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ABSTRACT. We show that neither the class of C∗-algebras with Kirchberg’s
QWEP property nor the class of W∗-probability spaces with the QWEP prop-
erty are effectively axiomatizable (in the appropriate languages). The latter
result follows from a more general result, namely that the hyperfinite III1
factor does not have a computable universal theory in the language of W∗-
probability spaces. We also prove that the Powers’ factors Rλ, for 0 < λ < 1,
when equipped with their canonical Powers’ states, do not have computable
universal theory. Our results allow us to conclude the existence of a family
of C∗-algebras (respectively a family of W∗-probability spaces), none of which
have QWEP, but for which some ultraproduct of the family does have QWEP.
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1. INTRODUCTION

Recall that a C∗-algebra A ⊆ B(H) has the weak expectation property (WEP
for short) if there is a ucp map Φ : B(H) → A∗∗ that is the identity on A, while
A has the QWEP if A is isomorphic to a quotient of a C∗-algebra with the WEP.
Kirchberg’s QWEP problem asked whether or not every separable C∗-algebra has
QWEP. In [12] (see also [13]), where Kirchberg raises this problem, he also shows
that it is equivalent to the Connes Embedding Problem (CEP). By the recent land-
mark result in quantum complexity theory known as MIP∗ = RE [11] (our proofs
rely on the fact that the universal theory of R, in the language of tracial von Neu-
mann algebras, is not computable as described in [8]; in turn, this result currently
relies on the coding of Turing machines described in the paper MIP*=RE, [11]),
the QWEP problem is now known to have a negative answer.

In [7], the second author showed that the class of C∗-algebras with QWEP
forms an elementary class in the first-order language of C∗-algebras. Now that
it has been established that this class forms a proper subclass of the class of all
C∗-algebras, one may ask how different these classes are from one another. In
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this paper, we show that, from the perspective of computability theory, they are
wildly different. Indeed, while the class of all C∗-algebras admits an effectively
enumerable axiomatization, the first main result of this paper is that the same
cannot be said for the subclass of C∗-algebras with QWEP.

THEOREM 1.1. There is no effectively enumerable set of sentences in the language
of C∗-algebras whose models are precisely the C∗-algebras with QWEP.

This theorem will follow from a much more general result appearing as
Theorem 2.2 below. In [8], the second and third authors used MIP∗ = RE to prove
that the universal theory of the hyperfinite II1 factor R is not computable. In fact,
they proved that there cannot exist any effectively enumerable set of sentences in
the language of tracial von Neumann algebras that are true in R and all of whose
models embed into an ultrapower of R. Since a finite von Neumann algebra M
has QWEP if and only if it embeds into an ultrapower of R (and in a way which
preserves any given faithful normal trace on M), it follows that there can be no
effective axiomatization of the finite QWEP von Neumann algebras. This latter
fact, along with other techniques used in [8], is what allows one to prove the
previous theorem.

It is worth remarking that the proof given in [7] that the class of C∗-algebras
with QWEP is elementary was soft and simply showed that the class of QWEP
algebras was closed under ultraproducts and ultraroots. The absence of concrete
axioms is thus explained by the previous theorem.

We can also use the previous theorem to prove the following fact about ul-
traproducts of C∗-algebras without the QWEP property.

THEOREM 1.2. There is a family (Ai)i∈I of C∗-algebras without the QWEP which
have an ultraproduct ∏U Ai with the QWEP.

Our method of proving the previous theorem works equally well in the case
of tracial von Neumann algebras (using the main result of [8]), allowing us to
conclude.

THEOREM 1.3. There is a family (Mi)i∈I of tracial von Neumann algebras that
do not embed into an ultrapower of the hyperfinite II1 factor R which have a (tracial)
ultraproduct ∏U Mi that does embed into an ultrapower of R.

Our next results have us return to the setting of von Neumann algebras,
but enlarge our perspective from the class of finite von Neumann algebras to
the class of σ-finite von Neumann algebras. By [2, Theorems 3.4 and 4.2], due
to Ando, Haagerup, and Winslow, a separably acting von Neumann algebra

M has the QWEP if and only if it embeds into the Ocneanu ultrapower RU
∞

of the hyperfinite type III1 factor R∞ with expectation. By a W∗-probability space,
we mean a pair (M, φ) consisting of a σ-finite von Neumann algebra equipped
with a distinguished faithful, normal state. Embeddings of W∗-probability spaces
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are ∗-homomorphisms which admit state-preserving expectations. The model-
theoretic approach to studying W∗-probability spaces was initiated by Dabrowski
in [5] and further developed in work of the second author and Houdayer in [10].
In particular, in the latter paper it was observed that whenever M is a type III1 fac-
tor, then all W∗-probability spaces (M, φ) have the same theory. Consequently,
given any W∗-probability space (M, φ), we see that M is QWEP if and only if

there is an embedding (M, φ) ↪→ (R∞, ψ)U of W∗-probability spaces, where ψ is
any faithful, normal state on R∞. Thus, the common universal theory of struc-
tures of the form (R∞, ψ) axiomatizes the class of QWEP W∗-probability spaces.
A particular consequence of Theorem 4.3 below is the following theorem.

THEOREM 1.4. There is no effectively enumerable set of sentences in the language
of W∗-probability spaces that axiomatizes precisely the class of QWEP W∗-probability
spaces.

In particular, the universal theory of R∞ is not computable.
The preceding theorem has the following consequence, which is the W∗-

probability space version of our second theorem above.

THEOREM 1.5. There is a family (Mi)i∈I of W∗-probability spaces without the
QWEP which have an ultraproduct ∏U Mi with the QWEP.

The Ando±Haagerup±Winslow result referred to above also holds when re-
placing R∞ by any Powers factors Rλ (where 0 < λ < 1), which is the unique
hyperfinite type IIIλ factor. However, in this case, as one varies the states on
Rλ, one no longer has a unique universal theory. Nevertheless, for the canoni-
cal Powers state φλ on Rλ, one can still prove an undecidability result, which is
Theorem 5.14 below.

THEOREM 1.6. For any 0 < λ < 1, the universal theory of (Rλ, φλ) is not
computable, where φλ is the Powers state on Rλ.

The key point in proving the previous theorem is that, for a faithful, normal
lacunary state φ on a von Neumann algebra M, the centralizer of φ, Mφ, is a
tracial von Neumann algebra (when equipped with the restriction of φ) which is
effectively definable in M.

While the model theory of type III0 factors is poorly behaved (for example,
the class is not stable under ultraproducts), it would still be interesting to deter-
mine which separable hyperfinite type III0 factors have uncomputable universal
theory.

In order to keep this note relatively short, we only define the notions crucial
for understanding the proofs that follow. In particular, a complete discussion of
computability of theories as it pertains to the setting at hand can be found in [8].
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2. THE UNDECIDABILITY OF QWEP

The following theorem is a more precise version of the first theorem appear-
ing in the introduction. It requires the notion of a C∗-algebra with the uniform
Dixmier property, which we recall here for the sake of the reader.

DEFINITION 2.1. Given m ∈ N and 0 < γ < 1, we say that a unital C∗-
algebra A has the (m, γ)-uniform Dixmier property if, for all self-adjoint a ∈ A,
there are unitaries u1, . . . , um ∈ U(A) and z ∈ Z(A) such that

∥∥∥
m

∑
i=1

1

m
uiau∗

i − z
∥∥∥ ⩽ γ∥a∥.

We say that A has the uniform Dixmier property if it has the (m, γ)-Dixmier prop-
erty for some m and γ.

Given m and γ, let θm,γ denote the following sentence in the language of
C∗-algebras:

sup
a

inf
u1,...,un

inf
λ

max
(

max
i=1,...,n

∥uiu
∗
i − 1∥,

∥∥∥
m

∑
i=1

1

m
uiau∗

i − λ
∥∥∥ .− γ∥a∥

)
.

Here, the supremum is over self-adjoint contractions, the first infimum is over
contractions, and the second infimum is over the unit disk in C. As mentioned in
[8, Section 6], if A is a simple unital C∗-algebra with the (m, γ)-uniform Dixmier

property, then θA
m,γ = 0. On the other hand, if θA

m,γ = 0, then A is monotracial.

THEOREM 2.2. There is no effectively enumerable theory T in the language of C∗-
algebras with the following two properties:

(i) all models of T have QWEP;
(ii) there is an infinite-dimensional, simple model A of T that admits a trace and has

the uniform Dixmier property.

Proof. Suppose, towards a contradiction that such T existed. Take a model
A of T as in the second condition in the statement of the theorem and fix a trace
τA on A. Take m and γ such that A has the (m, γ)-Dixmier property. Work now
in the language of tracial C∗-algebras and consider the theory T′ consisting of the
axioms for tracial C∗-algebras together with T and the single condition θm,γ = 0.
It is clear that T′ is effective and (A, τA) |= T′.

The argument now essentially proceeds as in [8, Theorem 6.4]. Indeed, sup-
pose that (B, τB) |= T′ and let N denote the von Neumann algebra generated
by the image of B in the GNS representation corresponding to τB. Then N is a
QWEP von Neumann algebra (since B had QWEP) and is a II1 factor with unique
trace τN (since B is monotracial). Consequently, N admits a trace-preserving em-

bedding into RU . On the other hand, since B is simple, B embeds into N (in a
trace-preserving way). Altogether, for any universal sentence σ in the language

of tracial C∗-algebras, we have that σ(B,τB) = σ(N,τN) = σ(R,τR). Thus, by the
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completeness theorem, by running proofs from T′, we can find computable up-

per bounds to σ(R,τR), contradicting the fact that the universal theory of R is not
effectively enumerable.

COROLLARY 2.3. There is no effective theory T in the language of C∗-algebras
such that a C∗-algebra has QWEP if and only if it is a model of T.

We can use the previous corollary to derive an interesting ªnon-closureº
statement for the class of C∗-algebras without QWEP.

COROLLARY 2.4. The class of C∗-algebras without the QWEP is not closed under
ultraproducts.

Proof. Suppose, towards a contradiction, that the class of C∗-algebras with-
out the QWEP is closed under ultraproducts. Let TC∗ denote the (effective) theory
of C∗-algebras. Since the class of C∗-algebras with QWEP is axiomatizable and
the language of C∗-algebras is separable, there is a sentence σQWEP in the lan-

guage of C∗-algebras such that a C∗-algebra A has QWEP if and only if σA
QWEP =

0. Our contradiction assumption implies that there is some r > 0 such that

σA
QWEP ⩾ r for all C∗-algebras without the QWEP. Without loss of generality,

r ∈ Q. Since the language of C∗-algebras is computable and the set of com-
putable sentences is dense in the set of all sentences (see [8, Section 2]), there is a

computable sentence ψ such that d(σQWEP, ψ) < 1
3 in the usual metric on formu-

lae. It then follows that TC∗ ∪ {ψ
.− r

3} is an effective axiomatization of the class
of C∗-algebras with QWEP, contradicting Corollary 2.3.

It would be interesting to know if the previous corollary could be estab-
lished simply by knowing that the QWEP conjecture fails or even directly from
MIP∗ = RE itself, or if the model-theoretic tools used here are indispensable to
this argument.

Using the analog of Corollary 2.3 for the class of tracial von Neumann alge-
bras proven in [8], the exact same line of reasoning shows the following corollary.

COROLLARY 2.5. The class of tracial von Neumann algebras that do not embed in
an ultrapower of the hyperfinite II1 factor R is not closed under ultraproducts.

We end this section by mentioning one further consequence of Theorem 2.2.
Call a C∗-algebra pseudo-nuclear if it is a model of the common theory of the class
of nuclear C∗-algebras. Equivalently, a C∗-algebra is pseudo-nuclear if it is ele-
mentarily equivalent to an ultraproduct of nuclear C∗-algebras. In [6, Section 7.3],
the problem of finding a ªnaturalº characterization of the elementary class of
pseudo-nuclear C∗-algebras is raised (although the term pseudo-nuclear is not
used there). Theorem 2.3 implies that one cannot find such a characterization if
by ªnaturalº one means ªeffectiveº.

COROLLARY 2.6. The elementary class of pseudo-nuclear C∗-algebras is not effec-
tively axiomatizable.
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Proof. This follows immediately from Theorem 2.2 together with the fact
that pseudo-nuclear C∗-algebras are QWEP.

3. REMINDERS ON LANGUAGES OF W∗-PROBABILITY SPACES

In this section, we recall Dabrowski’s languages for studying W∗-probability
spaces from [5] and establish some notation to be used in the rest of this paper.
We also introduce the language used to capture W∗-probability spaces in [9] and
compare this language with the Dabrowski language.

Throughout, we will be considering W∗-probability spaces (M, φ) and will

let σ
φ
t denote the associated modular automorphism group of M. While one nor-

mally considers the norm ∥ · ∥#
φ on M given by ∥x∥#

φ :=
√

φ(x∗x) + φ(xx∗),
which defines the strong* topology on M, Dabrowski instead works with the

norm ∥ · ∥∗φ on M given by ∥x∥∗φ := infy∈M
√

φ(y∗y) + φ((x − y)(x − y)∗), which

has various advantages when trying to axiomatize W∗-probability spaces in an
appropriate first-order language.

The main obstacle in Dabrowski’s approach to W∗-probability spaces is the
lack of uniform continuity of multiplication with respect to the above norm. To
overcome this, he works with ªsmeared versionsº of multiplication. To explain

this construction, first recall that, for any f ∈ L1(R), one can define the function

σ
φ
f : M → M given by σ

φ
f (x) =

∫
R

f (t)σφ
t (x)dt.

For K ∈ N, Dabrowski considers the Fejér kernel fK ∈ L1(R) given by

fK(t) =
K

2π
1{t=0} +

1 − cos(Kt)
πKt2

1{t ̸=0}.

He defines Fφ
K = σ

φ
fK

and the smeared multiplication maps mK,L by

mK,L(x, y) := Fφ
K (x) · Fφ

L (y).

The language for W∗-probability spaces we prefer to consider in this pa-
per is the expansion of what Dabrowski refers to as an ªapproximately minimalº
language in [5, Section 1.4] by function symbols for the modular automorphism
group. We will refer to this language as LW∗ . The domains of quantification cor-
respond to operator norm unit balls and the symbols of the language consist of
the constant symbols for 0 and 1, rational scalar multiplication, ordinary addi-
tion, all smeared multiplications mK,L, unary function symbols for the modular

automorphisms σ
φ
t (say for rational t), and the real and imaginary parts of the

state. The metric on each sort is given by ∥ · ∥∗φ.

Before introducing this fairly small language, Dabrowski instead considers

a much larger language that we will temporarily denote L²
W∗ . While we will not

go into the details of this larger language, we mention that it is clearly a com-
putable language. In this larger language, he writes down an explicit, effectively
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enumerable theory T²
W∗ and in [5, Theorem 8] it is shown that this theory axiom-

atizes the class of W∗-probability spaces (viewed as L²
W∗ -structures). Moreover,

setting TW∗ to be the set of LW∗ -consequences of T²
W∗ , in [5, Theorem 14] it is

shown that T²
W∗ is a definitional expansion of TW∗ . The upshot of all of this is

that TW∗ is then an effectively enumerable LW∗ -theory that axiomatizes the class
of W∗-probability spaces when viewed as LW∗ -structures.

We now discuss an alternative to LW∗ as presented in [9]. The approach
taken in [9] is based on axiomatizing the action of (M, φ) on its standard repre-
sentation. One says that an element a ∈ M is bounded if the actions of a and a∗

by left and right multiplication on M extend to bounded operators on the GNS
representation via φ. By a result of Takesaki, the collection of bounded elements
in M is dense in the weak operator topology. Since the modular automorphisms
turn out to be definable in this language, we may assume that we also have unary
function symbols to name them. We introduce a language LW∗ that captures these
observations. LW∗ differs from LW∗ in three significant ways:

(i) There is a binary function symbol for (full) multiplication and we do not
use the symbols introduced for smeared multiplication.

(ii) The domains of quantification are over the sets of K-bounded elements (as
K varies), that is, those elements a where left and right multiplication by a and
a∗ have operator norm at most K when viewed as operators on the GNS Hilbert
space corresponding to φ.

(iii) The metric is obtained from ∥ · ∥#
φ (rather than ∥ · ∥∗φ).

The first and third points seem to be a simplification of the approach taken
by Dabrowski. The price one pays is quantification is now over bounded ele-
ments and not the operator norm balls of M. Moreover, while the axioms for
W∗-probability spaces in this language without symbols for the modular automor-
phism group is easily seen to be effectively axiomatizable, it is not clear to us that
the definitional expansion by naming the modular automorphism group remains
effectively axiomatizable; this question is the source of work in progress.

Since tracial von Neumann algebras are in particular W∗-probability spaces,
we can consider them in either of the above languages. We note that, since in
tracial von Neumann algebras the modular theory is trivial and the notion of
K-bounded element coincides with that of having operator norm at most K, both
languages simply revert (in an appropriate sense) to the usual language for tracial
von Neumann algebras. However, if (M, τ) is a tracial von Neumann algebra,

then ∥x∥#
τ =

√
2∥x∥τ and ∥x∥∗τ =

√
2

2 ∥x∥τ for all x ∈ M (see [5, Lemma 4] for
the latter calculation), whence this causes a slight mismatch in the evaluation of
formulae in either of the W∗-probability languages as opposed to their evaluation
in the tracial von Neumann algebra language.
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4. FAILURE OF THE R∞EP

We recall the following definition from [8].

DEFINITION 4.1. If L is a computable language and A is an L-structure, by
the AEP we mean the statement: there is an effectively enumerable L-theory T
contained in Th(A) so that all models of T embed in an ultrapower of A.

In [8], it was shown that the REP is false, thus providing a stronger refuta-
tion of the Connes Embedding Problem. In this section, we work in the languages
LW∗ and LW∗ and show that the R∞EP has a negative solution in each of them.
We begin with the former language.

DEFINITION 4.2. If θ is an LW∗ -sentence, let θ denote the sentence in the
language of tracial von Neumann algebras obtained by replacing any smeared
multiplication map mK,L by actual multiplication and any appearance of ∥ · ∥∗φ by
√

2
2 ∥ · ∥φ.

Note that θ has the same quantifier complexity as θ and θ
(M,τ)

= θ(M,τ),
where on the left-hand side of the equation we view (M, τ) as a structure in the
language of tracial von Neumann algebras while on the right-hand side of the

equation, we view (M, τ) as an LW∗ -structure. It is also clear that the map θ 7→ θ

is a computable map.

THEOREM 4.3. The R∞EP is false in the language LW∗ .

Proof. Suppose, towards a contradiction, that the R∞EP is true as witnessed
by the LW∗ -theory T ⊆ Th(R∞). By assumption, we have that T is an effectively
enumerable set of sentences. We now set

T′ := {θ
.− ε : ε ∈ Q, θ is universal, and T ⊢ θ

.− ε}.

Note that T′ is an effectively enumerable set of sentences in the language of tracial
von Neumann algebras. Moreover, we have T′ ⊆ Th(R). Indeed, since R em-

beds in RU
∞ (as LW∗ -structures), for any universal LW∗ -sentence θ, we have that

θ
R
= θR ⩽ θR∞ . Moreover, if (M, τ) is a tracial von Neumann algebra which is a

model of T′, then it embeds, as a W∗-probability space, into a model of T, which

is QWEP by assumption. It follows that M is QWEP and thus embeds into RU in
a trace-preserving way. Consequently, T′ witnesses that the REP has a positive
solution, which is a contradiction.

A particular consequence of the previous theorem is that the universal the-
ory of R∞ is not effectively enumerable. As mentioned in the introduction, a
W∗-probability space is QWEP if and only if it is a model of the universal the-
ory of R∞. Thus, the second theorem from the introduction follows from The-
orem 4.3. Moreover, arguing just as in the case of Corollary 2.4, we have the
following corollary.
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COROLLARY 4.4. The class of W∗-probability spaces without the QWEP is not
closed under ultraproducts.

We now point out that Theorem 4.3 is true if one considers R∞ in the lan-
guage LW∗ . The only issue now is that quantification might be over sorts of
bounded elements; however, if the state in question is a trace, there is no dis-
tinction between the operator norm and the left or right bound. Also, in the

de-smearing process, one should replace any appearance of ∥ · ∥#
φ by

√
2∥ · ∥φ.

We conclude then by the same proof as for Theorem 4.3 we have the following
theorem.

THEOREM 4.5. The R∞EP is false in the language LW∗ .

It is worth pointing out that the failure of the R∞EP in the language LW∗

is indeed a strengthening of the refutation of the CEP since the theory of W∗-
probability spaces in that language is effectively enumerable. However, since the
same cannot be said for the language LW∗ , we cannot immediately reach the same
conclusion. However, the proof of Theorem 4.3 does show that there cannot be
an effectively axiomatizable LW∗ -theory with only QWEP models.

5. FAILURE OF THE RλEP

Our goal in this section is to show that, for any λ ∈ (0, 1), the (Rλ, φλ)EP
has a negative solution in the languages LW∗ and LW∗ , where φλ is the Powers
state on Rλ. Throughout this section, we work in the language LW∗ . The proof
is essentially identical for LW∗ and so we make comments along the way to help
the reader. Recall that TW∗ is the theory in the language LW∗ which axiomatizes
the class of W∗-probability spaces. In parallel, let TW∗ be the LW∗ -theory of the
class of W∗-probability spaces.

To begin, we need some preparation.
Given a W∗-probability space (M, φ), the centralizer of φ is

Mφ :={x∈M : σ
φ
t (x)= x for all t∈R}={x∈M : φ(xy)= φ(yx) for all y∈M}.

We note the following obvious facts about the centralizer.

LEMMA 5.1. (i) Mφ is a finite von Neumann algebra with trace φ|Mφ .
(ii) The unit ball of Mφ is a zeroset in (M, φ), namely the zeroset of the quantifier-

free formula ∑k 2−kd(σφ
tk
(x), x), where (tk) is an enumeration of the rationals. This is a

formula in both languages.
(iii) If x ∈ Mφ, then σ

φ
f (x) = x for all f ∈ L1(R)+ with ∥ f ∥1 = 1.

Recall that the faithful normal state φ on M is said to be lacunary if 1 is an
isolated point of the spectrum of the modular operator ∆φ.
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EXAMPLE 5.2. Suppose that M is a type IIIλ factor and φ is a periodic faithful

normal state on M with period 2π
| log(λ)| . Then σ(∆φ) ⊆ {0} ∪ λZ. In particular,

φ is a lacunary state on M. Moreover, in this case, by a result of Connes (see [4,
Theorem 4.2.6]), Mφ is a II1 factor. In the special case of Rλ with the Powers state
φλ, we have that (Rλ)φ is the hyperfinite II1 factor R.

[1, Proposition 4.27] states that if φ is a lacunary faithful normal state on M,

then (MU )φU = (Mφ)U . In other words, we have the following proposition.

PROPOSITION 5.3. If φ is a lacunary faithful normal state on M, then the unit
ball of Mφ is a definable subset of the unit ball of M. This result holds in both languages.

It turns out that, in the context of the previous proposition, there is a very
nice formula that witnesses the definability of Mφ. In the next definition, we

recall that C1
b(R) denotes the set of continuously differentiable functions R → R

with bounded derivative.

DEFINITION 5.4. Call f : R → R good if f ∈ L1(R)+ ∩ C1
b(R).

We first note the following easy fact about good functions.

LEMMA 5.5. Suppose that f : R → R is computable and good. Then f is effec-
tively L1, that is, there is an algoritheorem such that, for any rational ε > 0, computes
n ∈ N such that ∥1[−n,n]c f ∥1 < ε.

Proof. Suppose that f is good and let ε > 0 is given. Since good functions
are Lipschitz, they are in particular Riemann integrable. Thus, we can compute
effectively the integral of f on the complement of [−n, n]. Compute this integral
for successive n until you get a value less than ε. This halts for any given epsilon
because otherwise f has infinite norm. Thus f is effectively L1.

The following is [5, Lemma 5].

FACT 5.6. If f : R → R is good, then

∥∥∥σ
φ
f (x)− 1

n2

n3−1

∑
k=−n3

f
( k

n2

)
σ

φ

k/n2(x)
∥∥∥
∗

φ
⩽∥1[−n,n]c f ∥1∥x∥∗φ+

2∥ f ∥1

n2
∥x∥#

φ+
∥ f ′∥∞

n
∥x∥∗φ.

The previous fact has the following obvious model-theoretic consequence.

LEMMA 5.7. Suppose that f is good. Then the function σ
φ
f is a uniform limit of

LW∗ -terms (so is, in particular, a definable function). Moreover, since f is effectively L1,
then there is an algoritheorem such that, upon input n ∈ N, returns an LW∗ -term tn such
that d(σφ

f (x), tn(x)) < 1
n for all x ∈ M1. This lemma is also true in the language LW∗ .

DEFINITION 5.8. For f ∈ L1(R)+, we say that f is a λ-function for 0 < λ < 1

if ∥ f ∥1 = 1 and supp( f̂ ) ⊂ (log(λ),− log(λ)) (where f̂ is the Fourier transform
of f ).
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If φ is a lacunary faithful normal state on M, we say that φ is λ-lacunary
if λ ∈ (0, 1) is such that σ(∆ φ) ∩ (λ, 1

λ ) = {1}. (This terminology seems to be
nonstandard but convenient.) In particular, note that if φ is a periodic faithful

normal state on M with period 2π
| log(λ)| , then φ is λ-lacunary.

The following lemma is included in the proof of [1, Proposition 4.27].

LEMMA 5.9. Suppose that φ is a λ-lacunary faithful normal state on M and f is
a λ-function. Then for all x ∈ M, σ

φ
f (x) belongs to Mφ.

Call f : R → R a λ-good function if it is both good and a λ-function. We note
the following basic fact about λ-good functions.

PROPOSITION 5.10. λ-good functions exist.

Proof. Without loss of generality, we assume that λ = 1
e . Consider the bump

function ĝ defined to be exp(− 1
1−x2 ) on (−1, 1) and 0 otherwise (scale horizon-

tally by a computable real less than λ for the general case). Note that ĝ is a com-
putable function. By the computability of Riemann integrals, the inverse Fourier
transform g of ĝ is also computable. While ∥g∥1 may not be 1, we may scale the
resulting function g to f with ∥ f ∥1 = 1 and note that f remains λ-good.

The following lemma explains the significance of λ-good functions.

LEMMA 5.11. Suppose that f is a λ-good function and consider the TW∗ -formula
Pf (x) := d(x, σ

φ
f (x)). Then:

(i) Pf (x) is a quantifier-free TW∗ -formula. Moreover, since f is effectively L1, then
there is an algoritheorem which, upon input n ∈ N, returns a quantifier-free LW∗ -formula
ψn(x) such that ∥Pf − ψn∥ <

1
n (in models of TW∗ ).

(ii) If φ is a λ-lacunary faithful normal state on M, then:
(a) the zeroset of Pf in (M, φ) is Mφ, and
(b) for all x ∈ M, we have d(x, Mφ) ⩽ Pf (x).

This lemma is also true in the language LW∗ relative to the theory TW∗ .

In the previous section, we ªde-smearedº formulae to obtain tracial
von Neumann algebra formulae. In this section, we consider the reverse process.

DEFINITION 5.12. Given a tracial von Neumann algebra formula θ(x), let

θ²(x) denote the ªsmearingº of θ obtained by replacing every appearance of mul-
tiplication by the smeared multiplication function symbol m1,1. We also replace

all instances of ∥ · ∥φ by
√

2∥ · ∥∗φ. We obtain a formula in the language LW∗ .

The following lemma is clear; recall that for a formula ϕ in LW∗ , ϕ is the
de-smearing of ϕ introduced in the previous section.

LEMMA 5.13. There are effective enumerations (θn) and (ϕn) of the computable
tracial von Neumann algebra formulae and LW∗ -formulae respectively, and computable
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functions g, h : N → N such that θ²
n = ϕg(n) and ϕm = θh(m). Moreover, θ

²
n = θn for

all n ∈ N.

We now come to the main results of this section.

THEOREM 5.14. For any λ ∈ (0, 1), the universal theory of (Rλ, φ) is not com-
putable in the language LW∗ nor in the language LW∗ , where φ is the Powers state on Rλ.

Proof. We show that if the universal theory of (Rλ, φ) is computable, then
so is the universal theory of R. We first do the proof in the language LW∗ . To
see this, suppose that supx θm(x) is a universal sentence in the language of tracial
von Neumann algebras. (Here, and throughout this proof, all variables range
over the unit ball.) Let α : [0, 1] → [0, 1] be a computable, increasing function
with α(0) = 0 satisfying

|ϕg(m)(x)− ϕg(m)(y)| ⩽ α(d(x, y))

for all x, y ∈ M1; this is possible (uniformly in m) by Lemma 5.13 and [3, Propo-

sition 2.10]. Fix ε > 0 and effectively find n ∈ N such that, if |r − s| < 1
n , then

|α(r)− α(s)| ⩽ ε. (This is possible by the construction of α cited above.)
Fix a λ-good function f and let ψn be a quantifier-free LW∗ -formula such

that ∥Pf − ψn∥ <
1
n . Consider the universal LW∗ -sentence

Φ :≡ sup
z
[ϕg(m)(z)− α(ψn(z))].

By assumption, we can find an interval (a, b) ⊆ R with b − a < ε and such that

ΦRλ ∈ (a, b). Now suppose that z ∈ (Rλ)φ. Then Pf (z) = 0, so ψn(z) <
1
n ,

whence α(ψn(z)) ⩽ ε. But ϕg(m)(z)− α(ψn(z)) ⩽ b, so

sup
z∈(Rλ)φ

(ϕg(m)(z)
Rλ) ⩽ b + ε.

On the other hand

sup
z∈(Rλ)φ

(ϕg(m)(z))
Rλ = sup

z∈Rλ

[ϕg(m)(z)
Rλ − α(d(z, (Rλ)φ))]

⩾

(
sup

z
(ϕg(m)(z)− α(Pf (z)))

)Rλ
.

This last term is greater than or equal to ΦRλ − ε > a − ε. Consequently,

a − ε < sup
z∈(Rλ)φ

(
ϕg(m)(z)

)Rλ
⩽ b + ε.

Since (b + ε)− (a − ε) < 3ε and ϕg(m) = θm, the previous display implies that we

can effectively approximate (supz θm(z))R, which is the desired contradiction.
In the language LW∗ , one can repeat the above argument except there is no

need to smear θ. Since we have full multiplication in this language, we may use
θ as a formula in the language of tracial von Neumann algebras. However, since
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the norms are interpreted slightly differently, the obvious analog of Lemma 5.13
will be needed to conclude as in the case of LW∗ .

Since the (Rλ, φλ)EP would imply that the universal theory of (Rλ, φλ) is
computable, we immediately get the following corollary.

COROLLARY 5.15. The (Rλ, φλ)EP is false in the language LW∗ and the lan-
guage LW∗ .

The proof of Theorem 5.14 shows something more general.

THEOREM 5.16. Suppose that (M, φ) is a W∗-probability space such that M is
QWEP and φ is a lacunary faithful, normal state on M for which Mφ contains R
(e.g. if Mφ is a II1 factor, which is the case when φ is periodic). Then the universal
theory of (M, φ) is not computable in the language LW∗ and the language LW∗ .

Proof. It is well-known that (Mφ, φ|Mφ) embeds in (M, φ) as W∗-probability

spaces. (For example, one can use that Mφ is invariant under the modular auto-
morphism group and apply Takesaki’s theorem [14].) Consequently, Mφ is also

QWEP. Since the latter is a tracial von Neumann algebra, it embeds in RU in a
trace-preserving manner. On the other hand, we also assumed that Mφ contains
R, whence Th∀(R) = Th∀(Mφ). Now we argue as in Theorem 5.14 above to
reach a contradiction.
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