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Domain-Adaptive Continual Meta-Learning for Modeling Dynamical Systems:
An Application in Environmental Ecosystems
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Abstract

Environmental ecosystems exhibit complex and evolving dy-
namics over time, making the modeling of non-stationary
processes critically important. However, traditional meth-
ods often rely on static models trained on entire datasets,
failing to capture the non-stationary and drastically fluc-
tuating characteristics. Dynamically adjusting models to
evolving data is challenging, as they can easily either lag
behind new trends or overfit newly received data. To ad-
dress these challenges, we propose Domain-Adaptive Con-
tinual Meta-Learning (DACM) method, aiming to automat-
ically detect distribution shifts and adapt to newly emer-
gent domains. In particular, while DACM continuously ex-
plores the sequential temporal data, it also exploits historical
data that are similar in distribution to the current observa-
tions. By striking a balance between temporal exploration
and distributional exploitation, DACM quickly adjusts the
model to stay up-to-date with new trends while maintain-
ing generalization ability to data with similar distributions.
We demonstrate the effectiveness of DACM on a real-world
water temperature prediction dataset, where it outperforms
diverse baseline models and shows strong adaptability and
predictive performance in non-stationary environments.

1 Introduction

Environmental ecosystems involve complex dynamical
processes, such as water, energy, and carbon cycles,
that evolve over time. Accurate modeling of these
processes is essential for understanding their dynamics
and interactions, and informing important management
decisions and policies. Recent years have witnessed a
paradigm shift from traditional process-based physical
models [1-4] to machine learning (ML)-based data
driven models [5-7], which have shown promise in
capturing complex temporal patterns of key variables
in environmental ecosystems.

Although temporal ML models, such as long-short
term memory (LSTM), have shown encouraging results
in many environmental applications, they remain lim-
ited in generalizing to real scenarios with non-stationary
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patterns. In particular, traditional temporal ML mod-
els assume that the conditional probability distribution
p (y | ©), representing the probability of the target vari-
able y given input features x, remains constant over
time. This assumption is critical for the generalizability
of ML models, as it implies that the patterns learned
from the training data are applicable to unseen test-
ing data. However, the processes in real environmental
ecosystems are inherently non-stationary over time [8,9].
For example, p(y|x) can be subject to complex and un-
predictable changes due to changing weather and en-
vironmental conditions. This phenomenon, known as
temporal concept drift, can be commonly observed in
many scientific applications. For example, crop pro-
duction is highly affected by advances in seed quality
and management practices over years, and energy con-
sumption patterns vary with both short-term weather
conditions and long-term climate trends.

Prior work has investigated several approaches to
address temporal concept drift. One prominent method
is continual learning [10, 11], which enables ML mod-
els to incrementally update their knowledge over new
learning tasks. The central idea is to keep the model
updated with new data patterns while retaining pre-
viously acquired information. Consequently, this ap-
proach can help maintain good performance over differ-
ent learning tasks despite shifts in the underlying data
distribution. However, real-world dynamical processes
often involve significant temporal variations in the data
distribution. For example, the same input features may
map to entirely different labels across different time do-
mains. Given such potential mapping conflicts across
time, it is unrealistic to expect a single model to main-
tain good performance across all the time periods, as
assumed in conventional continual learning methods.
Another possibility is to leverage domain adaptation
methods, which aim to transfer knowledge from a source
domain to a target domain to facilitate model adapta-
tion [12-16]. Although these methods allow parameter
adaptation across time domains, they are not designed
for continuous model adaptation over multiple time do-
mains during long time periods. Moreover, they require
pre-defined domains, which are not existent in temporal
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data, and do not consider the dynamic data distribution
shifts due to the change of environmental conditions.

In this work, we hypothesize that while the con-
ditional distribution of data changes continuously over
time, incorporating previous data points that share
a similar distribution with the current data can en-
hance the learning process. To achieve this, we propose
Domain-Adaptive Continual Meta-Learning (DACM),
a method that enables models to detect distribution
changes and adaptively adjust to the current distribu-
tion. As shown in Figure 1, DACM balances between
temporal exploration—leveraging continuous temporal
data to capture new patterns—and distributional ex-
ploitation—utilizing historical data similar in distribu-
tion to the current observations.

DACM employs a data-driven approach to group
data into multiple domains based on their mutual sim-
ilarity. Similar to other continual learning methods, it
maintains a memory buffer to store data points from
previously encountered domains. When a new data
point arrives, the method selects data points from the
buffer that exhibit a distribution similar to the current
one. By exploiting this similar-in-distribution buffer,
the model can quickly adapt to new patterns during
temporal exploration, achieving a balance between ac-
curacy and generalization. This approach allows DACM
to effectively handle temporal distribution shifts inher-
ent in non-stationary environments. This methodol-
ogy not only improves the model’s ability to generalize
across different temporal distributions but also demon-
strates potential applicability to various domains where
data distribution shifts over time.

Our contributions are summarized as follows:

e We introduce DACM, a novel method designed
to handle temporal distribution shifts in non-
stationary environments. DACM balances between
temporal exploration and distributional exploita-
tion, allowing the model to adapt to new data pat-
terns over time while leveraging historical data sim-
ilar in distribution to the current observations.

o We present a data-driven approach to group data
into multiple domains based on their mutual sim-
ilarity. This grouping facilitates efficient selection
of relevant historical data, improving the model’s
exploitation of past experiences that are most ben-
eficial for current predictions.

e We conduct comprehensive experiments on a real-
world stream temperature dataset. The results
demonstrate the superiority of DACM over diverse
baselines, including LSTM and Transformer-based
models, as well as other continual learning ap-
proaches, in terms of both prediction accuracy and
adaptability to temporal distribution shifts.
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2 Related Work

2.1 Continual Learning. Continual Learning [10]
aims to learn sequentially from a stream of tasks without
forgetting prior knowledge. One of the key challenges
is catastrophic forgetting, where the model loses per-
formance on earlier tasks when adapting to new ones.
Various methods have been proposed to mitigate this
issue, typically with three categories: regularization-
based, replay-based and optimization-based methods.

Regularization-based  methods constrain the
model’s parameters to preserve performance on prior
tasks. This is typically done by storing a frozen copy
of previous models and penalizing changes to impor-
tant parameters [17,18]. These approaches mitigate
task interference by ensuring that specific neurons
remain dedicated to earlier tasks, thereby reducing the
likelihood of catastrophic forgetting.

Replay-based methods maintain a memory buffer
containing samples from previous tasks. Models like
Gradient Episodic Memory (GEM) [19] and Averaged
GEM (A-GEM) [20] use these memory samples to con-
strain gradient updates, minimizing conflicts between
old and new tasks during training. Meta-Experience
Replay (MER) [21] further improves this process by en-
couraging gradient alignment between past and present
tasks through replay buffers.

Optimization-based methods focus on redesigning
the optimization process to prevent catastrophic forget-
ting. Online-aware Meta Learning (OML) [22] incorpo-
rates a meta-learning objective to learn representations
that are robust to interference during online updates,
promoting future learning. Look-ahead Meta Learn-
ing (La-MAML) [23] optimizes the OML objective by
introducing a learnable learning rate, further reducing
interference between old and new tasks.

2.2 Meta-Learning. Meta-learning, often referred
to as “learning to learn”, is designed to learn from previ-
ous learning episodes to improve future learning perfor-
mance. Instead of learning a specific task, meta-learning
models aim to understand the underlying structure of
tasks so the models can quickly adapt to new, unseen
tasks with minimal data. This approach is particularly
valuable in scenarios where data is scarce or expensive
to obtain, such as few-shot learning problems.

One of the most well-known approaches is Model-
Agnostic Meta-Learning (MAML) [24], which is de-
signed to find a set of model parameters that serve
as a good initialization point for learning new tasks.
The core idea is to optimize the model’s initial parame-
ters such that a small number of gradient updates with
respect to a new task’s loss function will produce ef-
fective generalization on that task. Numerous exten-
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Figure 1: Overall framework of our DACM method.

sions of MAML have been developed to enhance com-
putational efficiency and stability [25,26], as well as
to broaden its applications, including in environmental
modeling [27,28].

3 Problem Definition

In the water temperature prediction scenario, our ob-
jective is to learn a model Fy : X — Y to predict
the water temperature y € Y for a specific stream,
given its input features x € X at each daily time step
t € {1,...,T}. Specifically, the input feature space en-
compasses the physical variables that drive the basin
system dynamics, and includes both meteorological fea-
tures (e.g., solar radiation, rainfall, air temperature)
and hydrological conditions. We consider stream data
arriving in small batches. For example, water data is
typically collected and processed at regular intervals,
often requiring cleaning before analysis. Hence, we di-
vide the available data sequence {x;,y;}71_; into several
intervals, with each interval containing k data points.
Each interval is indexed by the starting time step, as
(X5, Y5) = {(@ k41, Y1) Hiy -

The aim of our work is to consistently predict
the water temperature for a future k-length interval,
Yii = {y(j+1)k+l}§€:17 given the input of that interval
Xj11 = {zG+1)kp )21, and both the input and labels
of its previous intervals, {(X;,,Y:)},,_,. Here we as-
sume the access of observed labels for previous inter-
vals when predicting for the next interval. Real envi-
ronmental data often exhibit temporal concept shifts
due to changes in environmental conditions. Hence,
P (Y; | X,) is non-stationary as time progresses (i.e., j
increases). This implies that the parameters 6 in Fy
need to be adaptively adjusted over time.

4 Method

In this section, we provide details for the proposed
Domain-Adaptive Continual Meta-Learning (DACM)

299

method. The objective of the method is to dynami-
cally update a given temporal learning model to adapt
to the shifting environment. The learning model is uti-
lized to automatically identify concept drifts and seg-
ment temporal data into homogeneous domains. We
will then keep the learning model updated by leveraging
the knowledge learned from both current evolving data
and historical data with similar patterns (Figure 1).
Here we adopt the LSTM as the base learning model due
to its popularity in aquatic science [6,29-33] and the su-
periority over advanced models (e.g., Transformer-based
models) as reported in prior work [29,32]. However, the
proposed method can be generally applied to other tem-
poral models.

In the following, we first discuss how we automati-
cally segment temporal data into homogeneous domains
using mutual similarity in distribution space. We then
introduce how the learning model can be continuously
updated using a meta-learning approach that balances
between exploring temporal continuous data and ex-
ploiting historical data with similar distributions. The
detailed process is outlined in Algorithm 1.

4.1 Domain Segmentation. Environmental data
are continuously collected over time while also exhibit-
ing severe concept drifts due to temporal environmental
changes. It is critical for the temporal model to be aware
of significant distribution shifts so that it can smoothly
adapt to the new environment. However, such tempo-
ral domain boundaries are not pre-defined and cannot
be directly obtained based on prior knowledge.

To address this challenge and facilitate the learning
of the evolving data distribution, we propose a new do-
main segmentation mechanism to automatically group
intervals into several domains based on the properties
of the temporal learning model F. Ideally, intervals
within the same domain are expected to share similar
distributions, while intervals in different domains should
follow different distributions. Specifically, for two inter-
vals ¢ and j within the same domain, we assume that
P(Y; | X;) ~ P(Y; | X;). We define a domain D,, as a
collection of intervals {(X;,Y;)}, where i € {i},... i} },
representing the indices of intervals in domain D,,. It is
important to note that these indices {47, ...,4;' } are not
necessarily consecutive, which allows non-contiguous in-
tervals to be grouped into the same domain. Intuitively,
we wish to identify and group distributionally similar
intervals over long time periods, which may not neces-
sarily be contiguous over time, e.g., intervals in winter
time from different years.

To group intervals into these domains, we consider a
similarity measure based on their contribution to model
training. In particular, for the learning model Fy, we
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measure its gradients of loss £; = || (X;) — Y;||? with
respect to its parameters 6, as aa%' . The gradients reflect
the model adjustments needed to capture patterns in
the interval (X;,Y;). Then we measure the cosine
similarity between the gradients of two intervals (X;, Y;)
and (X;,Y;), ie., cos(%’%” , %). Higher similarity
indicates that the model is learning similar relationships
between input features and the output variable from
two intervals. It is also worthwhile to mention that
observations could be collected only on certain time
steps in real environmental ecosystems, and the loss £;
will be computed only on available observations.

In our problem setting, as new data interval arrives,
we calculate the gradient for the new interval and
compare it against existing domains. For each of the
existing domains D,,, we maintain a memory R,, that
contains |R,| intervals that were previously added to
the domain. To measure the similarity between a
newly arrived interval ¢ and an existing domain D,,,
we compute the average cosine similarity between the
gradients of the interval ¢ and different intervals in R,,,
as follows:

) 1 oL; 0L,
(4.1) sim((X;,Y;),D,) = R’ Z COS(W’W)'

J€Rn

If the gradient of the new interval (X;,Y;) aligns
with at least one of the existing domains, i.e., the
cosine similarity exceeds a certain threshold )\, we assign
the interval to the domain with the highest similarity.
Conversely, if the gradient of the new interval differs
significantly from all existing domains (low or negative
values of cosine similarity), it suggests a shift to an
unseen data distribution. We will then create a new
domain starting from the new interval (X;,Y;).

4.2 Temporal Meta Learning with Memory. To
preserve the information from historical data, we pro-
pose to create a temporary D-buffer Sp for each newly
arrived interval (X;,Y;). The D-buffer contains histor-
ical data intervals with patterns similar to the new in-
terval. This approach facilitates model updates by fully
leveraging historical information through distributional
exploitation (Figure 1). Specifically, we calculate the co-
sine similarity between the gradients of the new interval
and the gradients of the intervals stored in the memory
{R,} of existing domains. Based on these cosine sim-
ilarities, the method selects a set of intervals from the
previous domains to form the D-buffer, provided that
the similarity exceeds a pre-defined threshold. This se-
lection process ensures that only intervals that share
similar input-output relationships are included in the
D-buffer, thereby promoting effective adaptation and
generalization. It also offers flexibility that the D-buffer
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could contain intervals from different domains.

Next, we create a T-buffer St for the new inter-
val 7 to enable the temporal exploration of useful pat-
terns over a continuous time period (Figure 1). The
T-buffer contains the past 7 consecutive intervals and
the interval itself, i.e., ST = {(X;—+, Yi—7), ..., (X3, i) }.
The update of the model Fy for the new interval
(X;,Y;) essentially balances between distributional ex-
ploitation and temporal exploration, by exploring re-
cent temporal patterns while also leveraging most ben-
eficial knowledge from the historical data. As inspired
by prior work [23], we introduce a meta-learning pro-
cess, which tunes the model with the intervals in the
updated T-buffer while also optimizing the consistency
between the tuned model and the D-buffer. In particu-
lar, the model is continuously updated using each inter-
val (X;—r4t, Yier4e), for t = 0 to 7. After each update
step t, we measure the performance of the tuned model
on the D-buffer Sp as L4(i,t), given by:

. 1
L:(it) = g > L(For(Xar), Yar),

i’€Sp

9: = 9;‘:71 - av@»c(fef—l(Xif'rthL Y—if'rth)7

(4.2)

where L represents the squared error, and « denotes the
learning rate of gradient descent on each sample in the
new interval. The initial parameter value 6? is set to
be the previous parameters of the model F before the
arrival of the interval (X;,Y;).

Then we summarize the inconsistency with the D-
buffer by summing £(4,t) over all the intermediate up-
date steps using intervals in the T-buffer, and minimize
the overall inconsistency error, as mingo or—o Ls(i,t).

Here we update the initial parameters 69 to op-
timize the inconsistency error. This method provides
twofold benefits. First, by penalizing on the deviation
from the knowledge learned from historical data, it helps
mitigate the overfitting on the new interval. Second, it
allows adjustment of the initial parameter values 6,
which were originally learned from previous time. This
could help fix the model bias given new data samples
and prevent the model from perpetuating the errors.

In summary, the proposed DACM method combines
the domain segmentation mechanism and the meta-
learning-based model update. Furthermore, if the new
interval is assigned to the same domain as its previous
interval, it suggests that they share similar patterns.
In this case, we only update the model using the meta
learning approach. In contrast, if the new interval is
grouped into a different domain, it indicates a shift in
patterns. In this case, the method needs to revisit infor-
mation from the emerging domain using the D-buffer,
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Algorithm 1 Domain-Adaptive Continual Meta-Learning
Input: Sequence of intervals {(X;,Yi)},7i € 0,1,...,
similarity threshold A, length of exploration window 7.
Initialize R, St,Sp, MIQD(-).

while receive new interval {(X;,Y;)} do

Y; = model (0;, X5)

ST — {(Xi—n)/i—r)v R (Xi; }/z)}

gr = 2Ll
o j .
g; = %a J€E {la"'alen(R)}

sim; = cos(gr,g;), j € {1,...,len(R)}
Sp < Sp UR; for sim; > A
Sp+SpuU (X“}/z)
// Meta-update the model
for t € {0,...,7} do
| 01!« Fast-update(0!, (Xi—rit, Yierit))
end
09, , < Update(8] ", Sp)
if maz (sim) < A then
// Encounter with an unseen domain
R+ RU (Xi; Y;)
MIQD(i) — len(R)
end
else
| Miap(i) + index(max(sim))
end
if M[QD(i) * M]QD(i — 1) then
// Distribution shift happens
01‘4_1 < Update(9i+1, SD)
end

end

allowing the model to recall previously learned patterns
from the corresponding domain. By doing so, the model
can adjust its parameters appropriately, mitigating the
risk of significant performance degradation across do-
mains due to the temporal domain shift.

5 Experiments

5.1 Dataset. We evaluate the proposed method for
predicting stream temperature data collected from the
Delaware River Basin (DRB), which is an ecologically
diverse region and a watershed along the east coast of
the United States that provides drinking water to over
15 million people [34]. The dataset [35] used in our eval-
uation is from the U.S. Geological Survey’s National
Water Information System [36] and the Water Qual-
ity Portal [37]. Observations at a specific latitude and
longitude were matched to river segments, which were
defined by the geospatial fabric used for the National
Hydrologic Model [38]. The river segments are split up
to have roughly a 1-day water travel time. The ob-
servations were snapped to the nearest stream segment
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within a tolerance of 250 m. Observations farther than
5,000 m along the river channel to the outlet of a seg-
ment were omitted from the dataset. Segments with
multiple observation sites were aggregated to a single
mean daily water temperature value.

To better evaluate the proposed method, we select
eight stream segments from DRB with the least missing
observations of water temperature. The temperature
observations available per segment vary from 10,105 to
13,000. We use input features at the daily scale from
January 01, 1980, to March 31, 2020 (14,701 dates).
The input features have 10 dimensions, which include
daily mean precipitation, daily mean air temperature,
date of the year, solar radiation, shade fraction, po-
tential evapotranspiration and the geometric features of
each segment (elevation, length, slope, and width). Air
temperature, precipitation, and solar radiation values
were derived from the gridMET gridded meteorological
dataset [39]. Other input features (e.g., shade fraction,
potential evapotranspiration) are difficult to measure
frequently, and we use values internally calculated by
the physics-based PRMS-SNTemp model [40].

5.2 Baselines. To assess the performance of our pro-
posed DACM method, we conducted extensive exper-
iments on our environmental dataset, comparing it
against several baseline models. The baselines include
LSTM-based models and Transformer-based models.

o LSTM-based models: LSTM has been widely
used for sequential data modeling. Based on LSTM
model, we implement several continual learning
methods: Experience Replay (ER) stores past ex-
periences and replays them during training to pre-
vent catastrophic forgetting. Meta Experience Re-
play (MER) [21] extends traditional ER by incor-
porating meta-learning to learn how to better gen-
eralize across tasks by using a meta-optimization
process. Gradient Episodic Memory (GEM) [19]
ensures that the gradient updates made for new
tasks do not interfere with the gradients of previ-
ously learned tasks by constraining the dot prod-
uct between the gradients for the new and old
tasks to remain non-negative. Averaged Gradient
Episodic Memory (A-GEM) [20] approximates the
GEM process by ensuring that the gradient direc-
tion for the new task does not interfere, on average,
with the past tasks. For stream temperature pre-
diction, Heterogeneous Recurrent Graph Networks
(HRGN) [41] is a specialized model, designed to
capture the diverse and distinct behaviors of inter-
connected systems. It extends LSTM by modeling
the relationships among different river segments.
Moreover, HRGN introduces a data assimilation
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Table 1: Predictive RMSE for water temperature using DACM and baseline methods, with best results bolded.
The gray lines represent the methods that continuously update their parameters given new observations.

Method A B C D E F G H
LSTM 1.6729 2.0050 1.6355 1.6793 1.6143 1.8958 1.1050 1.7049
ER 1.5607 2.3885 1.5701 1.8482 1.6880 1.5765 1.3235 1.4520
MER 1.5664 1.7826 1.4073 1.7743 1.4331 1.3123 1.0148 1.0269
GEM 1.6979 2.1084 2.3709 1.5374 2.1063 2.2310 1.4578 1.6435
A-GEM 1.6097 1.8788 1.7955 1.5221 1.8650 1.7154 1.5142 1.5820
HRGN 1.6819 1.8971 1.5193 1.4785 1.4063 1.2591 1.0323 1.1946
Transformer 1.7555 2.3227 1.6957 1.6957 1.7043 1.7287 1.3537 1.8052
Informer 1.8953 2.9826 2.1455 2.5286 2.5672 3.0769 2.0790 2.2417
Autoformer 2.3198 2.5177 2.7918 2.2023 2.8069 2.8854 2.4399 2.8286
DACM 1.5170 1.5337 1.3603 1.4518 1.3759 1.1722 0.8421 0.9915

mechanism, which efficiently adjusts the model’s
internal state in response to incoming observations.

e Transformer-based models: Transformer is a
model based on self-attention mechanisms, suitable
for capturing long-range dependencies in time se-
ries data. Informer [42] is a Transformer-based
model specifically designed for efficient long-term
time series forecasting. It introduces a genera-
tive style decoder to predict long-time series se-
quences using only one forward. Autoformer [43]
is another Transformer variant that introduces a
decomposition-based architecture to separate time
series data into trend and seasonal components
and uses auto-correlation mechanisms to effectively
model the periodic dependencies over time.

5.3 Experimental Settings. Since DACM operates
as an online learning method, continuously testing and
then training on incoming sequences of intervals, there
is no pre-defined split between the training and testing
datasets. For the evaluation presented in the following
tables and figures, we use data from January 01, 2015
to March 31, 2020 as the evaluation period. The basic
LSTM and all the Transformer-based models use a fixed
set of parameters in testing, and they are trained only
on the data from January 01, 1980, to December 31,
2014. To provide a pre-defined segmentation of tasks
for continual learning, we utilize the natural division of
seasons and define each season as a separate task. For
the backbone model, we utilize a two-layer LSTM for
all the LSTM-based models. Both the LSTM-based and
Transformer-based models have hidden layer dimensions
set to 10. The learning rate is set to 0.05. We use a
cosine similarity threshold A = 0.8 and set the length of
exploration window 7 = 2. The root mean squared error
(RMSE) between the observed and predicted values is
used as the performance metric to assess the model’s
accuracy. The evaluations are conducted only on the
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eight selected stream segments with the most water
temperature observations.

5.4 Results and Analyses

5.4.1 Comparative performance with baselines.
As shown in Table 1, our DACM method outperforms all
of the baseline models. The primary limitation of basic
LSTM and Transformer models lies in their assumption
of static data distributions. Both of these models learn
a fixed set of parameters across the entire training
dataset, which prevents them from effectively adapting
to the temporal data with non-stationary and evolving
distributions. By ignoring the temporal concept drift in
underlying patterns, they fail to capture the dynamic
behavior inherent in environmental processes, leading
to suboptimal performance.

Continual learning methods, while designed to mit-
igate catastrophic forgetting by maintaining knowledge
across multiple tasks, struggle in temporal datasets due
to the inherent challenge of generalizing across evolving
tasks. These methods attempt to find a balance between
retaining past knowledge and learning new patterns, but
this trade-off becomes problematic in temporal settings
where the data distribution is constantly shifting. More-
over, they follow the pre-defined temporal task separa-
tion but cannot adaptively segment time periods with
homogeneous patterns. As a result, continual learning
methods demonstrate worse performance when applied
to non-stationary datasets, as they cannot fully cap-
ture to the unique characteristics of temporal domain
shifts. In the comparison between episodic-memory-
based and experience-replay-based methods, episodic-
memory-based methods (GEM and A-GEM) have rel-
atively worse performance. They aim to ensure that
gradient updates for new tasks do not interfere with
gradients from previously learned tasks, however, this
assumption does not hold well in our dataset. In
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Figure 2: Illustrative cases demonstrating baseline limitations in predictive performance and adaptiveness.

particular, for comparison between episodic-memory-
based methods, A-GEM not only enhances the effi-
ciency of GEM but also slightly improves performance.
For experience-replay methods, MER outperforms ER,
highlighting the effectiveness of meta-learning.

Transformer-based models perform worse than
LSTM in our dataset because they rely heavily on pre-
vious context, neglecting the critical point-to-point re-
lationships required for accurate predictions. On top
of that, models like Informer and Autoformer, while
specifically designed for time series forecasting, rely even
more heavily on previous observations. However, in our
dataset, water temperature observations are frequently
missing, requiring a greater reliance on related features.
As a result, Informer and Autoformer struggle to cap-
ture the necessary one-to-one mappings, leading to un-
satisfactory performance.

HRGN, specifically designed for this application
scenario, performs the best among all the baselines.
However, its accuracy falls short compared to DACM,
particularly when faced with drastic and unpredictable
changes, further highlighting the effectiveness of DACM
in handling such dynamic conditions.

Besides the overall performance comparison be-
tween DACM and the baselines, we showcase two key
drawbacks of the baseline models using a drastically
changing example, as shown in Figure 2. First, in the
LSTM baseline, the model struggles to adapt to vary-
ing distributions, causing it to lag behind and fail to
capture current patterns. Second, in the MER base-
line, while the model is capable of detecting distribution
shifts, it tends to overfit on the most recent data, lead-
ing to unstable performance. In contrast, DACM is able
to quickly and accurately adapt to new domains and
maintain high accuracy even with distribution shifts.

5.4.2 Visualization of domain segmentation.
One key outcome of our DACM method is its ability
to produce data-driven domain segmentation, which is
particularly valuable in handling continuous temporal
data where clear boundaries between domains are of-
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ten non-existent. A typical way to create domain seg-
mentation in environmental studies is to follow seasonal
patterns. For example, a common segmentation ap-
proach is to divide the year into four seasons: spring
(March, April, May), summer (June, July, August), fall
(September, October, November), and winter (Decem-
ber, January, February). However, this seasonal seg-
mentation is overly simplistic, as it fails to capture fine-
grained patterns in a dynamic and continuously evolv-
ing environment.

In contrast, our data-driven approach dynamically
segments the temporal data based on real-time changes
in data distribution, grouping intervals into domains
according to calculated similarities. This allows for a
more nuanced understanding of domain shifts. To visu-
alize these segmentation outcomes, we present domain
segmentation aligned with the predictions generated by
the DACM method shown in Figure 3. The domain
information is represented by calculating the gradient
similarity between the domain of the first interval in
the year and the domain of the current interval.

We showcase two examples: one with relatively sta-
ble behavior (Figure 3(a)) and another with significant
variability due to an upstream temperature-regulating
reservoir (Figure 3(b)). In Figure 3(a), the conditional
distribution remains relatively consistent throughout
the year, and the predictions closely match the observed
data. When we fix the domain as of April 01 and pre-
vent domain updates, the predictions degrade slightly,
though not significantly. However, in Figure 3(b), there
is a sharp drop in water temperature around mid-June
due to the cold water inflow from the upstream reser-
voir. The predictions made by DACM demonstrate its
ability to quickly adapt to these changes, maintaining
a high level of accuracy. On the other hand, if we fix
the domain as of May 26, the predictions deviate signif-
icantly from the observations, underscoring the model’s
inability to keep up with evolving patterns. This com-
parison clearly illustrates the necessity of allowing for
shifts between domains. Without this flexibility, mod-
els are unable to adapt to sudden distributional changes
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(b) One non-stationary example.

Figure 3: Comparing predictions made by DACM, observations and domain segmentation. DACM adaptively
adjusts the domains, whereas DACM-fix keeps the domain fixed in the blue shaded area. The pink shaded area
highlights the difference before and after introducing the domain-adaptive mechanism.
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Figure 4: Comparison between DACM and DAC across
different stream segments.

in the data, leading to significant gaps between predic-
tions and observations.

5.4.3 Effectiveness of using meta-learning. In
the DACM method, we leverage two buffers: T-buffer
for temporal exploration aspect and D-buffer for distri-
butional exploitation aspect. Using the meta-learning
approach, we update the model with optimized initial
parameters, allowing DACM to quickly adapt to new
patterns with a small amount of data. This essentially
pursues a balance between T-buffer and D-buffer, which
is key to handling dynamic and evolving data.

To validate the effectiveness of this meta-learning
component, we conducted an ablation study where we
replaced the meta-loss with a naive supervised loss
on the combination data from the T-buffer and D-
buffer. We refer to this version of the model as Domain-
Adaptive Continual Learning (DAC). As shown in Fig-
ure 4, DACM consistently outperforms DAC across all
data points, highlighting the importance of incorporat-
ing meta-learning to achieve superior performance in
dynamic environments.
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6 Conclusion

In this work, we proposed DACM, an innovative ma-
chine learning method that adaptively adjusts to non-
stationary patterns in sequential temporal data. With-
out relying on pre-defined domain segmentation, DACM
employed a data-driven approach to group data into do-
mains based on the similarity of the conditional distri-
bution. As we sequentially explored incoming tempo-
ral data, our method selectively chose similar domains
from previously encountered ones. By utilizing a meta-
learning strategy, DACM stroke a balance between tem-
poral exploration and distributional exploitation using
a limited amount of data. Tested on a real-world water
temperature dataset, DACM demonstrated superior ac-
curacy and robustness compared to several commonly
used baselines. Furthermore, the application of DACM
was not limited to water temperature predictions; it
could also be extended to a wide range of environmen-
tal applications that commonly exhibit temporal data
shifts due to changes in environmental conditions.
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