nature plants

Article

https://doi.org/10.1038/s41477-024-01729-5

Convergentevolution of desiccation

toleranceingrasses

Received: 30 November 2023 Rose A. Marks'??

Accepted: 21 May 2024

Published online: 21 June 2024

, Llewelyn Van Der Pas®, Jenny Schuster®'?,
lan S. Gilman®'? & Robert VanBuren ® '>5¢

% Check for updates

Desiccation tolerance has evolved repeatedly in plants as an adaptation
to survive extreme environments. Plants use similar biophysical and

cellular mechanisms to survive life without water, but convergence at

the molecular, gene and regulatory levels remains to be tested. Here we
explore the evolutionary mechanisms underlying the recurrent evolution of
desiccation tolerance across grasses. We observed substantial convergence
ingene duplication and expression patterns associated with desiccation.
Syntenic genes of shared origin are activated across species, indicative of
parallel evolution. In other cases, similar metabolic pathways are induced
but using different gene sets, pointing towards phenotypic convergence.
Species-specific mechanisms supplement these shared core mechanisms,
underlining the complexity and diversity of evolutionary adaptations to
drought. Our findings provide insight into the evolutionary processes
driving desiccation tolerance and highlight the roles of parallel and
convergent evolution in response to environmental challenges.

Anhydrobiosis, or life without water, is rare but widely distributed
across life, spanning microbial, animal and plant lineages. Plants that
cantolerate desiccationin their vegetative tissues are known as resur-
rection plants due to their dramatic ability to revive from an extremely
dry state (water potential of <=100 MPa or relative water content (RWC)
of <10%)". Desiccation tolerance likely arose in plants during the Ordivo-
cian period and is thought to have played a critical role in facilitating
the transition from aquatic to terrestrial environments by early land
plants”. These ancestral mechanisms of anhydrobiosis were retained in
many non-seed plants (for example, mosses, liverworts, ferns and fern
allies), and thereisahigh frequency of vegetative desiccation tolerance
among extant bryophytes and pteridophytes®. By contrast, vegetative
desiccationtolerance waslost, or suppressed, in the common ancestor
of seed plants, presumably in a trade-off for other systems of drought
avoidance and escape, such as annual life histories, water transport
and retention mechanisms including stomata, vasculature and roots*.
Desiccation tolerance thenre-evolved convergently in asubset of vas-
cular plants, likely through the rewiring of ancestral anhydrobiosis

pathways maintained inseeds, spores and pollen®”’. Theretentionand
re-evolution of desiccation tolerance seems to have been driven by
a combination of selective pressures in habitats with extreme water
limitation, seasonal drought and sporadic water availability®. Conse-
quently, desiccation tolerance ismore commoninsomelineagesthan
others, but diverse species of resurrection plants can often be found
co-occurringintightly intertwined communities onrocky outcroppings
in arid tropical and subtropical regions across the world*’.

Despite more than 500 Myr of evolution and divergence across
extant resurrection plants, multiple biochemical and physiological
mechanisms of desiccation tolerance are shared across distantly
related species. For example, all surveyed resurrection plantsaccumu-
late smallnon-reducing sugars and other osmoprotectants to vitrify the
cytoplasm and safeguard macromolecules during drying'®. Dramatic
shifts in carbohydrate and lipid metabolism as well as the protection
(or in some cases degradation) of photosynthetic apparatuses are
also observedinall resurrection plants during drying” ™. All surveyed
desiccation-tolerant plants leverage robust anti-oxidant scavenging
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Fig.1|Overview of species distribution and experimental design to test
for convergent evolution in grasses. a, Estimated distribution of the three
desiccation-tolerant grasses: M. caffra, O. capense and T. minimus. Distribution
data were taken from ref. 86. Collections for the current study were made in

Rehydration
|

0.8
0.6
0.4
0.2

0

Study area

O Fv/Fm
o RWC }

0 100 200 300 400 500
Sampling time (h)

Mpumalanga and Limpopo provinces of South Africa. b-d, RWC and F,/F,,, of
plants during dehydration and rehydration time courses for M. caffra (b),

O. capense (c) and T. minimus (d). Three biological replicates were sampled at
each time point for each species. Error bars represent standard error of the mean.

systems, mobilize numerous intrinsically disordered and protective
proteins and have specialized cell wall properties that maximize flex-
ibility and mitigate the mechanical strain of shrinkage*>'*"*. These broad
features of anhydrobiosis are largely shared across organisms and
tissues, but the specific metabolic pathways, regulatory networks and
activated genes are notably complex and variable among species*''®
and tissues".

Therecurrentevolution of desiccationtolerance offers an exciting
opportunity tounderstand how complex traits evolve independently
across both broad and narrow phylogenetic distances. The evolution
of complex traits can occur via multiple pathways'®'’, and it is often
assumed that when closely related taxa evolve the same traitindepen-
dently, they do so by leveraging the same genetic pathways (parallel-
ism) due to internal constraints within that lineage®. By contrast, when
distantly related taxa evolve the same trait independently, they are
expected to leverage divergent pathways and genes (convergence),
due to contrasting genetic starting points'>*. However, these patterns
are not always observed in nature, and contradictory examples exist,
where distantly related taxashow independent but identical mutations
and closely related taxa do not”. The recurrent evolution of desiccation
tolerance at multiple phylogenetic scales provides anideal system to
untangle the mechanisms of convergent and parallel evolution. An
important first step towards decoding the evolutionary pathways to
desiccation tolerance is characterizing the extent of shared genetic
adaptations, overlapping pathways and lineage-specific processes
across resurrection plants.

Desiccation tolerance has received growing research attention
inrecent years, and several resurrection plants have emerged as mod-
els for understanding this remarkable trait*’. Desiccation tolerance
is found in at least ten angiosperm families and is most common in
Poaceae, whereitevolved independently at least six times across three
subfamiliesandis foundin dozens of grass species’. Thus, the grasses

areanexcellent systemto test whether the same pathways, regulatory
modules and mechanisms were recruited during the recurrent evolu-
tion of desiccation tolerance. Most genomic studies of resurrection
plants have investigated only a single species in isolation”** or tol-
erant and sensitive taxon comparison”**?’, but none have identified
core responses shared among independent lineages of resurrection
plants. Inthis Article, we quantify the extent of shared mechanisms of
anhydrobiosis across resurrection grasses and investigate the roles
of parallel mutation and convergent pathway adaptationin the evolu-
tion of desiccation tolerance. We present highly contiguous genome
assemblies of three resurrection grasses native to Sub-Saharan Africa
coupled with comprehensive gene expression datasets and support-
ing physiological data. We leveraged comparative genomic and tran-
scriptomic approaches to investigate the evolution of desiccation
toleranceinthese three species. We also extend these analyses to other
desiccation-tolerant and desiccation-sensitive grasses to describe a
core signature that defines desiccation tolerance.

Results

Comparative genomics of desiccation-tolerant grasses

We ssearched for signatures of convergent evolution across three grasses
intwo Chloridoideae subtribes representing at least two independent
origins of desiccation tolerance: Microchloa caffra Nees in subtribe
Eleusininae and Oropetium capense Stapf and Tripogon minimus Steud.
in the Tripogoninae subtribe. These three species have overlapping
distributions and tend to co-occur in shallow soils on rocky outcrop-
pings, locally known as ruwari, across Sub-Saharan Africa (Fig. 1a).
M. caffra, commonly known as pincushion grass, is distributed from
Ugandato South Africaandis thelargest of the three species. O.capense
issmaller and grows as densely packed tufts on exposed rock surfaces.
T. minimusis asmall butloosely tufted grass that occursinshallow soils
in both western and southern Africa (Fig. 1a). M. caffra plants were
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Table 1| Assembly stats of the three resurrection grasses

Assembly stats O. capense T. minimus M. caffra
Ploidy Diploid Diploid Hexaploid
Total assembly size (Mb) 237 223 968
Number of contigs 14 57 18
Contig N50 27,924,228 19,548,099 16,141,787
Contig L50 4 5 22
Number of genes 28,826 26,527 85,245
Complete BUSCO (%) 971 95.3 96.2
LTR elements (% of genome): 276 22.4 276
Ty1/Copia (%) 4.0 5.2 5.5
Gypsy/DIRS1(%) 21.4 13.2 15.1
DNA transposons (%) 12.2 15.9 276
Total repeats (%) M7 39.4 561

Ty1/Copia and Gypsy/DIRS1 are groups of LTR retrotransposons that replicate via an RNA
intermediate, with Ty1/Copia found in organisms like yeast and fruit flies, and Gypsy/DIRS1
identified in species including fruit flies and slime molds.

collected from Buffelskloof Private Nature Reserve in Mpumalanga, and
O. capense and T. minimus were collected from Swebe Swebe Private
Wildlife Reserve in Limpopo, South Africa.

We generated reference genome assemblies for each of the
three grasses using PacBio high-fidelity (HiFi) data. O. capense and
T. minimus are diploid with haploid genome sizes of ~195 Mb based
on flow cytometry, and M. caffra is hexaploid with a 1.25 Gb haploid
genome. Sequencing reads were assembled using hifiasm (v 0.18)*°,
producing near-complete reference assemblies for O. capense and
T. minimus and a highly contiguous draft assembly of M. caffra (Table 1).
Six and nine of the ten chromosomes were assembled telomere to
telomere for . minimus and O. capense, respectively, and the remain-
ing chromosomes were split into two contigs. The M. caffra genome
assembly was more fragmented, with 118 contigs spanning 968 Mb
and a contig N50 of 16 Mb. The monoploid genome size of M. caffra
is 322 Mb, which is roughly 30% larger than O. capense and T. minimus
(237 and 223 Mb, respectively), and this expansion was driven largely
by DNA transposons. All three species have a similar proportion of
long terminal repeat retrotransposons (22-27%), but 27% of the
M. caffra genome is composed of DNA transposons compared to 12%
in O. capense and 16% in T. minimus (Table 1). Despite this expansion
of transposons in M. caffra, the three Chloridoid grasses have very
compact genomes compared to most grasses’'. We used the MAKER-P
pipeline (v 2.31.10) to annotate these three genome assemblies, with
RNA sequencing (RNA-seq) data and protein homology as evidence.
The O. capense and T. minimus genome assemblies have 28,826
and 26,527 gene models, respectively, which is comparable to the
well-annotated model resurrection plant Oropetium thomaeum (L.f.)
Trin. (28,835)*%. The M. caffra genome assembly has 85,245 gene
models, which matches the expectations for a hexaploid genome
(Table1). We assessed annotation quality using the land plant (Embryo-
phyta) dataset of Benchmarking Universal Single-Copy Orthologs
(BUSCO) and found between 95.3% and 97.1% complete proteins across
thethree grasses, suggesting the genome assemblies are largely com-
plete and well annotated (Table 1).

We leveraged comparative genomic approaches to identify evo-
lutionary signatures associated with desiccation tolerance and enable
cross-species comparisons of gene expression data. The three grass
genomes are largely collinear with O. thomaeum and have considerable
conserved gene content despite some notable structural rearrange-
ments. Seven pairs of O. thomaeum and O. capense chromosomes
have near-perfect synteny, with chromosomes 8 and 9 showing a few

large-scale inversions and a telomeric translocation on chromosome
2 (Extended Data Fig. 1). T. minimus has similar macrosynteny with
0. thomaeum but has no rearrangements in chromosome 8. Synteny
between M. caffra and O. thomaeum is more fragmented because of
phylogenetic divergence, and each O. thomaeum region has between
two and four homeologous regionsin M. caffra (Extended Data Fig. 2).
We calculated the synonymous substitution rates (Ks) between homeo-
logous gene pairs within M. caffra to date the polyploid event(s). We
observed a single Ks peak of 0.13 across all homeologous gene pair
combinations, suggesting the autohexaploidy event occurred -4 Ma
(millionyears ago) from rapidly successive polyploidy events (Extended
Data Fig. 2d). Using MCScan (v 1.1) with O. thomaeum as an anchor,
we identified 18,428 syntenic orthologs (syntelogs) shared among
the three grasses, as well as previously published tolerant grasses
Eragrostis nindensis Ficalho & Hiern*®*%, These syntelogs were used
to identify patterns of gene duplication associated with desiccation
tolerance across grasses and as anchor points to compare expression
of conserved genes across species.

To test for convergent evolution, we characterized patterns of
expansionand duplicationingene families withimportantrolesindes-
iccationtolerance. The genomes of all sequenced resurrection plants
have large tandem arrays of early light-induced proteins (ELIPs)*,
and we observed this same pattern across the desiccation-tolerant
grassesinvestigated here. O. capense, T. minimus and M. caffra all have
massive tandem arrays of 39, 31and 58 ELIPs, respectively, compared
to an average of 4 in the genomes of desiccation-sensitive grasses™.
This expansion of ELIPs is similar to other chlorophyll-retaining
(homiochlorophlylus) resurrection plants and is generally higher
than chlorophyll-degrading (poikiochlorophyllus) species. ELIPs
are universally highly expressed in the diploid resurrection grasses
O. capense and T. minimus during drying, desiccation and early rehy-
dration, but only a subset of the ELIPs in the M. caffra tandem arrays
have desiccation-induced expression (Extended DataFig. 3). We used
CAFE (v5.1)** to test for changes in the dynamics of ELIP copy number
evolutionacrossland plants. We found notableincreasesin the rate of
ELIP expansion in all desiccation-tolerant lineages of plants (Fig. 2c).
Within the grass family, ELIP expansion occurred independently in
subtribes Eleusininae, Sporobolinae, Eragrostidinae and Tripogonae,
but Oropetium and Tripogon share a single origin of desiccation toler-
ance (Fig. 2c). Other gene families with well-characterized roles in
desiccation tolerance such as late embryogenesis abundant proteins
and heatshock proteins show no expansioninresurrection plants based
on OrthoFinder (v2.4.1) and/or CAFE (Extended Data Figs. 4 and 5).

We identified the origin of duplicated ELIPs to test whether the
same or different ancestral copies were duplicated in each lineage
using a synteny-based approach. Tandem duplication of ELIPs within
the Tripogoninae occurred on chromosome 8, and the Eleusininae and
Eragrostidinae subtribe species have no syntenic ELIPs in this region,
despite otherwise high collinearity (Fig.2a). Most ELIPs in Eleusininae
and Eragrostidinae species are foundin large tandemarrays on chromo-
some 7,compared to4-5ELIPS within Tripogoninae (Fig. 2b). Together,
phylogenetic and comparative genomics analyses suggest these grass
lineages duplicated ELIPs independently, supporting the convergent
evolution of desiccation tolerance within Chloridoideae.

Identifying overlapping signatures of desiccation tolerance

We collected dehydration and rehydration time courses of
O. capense, T. minimus and M. caffra plants under similar conditions
in a climate-controlled growth chamber. Plants reached desiccation
after ~17-20 days of natural drying, with RWC <10% and photosystem
Il efficiency, represented as F,/F,, (e.g. theratio of variable to maximum
fluorescence approaching 0.0) (Fig. 1b—-d). RWC and F,/F,, recovered
within12 hof rehydrationin O. capense and T. minimus, but F,/F,, took
longer to recover in M. caffra (Fig. 1b). We collected gene expression
data (RNA-seq) at six comparable time points of drying and recovery
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Fig.2|Independent tandem gene duplication of ELIPs in different
resurrection grass lineages. a,b, Microsyntenic regions of the chromosome 8
(a)and chromosome 7 (b) ELIP tandem arrays are shown for resurrection grasses
inthe Tripogoninae (7. minimus, O. thomaeum and O. capense), Eleusininae

(M. caffra) and Eragrostidinae (E. nindensis) subtribes of Chloridoideae. Syntenic
orthologs between the species are shown in beige, and the ELIPs are highlighted
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for each of the three species. We quantified RNA abundance and gene
expression patterns across the dehydration-rehydration time course
ineachspeciesindividually. RNA-seq reads were pseudo-aligned to the

respective genomes using Salmon (v 1.9.0)*, and normalized counts
were used for all downstream analyses. In general, gene expression
profiles were tightly associated with the hydration status of the plants.
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Correlation matrices and principal component analysis (PCA) show
tight clustering of samples by hydration status, with hydrated, desic-
cated and rehydrated samples forming distinct clusters for each species
(Extended DataFig. 6).

Using RWC as a covariate, we identified genes that were up- and
down-regulated during dehydration and rehydration processes. Both
dehydration and rehydration induced substantial changes in gene
expressioninall three desiccation-tolerant grasses, with 35-52% of genes
showingdifferential abundance during dehydrationand 23-47% during
rehydration (Fig. 3a and Extended Data Fig. 7). M. caffra had more dif-
ferentially expressed genes (DEGs) (Extended Data Fig. 7), givenits hexa-
ploidy, butalower proportion of DEGs compared to the other two grasses
(Fig. 3a). Broadly, desiccation and rehydration had inverse expression
profiles, and most genes that increased in abundance during dehydra-
tion dissipated during rehydration and vice versa (Extended Data Fig. 7).

To enable comparisons across species, we leveraged the 18,428
conserved syntelogs and searched for overlapping patterns in the
expression of these shared genes. There was considerable overlap
in gene expression across the three focal resurrection grasses, with
~18-24% of all differentially expressed syntelogs showing similar
expression across species (Fig. 3b and Extended Data Fig. 8). The
proportions of DEGs shared across the three resurrection grasses
for both up- and down-regulated genes was considerably more than

observed in previous studies or expected due to chance. To differen-
tiate between desiccation tolerance mechanisms and more general
drought responses, weidentified the extent of shared syntelog expres-
sionbetweenthese resurrection grasses and the desiccation-sensitive
species Eragrostis tef, which was sampled along a similar dehydration
time course in a previous study®. There was considerable overlap
in syntelog expression between the resurrection grasses and E. tef
(Extended Data Fig. 9), reflecting deeply conserved mechanisms of
droughttoleranceingrasses. We also detected alarge set of genes that
were expressed exclusively intheresurrection grasses, which likely play
desiccation-specific roles to survive anhydrobiosis. Species-specific
expression patterns are also evident, particularly for E. tef.
Dimensionality reduction and co-expression analyses also point
towards parallel mechanisms of desiccation tolerance in resurrection
grasses. Samples clustered primarily by hydration status and secondar-
ily by species in PCA (Fig. 3¢,d and Extended Data Fig. 10). We defined
co-expression modules for each species and screened for shared net-
work level responses within co-expressed genes. High-confidence
modules were defined for each species, and we grouped theseinto three
broad classes based on the expression pattern of each module: (1) ele-
vated expressionin hydrated conditions, (2) elevated expression during
dehydration and (3) elevated expression during rehydration (Fig. 4d).
We identified substantial overlap in gene module conservation with
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elevated expression during dehydration but less overlap in modules
with high expression during rehydration (Fig. 4a). We then identified
enriched gene ontology (GO) terms for each co-expression module
and performed hierarchical clustering on the enrichment P values of
GO terms. Modules clustered by their expression profile rather than
species identity, suggesting that hydration status is more predictive
of gene expression than speciesidentity (Fig. 4c) and pointing towards
ashared signature of desiccation tolerance in resurrection grasses.

Shared signatures of desiccation tolerance

Our analyses of syntelog expression tested for ancestral conservation
and parallelism, but it is also possible that different lineages of resur-
rection plants may utilize similar metabolic strategies for achieving
desiccation tolerance but through divergent genes and pathways. To
investigate this possibility, we used the Kyoto Encyclopedia of Genes
and Genomes (KEGG) to assign each gene to a predicted enzymatic
function and metabolic pathways and compared the overlap in these
functional predictions across species. We detected substantially higher
overlap in KEGG terms across species (-30-40%) compared to differ-
entially expressed syntelogs (only 18-24%) (Fig. 5b and Extended Data
Fig.10). Theincreased similarity at ametabolic level suggests that while
these species do not always leverage parallel gene copies, theyinduce
similar metabolic mechanisms to survive anhydrobiosis, providing
evidence of convergence across species.

We further investigated the functional roles of shared gene expres-
sion via GO enrichment and KEGG analyses. We found that many
hallmarks of desiccation tolerance were shared across the three res-
urrection grasses, including the controlled down-regulation of pho-
tosynthesis and rapid induction of protective mechanisms. Enriched
GO terms during dehydration were related primarily to signalling and
stress responses (for example, stress perception and reactive oxygen

species scavenging activities), developmental regulation (for example,
photoperiodismand germination processes), cellular reorganization
(for example, lipid droplet formation, vesicle fusion and endocytosis)
and modifications to transcription and translation (for example, RNA
modifications, splicing and protein degradation). By contrast, enriched
GOtermsduring rehydration are related to photosynthesis and metab-
olism (for example, fructose biosynthesis, cellulose biosynthesis and
light harvesting), pigment metabolism (for example, chlorophyll bio-
synthesis and anthocyanin metabolism), protein modification (for
example, protein phosphorylation and proteolysis) and some residual
stress response (for example, response to cold and non-photochemical
quenching) (Fig. 5a). Hierarchical clustering of enriched GO terms also
highlighted the inverse relationship between dehydration and rehydra-
tion process (Fig. 5a and Extended Data Fig. 10).

To differentiate between desiccation tolerance mechanisms and
moretypical drought tolerance responses, we compared the enriched
GOtermsfor differentially expressed syntelogs uniquely inducedinthe
resurrection grasses versus those shared with desiccation-sensitive
E. tef (Extended Data Fig.10). Many of the classic stress response terms
were shared across all species, reflecting deeply conserved responses
to water deprivation. For example, all species showed metabolic arrest
during drying with a particular emphasis on photosynthetic shut-
down. All species showed an increase in classic stress response terms
such as response to heat, response to water deprivation, response to
hydrogen peroxide and sucrose metabolic process. These processes
represent core mechanisms of water deficit tolerance that likely form
the foundation of desiccation tolerance. Building on this founda-
tion, resurrection grasses appear to activate additional processes
that enable more extreme resilience. For example, the resurrection
grasses showed unique activation of nucleicacid processesincluding
messenger RNA export, regulation of chromosome condensation and
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mRNA transcription by RNA polymerase Il suggesting greater overall
regulation of transcription and translation. Several terms associated
with the circadian rhythm and hormonal signalling were also uniquely
up-regulated in the resurrection grasses, indicating a central role of
circadian clock processes in preparing for desiccation. The resurrec-
tion grasses showed a unique down-regulation of tissue and cellular
developmental processes, implying a tightly regulated cessation of
metabolism at later stages of drying. Taken together, this suggests
that resurrection grasses build on a shared foundation of drought
tolerance to achieve desiccation tolerance via a highly organized
shiftin cellular processes.

KEGG annotations revealed characteristic desiccation toler-
ance mechanisms shared across resurrection grasses. Metabolic
pathways associated with photosynthetic energy metabolism were
down-regulated in all three grasses. Interestingly, we observed an
increase of malate to pyruvate catalysis with concomitant regeneration
ofreduced nicotinamide adenine dinucleotide phosphate, which could
berelated toreduced nicotinamide adenine dinucleotide phosphate’s
redox potential for antioxidant enzymes such as glutathione reductase.
We also detected noticeable changes to carbohydrate and energy
metabolism, including a shift towards the production of raffinose
and stachyose under dehydrating conditions as seen in other resur-
rection plants (reviewed inref. 10). Central carbohydrate metabolism
appeared operational, suggesting that at low water contents, other
solvents, such as natural deep eutectic solvents within the mitochon-
dria, may facilitate glycolysis, the tricarboxylic acid cycle and electron
transport®. Amino acid metabolism favoured degradative pathways
with an increase in endoplasmic reticulum-mediated ubiquitination
and proteolysis, which could be serving aglucogenic role by convert-
ing amino acids to pyruvate or by generating an available amino acid
poolfor the rapid assembly of thermo- and osmoprotective proteins.
While amino acid metabolic pathways were generally down-regulated,
a few important pathways including glutathione metabolism were
up-regulated. Reduced glutathione exerts numerous effects in the cell”
frominteraction with hormonestoacting as direct reactive oxygen spe-
cies quencher, and maintaining a steady supply of reduced glutathione

is a feature all three resurrection grasses share. Lipid metabolism
showed a shift towards the production of glycerolipids and glycer-
ophospholipids, which likely supports triacylglycerol phosphatidyl-
choline production. The accumulation of phosphatidylcholine may
further lead to phosphatidic acid synthesis, which has beenimplicated
in numerous plant processes fromsignalling to storage®*°, Pathways
involved in the transcription and translation of genetic information
also showed an up-regulation of transcription factors, RNA polymer-
aseand spliceosome activity, suggesting that active transcription and
RNA processing are still occurring. However, we observed substantial
down-regulation of ribosome activity, suggesting that RNA is either
differentially translated or delayed. Upon rehydration, up-regulated
processesinvolvedin overall resumption of normal metabolic activity
such as several photosystem I and Il proteins, light harvesting com-
plexes, starch synthesis and cell wall remodelling such as xyloglucan
O-acetyltransferase, expansin and pectinesterase were observed.

Desiccation tolerance mechanisms are conserved in grasses

Desiccation tolerance evolved independently in at least four sub-
tribes of Chloridiodeae (Eleusininae, Eragrostidinae, Sporobolinae
and Tripogoninae; Fig. 2¢c), and we integrated comparable desicca-
tion and rehydration expression datasets from additional species to
test for patterns of convergence across grasses more broadly. Build-
ing on our detailed comparisons across the three study species, we
expanded our analysis to include publicly available RNA-seq samples
from desiccation-tolerant O. thomaeum* and E. nindensis*™, leveraging
syntelogs for cross-species comparisons. Similar to the three species
comparisons described above, dimensionality reduction across the
five species generally separated samples by hydration status along
principal component 1 and principal component 2 (Extended Data
Fig.10). While PCA provided some degree of separation, the residual
heterogeneity, experimental differences, noise or species level differ-
encesinthe datasets might have obscured underlying conserved biol-
ogy. Toaccountfor this, we used atopological dataanalysis approach
to discern the underlying structure of the expression datasets. We
utilized the Mapper algorithm, which condenses the dataset into a
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scalable, navigable representation. The Mapper algorithm is particu-
larly well suited for genome scale analyses, as the underlying datasets
are often characterized by high dimensionality and sparsity*’. For our
gene expression data, we constructed Mapper graphs using a ‘stress
lens’ with the well-watered condition as a reference point. This model
represents the baseline for gene expression, and we quantified the
residuals or deviation of each sample from the baseline, which repre-
sents the degree of water stress or recovery.

Theresultant Mapper graphillustrates a clear topological shape
that delineates desiccation processes across grasses (Fig. 6). Each
node on the graph represents a cluster of similar RNA-seq samples,
and the node colour depicts the identity of samples within that clus-
ter. Connections between nodes signify shared samples among the
intersecting clusters.

Thesegraphsrevealacompelling topological depiction of the gene
expressionvariations induced by water stress across different species.
Similar topology was observed for targeted comparison of the three
focal species (Fig. 6a,b) and for the larger dataset including E. ninden-
sis and O. thomaeum (Fig. 6¢,d). In both instances, clear delineation
betweensamples of different hydration statuses are evident, while the
species areintermixed. We then added the desiccation-sensitive sister
speciesE. tefin afinal analysis (Extended Data Fig.10), which revealed a

similar topology across all species with notable gapsin £. tef. Broadly,
this supports our finding that similar ancestral mechanisms are being
recruited for foundational drought tolerance mechanisms, which are
enhanced in resurrection plants via the independent recruitment of
specific desiccation tolerance pathways.

Species-specific mechanisms underlying desiccation
tolerance

Despite the considerable overlap in gene expression across all three
focal species, species-specific processes were also evident. In M. caf-
fra,unique antioxidant responses were induced including glutathione
biosynthetic processes, glutamate decarboxylation, and L-ascorbicacid
biosynthesis. Other processes enriched uniquely in M. caffraincluded
seed-related terms such as seed oil body biogenesis and seed matu-
ration. Several GO terms associated with phytohormones were also
uniquely induced in M. caffra, including overall ethylene responses
such as S-adenosylmethionine metabolic process, ethylene-activated
signalling pathway and response to 1-aminocyclopropane-1-carboxylic
acid, suggesting that hormonal regulation might be exerting an effect
onthe partial breakdown of thylakoids and photosynthetic machinery
as seenin classical senescence®. M. caffra also showed unique lipid,
sphingolipid, riboflavin and selenocompound metabolism, as well
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as sesquiterpenoid and terpenoid biosynthesis. M. caffra was the
only species to have multiple pathways involved in signal transduc-
tion up-regulated including phospholipase D and calcium signalling.
Uniquely down-regulated processes in M. caffra appear to centre
around arresting growth and development, such as phototropism,
gravitropism, leaf and root morphogenesis, cell wall biogenesis and
regulation of auxin polar transport. There was also adown-regulation
of general amino acid-transfer and nitrogen fixation and assimilation.

O. capense had fewer uniquely enriched processes compared
to M. caffra, but some notable patterns were detected. Uniquely
up-regulated processesin O. capense centred around histone H3 and
H4 acetylation, histone H3-K9 demethylation and histone H2B ubig-
uitination. The relative degree of acetylation of histones is directly
related to the openness of chromatin which impacts transcriptionin
specific drought-responsive genes**. Histone demethylation* and
H2B ubiquitination also regulate drought-responsive genes*. Interest-
ingly, terms associated with chloroplast mRNA processing, poly(A)+
mRNA export from the nucleus, ribosome assembly and regulation of
translation were also up-regulated in O. capense, suggesting continued
translation and active processing of mRNA from both the chloroplast
and nucleus, presumably throughincreased transcriptional regulation
dueto histone modifications. O. capense showed unique up-regulation
of C5-branched dibasic metabolism and down-regulation within
galactose metabolism. Uniquely down-regulated processes in
O. capense were minimal but included regulation of salicylic acid
metabolic process and auxin polar transport. Monoterpenoid bio-
synthesis was up-regulated for O. capense, and fatty acid degradation
and steroid hormone biosynthesis was down-regulated. Ferroptosis,
aniron-dependent form of programmed cell death, was exclusively
down-regulated in O. capense.

T. minimus also had fewer species-specific processes compared
to M. caffra. Uniquely up-regulated processes were centred around
response to oxidative stress, peroxisome organization and removal
of superoxide radicals. . minimus was the only species to show
up-regulation of anthocyanin-containing compound biosynthetic
process whichisatypical response seeninthe homoiochlorophyllous
resurrection plants*. Similar to the other two species, regulation of
auxin-mediated signalling pathways were down-regulated as was cellu-
lar response to salicylic acid stimulus. Other processes centred around
mismatchrepair, chloroplast RNA processing, ribosome biogenesis and
plastid transcription. Phosphonate and phosphinate, taurine and hypo-
taurine, and b-amino acid metabolism were exclusively down-regulated
in T. minimus, whereas retinol metabolism was up-regulated.

Despite the unique pathwaysidentified in each of the focal species,
allthree species appear to respond to drought and desiccation stress
by leveraging similar mechanisms. The processes uniquely activatedin
each species are consistently centred around defence mechanisms, the
induction of quiescence and reduction of normal growth and metabo-
lismunder desiccated conditions. While nuanced variationin metabo-
lism and defence responses are evident, all species show well-known
mechanisms of desiccation tolerance. Taken together, the three species
appear to share a core set of conserved mechanisms which are then
supplemented with convergent species-specific modules.

Discussion

Our data suggest that the repeated evolution of desiccation toler-
ance withingrasses occurred viaboth parallel adaptationsin the same
ancestral genes and complementary modifications to analogous path-
ways. We find evidence that core mechanisms of desiccation tolerance
are shared across resurrection grasses and are supplemented with
species-specific adaptations. Many of these mechanisms overlap with
typical drought responses, and it is likely that the evolution of anhyd-
robiosis builds on deeply conserved responses to water deficit shared
across all plants. Phenotypic and metabolic similarities in anhydrobio-
sismechanisms have been observed for decades, but the evolutionary

pathways of convergence and parallelism have been obscured by alack
of systems-level data and inconsistencies in experimental procedures*.
Here we leveraged large-scale genomic and transcriptomic datasetsin
areplicated and standardized framework to characterize signatures
underlying the recurrent evolution of desiccation tolerance within
chloridoid grasses.

The adaptations required for desiccation tolerance appear to
be sufficiently narrow, such that not any organism can, or will, evolve
desiccationtolerance*. The physiological changes that occur during the
final stages of desiccation are dramatic, and specialized biochemistry
and molecular mechanisms are required to protect the cellular mac-
romolecules for life without water. Achieving anhydrobiosis requires
tight coordination and orchestration of multiple physiological pro-
cesses, and there may be only a few trajectories to evolve this trait.
However, desiccation tolerance mechanisms overlap considerably with
typical drought responses, and many plants possess the basic cellular
machinery required to achieve desiccation tolerance?. Desiccation
tolerance is likely an ancestral adaptation in plants that evolved dur-
ing terrestrialization, subsequently formed the basis of seed pathways
and was later rewired again in vegetative tissues>>**°, While previous
studies have found surprisingly little overlap in gene expression across
desiccation-tolerant plants®®, our data suggest that the repeated
evolution of specific genetic, biochemical and physiological traits
required for anhydrobiosis are highly convergent and build on more
broadly conserved water deficit responses.

Convergence is thought to be driven primarily by exposure to
external selective pressures that lead to the same emergent pheno-
type, while parallelism is thought to be impacted more by internal
constraints of the system' through independent mutations in the
same ancestral gene'*”. Because anhydrobiosis has evolved indepen-
dently in both distantly and closely related taxa, it is an ideal system
in which to explore the roles of convergent and parallel evolution.
Numerous other independently evolved traits such as C4 and Cras-
sulacean acid metabolism photosynthesis are highly complex, making
their repeated evolution surprising®” and difficult to characterize. In
the case of C4 photosynthesis, both mutations in the same genes and
recruitment of unique pathways occurred in distantly related lineages
to enable the emergent C4 phenotype®. Desiccation tolerance is simi-
larly complex, involving the synchronized orchestration of numerous
pathways and genes, and it is likely that both external pressures (for
example, selectionin extremely xeric habitats) and internal constraints
(lineage-specific predispositions) play arolein the recurrent evolution
of desiccationtolerance. Here we detected signatures of both processes
andidentified far more overlap in gene expression across resurrection
grasses than expected by chance or detected in previous studies®*°.
The observed expansion of ELIP tandem arrays coupled with activation
of similar metabolic pathways driven by different gene sets suggests
thatboth parallel and convergent processes contribute to the recurrent
evolution of desiccation tolerance in grasses.

Our systems-level analyses add to the growing literature on
the mechanisms of desiccation tolerance, and many of the patterns
observed here corroborate previous findings'”*****>°, We show that
desiccation induces a major and reversible shift in gene expression
where normal growth and development are halted and numerous
protective mechanisms are induced'***%, Gene expression coa-
lesced around a signature desiccation response during drying with
all three species initiating parallel processes”. The resumption of
species-specific processes related to growth and development was
evident upon rehydration. The shared pathways of anhydrobiosis
observedinthese grasses pull onthe deeply conserved architecture of
droughttolerance coupled with convergent and parallel mutations that
provide the necessary protection to survive extreme desiccation. This
reflects therelatively narrow set of regulatory networks and pathways
in plants that can enable the evolution of desiccation tolerance but also
hints as multiple evolutionary paths to anhydrobiosis.
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Methods

Field collections, plant growth and maintenance

Plants for the current study were collected from two research sites in
South Africa: Buffelskloof Nature Reservein Mpumalanga (-25.30229°S,
030.50631° E) (M. caffra) and Swebe Swebe Private Wildlife Reserve in
Limpopo (-23.7949°S,028.0705° E) (0. capenseand T. minimus).Voucher
specimens of each species were collected, pressed and deposited at
the National Herbarium of South Africain Pretoria (specimen numbers
PRE1004810-0, PRE1004793-0 and PRE1004794-0).Seeds of each species
were also collected and transported to Michigan State University under
the US Department of Agriculture permit number 537-22-37-10071 and
accordingto the specifications in aMaterial Transfer Agreement estab-
lished between). M. Farrant,R.V.and R.A.M.Seeds were cold stratified at
4 °Cfor2weeks and thengerminated on our standard propagation mix
(50:50 sure-mix toredi-earth) and growninaclimate-controlled growth
chamberwithalé hphotoperiod andinternal temperature of 28 °C/18 °C.
One seedling from each species was used for genome sequencing, and
the remaining seedlings were used for the desiccation and rehydra-
tion time courses experiments. Three plants in each pot were pooled
during sampling and treated as a single biological replicate. These plants
were grown for another 2 weeks before experimental treatments.

Dehydration treatment and sample collection

After -8 weeks of growth, plants were subjected to dehydration treat-
ment. Before treatment, any emerging reproductive tissues (for
example, panicles) were removed from plants. Toinitiate dehydration
treatment, plants were watered to full soil saturation, and each pot
was weighed to ensure consistency across replicates. Water was then
withheld until plants became completely desiccated (between 2 and
3 weeks depending on the species). Plants were sampled at targeted
hydration states during the process of dehydration, including well
watered, partially dehydrated, fully desiccated and rehydrated. We
used visual cues to direct our sampling and sampled plants at the first
signs of visible leaf curling, partial pigmentation, deep pigmentation
and full desiccation and validated the hydration status of tissues by
measuring RWC. Plants were then rehydrated through a combination
of watering from the base and misting the aerial portions to simulate
natural rainfall and sampled 24 h and 48 h post rehydration.

At each time point, we measured the photosynthetic efficiency
(F,/F,) and RWC and collected tissue for RNA-seq. Briefly, F,/F,,
was measured on dark adapted leaves using an Opti-Sciences OS30p+
chlorophyllfluorometer withthe default test parameters. RWC was meas-
ured using aset of 10-15representative leaves from each pot/biological
replicate. Leaf mass was weighed immediately after collection (fresh
weight), again after 48 h submerged in distilled H,0 in darkness at 4 °C
(turgid weight) and finally after 48 hina70 °C drying oven (dry weight).
RWCwas calculated as (fresh weight — dry weight)/(turgid weight — dry
weight). Tissue for RNA-seq was collected by gathering all the vegetative
tissue from each pot and flashfreezinginliquid nitrogen. Tissue samples
were stored ina—80 °C freezer before downstream processing.

RNA extraction and sequencing

Frozen leaftissue was ground to powder by hand ina mortar and pestle
withliquid nitrogen. RNA was extracted from each sample using Spec-
trum Plant Total RNA kit according to the manufacturer’s instructions.
Total RNA was then cleaned to remove impurities and contaminants
using Zymo Clean & Concentrator kit. DNAse treatment was carried out
during clean and concentration steps according to the manufacturer’s
instructions. Sample concentration was assessed on a qubit using the
RNA broadrange reagent set, purity was assessed with ananodrop, and
RNA integrity was visualized on an agarose gel. RNA-seq libraries were
constructed by Novogene following a standard polyA+ enrichment
strategy including fragmentation and complementary DNA synthesis.
The resulting libraries were sequenced on an Illumina HiSeq 4000
under 150 bp paired end mode.

High-molecular-weight DNA extraction and sequencing

Tissue for whole genome sequencing was collected fromasingle mature
plantof each species. Healthy green tissue was collected and flash fro-
zeninliquid nitrogen. Tissue was ground by hand inamortar and pestle
for >20 min to liberate nuclei. Pure, high-molecular-weight genomic
DNA was extracted by first isolating nuclei with the Circulomics Nuclei
Isolation kit and then extracting DNA with the Circulomics Nanobind
Plant Nuclei Big DNA kit. HiFi libraries were constructed from the
genomic DNA and sequenced at the University of Georgia Sequencing
Core onaPacBio Sequel Il machine.

Genome assembly

We used flow cytometry to estimate genome sizes (diploid DNA content
or 2C value) for the three grasses. Healthy leaf tissue was collected
from each genotype. Nuclei were isolated and stained according to
standard protocols. The stained nuclei were then run on a BD Accuri
C6 Plus Flow Cytometer at Plantploidy.com. Hosta plantaginea was
used as aninternal reference.

Webuiltreference genomes for each species using HiFi PacBio long
read data. In total, 70.1 Gb of HiFi reads were generated for M. caffra,
15.9 Gb for O. capense and 20.2 Gb for T. minimus, representing 56, 82
and 103 x genome coverage for each species, respectively. K-mer analy-
sis revealed that O. capense and T. minimus have low within genome
heterozyogisity and M. caffrais a highly heterozygous autopolyploid*®.
PacBio reads were assembled using hifiasm (v 0.18)*>*° with default
settings for O. capense and T. minimus, and the number of haplotypes
was set to 6 for M. caffra (flag:—n-hap 6). The resulting assemblies were
highly contiguous with six and nine of the ten chromosomes assembled
telomere to telomere for 7. minimus and O. capense, respectively, and
118 contigs across 968 Mb with an N50 of 16 Mb for M. caffra (Table 1).
Rawassemblies were filtered for non-plant contigs using arepresenta-
tive microbial database with BLAST (v 2.10.0)°°. Full-length chloroplast
and mitochondrial genomes were identified and retained, and any
additional partial or rearranged organelle genomes were removed.

Genome annotation

Alibrary of repetitive elements was constructed for each of the three
grass genomes using the EDTA package (v 2.0.0)*". EDTA comprehen-
sively identifies DNA-based transposable elements using Helitron-
Scanner® and long terminal repeat (LTR) retrotransposons using
LTR_FINDER® and LTRharvest**. Protein coding genes were annotated
using the MAKER-P pipeline (v 2.31.10)% with the following sets of
input data for training. Transcript evidence was generated using the
dehydration-rehydration time course RNA-seq data from leaf tissue
of each species described below. Raw RNA-seq reads were quality
trimmed using fastp (v 0.23)*° and aligned to the unmasked genomes
using the splice aware alignment program STAR (v 2.6)%. A set of
non-overlapping transcripts was identified from the aligned data
using StringTie (v1.3.4)°® with default parameters. The resulting gff
files were used as transcript evidence for MAKER. The same protein
evidence was used as training for each of the three grasses, and this
includes the full annotations of Oryza sativa®, Arabidopsis thaliana’,
0. thomaeum®**® and E. tef**. These datasets were used as input for
MAKER, and we utilized SNAP (2013 version)” and Augustus (v 3.0.2)"
forabinitio gene prediction, performing two rounds of iterative train-
ing to refine our models. To filter out repetitive element-derived
proteins, we used BLAST using a non-redundant transposase library
against the raw gene models produced by MAKER. We assessed the
completeness of our assembly using the plant-specificembryophyte
set of BUSCO v.2 (ref. 73). These high-confidence gene models were
used for all downstream analyses.

Comparative genomics
The three desiccation-tolerant grass genomes were compared to each
other and other Chloridoid grasses using the MCScan toolkit (v 1.1)"
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implemented in python [https://github.com/tanghaibao/jcvi/wiki/
MCscan-(Python-version)]. Syntenic orthologs were identified across
the three focal species as well as E. nindensis, E. tef and O. thomaeum
using the chromosome-scale O. thomaeum genome as ananchor. Syn-
tenic blocks were identified using gene models aligned using LAST
(v914) withaminimum of five overlapping syntenic genes. The macro-
syntenic dot plots, histograms of depth and microsynteny plots were
generated using the python version of MCScan. A set of 18,428 con-
served syntenic orthologs across all six desiccation-tolerant grasses
was created and used for downstream comparative genomic and
cross-species transcriptomic analyses. We identified orthologous
genes across asubset of 33 land plant species to search for patterns of
gene family expansion in desiccation-tolerant lineages as well as for
downstream comparative genomic analyses. We included the following
species with desiccation-tolerant (DT) species highlighted: Ananascom-
osus, A. thaliana, Brachypodiumdistachyon, Eleusine coracana, Eragros-
tiscurvula, E. nindensis (DT), Eragrostis pilosa, E. tef, Hordeum vulgare,
Lindernia brevidens (DT), Lindernia subracemosa, M. caffra (DT), March-
antia polymorpha (DT), Medicago truncatula, O.capense (DT), O.sativa,
O.thomaeum (DT), Physcomitrium patens (DT), Sorghum bicolor, Setaria
italica, Selaginellalepidophylla (DT), Solanum lycopersicum, Selaginella
moellendorffii, Sporobolus pyramidalis, Sporobolus stapfianus (DT),
Setaria viridis, Triticum aestivum, T. minimus (DT), Vitis vinifera, Xero-
phyta viscosa (DT), Zostera japonica, Zostera marina and Zea mays.
Proteins were clustered into orthologous groups using Orthofinder
(v2.2.6)” with default parameters. For the orthogroup enrichment
analysis, we calculated a Z-score for each species within each ortho-
group, compared ittoanormal distribution to obtainaPvalue andthen
adjusted these Pvalues using the Benjamini and Hochberg procedure
toget gvalues. We then searched for statistically enriched orthogroups
across all of the sequenced desiccation-tolerant grasses. Using this
approach, weidentified between 486 and 8,863 enriched orthogroups
in the 33 species we included in our analysis and found none that are
conserved across all desiccation-tolerant grasses outside of ELIPs.

ELIP gene family evolution
To test the hypothesis that the ELIP gene family expansions are associ-
ated with the evolution of desiccation tolerance, we used CAFE (v 5.1)**,
which analyses changes in gene family size in a phylogenetic frame-
work. Theinput tree was created from the amino acid sequences from
36 land plant species, with a focus on Chloridoid grasses. Sequences
were first clustered using Orthofinder (v2.4.1)”, filtered to remove any
orthogroups that did not contain all taxa and aligned using MAFFT (v
7.305b)’*. No single-copy orthologs were found containing all taxa for
species tree construction. Instead, we pruned gene trees and align-
ments to the largest subtree containing unique taxa using PhyloPy-
Pruner (v 1.2.4) (https://gitlab.com/fethalen/phylopypruner); where
paralogs were monophyletic within a species, werandomly pruned all
but one sequence before extracting the largest subtree. The resulting
pruned gene trees and alignments were further filtered to remove any
trees no longer containing at least 19 taxa. This final set of 195 align-
ments were concatenated and used to construct a phylogeny using
IQ-TREE (v2.3.0)”” and time-calibrated fast least-squares dating’®.
ELIP gene family counts per haploid genome for non-focal taxa
were done using BLASTP with the A. thaliana (L.) Heynh. ELIP1amino
acid sequence as query for the remaining proteomes. We further
investigated two other gene families with known roles in desiccation
tolerance—heat shock proteins and late embryogenesis abundant pro-
teins—along with20 randomly selected orthogroups, to contextualize
thetempo of ELIP evolution. These count data and the time-calibrated
phylogeny were used as input for CAFE under a single lambda model.

Transcriptomic analyses
RNA-seq reads were processed following a pipeline developed by
the VanBuren Lab (https://github.com/pardojer23/RNAseqV2).

Briefly, sequence read quality was assessed with fastQC (v 0.23), and
reads were trimmed with trimmomatic (v 0.38)”° to remove adapters
and low-quality bases. Trimmed reads were sudo-aligned to reference
genomes using Salmon (v1.9.0)*, and the resulting quantification files
were processed with tximport (v3.18)% to generate normalized expres-
sion matrices of transcripts per million (TPM). PCA was used to visual-
ize replicate and sample relationships within each species using the
respective TPM expression values. A cross-species PCA was performed
using the TPM matrix of conserved syntenic orthologs across all spe-
cies. To effectively quantify gene expression while acknowledging the
complexities introduced by polyploidy, we summed the expression
levels of all homeologs in E. nindensis, E. tef and M. caffra to obtain
a single gene expression value to enable interspecies comparisons.
Thisapproachisgroundedinthelogicthataunified expression value
not only simplifies the analysis but also encapsulates potential func-
tional diversifications among homeologs. This methodology has been
applied and validated in our previous research'?%#2!,

Differentially expressed genes
DEGs were identified independently for each species with DEseq2
R package (v 1.42.0)%. Briefly, transcript abundance estimates from
Salmonwereimportedinto DEseq2 using tximport to generate counts
matrices. We tested multiple models for differential expression in
DEseq2, including models that identified DEGs by pairwise compari-
sons of each time point against well-watered, and models that used the
continuous variables of RWC or F,/F,, as covariates. DEGs identified by
pairwise comparisons were summarized into a nonredundant list of
up- and down-regulated genes during dehydration and rehydration.
DEGs identified using the continuous variables are based on a signifi-
cant linear association (positive or negative) with RWC or F,/F,,,. When
identifying DEGs, we included the term ‘process’ in our model to dif*-
ferentiate between dehydration and rehydration processes. To select
the best performing model, we quantified similarities and differences
inthenumber andidentity of DEGs defined by each model. Therewasa
high degree of overlap ingenesidentified by all three models. Ultimately,
we selected the model based on RWC because it performed well and is
easily comparable across experiments regardless of sampling time, con-
sistency across replicates or differences in experimental design. These
analyses produced species-specificlists of DEGs during dehydrationand
rehydration with significant (FDR adjusted P < 0.05) associations with
RWC.log,fold change values are calculated for one unit changein RWC.
We then compared the observed proportion of overlapping DEGs
in each category to the proportion of genes expected to overlap by
chance (assuming independent draws) and tested whether these were
significantly different using Fisher’s exact test. This analysis was then
extended to include DEGs identified in the desiccation-sensitive sis-
ter species E. tef to distinguish between typical drought versus pure
desiccation responses. We then conducted targeted analyses to look
at the functional roles of differentially expressed syntelogs that were
uniquely shared across the threeresurrection species versus those that
were common with E. tef.

Functional annotation of DEGs

We annotated differentially expressed syntelogs with KEGG and GO
terms to describe metabolic and cellular processes shared across the
three study species. KEGG annotations were generated using BLAST-
Koala (https://www.kegg.jp/blastkoala/) for each species’ annotated
peptide sequences and assigned to syntenic orthologs. Shared differ-
entially expressed KEGG terms across all three species during dehydra-
tionandrehydration were identified and plotted with Venn diagrams.
These terms were used to generate metabolic pathway maps via KEG-
Gmapper (https://www.genome.jp/kegg/mapper/color.html) for up-
and down-regulated terms. A list of syntelogs per metabolic pathway
and Brite descriptions was generated, and pathways were sorted by
the difference in syntelog counts for up- and down-regulated genes.
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KEGG orthology numbers were paired with gene expression data to
identify active pathways at various time points. Genetic information
processes and environmental information processing, along with cel-
lular processes, were grouped, while pathways assigned to organismal
systems and human disease were ignored. KEGG annotation limitations
include the presence of single KEGG identifiers in multiple pathways.
GO terms were assigned through homology with the well-
annotated genome of sister species O. thomaeum using BLASTP
(v2.14.0) with an e value cut-off of 1x 107, returning the single best
match foreach peptide. The GO terms from O.thomaeum were assigned
tohomologous genesin the target species. We used the TopGO R pack-
age (v 2.54.0) to identify significantly enriched GO terms (P < 0.05)
among DEGs for up- and down-regulated genes during dehydration
and rehydration in each target species and among different sets of
overlapping and unique syntelogs from cross-species comparisons.

Co-expression analyses

We generated co-expression networks using Weighted Gene
Co-expression Network Analysis (WGCNA) R package (v1.7)%, filter-
ing each dataset to exclude non-expressed genes. Each dataset was
filtered to remove genes with no expression. A soft thresholding power
was chosen to ensure a scale-free network, and an adjacency matrix
was constructed. This was converted to a topological overlap matrix,
and hierarchical clustering grouped genes into modules based on
expression patterns. Gene connectivity within networks and modules
was calculated. Shared and species-specific co-expressed genes were
identified using UpSet plots®, and syntenic orthologs were analysed
for overlap across species. Modules with increased expression during
dehydration, rehydration and non-stressed conditions were combined,
and GO enrichment analysis was performed on shared and unique
co-expressed gene sets.

Topological data analysis

We used a topological data analysis approach following the pipeline
described at https://github.com/PlantsAndPython/plant-evo-mapper
to discern the underlying structure of the expression datasets. We
utilized the Mapper algorithm, which condenses the dataset into a
scalable, navigable representation. For our gene expression data, we
constructed Mapper graphs using a ‘stress lens’ formulated by apply-
ing a linear model using the well-watered condition as a reference
point. This model represents the baseline for leaf expression, and we
quantified the residuals or deviation of each sample from the baseline,
whichrepresents the degree of water stress or recovery. We generated
three different mapper graphs from the syntelog expression matrix
from the three focal resurrection grasses (M. caffra, O. capense and
T. minimus), five resurrection grasses (E. nindensis and O. thomaeum)
and the third graph which included the desiccation-sensitive species
E. tef.Forthe mapper graph, we specified differentintervals and overlap
for the three-species comparisons and the five-species comparisons.
For the three-species comparison, we specified 110 intervals with a
90% overlap, and for the five-species comparison, we specified 120
intervals with 95% overlap.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Sequence dataassociated with this study are deposited at NCBlunder
BioProject PRJNA1044305 and BioSamples SAMN38380430-92.
Genome assemblies are hosted on CoGe (https://genomevolution.
org/)under the followingIDs: 65089 (T. minimus), 65046 (O. capense)
and 64494 (M. caffra). Metadata and other data summaries associated
with this study are available via Dryad at https://doi.org/10.5061/dryad.
kh18932c4 (ref. 85).

Code availability
Code associated with this project is available via GitHub at https://
github.com/bobvanburen/Marks_Convergent_DT_grasses.
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