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ABSTRACT. We show that neither the class of C*-algebras with Kirchberg’s
QWERP property nor the class of W*-probability spaces with the QWEP prop-
erty are effectively axiomatizable (in the appropriate languages). The latter
result follows from a more general result, namely that the hyperfinite III;
factor does not have a computable universal theory in the language of W*-
probability spaces. We also prove that the Powers’ factors R, for0 < A < 1,
when equipped with their canonical Powers’ states, do not have computable
universal theory. Our results allow us to conclude the existence of a family
of C*-algebras (respectively a family of W*-probability spaces), none of which
have QWEDP, but for which some ultraproduct of the family does have QWEP.
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1. INTRODUCTION

Recall that a C*-algebra A C B(H) has the weak expectation property (WEP
for short) if there is a ucp map @ : B(H) — A** that is the identity on A, while
A has the QWEP if A is isomorphic to a quotient of a C*-algebra with the WEP.
Kirchberg’s QWEP problem asked whether or not every separable C*-algebra has
QWERP. In [12] (see also [13]), where Kirchberg raises this problem, he also shows
that it is equivalent to the Connes Embedding Problem (CEP). By the recent land-
mark result in quantum complexity theory known as MIP* = RE [11] (our proofs
rely on the fact that the universal theory of R, in the language of tracial von Neu-
mann algebras, is not computable as described in [8]; in turn, this result currently
relies on the coding of Turing machines described in the paper MIP*=RE, [11]),
the QWEP problem is now known to have a negative answer.

In [7], the second author showed that the class of C*-algebras with QWEP
forms an elementary class in the first-order language of C*-algebras. Now that
it has been established that this class forms a proper subclass of the class of all
C*-algebras, one may ask how different these classes are from one another. In
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this paper, we show that, from the perspective of computability theory, they are
wildly different. Indeed, while the class of all C*-algebras admits an effectively
enumerable axiomatization, the first main result of this paper is that the same
cannot be said for the subclass of C*-algebras with QWEP.

THEOREM 1.1. There is no effectively enumerable set of sentences in the language
of C*-algebras whose models are precisely the C*-algebras with QWEP.

This theorem will follow from a much more general result appearing as
Theorem 2.2 below. In [8], the second and third authors used MIP* = RE to prove
that the universal theory of the hyperfinite II; factor R is not computable. In fact,
they proved that there cannot exist any effectively enumerable set of sentences in
the language of tracial von Neumann algebras that are true in R and all of whose
models embed into an ultrapower of R. Since a finite von Neumann algebra M
has QWEP if and only if it embeds into an ultrapower of R (and in a way which
preserves any given faithful normal trace on M), it follows that there can be no
effective axiomatization of the finite QWEP von Neumann algebras. This latter
fact, along with other techniques used in [8], is what allows one to prove the
previous theorem.

It is worth remarking that the proof given in [7] that the class of C*-algebras
with QWEDP is elementary was soft and simply showed that the class of QWEP
algebras was closed under ultraproducts and ultraroots. The absence of concrete
axioms is thus explained by the previous theorem.

We can also use the previous theorem to prove the following fact about ul-
traproducts of C*-algebras without the QWEP property.

THEOREM 1.2. There is a family (A;);c1 of C*-algebras without the QWEP which
have an ultraproduct [, A; with the QWEP.

Our method of proving the previous theorem works equally well in the case
of tracial von Neumann algebras (using the main result of [8]), allowing us to
conclude.

THEOREM 1.3. There is a family (M;);cy of tracial von Neumann algebras that
do not embed into an ultrapower of the hyperfinite 11y factor 'R which have a (tracial)
ultraproduct [y, M; that does embed into an ultrapower of R.

Our next results have us return to the setting of von Neumann algebras,
but enlarge our perspective from the class of finite von Neumann algebras to
the class of o-finite von Neumann algebras. By [2, Theorems 3.4 and 4.2], due
to Ando, Haagerup, and Winslow, a separably acting von Neumann algebra
M has the QWEP if and only if it embeds into the Ocneanu ultrapower RY
of the hyperfinite type Il1; factor R with expectation. By a W*-probability space,
we mean a pair (M, ¢) consisting of a o-finite von Neumann algebra equipped
with a distinguished faithful, normal state. Embeddings of W*-probability spaces
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are *-homomorphisms which admit state-preserving expectations. The model-
theoretic approach to studying W*-probability spaces was initiated by Dabrowski
in [5] and further developed in work of the second author and Houdayer in [10].
In particular, in the latter paper it was observed that whenever M is a type I1I; fac-
tor, then all W*-probability spaces (M, ¢) have the same theory. Consequently,
given any W*-probability space (M, ¢), we see that M is QWEP if and only if
there is an embedding (M, ¢) — (Reo, ) of W*-probability spaces, where ¢ is
any faithful, normal state on Re. Thus, the common universal theory of struc-
tures of the form (R, ) axiomatizes the class of QWEP W*-probability spaces.
A particular consequence of Theorem 4.3 below is the following theorem.

THEOREM 1.4. There is no effectively enumerable set of sentences in the language
of W*-probability spaces that axiomatizes precisely the class of QWEP W*-probability
spaces.

In particular, the universal theory of R is not computable.
The preceding theorem has the following consequence, which is the W*-
probability space version of our second theorem above.

THEOREM 1.5. There is a family (M;);c; of W*-probability spaces without the
QWEP which have an ultraproduct [T, M; with the QWEP.

The Ando-Haagerup-Winslow result referred to above also holds when re-
placing R« by any Powers factors R, (where 0 < A < 1), which is the unique
hyperfinite type Il factor. However, in this case, as one varies the states on
R, one no longer has a unique universal theory. Nevertheless, for the canoni-
cal Powers state ¢, on R, one can still prove an undecidability result, which is
Theorem 5.14 below.

THEOREM 1.6. For any 0 < A < 1, the universal theory of (R, ¢,) is not
computable, where ¢, is the Powers state on R .

The key point in proving the previous theorem is that, for a faithful, normal
lacunary state ¢ on a von Neumann algebra M, the centralizer of ¢, My, is a
tracial von Neumann algebra (when equipped with the restriction of ¢) which is
effectively definable in M.

While the model theory of type Il factors is poorly behaved (for example,
the class is not stable under ultraproducts), it would still be interesting to deter-
mine which separable hyperfinite type IIlj factors have uncomputable universal
theory.

In order to keep this note relatively short, we only define the notions crucial
for understanding the proofs that follow. In particular, a complete discussion of
computability of theories as it pertains to the setting at hand can be found in [8].
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2. THE UNDECIDABILITY OF QWEP

The following theorem is a more precise version of the first theorem appear-
ing in the introduction. It requires the notion of a C*-algebra with the uniform
Dixmier property, which we recall here for the sake of the reader.

DEFINITION 2.1. Given m € N and 0 < 7 < 1, we say that a unital C*-
algebra A has the (m,y)-uniform Dixmier property if, for all self-adjoint a € A,
there are unitaries uy,...,u, € U(A) and z € Z(A) such that

m
1 *
| X i == <l

We say that A has the uniform Dixmier property if it has the (m, v )-Dixmier prop-
erty for some m and 1.

Given m and v, let 8, , denote the following sentence in the language of
C*-algebras:

sup inf infmax( max |Juu; — 1|,
g Wiselin A i=1,..n

m 1 y
- e = =l

Here, the supremum is over self-adjoint contractions, the first infimum is over
contractions, and the second infimum is over the unit disk in C. As mentioned in
[8, Section 6], if A is a simple unital C*-algebra with the (1, v)-uniform Dixmier
property, then 0,‘2,7 = 0. On the other hand, if 6,‘2” = 0, then A is monotracial.

THEOREM 2.2. There is no effectively enumerable theory T in the language of C*-
algebras with the following two properties:
(i) all models of T have QWEP;
(ii) there is an infinite-dimensional, simple model A of T that admits a trace and has
the uniform Dixmier property.

Proof. Suppose, towards a contradiction that such T existed. Take a model
A of T as in the second condition in the statement of the theorem and fix a trace
T4 on A. Take m and 7 such that A has the (m, v)-Dixmier property. Work now
in the language of tracial C*-algebras and consider the theory T’ consisting of the
axioms for tracial C*-algebras together with T and the single condition 6, = 0.
It is clear that T’ is effective and (A, t4) E T'.

The argument now essentially proceeds as in [8, Theorem 6.4]. Indeed, sup-
pose that (B, t5) = T’ and let N denote the von Neumann algebra generated
by the image of B in the GNS representation corresponding to 7. Then N is a
QWEP von Neumann algebra (since B had QWEP) and is a II; factor with unique
trace Ty (since B is monotracial). Consequently, N admits a trace-preserving em-
bedding into RY. On the other hand, since B is simple, B embeds into N (in a
trace-preserving way). Altogether, for any universal sentence ¢ in the language
of tracial C*-algebras, we have that ¢(B) = ¢(Nw) = ¢(RR) Thus, by the
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completeness theorem, by running proofs from T’, we can find computable up-
per bounds to o(R™®), contradicting the fact that the universal theory of R is not
effectively enumerable. &

COROLLARY 2.3. There is no effective theory T in the language of C*-algebras
such that a C*-algebra has QWEP if and only if it is a model of T.

We can use the previous corollary to derive an interesting “non-closure”
statement for the class of C*-algebras without QWEP.

COROLLARY 2.4. The class of C*-algebras without the QWEP is not closed under
ultraproducts.

Proof. Suppose, towards a contradiction, that the class of C*-algebras with-
out the QWEP is closed under ultraproducts. Let T¢+ denote the (effective) theory
of C*-algebras. Since the class of C*-algebras with QWEP is axiomatizable and
the language of C*-algebras is separable, there is a sentence cqwgp in the lan-
guage of C*-algebras such that a C*-algebra A has QWEP if and only if ‘TSWEP =
0. Our contradiction assumption implies that there is some » > 0 such that
(TSWEP > r for all C*-algebras without the QWEP. Without loss of generality,
r € Q. Since the language of C*-algebras is computable and the set of com-
putable sentences is dense in the set of all sentences (see [8, Section 2]), there is a
computable sentence ¢ such that d(cowep, ) < % in the usual metric on formu-
lae. It then follows that Tc+ U {¢p — %} is an effective axiomatization of the class
of C*-algebras with QWEDP, contradicting Corollary 2.3. 1

It would be interesting to know if the previous corollary could be estab-
lished simply by knowing that the QWEP conjecture fails or even directly from
MIP* = RE itself, or if the model-theoretic tools used here are indispensable to
this argument.

Using the analog of Corollary 2.3 for the class of tracial von Neumann alge-
bras proven in [8], the exact same line of reasoning shows the following corollary.

COROLLARY 2.5. The class of tracial von Neumann algebras that do not embed in
an ultrapower of the hyperfinite I1; factor R is not closed under ultraproducts.

We end this section by mentioning one further consequence of Theorem 2.2.
Call a C*-algebra pseudo-nuclear if it is a model of the common theory of the class
of nuclear C*-algebras. Equivalently, a C*-algebra is pseudo-nuclear if it is ele-
mentarily equivalent to an ultraproduct of nuclear C*-algebras. In [6, Section 7.3],
the problem of finding a “natural” characterization of the elementary class of
pseudo-nuclear C*-algebras is raised (although the term pseudo-nuclear is not
used there). Theorem 2.3 implies that one cannot find such a characterization if
by “natural” one means “effective”.

COROLLARY 2.6. The elementary class of pseudo-nuclear C*-algebras is not effec-
tively axiomatizable.
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Proof. This follows immediately from Theorem 2.2 together with the fact
that pseudo-nuclear C*-algebras are QWEP. 1

3. REMINDERS ON LANGUAGES OF W*-PROBABILITY SPACES

In this section, we recall Dabrowski’s languages for studying W*-probability
spaces from [5] and establish some notation to be used in the rest of this paper.
We also introduce the language used to capture W*-probability spaces in [9] and
compare this language with the Dabrowski language.

Throughout, we will be considering W*-probability spaces (M, ¢) and will
let (ffp denote the associated modular automorphism group of M. While one nor-
mally considers the norm || - ||Z on M given by HxH*;) = Vo(x*x) + g(xx*),
which defines the strong* topology on M, Dabrowski instead works with the
norm | - |5, on M given by [[x1[5 := infyen v/@(5y) + @((x — y)(x — y)7), which
has various advantages when trying to axiomatize W*-probability spaces in an
appropriate first-order language.

The main obstacle in Dabrowski’s approach to W*-probability spaces is the
lack of uniform continuity of multiplication with respect to the above norm. To
overcome this, he works with “smeared versions” of multiplication. To explain
this construction, first recall that, for any f € LY(R), one can define the function

fq-) M — M given by (7 = Jo f( x)dt.
ForK € N, Dabrowskl con51ders the Fejér kernel fx € L'(R) given by
K 1 — cos(Kt)

fk(t) = El{tzo} + Wl{t;éo}-

He defines Flf = U}DK and the smeared multiplication maps m 1, by

mi L (x,y) = Fg(x)  F{ (y).

The language for W*-probability spaces we prefer to consider in this pa-
per is the expansion of what Dabrowski refers to as an “approximately minimal”
language in [5, Section 1.4] by function symbols for the modular automorphism
group. We will refer to this language as Ly+. The domains of quantification cor-
respond to operator norm unit balls and the symbols of the language consist of
the constant symbols for 0 and 1, rational scalar multiplication, ordinary addi-
tion, all smeared multiplications mg 1, unary function symbols for the modular
automorphisms (T:P (say for rational t), and the real and imaginary parts of the
state. The metric on each sort is given by || - [|5.

Before introducing this fairly small language, Dabrowski instead considers
a much larger language that we will temporarily denote L,.. While we will not
go into the details of this larger language, we mention that it is clearly a com-
putable language. In this larger language, he writes down an explicit, effectively
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enumerable theory T;,r\,* and in [5, Theorem 8] it is shown that this theory axiom-
atizes the class of W*-probability spaces (viewed as L, .-structures). Moreover,
setting Ty« to be the set of Ly«-consequences of lev*/ in [5, Theorem 14] it is
shown that T}, is a definitional expansion of Tyy:. The upshot of all of this is
that Ty« is then an effectively enumerable Ly+-theory that axiomatizes the class
of W*-probability spaces when viewed as Ly«-structures.

We now discuss an alternative to L+ as presented in [9]. The approach
taken in [9] is based on axiomatizing the action of (M, ¢) on its standard repre-
sentation. One says that an element @ € M is bounded if the actions of 2 and a*
by left and right multiplication on M extend to bounded operators on the GNS
representation via ¢. By a result of Takesaki, the collection of bounded elements
in M is dense in the weak operator topology. Since the modular automorphisms
turn out to be definable in this language, we may assume that we also have unary
function symbols to name them. We introduce a language L+ that captures these
observations. Ly« differs from Ly« in three significant ways:

(i) There is a binary function symbol for (full) multiplication and we do not
use the symbols introduced for smeared multiplication.
(if) The domains of quantification are over the sets of K-bounded elements (as
K varies), that is, those elements a where left and right multiplication by 2 and
a* have operator norm at most K when viewed as operators on the GNS Hilbert
space corresponding to ¢.
(iii) The metric is obtained from || - Hf’l, (rather than || - [|7).

The first and third points seem to be a simplification of the approach taken
by Dabrowski. The price one pays is quantification is now over bounded ele-
ments and not the operator norm balls of M. Moreover, while the axioms for
W*-probability spaces in this language without symbols for the modular automor-
phism group is easily seen to be effectively axiomatizable, it is not clear to us that
the definitional expansion by naming the modular automorphism group remains
effectively axiomatizable; this question is the source of work in progress.

Since tracial von Neumann algebras are in particular W*-probability spaces,
we can consider them in either of the above languages. We note that, since in
tracial von Neumann algebras the modular theory is trivial and the notion of
K-bounded element coincides with that of having operator norm at most K, both
languages simply revert (in an appropriate sense) to the usual language for tracial
von Neumann algebras. However, if (M, T) is a tracial von Neumann algebra,
then ||x||* = v2||x|r and ||x||X = §||x||7 for all x € M (see [5, Lemma 4] for
the latter calculation), whence this causes a slight mismatch in the evaluation of
formulae in either of the W*-probability languages as opposed to their evaluation
in the tracial von Neumann algebra language.



356 JANANAN ARULSEELAN, ISAAC GOLDBRING, AND BRADD HART
4. FAILURE OF THE REP

We recall the following definition from [8].

DEFINITION 4.1. If L is a computable language and A is an L-structure, by
the AEP we mean the statement: there is an effectively enumerable L-theory T
contained in Th(A) so that all models of T embed in an ultrapower of A.

In [8], it was shown that the REP is false, thus providing a stronger refuta-
tion of the Connes Embedding Problem. In this section, we work in the languages
Ly~ and Ly~ and show that the REP has a negative solution in each of them.
We begin with the former language.

DEFINITION 4.2. If 6 is an Lyy+-sentence, let 8 denote the sentence in the
language of tracial von Neumann algebras obtained by replacing any smeared

multiplication map my 1, by actual multiplication and any appearance of || - [|3, by
Z- 1
2 ¢

Note that § has the same quantifier complexity as 0 and MY p(MT),

where on the left-hand side of the equation we view (M, T) as a structure in the
language of tracial von Neumann algebras while on the right-hand side of the
equation, we view (M, T) as an Lyy-+-structure. It is also clear that the map 6 — 0
is a computable map.

THEOREM 4.3. The RoEP is false in the language L.

Proof. Suppose, towards a contradiction, that the R EP is true as witnessed
by the Lyy+-theory T C Th(R«). By assumption, we have that T is an effectively
enumerable set of sentences. We now set

T :={0 ~e:e€Q, Oisuniversal,and T+ 6 — e}.

Note that T’ is an effectively enumerable set of sentences in the language of tracial
von Neumann algebras. Moreover, we have T/ C Th(R). Indeed, since R em-
beds in RY, (as Ly--structures), for any universal Lyy:-sentence 6, we have that
g% = oR < 8%, Moreover, if (M, T) is a tracial von Neumann algebra which is a
model of T’, then it embeds, as a W*-probability space, into a model of T, which
is QWEP by assumption. It follows that M is QWEP and thus embeds into RY in
a trace-preserving way. Consequently, T' witnesses that the REP has a positive
solution, which is a contradiction. 1

A particular consequence of the previous theorem is that the universal the-
ory of Re is not effectively enumerable. As mentioned in the introduction, a
W*-probability space is QWEP if and only if it is a model of the universal the-
ory of Re. Thus, the second theorem from the introduction follows from The-
orem 4.3. Moreover, arguing just as in the case of Corollary 2.4, we have the
following corollary.
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COROLLARY 4.4. The class of W*-probability spaces without the QWEP is not
closed under ultraproducts.

We now point out that Theorem 4.3 is true if one considers R« in the lan-
guage L. The only issue now is that quantification might be over sorts of
bounded elements; however, if the state in question is a trace, there is no dis-
tinction between the operator norm and the left or right bound. Also, in the
de-smearing process, one should replace any appearance of || - ||4; by V2| - |4
We conclude then by the same proof as for Theorem 4.3 we have the following
theorem.

THEOREM 4.5. The RoEP is false in the language L.

It is worth pointing out that the failure of the REP in the language Lyy-
is indeed a strengthening of the refutation of the CEP since the theory of W*-
probability spaces in that language is effectively enumerable. However, since the
same cannot be said for the language L+, we cannot immediately reach the same
conclusion. However, the proof of Theorem 4.3 does show that there cannot be
an effectively axiomatizable Lyy«-theory with only QWEP models.

5. FAILURE OF THE R,EP

Our goal in this section is to show that, for any A € (0,1), the (R, ¢,)EP
has a negative solution in the languages L+ and Ly, where ¢, is the Powers
state on R,. Throughout this section, we work in the language Ly+. The proof
is essentially identical for L+ and so we make comments along the way to help
the reader. Recall that Tyy- is the theory in the language Ly« which axiomatizes
the class of W*-probability spaces. In parallel, let Ty« be the Lyy--theory of the
class of W*-probability spaces.

To begin, we need some preparation.

Given a W*-probability space (M, ¢), the centralizer of ¢ is

My:={xeM: 0/ (x)=xforallteR}={xeM: ¢(xy)=¢(yx) forall y € M}.

We note the following obvious facts about the centralizer.

LEMMA 5.1. (i) My, is a finite von Neumann algebra with trace (P\qu
(ii) The unit ball of M, is a zeroset in (M, ¢), namely the zeroset of the quantifier-
free formula Y, 27%d ((T;Z (x), x), where (ty) is an enumeration of the rationals. This is a
formula in both languages.

(iii) If x € My, then a}o(x) =xforall f € L"(R); with || f||; = 1.

Recall that the faithful normal state ¢ on M is said to be lacunary if 1 is an
isolated point of the spectrum of the modular operator A,,.
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EXAMPLE 5.2. Suppose that M is a type III factor and ¢ is a periodic faithful
normal state on M with period Tlog (] ( Ik Then ¢(A,) € {0} U AZ. In particular,
@ is a lacunary state on M. Moreover in this case, by a result of Connes (see [4,
Theorem 4.2.6]), M, is a II; factor. In the special case of R with the Powers state
@), we have that (R ), is the hyperfinite II; factor R.

[1, Proposition 4.27] states that if ¢ is a lacunary faithful normal state on M,
then (MY) = (Mg)H. In other words, we have the following proposition.

PROPOSITION 5.3. If ¢ is a lacunary faithful normal state on M, then the unit
ball of M, is a definable subset of the unit ball of M. This result holds in both languages.

It turns out that, in the context of the previous proposition, there is a very
nice formula that witnesses the definability of M. In the next definition, we
recall that Cé(R) denotes the set of continuously differentiable functions R — R
with bounded derivative.

DEFINITION 5.4. Call f : R — R good if f € L'(R)+ N CL(R).
We first note the following easy fact about good functions.

LEMMA 5.5. Suppose that f : R — R is computable and good. Then f is effec-
tively L, that is, there is an algoritheorem such that, for any rational e > 0, computes
n € Nsuch that ||1_, ,f|l1 <e.

Proof. Suppose that f is good and let e > 0 is given. Since good functions
are Lipschitz, they are in particular Riemann integrable. Thus, we can compute
effectively the integral of f on the complement of [—n, 1|. Compute this integral
for successive n until you get a value less than . This halts for any given epsilon
because otherwise f has infinite norm. Thus f is effectively L!. &

The following is [5, Lemma 5].
FACT5.6. If f : R — Ris good, then

1n—1

o012 'E ()8, < leti A g L

The previous fact has the following obvious model-theoretic consequence.

LEMMA 5.7. Suppose that f is good. Then the function U}P is a uniform limit of

Lyy+-terms (so is, in particular, a definable function). Moreover, since f is effectively L,
then there is an algoritheorem such that, upon input n € N, returns an Lyy«-term t,, such
that d(o*}?(x), tn(x)) < L forall x € My. This lemma is also true in the language Ly

DEFINITION 5.8. For f € L'(R) ., we say that f is a A-function for0 < A < 1
if ||f|l1 = 1 and supp(f) C (log(A), —log(A)) (where f is the Fourier transform

of f).
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If ¢ is a lacunary faithful normal state on M, we say that ¢ is A-lacunary
if A € (0,1) is such that c(A4) N (A, 1) = {1}. (This terminology seems to be
nonstandard but convenient.) In particular, note that if ¢ is a periodic faithful
normal state on M with period \loggﬁ’ then ¢ is A-lacunary.

The following lemma is included in the proof of [1, Proposition 4.27].

LEMMA 5.9. Suppose that ¢ is a A-lacunary faithful normal state on M and f is
a A-function. Then for all x € M, aj?(x) belongs to M.

Call f : R — R a A-good function if it is both good and a A-function. We note
the following basic fact about A-good functions.

PROPOSITION 5.10. A-good functions exist.

Proof. Without loss of generality, we assume that A = % Consider the bump
function g defined to be exp(—ﬁ) on (—1,1) and 0 otherwise (scale horizon-
tally by a computable real less than A for the general case). Note that g'is a com-
putable function. By the computability of Riemann integrals, the inverse Fourier
transform g of g is also computable. While ||g||; may not be 1, we may scale the

resulting function g to f with || f||; = 1 and note that f remains A-good. 1

The following lemma explains the significance of A-good functions.

LEMMA 5.11. Suppose that f is a A-good function and consider the Ty«-formula
Pr(x) :=d(x, U}P(x)). Then:

(i) P¢(x) is a quantifier-free Tyy-formula. Moreover, since f is effectively LY, then
there is an algoritheorem which, upon input n € N, returns a quantifier-free Lyy~-formula
¥n(x) such that |[Pr — ]| < L (in models of Tyy-).

(ii) If @ is a A-lacunary faithful normal state on M, then:
(a) the zeroset of Py in (M, @) is My, and
(b) for all x € M, we have d(x, My) < Pf(x).
This lemma is also true in the language Ly relative to the theory Tyy-.

In the previous section, we “de-smeared” formulae to obtain tracial
von Neumann algebra formulae. In this section, we consider the reverse process.

DEFINITION 5.12. Given a tracial von Neumann algebra formula 6(x), let
0% (x) denote the “smearing” of 6 obtained by replacing every appearance of mul-
tiplication by the smeared multiplication function symbol m; ;. We also replace
all instances of | - ||, by V2| - [|5- We obtain a formula in the language Ly

The following lemma is clear; recall that for a formula ¢ in Ly, @ is the
de-smearing of ¢ introduced in the previous section.

LEMMA 5.13. There are effective enumerations (6,) and (¢,) of the computable
tracial von Neumann algebra formulae and Ly~-formulae respectively, and computable
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functions g, h : N — N such that 0} = ¢q(,y) and ¢, = 6j(,). Moreover, 52 = 0, for
alln € N.

We now come to the main results of this section.

THEOREM 5.14. For any A € (0,1), the universal theory of (R, ¢) is not com-
putable in the language Ly« nor in the language L+, where @ is the Powers state on R ;.

Proof. We show that if the universal theory of (R, ¢) is computable, then
so is the universal theory of R. We first do the proof in the language L. To
see this, suppose that sup, 6, (x) is a universal sentence in the language of tracial
von Neumann algebras. (Here, and throughout this proof, all variables range
over the unit ball.) Let « : [0,1] — [0,1] be a computable, increasing function
with «(0) = 0 satisfying

|¢g(m) (x) - ¢g(m) (3/)| < "‘(d(xrl/))

for all x,y € Mjy; this is possible (uniformly in m) by Lemma 5.13 and [3, Propo-
sition 2.10]. Fix e > 0 and effectively find n € N such that, if [r —s| < 1, then
la(r) — a(s)| < e. (This is possible by the construction of « cited above.)

Fix a A-good function f and let ¢, be a quantifier-free Ly«-formula such

that || Py — || < L. Consider the universal Lyy:-sentence
@ := sup[Py(m) (2) — a(Pu(2))].
z

By assumption, we can find an interval (a,b) C R with b —a < ¢ and such that
®R1 € (a,b). Now suppose that z € (R))y. Then Pf(z) = 0,50 Pu(z) < L
whence a (9 (z)) < & But ¢g(,)(z) — a(¢n(z)) < b, s0

sup ((Pg(m) (Z)RA) Sb+e

z€(Ra)g
On the other hand
sup ((Pg(m)(z))RA = sup [‘Pg(m) (Z)RA - oc(d(z, (R/\)(P)>]
ZE(R/\)(p ZER)

Ra
> ((sup(Pg(m)(2) — a(Pr(2)))) -
z
This last term is greater than or equal to ®*1 — ¢ > a — e. Consequently,

Ra
a—e< sup (qbg(m>(z)> <b+e
ze (R A ) ?

Since (b +¢) — (a —¢) < 3eand ¢,y = O, the previous display implies that we
can effectively approximate (sup, 6,,(z))%, which is the desired contradiction.

In the language L+, one can repeat the above argument except there is no
need to smear 6. Since we have full multiplication in this language, we may use
6 as a formula in the language of tracial von Neumann algebras. However, since
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the norms are interpreted slightly differently, the obvious analog of Lemma 5.13
will be needed to conclude as in the case of Lyy+. 1

Since the (R, ¢ )EP would imply that the universal theory of (R, ¢,) is
computable, we immediately get the following corollary.

COROLLARY 5.15. The (R, ¢ )EP is false in the language Ly~ and the lan-
guage Ly

The proof of Theorem 5.14 shows something more general.

THEOREM 5.16. Suppose that (M, ¢) is a W*-probability space such that M is
QWEP and ¢ is a lacunary faithful, normal state on M for which M, contains R
(e.g. if My is a IIy factor, which is the case when ¢ is periodic). Then the universal
theory of (M, ¢) is not computable in the language L+ and the language L.

Proof. 1tis well-known that (Mg, ¢[m, ) embeds in (M, ¢) as W*-probability
spaces. (For example, one can use that M, is invariant under the modular auto-
morphism group and apply Takesaki’s theorem [14].) Consequently, M, is also
QWEP. Since the latter is a tracial von Neumann algebra, it embeds in R in a
trace-preserving manner. On the other hand, we also assumed that M, contains
R, whence Thy(R) = Thy(M,). Now we argue as in Theorem 5.14 above to
reach a contradiction. 1
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