to study why 

radiologists often miss clinically significant “incidental findings” like missing signs of 

lung cancer when they search for pneumonia. In a “mixed hybrid search” task, half of 

the targets are specific images (this butterfly in this pose, this shoe, etc) while the other 

half are categorically defined (any mammal, any piece of furniture). Their results 

showed that categorically defined targets were more likely to be missed than specific 

targets, analogous to what happens in clinical settings where the more specific object 

of search might be found while the more loosely-define incidental findings might be 

missed.  

In addition to the specificity of the target, its prevalence also strongly influences 



whether a target will be correctly located or identified. A standard search experiment 

might have a target on 50% of trials (50% “prevalence”) while a task like screening 

mammography might have findings worth following up on 5-10% of cases, with actual 

cancer on just 3-4 per thousand cases. With decreased target prevalence, participants 

tend to quit the search earlier and make more conservative decisions about target 

presence (Hout et al., 2015; Peltier & Becker, 2016). Both faster quitting and more 

conservative decision criteria contribute to more miss errors. This is known as the low 

prevalence effect (LPE).  

The presence of multiple targets introduces another path to error. Observers are 

more likely to miss a second target after a first one has been detected. These are so-

called "satisfaction of search" or "subsequent search miss" errors (Adamo et al., 2013; 

Berbaum et al., 1990, 1991). Adamo et al. (2019) offer three accounts for the underlying 

mechanism. The “satisfaction” account suggests that additional targets are missed 

because observers are satisfied with the first found target and terminate the search early. 

The “perceptual set” account proposes that observers are more likely to miss dissimilar 

second targets because, having found one target, observers tend to look for targets 

similar to that first one. Finally, the “resource depletion account” suggests that after 

resources are allocated to the detection of the first target, reduced resources make it 

more likely that a subsequent target will be missed.  

Even in a very basic laboratory visual search task like a search for a perfectly visible 

“T” among other distractor letters, observers will routinely miss 5% - 10% of targets. 

While the consequence of missing a “T” in a laboratory search are trivial, there are 



obvious and potentially serious consequences of miss errors in real-life contexts such 

as mammographic screening or road safety (Hovda et al., 2023; Pamme et al., 2018). 

Therefore, there is a need to investigate miss errors and to test interventions that might 

reduce their frequency (Wolfe et al, 2022). 

 In this paper, we are interested in the nature of miss errors in the simple case in 

which observers look for a letter “T” among “L”s with no uncertainty about the 

identities of the target or the distractors (no gorillas here). Still, as noted, targets are 

missed. Are those errors random (henceforth “stochastic”)? That is, if participants miss, 

let us say, 10% of targets, is that a random set of 10% of all target trials or are observers 

more likely to miss some specific targets in some specific displays? In the limit, would 

participants miss the same targets again, if asked to search the same displays? We will 

call such errors “deterministic”. To find the answer to this question, a set of T among L 

search displays was presented twice to each participant. We calculated the miss rate, 

!1, for the first time that the set of displays was shown and, !2, for the second time. 

We also calculated the proportion cases where both copies were missed: !12. If the 

errors are stochastic, then !12 = !1 ∗ !2 . If the errors are deterministic, !12 =

min	(!1, !2). If errors are a mix of stochastic and deterministic, !12 will fall between 

these two predictions. In addition to the analysis on the qualitative nature of these errors, 

it is possible to calculate the relative proportions of stochastic and deterministic errors, 

based on the three observable quantities: !1, !2 and !12. This calculation allowed 

us to evaluate the effect of "mindless" AI interventions. If an intervention was useful, 

did it reduce stochastic or deterministic errors? If these interventions reduce errors on 



a simple T-vs-L search task, it might be worth trying a similar strategy in socially 

important, real-life tasks. 

 

2. Experiment 1: Basic search for a T among Ls 

Experiment 1 consisted of a simple visual search task where white letters were 

presented against a gray background. 

2.1 Participants 

The experiment was run online on the Pavlovia platform (https://pavlovia.org). For 

Experiment 1, we tested 20 participants (6 males, 14 females, mean = 19.5, SD = 0.9, 

min = 18, max = 21) from the BSc Psychology programme at the University of 

Manchester. All participants reported normal or corrected-to-normal vision and gave 

their informed consent before they began the experiment. Participants received course 

credit for their participation. Ethics approval came from the University of Manchester 

(2023-16117-27175) 

2.2 Stimuli & apparatus 

The experiment was programmed in Python and translated into javascript by 

PsychoPy (Peirce et al., 2019). The online version was hosted on Pavlovia. Figure 1 

shows the stimuli for Experiment 1. They consisted of an array of white letters (T and 

Ls) against a gray background. The length of vertical and horizontal line segments of 

the Ts and Ls was 0.03 screen height (note that because we were testing on-line, we had 



relative, not absolute control of the sizes of stimuli). The orientations of the letters were 

randomly and uniformly selected from rotations of 30, 60, 90, 120, 150, 180, 210, 240, 

270, 300, 330, & 360 deg. The positions of the letters were randomly generated for each 

trial such that all items fit in a square region that had a side length of 0.7 screen height, 

centered on the middle of the screen. In addition, the minimum distance between any 

two letters was always larger than 0.1 screen height. 

 

 

Figure 1: Sample stimulus for Experiment 1.  

2.3 Design & procedure 

Participants searched for the letter T among Ls. Participants were instructed to press 

‘j’ if they found the target and ‘f’ if they did not. The stimulus was present until response. 

Targets were present on 50% of trials. Trial by trial feedback was not given, but after 

every block of 100 trials the proportion correct for that block was displayed. There were 



two set sizes; 18 and 36, fully crossed with target presence and target absence. For each 

participant, we generated 75 versions of each of the four resulting combinations for a 

total of 300 unique stimulus displays. Each of these was presented twice. The two 

copies of the 300 stimuli were randomly intermixed across six blocks of 100 trials for 

a total of 600 trials for the experiment. Thus, there were three factors in this design, 

each with two levels: repetition (first, second), set size (18, 36), and target (present, 

absent). Participants completed four practice trials before they started the experiment.  

2.4 Analysis method 

We focused on the RT data and miss rate data, with our primary interest being in 

the error data. The RT data was subjected to a three-way repeated measure ANOVA 

with target presence, set size and repetition as within-subject factors. Since the 

experiments involved a typical visual search task, we found the typical main effects of 

target presence and set size. Specifically, there were longer reaction times for absent 

trials and longer reaction times for larger set sizes. A two-way interaction between target 

and set size, showing steeper reaction time slopes for absent trials, also occurred. All of 

these effects are highly statistically reliable and will not be reported in detail in the 

Results section. The results of the full ANOVAs are shown in supplementary tables.  

For miss rate data, we calculated the miss rate, !1, for the first time the set of 

displays was shown and, !2, for the second time. We also calculated the proportion of 

cases where both copies were missed, !12. If the errors are stochastic, then !12 =

!1 ∗ !2. If the errors are deterministic, !12 = min	(!1, !2). If the errors are a mix of 



stochastic and deterministic errors, !1 ∗ !2 < !12 < min	(!1, !2) . To get a 

quantitative estimate of the relative proportion of stochastic and deterministic errors, 

we modelled how the errors observed in round 1 and round 2 could be decomposed into 

different types of error, as shown in Figure 2. One complication worth noting is that a 

deterministic display may produce a stochastic error. A deterministic display is one that 

would produce a deterministic error. However, it is possible for an error to be produced 

on that trial for stochastic reasons. Imagine, for instance, that the observer is simply not 

paying attention on that would-be deterministic trial and pushes a response button at 

random. 

 

Figure 2: Observed errors decomposed into deterministic errors and stochastic 

errors. 

 

In Figure 2, there are four possible states for a trial. The target in a trial is either 

fundamentally unfindable (black) or fundamentally findable (blue). A completely black 

circle represents the case where a deterministic error is made on a trial with an 

unfindable target. A black circle with a red centre means that the unfindable target was 

missed stochastically. A blue circle with the red centre represents the situation where a 



stochastic error is made on on a trial with a findable target. A blue circle represents a 

trial where the target is successfully found. If the target in a trial is fundamentally 

findable, this target cannot become fundamentally unfindable. This means that it is not 

possible to transition from a blue circle or blue circle with a red centre to a black circle 

or a black circle with a red centre. A transition in the opposite direction is possible 

though. For instance, if an AI manipulation works and reduces the number of 

deterministic errors, it is possible for a deterministic miss (black) on one trial to become 

a hit (blue) on its next appearance.  

To describe the proportions of deterministic and stochastic errors, four parameters 

are introduced: .1 and d2 represent the proportion of deterministic errors relative to 

the total number of stimuli in round 1 and round 2. /1 and /2 represent the stochastic 

error rates for a stimulus in round 1 and round 2 respectively. In Figure 2, Row 0 with 

an empty circle represents the to-be-determined status of one trial. Row 1 with four 

different types of circles represents the four possible outcomes of the first appearance 

of a trial with the notation for the corresponding probabilities in round 1. Row 2 

represents the possible outcomes with the notation for the corresponding probabilities 

in round 2. Therefore, the observed !1, !2 and !12 can be theoretically decomposed 

into the summed error probabilities in round 1 and round 2. The following three 

equations can be derived (The original version and the simplifying process can be found 

in the appendix): 

!1 = .1 ∗ (1 − /1) + /1 

!2 = .2 + /2 ∗ (.1 − .2) + (1 − .1) ∗ /2 



!12 = .2 + /2 ∗ (.1 − .2) + /1 ∗ (1 − .1) ∗ /2 

For Experiment 1, there was no AI intervention. A fixed deterministic rate was 

therefore assumed for round 1 and round 2, i.e., . = .1 = .2. With this additional 

assumption, there is a unique solution for the above equations. 

. = !12 − !1 ∗ !2
1 − !1 − !2 + !12 

/1 = !1 − !12
1 − !2  

/2 = !2 − !12
1 − !1  

  

 

2.5 Data exclusion 

Trials with RTs smaller or greater than 2.5 SD from the mean RT in each cell of the 

combination target x set size (3.47%) and trials where participants corrected their motor 

responses (1.07%) were removed for each observer. When one trial was removed, the 

other copy of the trial was also be removed (93.3% remained). After the removal of the 

above trials, we further checked the d’ of all the participants. Participants with d’ beyond 

2.5 SD from the group mean for each individual experiment were excluded. One 

participant with a low d’ = 1.02 was removed from Exp 1. For the remaining participants, 

min d’ = 2.95, max d’ = 5.84. 



2.6 Results 

2.6.1 RTs 

  Figure 3 shows RTs on correct response trials for Experiment 1. It is clear that the 

first and second repetitions of the stimuli produce very similar RTs with a slight speed-

up on the second appearance. The three-way repeated measure ANOVA with target 

presence, set size and repetition as within-subject factors shows a main effect of 

repetition [F(1, 18) = 7.00, p = 0.016, 2!"  = 0.28], suggesting that participants 

responded faster in round 2 than in round 1. The interaction between target presence 

and repetition [F(1, 18) = 0.37, p = 0.55, 2!" = 0.02] as well as the interaction between 

set size and repetition [F(1, 18) = 0.50, p = 0.49, 2!" = 0.03] was not significant. The 

three-way interaction among all the factors was not significant either [F(1, 18) = 0.004, 

p = 0.95, 2!" = 0.00]. The full results of the three-way ANOVA are presented in Figure 

S1 in the appendix. 

 

Figure 3: RTs from Experiment 1 as a function of set size, target presence, and 

repetition. Red lines: First presentation, Black lines: Second presentation. Full 



lines: present trials, Dotted lines: absent trials. 

2.6.2 Miss rates 

 

 

Figure 4: Miss rate analyses for Experiment 1. Left panel: comparison between 

observed human data, stochastic predictions and deterministic predictions for 

each observer. Right panel: deterministic error proportion 3 and stochastic error 

rates 45 and 46 calculated from human data. 

 

Figure 4 shows the results of the miss rate analyses for Experiment 1. In the left 

scatter plot, the blue dots represent the observed data for each participant with 7 = !1 

and 8 = !12 calculated from human data. Each observed data point (blue dot) is 

paired with the stochastic prediction (red circle) and the deterministic prediction (black 

circle) of !12 given the observed !1 and !2. Therefore, for one participant with 

observed !1, !2 and !12, each observed data point (blue dot) is (!1, !12), the 

stochastic prediction (red circle) is (!1, !1 ∗ !2), and the deterministic prediction 

(black circle) is (!1, min	(!1, !2)). As can be seen, the observed data (blue dots) are 



almost overlapping with the stochastic predictions (red circles). The right bar plot 

shows the results of the parameters solved using the equations from the Methods section, 

above. The figure is based on the assumption that . = .1 = .2, resulting in three 

parameters to be computed i.e., the deterministic error proportion, ., the stochastic rate 

in round 1, /1, and the stochastic rate in round 2, /2. A one-sample t-test showed that 

the deterministic error proportion . was not significantly different from 0 [t(18) = 0.91, 

p = 0.38, Cohen’s d = 0.21], demonstrating that errors in Experiment 1 were almost 

exclusively stochastic. A paired t-test comparing the stochastic rates, /1  and /2 , 

shows that observers made fewer stochastic errors in round 2 than in round 1 [t(18) = 

3.81, p = 0.0013, Cohen’s d = 0.87], indicative of some learning effect over the course 

of Experiment 1. 

2.6.3 Experiment 1 discussion 

Experiment 1 consisted of a simple T-vs-L search task where all the white letters 

were presented on a gray background. Analyses of the RTs and miss rates showed that 

observers responded faster and made fewer errors in round 2 than in round 1, indicative 

of some learning effect. More importantly for present purposes, the proportion of 

deterministic errors, ., calculated from miss rates was not significantly different from 

0, indicating that errors were almost purely stochastic in this experiment. The result 

would be different if there was a systematic bias in search. For example, if observers 

tended to ignore the lower left corner of the display, then targets in the lower left would 

be more likely to be missed on both their first and second appearances. This is not what 



is found with these simple and clear stimuli. However, in many real-world search tasks 

(mammography, airport security), search items are not so clearly visible. In the next 

two experiments we therefore tested whether stochastic errors still dominate when items 

become harder to distinguish from the background.  

 

3. Experiments 2a and 2b: letters on a noisy background 

In Experiments 2a and 2b, the uniform gray background was replaced by a noisy 

background. The letters were also of various grayscales. The only difference between 

the two experiments was that Experiment 2b used a more restricted set of target 

contrasts and target locations compared to Experiment 2a. 

3.1 Participants 

Both Experiments 2a and 2b were run online on the Pavlovia platform 

(https://pavlovia.org). For Experiment 2a, we tested 21 participants (6 males, 13 

females, mean = 23.1, SD = 7.1, min = 18, max = 45, two participants did not provide 

the gender and age information). Thirteen of them were from the BSc Psychology 

programme at the University of Manchester and eight of them were recruited via 

Prolific. For Experiment 2b, we tested 21 participants (8 males, 8 females, 1 non-binary, 

mean = 28.8, SD = 10.9, min = 20, max = 57, four participants did not provide the 

gender and age information) recruited via Prolific. All participants reported normal or 

corrected-to-normal vision and gave their informed consent before they began the 

experiment. Participants received course credit (when recruited from the BSc 



Psychology) or 8 GBP (when recruited via Prolific) for their participation. Ethics 

approval came from University of Manchester (2023-16117-27568 [credit version] and 

2023-16117-28440 [payment version] for Exp 2a, 2023-16117-28499 for Exp 2b). 

3.2 Stimuli & apparatus 

In Experiments 2a and 2b, the stimuli consisted of an array of T and Ls against a 

background composed of 1/:#.% noise. The noise was intended to roughly simulate 

the texture of a mammogram. Ts and Ls were of various grayscales. The length of 

vertical and horizontal lines of Ts and Ls was 0.03 screen height. The orientations of 

the letters were randomly selected from [30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 

330, 360]. The minimum distance between any two letters was always larger than 0.1 

screen height to avoid overlapping.  

In Experiment 2a, The grayscales for items were randomly generated by the formula 

(rand()-0.5)*2 for each trial. Therefore, in Experiment 2a, the distribution of item 

grayscale values was uniform. The default colour space in PsychoPy ranges from -1 to 

1, so the recorded values were converted to 0-255 for subsequent analyses. The 

positions of the letters were randomly generated for each trial with the limitation that 

both x and y ranged from [0.15, 0.85] screen height. The noisy background was 

randomly selected from 10 noise images of 2000*2000 pixels for each trial and was 

cropped from the centre to fit the screen size during the online testing. Therefore, 

Experiment 2a required participants to use a screen smaller than 2000*2000.  

In Experiment 2b, the target contrast (defined by the difference between target 



grayscale and background grayscale [T-B]) was controlled to be [-105, -75, -45, -15, 15, 

45, 75, 105] and the locations of the target were evenly distributed across four spatial 

quadrants (upper left: x, y from [0.15, 0.45]; upper right: x from [0.55, 0.85], y from 

[0.15, 0.45]; bottom left: x from [0. 15, 0.45], y from [0.55, 0.85]; bottom right: x, y 

from [0.55, 0.85]). To achieve this manipulation, we generated the stimuli before the 

experiment. Crossing target presence (2), set size (2), T-B (8) and target location (4) 

yielded 128 stimuli (2*2*8*4). Two search arrays were generated for each parameter 

combination, resulting in a total of 256 stimuli. Since all stimuli were presented twice, 

the total number of trials was 512. For each search array, the noisy background was 

randomly selected from 10 noise images of 1000*1000 pixels. The final stimuli were 

resized to fully occupy the screen height during the online testing. Figure 5 shows an 

example of the stimuli used in Experiments 2a and 2b.  

 



 

Figure 5: Sample stimuli from Experiments 2a and 2b. (a) In 2a, the background 

filled the entire screen. (b) In 2b, the background was a square with size 

determined by the vertical extent of the screen. 

 

3.3 Design & procedure 

Participants were instructed to press ‘j’ if they found the target T and ‘f’ if they did 

not. The stimulus was present until response. Trial by trial feedback was not given, but 



after each block, the percentage correct was displayed. Experiment 2a generated 300 

stimuli online for each participant. The two copies of each of the the 300 stimuli were 

randomly intermixed across six blocks of 100 trials. Experiment 2b used pre-generated 

stimuli as described in the Stimuli & Apparatus section for all participants. Two copies 

of the 256 pre-generated stimuli were randomly intermixed across four blocks of 128 

trials. As in Experiment 1, this design had three factors, each with two levels: repetition, 

set size, and target. Participants were required to finish a 12-trial practice session before 

the experiment and would only be able to begin the experiment with an accuracy higher 

than 0.75, otherwise, they had to repeat the practice.  

 

3.4 Analysis method 

The analysis of the RT data and miss rate data was the same as in Experiment 1. 

The RT data was subjected to a three-way repeated measure ANOVA with target 

presence, set size and repetition as within-subject factors. As in Experiment 1, there 

was no AI intervention in Experiments 2a and 2b and therefore the same unique set of 

solution could be obtained for ., /1 and /2. 

3.5 Data exclusion 

Experiment 2a required a screen resolution smaller than 2000 × 2000 so that the 

noisy background would cover the whole screen. In Experiment 2a, one participant 

whose screen resolution did not meet the 2000 × 2000 requirement was excluded. 

Next, the same exclusion criteria as in Experiment 1 were applied. Trials with 2.5 SD 



outlier RTs (3.33%) and motor correction (0.91%) were excluded for each observer. 

After removing both copies of the aforementioned trials, 93.52% remained. One 

participant was removed from Exp 2a based on a d’ of -0.04 (guessing). For the 

remaining participants, min d’ = 1.66, max d’ = 3.94. 

For Experiment 2b, 2.80% and 0.39% of the trials were excluded due to outlier RTs 

and motor correction. 94.48% of the trials remained after removing both copies of those 

trials. No participant was removed based on the d’ calculated from the remaining trials 

(min d’ = 2.10, max d’ = 4.80). 

3.6 Results 

3.6.1 RTs 

Figure 6 shows RTs on correct response trials from Experiments 2a and 2b. As can 

be seen, the second repetition of the trial is somewhat faster than the first, especially 

for absent trials. In Experiment 2a, the results from the three-way ANOVA suggest that 

there was a main effect of repetition [F(1, 18) = 11.84, p = 0.003, 2!" = 0.40]. The 

interaction between target presence and repetition [F(1, 18) = 4.80, p = 0.042, 2!" = 

0.21] was also significant. Post hoc analyses suggest that the effect of repetition was 

significant on both target present [t(18) = 3.32, p = 0.004] and target absent trials [t(18) 

= 2.92, p = 0.009], but the effect of repetition was larger on target absent trials (Mean 

Difference = 554 ms) than on target present trials (Mean Difference = 148 ms). The 

interaction between set size and repetition was not significant [F(1, 18) = 3.49, p = 0.08, 

2!" = 0.16]. The three-way interaction among all the factors was not significant either 



[F(1, 18) = 3.16, p = 0.09, 2!" = 0.15]. The full results of the three-way ANOVA are 

presented in Figure S2 in the appendix. 

In Experiment 2b, the results from the three-way ANOVA were similar. They show 

that there was a main effect of repetition [F(1, 20) = 18.06, p < 0.001, 2!" = 0.47]. The 

interaction between target presence and repetition was also significant [F(1, 20) = 9.78, 

p = 0.005, 2!"  = 0.33]. Post hoc analyses found that the effect of repetition was 

significant on both target present [t(20) = 2.27, p= 0.034] and target absent trials [t(20) 

= 4.09, p < 0.001], but it was larger on target absent trials (Mean Difference = 970 ms) 

than on target present trials (Mean Difference = 224 ms). The interaction between set 

size and repetition was not significant [F(1, 20) = 0.48, p = 0.50, 2!" = 0.02]. The three-

way interaction among all the factors was not significant either [F(1, 20) = 0.004, p = 

0.95, 2!" = 0.00]. The full results of the three-way ANOVA are presented in Figure S3 

in the appendix. 

 

Figure 6: RTs from Experiments 2a and 2b as a function of set size, target presence, 

and repetition. Red lines: First presentation, Black lines: Second presentation. Full 

lines: present trials, Dotted lines: absent trials. 



3.6.2 Miss rates 

The miss errors are the main focus of interest here. Figure 7 shows the results of 

miss rate analyses for Experiments 2a and 2b. Compared to Experiment 1, it is clear 

that there were more errors and that those errors were less strictly stochastic. For 

Experiments 2a and 2b, the scatter plots show that the observed data (blue dots) lie 

between the deterministic (black circles) and the stochastic (red circles) predictions, 

indicating that the errors were a mix of both types. In Experiment 2a, a one-sample t-

test showed that the deterministic error proportion . was significantly different from 

0 [t(18) = 10.45, p < 0.001, Cohen’s d = 2.40], suggesting the existence of deterministic 

errors in Experiment 2a. No learning effect was observed as suggested by the 

nonsignificant difference between /1 and /2 [t(18) = 1.52, p = 0.15, Cohen’s d = 

0.35]. Experiment 2b essentially replicated the results from Experiment 2a. The 

deterministic error rate was significantly different from 0 [t(20) = 6.26, p < 0.001, 

Cohen’s d = 1.37]. The difference between /1 and /2 was not significant [t(20) = 

0.34, p = 0.74, Cohen’s d = 0.07]. 

 



 

Figure 7: Miss rate analyses for Experiments 2a and 2b. (a) data from 

Experiment 2a. (b) data from Experiment 2b. 

 

As can be seen in Figure 5, the letters in Experiments 2a and 2b were of varying 

contrast. Contrast on a non-uniform background can be defined in several ways (Peli, 

1990). The precise details are not critical here. As cartooned in Figure 8, what matters 

is that low contrast items are harder to see and find than high contrast and, as shown in 

8b, those low contrast images generate lower accuracy. For purposes of analysis, we 

computed the contrast as the target-background dissimilarity, i.e., target gray minus the 

average background gray in a square region surrounding the target. The exact size of 

the background region does not matter much based on the calculation results, so we 

chose the background patch outlined by the small blue square for the following analyses. 



The box's size is twice the length of the lines composing the letter T or L. As the “low 

contrast Ls” in Figure 8 should illustrate, on a non-uniform background a letter may be 

detectable, even when T-B is near zero. 

 
Figure 8: The effects of contrast on hit rate in Experiments 2a and 2b. (a) 

Example of contrast calculation. (b) Hit rate as a function of T-B. Data in 

Experiment 2a were binned (bin width: 50) to calculate the hit rate for each bin.  

 

The impact of contrast on error rate is clearly illustrated in the graphs of Figure 

8b. Unsurprisingly, observers were far more likely to miss targets if those targets were 

of low contrast. Of more interest, if we separately analyse low contrast and higher 

contrast stimuli, we see that the low contrast errors are more likely to be deterministic 

while high contrast errors are largely stochastic. This is shown in Figure 9. 

 



 

Figure 9: Error data for each observer (blue dots) for low contrast and higher 

contrast targets. Contrast was calculated by the absolute value of T – B. The red 

dots show the stochastic prediction and the black dots show the deterministic 

prediction. 

 

3.6.3 Experiment 2 discussion  

Compared to Experiment 1, Experiments 2a and 2b involved a more difficult T-vs-

L task where the target could be of very low contrast. RT data in Experiments 2a and 

2b showed that observers still responded faster in round 2 than in round 1, as they did 

in Experiment 1. However, different patterns were observed in the miss rate data. Miss 

rate analyses demonstrated that while errors were purely stochastic in Experiment 1 



they were a mix of deterministic and stochastic errors in the Experiment 2. When 

analysed separately, the low-contrast targets in Experiments 2a and 2b appear to yield 

more deterministic errors. In addition, although there seemed to be some learning effect 

on RTs, no such effect was observed on search accuracy in these two experiments. It 

would not be terribly interesting to discover that observers do not find targets that they 

cannot see. However, in this case, these are targets that are harder to see, not impossible. 

This raises the possibility that these low contrast targets might be found if observers 

could be induced to pay attention to those items more effectively. In Experiment 3, we 

tried several methods for moving attention around the scene in a possibly useful manner. 

We call these methods "mindless AI" because our goal here is to direct attention with 

an intervention that does not need to know where the target actually resides or even 

where it is likely to reside. Of course, if a real AI system can solve a search problem, 

that changes the LBFTS issue. However, as that is not the case in general, it could be 

useful to have a generic intervention that reduces errors and that can be easily 

implemented in real-world tasks. 

4. Experiments 3a, 3b and 3c: Mindless AI 

In Experiments 3a, 3b and 3c, different forms of a mindless (or almost mindless) 

AI intervention were introduced to reduce the errors. Experiments 3a and 3b moved 

attention around the field in an effort to decrease the chance of overlooking an item of 

interest. In Experiment 3a, the mindless AI intervention was a yellow dot jumping to 

random places in the search display, summoning attention or the eyes to follow. In 



Experiment 3b, a transparent, outline square moved in a spiral path from center to 

periphery in the hope of inducing observers to search regularly. In Experiment 3c the 

intervention was less completely "mindless". Each of the letters in the search display 

was highlighted by a yellow square around it in an effort to reduce the chance of missing 

a low contrast target. Highlighting each item is akin to having an AI that figures out 

where all the interesting information might be but that cannot discriminate targets from 

distractors.  

4.1 Participants 

Experiments 3a, 3b and 3c were run online on the Pavlovia platform 

(https://pavlovia.org). All the participants were recruited via Prolific. In Experiment 3a, 

we tested 20 participants (6 males, 9 females, mean = 32.1, SD = 11.3, min = 22, max 

= 59, five participants did not provide their gender and age information). In Experiment 

3b, we tested 20 participants (7 males, 11 females, mean = 27.9, SD = 6.2, min = 20, 

max = 40, two participants did not provide the gender and age information). In 

Experiment 3c, we tested 20 participants (9 males, 5 females, mean = 24.9, SD = 5.5, 

min = 19, max = 41, six participants did not provide the gender and age information). 

All participants reported normal or corrected-to-normal vision and gave their informed 

consent before they began the experiment. Participants received 8 GBP for their 

participation. Ethics approval came from University of Manchester (2023-16117-29230 

for Exp 3a, 2023-16117-30373 for Exp 3b, 2023-16117-30584 for Exp 3c). 



4.2 Stimuli & apparatus 

The exact same set of stimuli used in Experiment 2b were also used in Experiment 

3a, 3b and 3c (Figure 5b), but in the AI trials there was either a randomly moving yellow 

dot (Experiment 3a), a transparent yellow square that moved in a spiral fashion 

(Experiment 3b), or a set of static yellow squares that highlighted the positions of all 

items (Experiment 3c). 

4.3 Design & procedure 

Participants were instructed to press ‘j’ if they found the target T and ‘f’ if they did 

not. The search time was limited to 20 seconds for Experiments 3a, 3b and 3c for the 

purpose of controlling the online experiment time. Trial by trial feedback was not given, 

but the percentage correct was displayed at the end of each block. The stimuli for 

Experiments 3a, 3b and 3c were the same as that of Experiment 2b, except for the 

introduction of the mindless AI on half of the repetition trials. In Experiment 3a (Figure 

10, left, the yellow dot was enlarged here for visualization), a yellow dot (size = 0.01 

screen height) jumped at random places in the search display as the mindless AI 

intervention, remaining at each location for 500 ms. In Experiment 3b (Figure 10, 

middle), a transparent square (size = 1/3 screen height) with yellow borders moved 

around the stimuli area on AI intervention trials, following a spiral path. Participants 

were instructed to follow the square when it appeared. In Experiment 3c (Figure 10, 

right), all the letters were highlighted by yellow squares around them (size = 0.06 screen 

height) as the AI intervention. In Experiments 3a and 3b, the AI intervention was not 



related to the presence or the location of the target. In Experiment 3c, the presence of 

the AI intervention was not related to the presence of the target either, but it did point 

out the positions of all the letters and thus also possibly the target. For half of the stimuli, 

we had no AI on the first copy of the stimulus but AI on the second copy (noAI – AI 

condition). As comparison, for the other half of the stimuli, we had AI on the neither 

the first or the second copy (noAI – noAI condition). All versions of Experiment 3 had 

therefore a design with four factors, each with two levels: repetition, AI, set size, and 

target. Participants were required to finish a 12-trial practice session before the 

experiment and would only be able to begin the experiment with an accuracy higher 

than 0.75, otherwise, they had to repeat the practice. 

 

Figure 10: Illustration of the AI intervention in Experiments 3a, 3b and 3c.  

 

 



4.4 Analysis method 

We focused on the RT data and miss rate data with our primary interest in the error 

data as in the previous experiments. The four-way repeated measure ANOVA with 

target presence, set size, repetition and AI intervention as within-subject factors was 

conducted for Experiments 3a, 3b and 3c. Since the three experiments here also 

involved a typical visual search task, it was expected to observe main effects of target 

presence (longer reaction times for absent trials), set size (longer reaction times for 

larger set sizes) and their two-way interaction (steeper reaction time slopes for absent 

trials). These effects will not be reported in detail in the following Results section. The 

results of the full ANOVA can be found in supplementary tables. 

To analyse miss rate, we also calculated !1, !2 and !12 to estimate .1, .2, 

s1 and /2. For the noAI – noAI trials in Experiments 3a, 3b, 3c, there was no AI 

intervention. A fixed deterministic rate was therefore assumed for round 1 and round 2, 

i.e., . = .1 = .2. The solution of ., /1 and /2 was the same as in the previous 

experiments. For noAI – AI trials in Experiments 3a, 3b and 3c, the AI intervention was 

introduced on the second copy of trials. If AI reduces deterministic errors, the 

assumption .1 = .2 becomes .1 ≥ .2. This means that the assumption .1 = .2 

can no longer be used to arrive at a unique solution. /2 and .2 are still uniquely 

determined by solving the equations, but there are multiple solutions for /1 and .1. 

However, considering that deterministic errors should be persistent when no additional 

intervention is implemented, the assumption .1  (noAI - AI) = .  (noAI - noAI) 

should hold, thus leading to a unique solution for /1 in the noAI – AI condition.  



/2 = !2 − !12
1 − !1  

.2 = !12 − !1 ∗ !2
1 − !1 − !2 + !12 

/1 = !1 − .1
1 − .1  

It also should be noted that the split of stimuli into the noAI - AI group and the 

noAI – noAI group was random for each participant. Therefore, it is possible that one 

group contained more deterministic error prone stimuli and the other group contains 

fewer such stimuli, but on average we should have .1 (noAI - AI) = . (noAI - noAI). 

If the noAI – noAI group contains much fewer deterministic error prone stimuli than 

the other group, .1 (noAI - AI) = . (noAI - noAI) will lead to an overestimate of the 

actual .1, which probably results in a negative /1 when the overestimate of .1 is 

larger than !1. To avoid such cases, any participant with a negative estimate of /1 

will be excluded when the analysis concerns the estimate of the deterministic error 

proportion .1/.2 and the stochastic error rate /1//2. 

4.5 Data exclusion 

The same exclusion criteria as in the previous experiments were applied for 

Experiments 3a, 3b and 3c. We removed trials with RTs smaller or greater than 2.5 SD 

from the mean RT in each condition for each observer (3.21% in Exp 3a, 3.22% in Exp 

3b, 3.87% in Exp 3c). Then trials where participants corrected their motor responses 

were removed (0.70% in Exp 3a, 0.76% in Exp 3b, 0.69% in Exp 3c). When one trial 

was removed, the other copy of the trial was also removed (remaining trials: 93.77% in 

Exp 3a, 93.71% in Exp 3b, 92.42% in Exp 3c). After the removal of the above trials, 



we further checked the d’ of all the participants. Participants with d’ beyond 2.5 SD 

from the group mean for each individual experiment were excluded. One participant 

with d’ = 1.39 was removed from Exp 3a (for remaining participants, min d’ = 1.98, 

max d’ = 3.86). One participant with d’ = 0.69 was removed from Exp 3b (for remaining 

participants, min d' = 2.53, max d’ = 3.59). One participant with d’ = 1.68 was removed 

from Exp 3c (for remaining participants, min d’ = 2.38, max d’ = 4.11). 

4.6 Results 

4.6.1 RTs 

Figure 11 shows RTs on correct response trials from Experiments 3a, 3b and 3c. It 

appears that the AI had very little qualitative effect in Experiments 3a and 3b. RTs were 

faster on the second copy of the stimuli, especially for absent trials, but the presence or 

absence of the mindless AI made little difference. In Experiment 3c, by contrast, the 

presence of the AI slowed the RT on the second appearance. Note that RT2 is faster 

when the AI is absent and slower when the RT is present. We can presume that the boxes 

marking all the items induced the observers to attend to more of the items or spend 

more time checking the highlighted areas. 

 



 

Figure 11: RTs from Experiments 3a, 3b and 3c as a function of set size, target 

presence, and repetition. Red lines: First presentation, Black lines: Second 

presentation. Full lines: present trials, Dotted lines: absent trials..  

 

To evaluate this statistically, four-way repeated measure ANOVAs with target 

presence, set size, repetition and AI intervention as within-subject factors were 

conducted for Experiments 3a, 3b and 3c. 

In Experiment 3a, the four-way interaction was significant [F(1, 18) = 6.61, p < 

0.05, 2!"  = 0.27], so two three-way ANOVAs with set size, repetition and AI 

intervention as within-subjects factors were conducted for target present and target 

absent trials separately. On target present trials, the main effect of repetition was not 

significant [F(1, 18) = 3.25, p = 0.088, 2!" = 0.15], but on target absent trials, it was 

[F(1, 18) = 14.30, p = 0.001, 2!" = 0.44], showing that observers responded faster in 

round 2 than in round 1 for absent trials. The two-way interaction between repetition 



and AI was not significant for either target present [F(1, 18) = 0.028, p = 0.87, 2!" = 

0.002] or target absent trials [F(1, 18) = 0.046, p = 0.83, 2!" = 0.003], suggesting that 

the AI intervention did not have any effect on reaction time in Experiment 3a. The full 

results of the four-way ANOVA and three-way ANOVAs are presented in Figures S4-1, 

S4-2 and S4-3 in the appendix. 

In Experiment 3b, the four-way interaction was also significant [F(1, 18) = 4.67, p 

< 0.044, 2!"  = 0.21], so again two three-way ANOVAs were conducted for target 

present and target absent trials separately. On target present trials, the main effect of 

repetition was almost significant [F(1, 18) = 4.17, p = 0.056, 2!" = 0.19]. The two-way 

interaction between repetition and AI was not significant [F(1, 18) = 0.008, p = 0.93, 

2!" = 0.00], suggesting that the AI intervention did not influence RTs on target present 

trials. On target absent trials, the main effect of repetition was significant [F(1, 18) = 

8.32, p = 0.01, 2!" = 0.32], showing that observers made faster responses in round 2 

than in round 1 on target absent trials. The two-way interaction between repetition and 

AI was significant as well, [F(1, 18) = 4.95, p = 0.039, 2!" = 0.22]. The AI intervention 

appears to have made observers search longer on target absent trials. The full results of 

the four-way ANOVA and three-way ANOVAs are presented in Figures S5-1, S5-2 and 

S5-3 in the appendix. 

In Experiment 3c, the four-way interaction was again significant [F(1, 18) = 11.53, 

p = 0.003, 2!" = 0.39], so two three-way ANOVAs were conducted for target present 

and target absent trials separately. On target present trials, the main effect of repetition 

was not significant [F(1, 18) = 0.002, p = 0.96, 2!" = 0.00]. On target absent trials, the 



main effect of repetition was not significant either [F(1, 18) = 0.019, p = 0.89, 2!" = 

0.001]. However, there was a strong two-way interaction between repetition and AI for 

both target present [F(1, 18) = 7.80, p = 0.012, 2!" = 0.30] and target absent trials [F(1, 

18) = 45.79, p < 0.001, 2!"  = 0.72], demonstrating that the AI intervention in 

Experiment 3c slowed the search regardless of target presence. The effect of this no-

quite-mindless AI was larger on target absent trials (noAI – noAI: RT2 – RT1 = -622 

ms, noAI – AI: RT2 – RT1 = 529 ms) than on target present trials (noAI – noAI: RT2 – 

RT1 = -222 ms, noAI – AI: RT2 – RT1 = 202 ms).  

4.6.2 Miss Rates 

Figure 12 shows the miss rate difference (P2 – P1) for the noAI – noAI stimuli and 

the noAI – AI stimuli. The critical comparison in all cases is between the miss rate on 

the second appearance compared to the first appearance, since the AI was only 

implemented on the second copy in the noAI – AI group. Did the AI intervention lower 

the miss error rate on the second appearance compared to when there was no AI 

intervention? In Experiments 3a and 3b, the AI did not reduce the error rate [paired t-

tests, 3a: t(18) = 0.19, p = 0.85, Cohen’s d = 0.04; 3b: t(18) = 0.63, p = 0.54, Cohen’s d 

= 0.14]. In Experiment 3c, the drop in misses on second presentation was larger in the 

presence of the AI than in the absence of AI [t(18) = 3.38, p = 0.0033, Cohen d = 0.78], 

suggesting that the AI intervention in Experiment 3c effectively reduced errors. 

 
 
 



 

Figure 12: Miss rate difference (P2 – P1) for the noAI – noAI stimuli and noAI – 

AI stimuli. 

 

As can be seen in the scatter plots of Figure 13, all versions of Experiment 3 

replicated the main result of Experiment 2 in producing a mix of stochastic and 

deterministic. The observed data lie between the stochastic and deterministic 

predictions regardless of AI presence in Experiments 3a, 3b and 3c, indicating that the 

errors were a mix of deterministic and stochastic errors in all the conditions. As 

discussed in the Analysis method section, the proportion of deterministic errors and 

stochastic errors can be calculated by solving the relevant equations. For noAI – noAI 

trials in Experiments 3a, 3b, 3c, the proportion of deterministic errors was fixed for 

round 1 and round 2 as in the previous experiments (. = .1 = .2), resulting in three 

parameters ., /1 and /2. For noAI – AI trials in Experiments 3a, 3b, 3c, the presence 

of the AI intervention could influence the proportion of either deterministic or 

stochastic errors (or both) in round 2. Thus there were four parameters .1, .2, /1 

and /2 . Unique solutions could still be obtained for .2	and /2  by solving the 

equations, but there could be multiple solutions for .1 and /1. Under the assumption 



that the deterministic errors should be persistent when no interference was added, the 

.1 parameter in the noAI – AI condition was taken to be identical with . from the 

noAI – noAI condition. This could be used to derive a unique solution for /1.  

In Experiment 3a, the noAI – noAI trials replicated the results from Experiments 2a 

and 2b. The deterministic error rate was significantly different from 0 [t(18) = 6.56, p 

< 0.001, Cohen’s d = 1.51] and no learning effect was found [t(18) = 0.32, p = 0.76, 

Cohen’s d = 0.07]. For the noAI – AI trials, the critical comparisons are between d1 and 

d2 and/or s1 and s2. Did the AI reduce the error rate? One participant got a negative /1 

after we replaced .1 (noAI - AI) with . (noAI - noAI) and was therefore excluded 

from the following analysis. Neither the deterministic proportions nor the stochastic 

rates were significantly different between round 1 and round 2 [.1 vs. .2: t(17) = 0.18, 

p = 0.86, Cohen’s d = 0.04; /1 vs. /2: t(17) = 0.04, p = 0.97, Cohen’s d = 0.01], 

suggesting that the AI intervention in Experiment 3a failed to reduce either type of 

errors.  

Results from Experiment 3b were similar to the results from Experiment 3a. For the 

noAI – noAI trials, the deterministic error rate was significantly different from 0 [t(18) 

= 14.39, p < 0.001, Cohen’s d = 3.30] and no learning effect was found [t(18) = 1.42, p 

= 0.17, Cohen’s d = 0.33]. For the noAI – AI trials, two participants were excluded due 

to negative /1. The AI intervention also failed to reduce either type of errors [.1 vs. 

.2: t(16) = 0.80, p = 0.43, Cohen’s d = 0.19; /1 vs. /2: t(16) = 0.72, p = 0.48, Cohen’s 

d = 0.17].  

 In Experiment 3c, the results for the noAI – noAI trials were, again, the same as in 



the previous experiments. The deterministic error rate was significantly different from 

0 [t(18) = 9.76, p < 0.001, Cohen’s d = 2.24] and no learning effect was found [t(18) = 

1.64, p = 0.12, Cohen’s d = 0.38]. The noAI – AI trials produced a different, more 

interesting result in Experiment 3c. Three participants were excluded due to negative 

/1. The comparison between .1 and .2 for the remaining participants did show a 

significant difference. .2 was smaller than .1 [t(15) = 2.69, p = 0.017, Cohen’s d = 

0.67], suggesting that the AI intervention in Experiment 3c effectively reduced 

deterministic errors. No significant effect was found on stochastic errors [t(15) = 0.86, 

p = 0.40, Cohen’s d = 0.22]. 

 

Figure 13: Miss rate analyses. (a) data from Experiment 3a. (b) data from 

Experiment 3b. (c) data from Experiment 3c. 

 



3.3.3 Experiment 3 discussion 

Experiments 3a, 3b and 3c used the same set of stimuli as in Experiment 2b but 

introduced mindless AI interventions in an attempt to reduce error rates. Experiments 

3a and 3b were efforts to spread attention around the display without needing to know 

anything about the contents of the display. In Experiment 3a, this was implemented as 

a dot that jumped to random locations. In Experiment 3b, an outline square moved 

systematically. Neither of these interventions had an impact on the errors 

However, the somewhat less mindless AI intervention in Experiment 3c did have 

some effects. In 3c, when all of the locations of items were outlined on the screen 

participants slowed down, compared to the noAI - noAI condition. More importantly, 

miss error rates were reduced. The analysis of those errors indicates that the intervention 

in 3c had its biggest effect on deterministic errors. It seems likely that the outline boxes 

directed attention to some lower contrast items that might have otherwise been 

overlooked. Paired t-tests suggest that for the noAI – AI stimuli in Experiment 3c, the 

target contrast in correct response trials was significantly lower in round 2 than in round 

1[t(18) = 6.13, p < 0.001, Cohen’s d = 1.41] while in all other situations the difference 

was not significant. 

 

General Discussion 

Search errors are ubiquitous in tasks from the lab and real-life. Although it is 

unlikely that such errors could ever be completely eliminated (Brady, 2017), efforts to 

reduce errors are still worthwhile and hold significant potential to improve performance 



on socially important search tasks. In this paper, we were interested in the nature of 

miss errors in a simple laboratory-based search task. We chose a typical T-vs-L task but, 

we presume, that choice is not critical. Even in such a simple task, errors still occur at 

a steady rate. Those errors could be purely stochastic, purely deterministic or a mix of 

both types of errors. Our approach to distinguishing stochastic from deterministic 

contributions to errors was to show each display twice in the experiment. The straight-

forward logic is that a stochastic error, made on one appearance of a display, tells you 

nothing about whether it will be missed on the second appearance of the displays. On 

the other hand, if that target is missed for some deterministic cause, it would definitely 

be missed again at the next opportunity. Six experiments with repeated displays were 

conducted. In Experiment 1, all the letters were white and presented against a uniform 

gray background. The target letter was always clearly visible when present in the search 

array. Our analysis showed that the errors in this experiment were almost purely 

stochastic. In Experiments 2a and 2b, the letters were of different grayscale values and 

were presented against a noisy background. The target letters varied from clearly visible 

to low contrast. Our results suggested that the errors in Experiments 2a and 2b were a 

mix of both types of errors with lower contrast targets accounting for more of the 

deterministic errors. Experiments 3a, 3b and 3c used the same stimuli as in Experiment 

2 and attempted to reduce the errors with different forms of “mindless” AI intervention. 

In Experiment 3a, a yellow dot jumped at random places in the search display on some 

trials, remaining at each location for 500 ms. This was to enhance observers’ attention 

at those locations. In Experiment 3b, a transparent square with yellow borders appeared 



on some trials, following a spiral path. This intervention was intended to guide 

observers to search the entire display. In Experiment 3c, all the letters were highlighted 

by yellow squares around them on the AI related trials. Our results suggest that only the 

AI intervention that had knowledge of item locations could effectively reduce the errors 

and the reduced errors were mainly deterministic errors. These results make it less likely 

that a truly ‘mindless’ intervention would be helpful. That said, one could try more 

forceful efforts to get participants to look at “everything” and, thus, not overlook targets 

like low contrast items. For instance, military surveillance officers used to divide large 

aerial photographs into a grid of smaller regions and systematically mark each region 

to indicate that it had been examined. This could reduce errors caused by simply 

overlooking some region. Of course, such a protocol greatly increases the time per 

image. In 3a and 3b, we attempted to get a similar benefit at less of a cost. Sadly, we 

did not succeed. In situations where it is worth paying the cost in time, a more 

mandatory style of intervention could be tried. 

Our experiments focused on the miss errors in the simple T-vs-L visual search task. 

However, when it comes to some real-life tasks, the target might not be as specific as 

the letter T in our task. The target definition might be broader (e.g. find animals) and/or 

the target might be more ambiguous (Is that really a cancerous skin lesion?). There have 

been other attempts to reduce the errors in these more complex situations. For example, 

Nartker et al. (2020) tested three different methods to reduce categorical errors in a 

“mixed hybrid search” task where participants searched for a list of targets; some 

specific (this hammer) and some categorical (any animal). In mixed hybrid search, 



participants tended to miss more categorical targets. To reduce such errors, several 

strategies were tried: (1) boosting categorical targets in memory; (2) separating the 

responses for specific and categorical targets; (3) full check list procedure that required 

participants to make an explicit response to the presence or absence of each type of 

target. Of all these measures, only the full checklist procedure effectively reduced 

categorical target errors. As with dividing an aerial image into little squares, this 

improvement comes at the expense of substantially longer reaction time.  

Low-prevalence targets are also more frequently missed. Horowitz (2017) 

summarized some of the experimental manipulations that have be tried to reduce those 

errors. These include introducing a regime of brief retraining periods with high 

prevalence and full feedback (Wolfe et al., 2007), reducing the uncertainty of examined 

area by eye movement feedback (Drew & Williams, 2017) and providing an opportunity 

to correct motor errors (Fleck & Mitroff, 2007). The success of such methods is mixed. 

In contrast to the manipulations of the task, other researchers have focused more on 

individual differences to identify those who are likely to perform better on a low 

prevalence search task (Peltier & Becker, 2017, 2020). Such individual approaches 

could also provide some insights about how to improve real-world visual search 

performance. 

In summary, errors in visual search are ubiquitous and stubborn. Our results suggest 

that errors may be almost completely stochastic when targets are clearly visible. Such 

errors may be hard to be reduced by any method that does not come down to spending 

more time and “paying” more attention. When targets are harder, but not impossible, to 



see, more of those hard to see targets appear to be missed in a deterministic manner. In 

the present experiments, deterministic errors due to low target contrast could be reduced 

to some extent by appropriate, rather simple interventions. Drawing attention to targets 

that might otherwise be reliably overlooked seems like a potentially promising 

approach to reducing LBFTS errors.  
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Appendix A: 

 

• !1 is the sum of the probability of the black circle, the red circle with the black 

border and the red circle with blue border in row 1. 

!1 = (1 − /1) ∗ .1 + /1 ∗ .1 + /1 ∗ (1 − .1) = (1 − /1) ∗ .1 + /1

= .1 − /1 ∗ .1 + /1 = .1 ∗ (1 − /1) + /1 

• !2 is the sum of probability of the black circles, the red circles with the black 

border and the red circles with blue border in row 2. 



!2 = [(1 − /1) ∗ .1 + /1 ∗ .1] ∗ @(1 − /2) ∗ .2.1 + /2 ∗
.2
.1 + /2 ∗ A1 −

.2

.1BC + /1

∗ (1 − .1) ∗ /2 + (1 − /1) ∗ (1 − .1) ∗ /2

= .1 ∗ A.2.1 + /2 − /2 ∗
.2
.1B + (1 − .1) ∗ /2

= .2 + /2 ∗ .1 − /2 ∗ .2 + (1 − .1) ∗ /2

= .2 + /2 ∗ (.1 − .2) + (1 − .1) ∗ /2 

• !12 is the sum of is the sum of probability of the black circles, the red circles 

with the black border and the red circles with blue border in row 2 excluding 

the last red circle with blue border stemmed from a hit in row 1. 

!12 = [(1 − /1) ∗ .1 + /1 ∗ .1] ∗ @(1 − /2) ∗ .2.1 + /2 ∗
.2
.1 + /2 ∗ A1 −

.2

.1BC + /1

∗ (1 − .1) ∗ /2 = .2 + /2 ∗ (.1 − .2) + /1 ∗ (1 − .1) ∗ /2 



Appendix B: Analyses on RTs 

 
Figure S1. RT analyses for Experiment 1. 

 



 
Figure S2. RT analyses for Experiment 2a. 
 



 

Figure S3. RT analyses for Experiment 2b. 
 



 
Figure S4-1. RT analyses for Experiment 3a (Four-way ANOVA). 
 
 



 
Figure S4-2. RT analyses for Experiment 3a (Three-way ANOVA on target present trials). 
 

 
Figure S4-3. RT analyses for Experiment 3a (Three-way ANOVA on target absent trials). 
 



 

 
Figure S5-1. RT analyses for Experiment 3b (Four-way ANOVA). 
 



 
Figure S5-2. RT analyses for Experiment 3b (Three-way ANOVA on target present trials). 
 

 
Figure S5-3. RT analyses for Experiment 3b (Three-way ANOVA on target absent trials). 
 



 
Figure S6-1. RT analyses for Experiment 3c (Four-way ANOVA). 
 



 
Figure S6-2. RT analyses for Experiment 3c (Three-way ANOVA on target present trials). 
 

 
Figure S6-3. RT analyses for Experiment 3c (Three-way ANOVA on target absent trials). 
 



 
 
 
 
 
 
 


