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��������� This paper formalizes connections between stability of polynomials and conver-
gence rates of Markov Chain Monte Carlo (MCMC) algorithms. We prove that if a (multivariate)
partition function is nonzero in a region around a real point _ then spectral independence
holds at _. As a consequence, for Holant-type problems (e.g., spin systems) on bounded-degree
graphs, we obtain optimal $(< log <) mixing time bounds for the single-site update Markov
chain known as the Glauber dynamics. Our result significantly improves the running time
guarantees obtained via the polynomial interpolation method of Barvinok (2017), refined by
Patel and Regts (2017).

There are a variety of applications of our results. In this paper, we focus onHolant-type (i.e.,
edge-coloring) problems, including weighted edge covers and weighted even subgraphs. For
the weighted edge cover problem (and several natural generalizations) we obtain an $(< log <)
sampling algorithm on bounded-degree graphs. The even subgraphs problem corresponds to
the high-temperature expansion of the ferromagnetic Ising model. We obtain an $(< log <)
sampling algorithm for the ferromagnetic Isingmodel with a nonzero external field on bounded-
degree graphs, which improves upon the classical result of Jerrum and Sinclair (1993) for this
class of graphs. We obtain further applications to antiferromagnetic two-spin models on line
graphs, weighted graph homomorphisms, tensor networks, and more.
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A fundamental problem in a variety of settings, such as the study of spin systems in statistical
physics or Bayesian inference in undirected graphical models, is the counting problem of
estimating a partition function or the sampling problem of generating a random sample from the
associated Gibbs distribution. The classical tool for approximate counting/sampling problems is
the Markov Chain Monte Carlo (MCMC) method. There are now several alternative algorithmic
approaches, most notably the correlation decay approach presented by Weitz [��] and the
polynomial interpolation method presented by Barvinok [�] and refined by Patel and Regts [��].

Anari, Liu, and Oveis Gharan [�] presented a powerful new tool for analyzing MCMCmeth-
ods known as spectral independence. Spectral independence yields optimal mixing time bounds
for the Glauber dynamics (which updates a randomly chosen vertex in each step) [��], andmore
generally yields optimal mixing time bounds for any block dynamics and the Swendsen-Wang
dynamics [��].

Spectral independence serves as an important technical bridge: for many results es-
tablished with di�erent approaches, their proofs also imply spectral independence and as a
consequence we obtain much stronger running time guarantees. In particular, in [��] it was
shown that potential function techniques used for analyzing correlation decay algorithms
also imply spectral independence; see also [��, ��]. More recent works [��, ��] prove that
path coupling arguments for a broad class of chains, including any local chain, yields spectral
independence.

In this paper we prove, in an almost black-box fashion, that methods for establishing
large zero-free regions needed for the polynomial interpolation method also yield spectral
independence. The polynomial interpolation method is a mathematically elegant approach
which works in the following manner. To approximate a partition function at a positive real
value _, one needs to prove there is a zero-free region around _ in the complex plane which
means that the partition function has no roots in an open connected region (in the complex
plane) containing _. If such a zero-free region also contains an “easy” point (usually 0) at which
the partition function and its derivatives can be e�ciently evaluated, then this implies that one
can approximate the Taylor series of a simple transformation of the partition function using a
logarithmic number of terms, which yields a polynomial-time algorithm to approximate the
partition function at _.

We prove that a zero-free region implies spectral independence. This immediately yields
several new rapid mixing results for MCMC methods. We also obtain significantly improved
running times in many instances. For a spin system on a graph with < vertices and constant
maximum degree �, the polynomial interpolation method [��] yields a running time of $(<⇠)
where the constant ⇠ depends on � and parameters of the model. In contrast, spectral indepen-
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dence implies an optimal mixing time bound of $(< log <) for the Glauber dynamics [��] (and
more generally optimal mixing for the block dynamics [��]).

The study of zero-free regions has a long and rich history in the analysis of phase transitions
in statistical physics models. The well-known work of Lee and Yang [��] utilizes zeros of the
partition function to study phase transitions for the ferromagnetic Ising model; see Remark 1.10
for a discussion of the Lee-Yang Theorem.

Before stating our results we formally define the Glauber dynamics, also known as the
Gibbs sampler. Let + be a finite set and let & be a finite label/spin set. Consider a distribution
` over &+ containing all labelings of elements in + . Note that this includes spin systems and
Holant problems as special cases: for spin systems ` is the distribution over all spin assignments
of vertices of the underlying graph, and for Holant problems ` is the distribution over all subsets
of edges ({0, 1}-labelings of edges). A transition of the Glauber dynamics chooses a random
element F 2 + , and then resamples the label of F from the marginal distribution at F conditional
on the configuration outside F. The mixing time is the number of steps, from the worst initial
state, which is guaranteed to be close (in total variation distance) to the desired distribution `.

��� ������������

We state here three sample applications of our techniques; further applications are stated later
in the paper.

For a graph⌧ = (+ , ⇢), we say a vertex D is covered by a subset ( ✓ ⇢ of edges if D is incident
to at least one edge in (. The subset ( ✓ ⇢ is called an edge cover if all vertices are covered
by (. Note there is always a trivial edge cover by setting ( = ⇢. An FPRAS (fully polynomial
randomized approximation scheme) was presented for counting the number of edge covers for
3-regular graphs [��]. In [��] an FPTAS (deterministic analog of an FPRAS) for counting edge
covers was presented for all graphs using the correlation decay approach, and the running time
was $(;1+log2 6<2) where ; is the number of edges and < is the number of vertices. An FPRAS
for all graphs using MCMC was presented in [��].

The correlation decay algorithm of [��] was extended to weighted (partial) edge covers
(with worse running time guarantees) in [��]. In the weighted version, each edge has a weight
_ > 0 and each vertex receives a penalty d 2 [0, 1] for being uncovered. Every subset ( ✓ ⇢ is
associated with the weight E(() = d

|unc(() |
_
|( |, where unc(() denotes the set of vertices that are

not covered by (. The Gibbs distribution over all subsets of edges is given by `(() / E((). Note,
the case _ = 1 and d = 0 corresponds to uniformly random exact edge covers.

Finally, an FPTAS using the polynomial interpolation algorithm was presented for graphs
with constant maximum degree [��], see also [��]. Using the zero-free results in [��] with our
new technical contributions we immediately obtain an FPRAS using a simple MCMC algorithm
and with significantly faster running time guarantees.
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������� ��� (Weighted Edge Covers)� Let � � 3 be an integer and let _ > 0, d 2 [0, 1] be
reals. Then for any <-vertex graph ⌧ = (+ , ⇢) of maximum degree �, the Glauber dynamics for
sampling random weighted edge covers of ⌧ with parameters _, dmixes in ⇠< log < steps where
⇠ = ⇠(�, _, d) is a constant independent of <.

One of the seminal results in the field of approximate counting is the work of Jerrum and
Sinclair [��] presenting an FPRAS for the partition function of the ferromagnetic Ising model
on any graph. The Ising model on a graph ⌧ = (+ , ⇢) is described by two parameters, the edge
activity VIsing > 0 and the vertex activity _Ising > 0. The Gibbs distribution of the Ising model
is over all {+,�} spin assignments to vertices. Every configuration f : + ! {+,�} has density
`Ising(f) / V

;(f)
Ising _

|f�1(+) |
Ising where ;(f) denotes the number of monochromatic edges in f and

f
�1(+) is the set of vertices assigned spin +. The model is ferromagnetic when VIsing > 1, in

which case neighboring vertices are more likely to have the same spin.
The central task of the Jerrum-Sinclair algorithm is sampling from the Gibbs distribution

for the high-temperature expansion of the Ising model which is defined on all subsets of edges
weighted to prefer subgraphs with more even degree vertices. For a graph ⌧ = (+ , ⇢), an edge
weight _ > 0, and a vertex penalty d 2 [0, 1], the Gibbs distribution ` for weighted (partial) even
subgraphs is defined on all subsets of edges; a subset ( ✓ ⇢ has weightE(() = d

| odd(() |
_
|( | where

odd(() is the set of odd-degree vertices in the subgraph (+ , (), and `(() / E((). The weighted
even subgraphs model where _ 2 (0, 1) is closely related to the ferromagnetic Ising model
by VIsing = 1+_

1�_ and _Ising =
1+d
1�d . Note that if d = 0 then ` is the distribution over all weighted

exact even subgraphs, corresponding to the ferromagnetic Ising model without external fields
(i.e., _Ising = 1). Using the Jerrum-Sinclair algorithm, Randall and Wilson [��] first gave an
approximate sampler for the ferromagnetic Ising model via an equivalence with the random
cluster model [��] and using self-reducibility. Grimmett and Janson discovered a direct coupling
between weighted even subgraphs and the random cluster model [��� ������� ���], which
together with the coupling between random cluster and Ising models [��] yields a simpler
and more e�cient sampler for Ising configurations. In a recent work [��], a grand coupling
among the ferromagnetic Ising model, random cluster model, and weighted even subgraphs is
presented when external fields exist.

In [��], an MCMC algorithm is presented to sample weighted even subgraphs of an ar-
bitrary (unbounded-degree) graph in time $(;3poly(1/d)) where ; is the number of edges.
In another direction, [��] presents an FPTAS for approximating the partition function of the
ferromagnetic Ising model with nonzero fields on bounded-degree graphs, using Barvinok’s
polynomial interpolation method and the Lee-Yang theory. As is common for this type of ap-
proach, the running time of [��] is <⇠ for a constant ⇠ depending on the maximum degree of
the graph and the parameters of the Ising model.

Here we use our results relating zero-free regions and spectral independence to obtain a
faster MCMC algorithm for bounded-degree graphs when d > 0.
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������� ��� (Weighted Even Subgraphs)� Let � � 3 be an integer and let _ > 0, d 2 (0, 1]
be reals. Then for any <-vertex graph ⌧ = (+ , ⇢) of maximum degree �, the Glauber dynamics
for sampling random weighted even subgraphs of ⌧ with parameters _, dmixes in ⇠< log < steps
where ⇠ = ⇠(�, _, d) is a constant independent of <.

In particular, this gives an approximate sampling algorithm with running time $(< log <)
for the ferromagnetic Ising model with edge activity VIsing = 1+_

1�_ and vertex activity _Ising =
1+d
1�d .

������ ���� In [��], the MCMC method can actually be used to obtain a sampler for d = 0
corresponding to weighted exact even subgraphs. This is achieved by taking d = 1/< and using
rejection sampling. Notice that the running time of [��] is polynomial in 1/d, and therefore this
gives a poly(<) time algorithm for sampling weighted exact even subgraphs and hence for the
ferromagnetic Ising model without fields. Unfortunately, Theorem 1.2 cannot be used to obtain
a sampler for d = 0, since our bound on the mixing time of the Glauber dynamics (the constant
⇠ from Theorem 1.2) depends exponentially on 1/d.

Finally, we simultaneously generalize [��, ��, ��] to all antiferromagnetic two-spin edge
models, i.e., antiferromagnetic two-spin models on the class of line graphs. Again, in the
bounded-degree regime we obtain optimal mixing times. Before we state the result, let us define
the model more precisely. For a graph ⌧ = (+ , ⇢) and fixed parameters V � 0, W > 0, _ > 0, the
Gibbs distribution of the corresponding two-spin edge model on ⌧ is given by

`(f) / V
;1(f)

W
;0(f)

_
|f�1(1) |

, 8f 2 {0, 1}⇢ (1)

where ;7 (f) denotes the number of pairs of edges 4, 5 sharing a single endpoint such that
f(4) = f( 5 ) = 7, for each 7 = 0, 1. We say the system is antiferromagnetic if VW < 1 and
ferromagnetic if VW > 1 (note that VW = 1 corresponds to a trivial product measure). The case
V = 0 and W = 1 recovers the monomer-dimer model for matchings weighted by _, and the case
V = W recovers the Ising model on the line graph of ⌧.

������� ��� (Antiferromagnetic Two-Spin Edge Models)� Let � � 3 be an integer and let
V � 0, W > 0, _ > 0 be reals such that VW < 1. Then for any <-vertex graph⌧ = (+ , ⇢) of maximum
degree �, the Glauber dynamics for sampling from the antiferromagnetic two-spin edge model on
⌧ with parameters V, W, _ mixes in ⇠< log < steps where ⇠ = ⇠(�, V, W, _) is a constant independent
of <.

We present further applications of our methods in Sections 5 and 6.

��� �������� ������������ ��� ��������� �� ��� ��������� ��������

We need a few preliminary definitions before formally stating our technical results. Our results
hold for an arbitrary distribution on a discrete product space; this general setup contains spin
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systems as a special case. Let + be a finite set and we refer to the elements in + as vertices.
For an integer ? � 2, the set of spins is & = {0} [ &1 where &1 = {1, . . . , ? � 1}. The state space
is � = &

+ , the collection of all spin assignments of vertices. Finally, let E : � ! R�0 be a
nonnegative weight function that is not always zero; i.e., E(f) > 0 for at least one f 2 �.

Let , : + ⇥ &1 ! C be a vector of (complex) external fields; each _D,9 represents the
weight of vertex D receiving spin 9. Without loss of generality, we assume spin 0 does not have
associated external fields (this can be obtained by normalizing). Given E, the partition function
is a multivariate polynomial of , defined as:

/E(,) =
’
f2�

E(f),f, where ,f =
÷

D2+ : fD<0
_D,fD

. (2)

If , is real and positive (i.e., every _D,9 2 R+), then the Gibbs distribution ` = `E,, is given by:

`(f) = E(f),f
/E(,)

, 8f 2 �. (3)

Note that /E(,) > 0 since E is not identically zero.
To establish spectral independence we need to consider the model with an arbitrary

“pinning” which is a fixed configuration on an arbitrary subset of vertices. We formally define
pinnings and the associated notions in Section 2.1, and introduce the relevant notation here.

A configuration f 2 � is said to be valid or feasible if E(f) > 0. For � ✓ + , let �� denote
the set of pinnings on �; this is the set of configurations on �which have a valid extension to
the remaining vertices + \ �. For � ✓ + and g 2 ��, let +g = + \ � denote the set of unpinned
vertices, let /g

E
(,) be the multivariate conditional partition function under the pinning g, and

let `g be the corresponding conditional distribution.
We can now define the notion of spectral independence. Let T =

–
�✓+ �� be the collection

of all pinnings. For g 2 T let Pg = {(D, 9) 2 + ⇥ & : D 2 +
g
, 9 2 �g

D
} be the collection of feasible

vertex-spin pairs under g, where �g

D
represents the set of feasible spins at D conditioned on g.

The following definition is taken from [��]; see also [�, ��].

��� �� �� ��� ��� (InfluenceMatrix)� Let g 2 T be an arbitrary pinning. For every (C, 8), (D, 9) 2
Pg, the (pairwise) influence of (C, 8) on (D, 9) under the pinning g is given by �g

`
(C, 8; D, 9) = 0

for C = D and

�g

`
(C, 8; D, 9) = `(fD = 9 | fC = 8, f� = g) � `(fD = 9 | f� = g) for C < D.

The (pairwise) influence matrix �g

`
is a |Pg | ⇥ |Pg | matrix with entries given above.

All eigenvalues of the influence matrix �g

`
are real since �g

`
becomes symmetric after

left-multiplication by a suitable diagonal matrix; see [�, ��, ��]. For a square matrix " with
real eigenvalues, let EigMax(") denote the maximum eigenvalue of " .
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��� �� �� ��� ��� (Spectral Independence)� We say ` is spectrally independent with constant
[ if for every pinning g 2 T one has

EigMax(�g

`
)  [.

For a non-empty region � of the complex plane, we say that a multivariate polynomial
%(H1, . . . , H<) is �-stable if %(H1, . . . , H<) < 0 whenever H 8 2 � for all 8, see Definition 2.3. We
present a sequence of results connecting spectral independence of the distribution with stability
of the partition function. Our first result holds when the zero-free region of the partition
function is su�ciently “large”, e.g., containing the whole positive real axis. Below for � ✓ C let �
denote the closure of � and let m� be the boundary of �; for _ 2 C let dist(_, m�) = infH2m� |H � _ |;
see Section 2.4.

������� ���� Let � ✓ C be a non-empty open connected region such that � is unbounded and
0 2 �. If the multivariate partition function /E is �-stable, then for any _ 2 R+ \ � the Gibbs
distribution ` = `E,_ with the uniform external field _ is spectrally independent with constant

[ =
8
X

where X = 1
_
dist(_, m�).

In particular, the statement is true when � is a non-empty open connected region containing
the positive real axis; i.e., R+ ✓ �.

We can also obtain bounds when � is bounded or 0 2 �, under the assumption that �
contains a part of the positive real axis. In this case we also need to further assume that all
conditional partition functions under pinnings are stable. Moreover, our bound on spectral
independence depends on the marginal bound of the distribution `, which is defined as

1 = min
g2T

(D,9)2Pg

`
g (fD = 9).

Note that 1 > 0 since Pg contains only feasible vertex-spin pairs.

������� ���� Let _⇤ 2 R+ and let � ✓ C be a non-empty open connected region such that
(0, _⇤) ✓ � (respectively, (_⇤,1) ✓ �). If for every pinning g 2 T the multivariate conditional
partition function /

g

E
is �-stable, then for any _ 2 (0, _⇤) (respectively, _ 2 (_⇤,1)) the Gibbs

distribution ` = `E,_ with the uniform external field _ is spectrally independent with constant

[ =
8
X

min
⇢
1 � 1

1

,

_

1(_⇤ � _) + 1
�

✓
respectively, [ =

8
X

min
⇢
1 � 1

1

,

_
⇤

1(_ � _
⇤) + 1

�◆

where 1 is the marginal bound for ` and X = 1
_
dist(_, m�).
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������ ���� The first term (1 � 1)/1 is better when _ is close to _
⇤, while the second term is

better when _ is close to 0 (respectively,1), because usually 1/_ is bounded from below when
_ ! 0 (respectively, 1_ is bounded from below when _ ! 1).

������ ����� We point out here that Theorem 1.8 does not apply to the ferromagnetic Ising
model. The celebrated Lee-Yang theorem states that the partition function for the ferromagnetic
Isingmodel isD(0, 1)-stable andD(0, 1)c-stablewhereD(0, 1) denotes the openunit ball centered
at 0 on the complex plane andD(0, 1)c denotes the exterior ofD(0, 1). However, when a pinning
is applied, particularly when some vertices are pinned to + and some are �, we do not have
either D(0, 1)-stability or D(0, 1)c-stability for the conditional partition function. To see this,
notice that such a pinning can result in inconsistent external fields; some fields are < 1 (hence
in D(0, 1)) while others are > 1 (hence in D(0, 1)c), and the Lee-Yang theorem does not apply.

Meanwhile, one should not expect spectral independence to hold for the ferromagnetic
Ising model at all temperatures and for all external fields, since the Glauber dynamics is slow
mixing when the parameters lie in the tree non-uniqueness region (see, for instance, [��]).

If limited information about the zero-free region is given, then spectral independence still
holds with a worse bound.

������� ��� �� Let � ✓ C be a non-empty open connected region. If for every pinning g 2 T
the multivariate conditional partition function /

g

E
is �-stable, then for any _ 2 R+ \ � the Gibbs

distribution ` = `E,_ with the uniform external field _ is spectrally independent with constant

[ =
2
1X

2

where 1 is the marginal bound for ` and X = 1
_
dist(_, m�).

It is unclear if themarginal bound 1 is needed or not. Our results Theorems 1.7, 1.8 and 1.11
also hold for non-uniform external fields, i.e., each pair (D, 9) is assigned a distinct field _D,9,
and the zero-free regions are allowed to be distinct for di�erent pairs. See Theorem 3.2 for
a formal statement which implies Theorems 1.7, 1.8 and 1.11 as special cases. Our proof of
Theorem 3.2 uses tools from Complex Analysis, such as the Riemann Mapping Theorem (see
Theorem 2.6). We remark that for the simple but slightly worse bound Theorem 1.11 the proof
does not rely on the Riemann Mapping Theorem.

��� ��������� ���� �������� �����

Our work builds upon the recent work of Alimohammadi, Anari, Shiragur, and Vuong [�].
Theorem 16 of [�] established spectral independence for any distribution over {0, 1}+ assuming
that the generating polynomial is sector-stable (that is, �-stable where � = {H 2 C : |Arg(H) |  \}
is a sector for some \ 2 (0, c/2)). Our results Theorems 1.7, 1.8 and 1.11 strengthen theirs in
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the sense that we do not have any restriction on the zero-free region �, and the results hold for
any open connected region. This allows us to apply our results in a much broader setting. See
Section 3 for more details.

To establish zero-free regions for our main applications, we utilize the approach in [��],
which reduces the problem via Asano-Ruelle contractions [�, ��] to showing a su�ciently large
zero-free region for a collection of bounded-degree univariate polynomials, one for each vertex
of the input graph. These univariate polynomials are referred to as the local polynomials, since
they only depend on the configuration restricted to edges incident to the given vertex. We note a
very similar idea was also used in [��, ��] to establish zero-free regions, although their methods
do not go through Asano-Ruelle contractions. See Section 4 for more details.

It was also shown in a sequence of papers [��, ��, ��, �, �, ��] that one can establish large
zero-free regions via an inductive approach based on conditioning the distribution. This method
of establishing zero-free regions also works nicely for us, as spectral independence requires
a bound on the pairwise influences for all conditional distributions. We show that one can
deduce rapid mixing of the Glauber dynamics in a nearly black-box fashion from these zero-free
methods for several problems in Sections 5 and 6.

Algorithmically, our results have several advantages over prior works utilizing zero-free
regions. In particular, the polynomial interpolation method pioneered by Barvinok [�] typically
only yields quasi-polynomial time algorithms in general, and polynomial time algorithms with
exponent depending on themaximumdegree for problems arising from graphs [��]. In contrast,
we obtain fast algorithms for sampling and counting. Another feature of our approach is that
we only need the zero-free region to be su�ciently large. This is in contrast to the polynomial
interpolation technique, which needs the zero-free region to also contain a point at which the
partition function is easily computable. On the other hand, our approach is fundamentally
restricted to nonnegative real parameters whereas Barvinok’s approach can be extended to
complex parameters, see, for instance [�].

������� �� ����� In Section 3we prove our general technical results Theorems 1.7, 1.8 and 1.11
connecting zero-free regions with spectral independence. We prove Theorems 1.1, 1.2 and 1.4
in Section 4 regarding binary symmetric Holant problems. In Section 5 we prove results for
weighted graph homomorphisms and tensor networks. Finally, in Section 6 we study arbitrary
measures on the discrete cube as studied in the analysis of Boolean functions.

�� �������������

��� ��������

Let ? � 2 be an integer and write ?1 = ? � 1. Let+ be a finite set of vertices and let & = {0} [&1

be the set of spins where &1 = {1, . . . , ?1}. Every spin assignment f : + ! & is called a
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configuration. The state space � = &
+ is the collection of all configurations and let E : � ! R�0

be a nonnegative weight function that is not identically zero. A configuration f 2 � is said to be
valid or feasible if E(f) > 0. For � ✓ + , define set of pinnings on � by

�� =
�
g 2 &

� : 9 valid f 2 � s.t. f� = g

 
.

Note �+ is the set of all valid configurations. Let T =
–

�✓+ �� be the collection of all pinnings.
For a pinning g 2 T , let+g denote the set of unpinned vertices; so if g 2 �� then+g = + \�.

For D 2 +
g, let �g

D
be the set of valid spins at D under g:

�g

D
= {9 2 & : 9 valid f 2 � s.t. f� = g and fD = 9} .

Define the collection of feasible vertex-spin pairs under g by Pg = {(D, 9) 2 + ⇥ & : D 2 +
g
, 9 2

�g

D
}, and the collection of pairs with nonzero spins by Pg

1 = {(D, 9) 2 Pg : 9 < 0}. We write �D,
P, and P1 when no pinning is applied.

Let , : P1 ! C be a vector of complex external fields. Given a pinning g 2 T on � ✓ +

with* = +
g = + \ �, the conditional partition function /

g

E
under g is a multivariate polynomial

of , defined as
/
g

E
(,) =

’
f2�: f�=g

E(f),f* , where ,f* =
÷

D2* : fD<0
_D,fD

.

When there is no pinning, this matches Equation (2) from the introduction. Observe that /g

E

depends only on the variables {_D,9 : (D, 9) 2 Pg

1 }, and that /g

E
is not identically zero since

g is a pinning. If , is real and positive, then /
g

E
(,) > 0 and we obtain the conditional Gibbs

distribution:
`
g (f) = `(f | f� = g) = E(f),f*

/
g

E
(,) , 8f 2 � s.t. f� = g.

Again this matches Equation (3) when there is no pinning.

��� �������� ������������

Let % be the transition matrix of the Glauber dynamics with stationary distribution `, and let
%
B (-0, ·) denote the distribution of the chain after B steps starting from -0 2 �+ . The mixing

time of the Glauber dynamics is defined as

)mix(%) = max
-02�+

min{B � 0 :
��
%
B (-0, ·) � `

��
TV  1/4},

where k·kTV denotes the total variation distance. Throughout this paper, we assume that the
Glauber dynamics is ergodic for every conditional distribution `

g where g 2 T is a pinning
(such distribution ` is called totally-connected in [��, ��]).

The notion of spectral independence (see Definitions 1.5 and 1.6) was introduced in [�] and
immediately becomes a powerful tool for establishing rapid mixing of the Glauber dynamics.
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������� ��� ([�, �])� Let ` be an arbitrary distribution over &+ where |+ | = <. If ` is spectrally
independent with constant [, then the Glauber dynamics mixes in$(<[+1 log(1/`min)) steps where
`min = minf2�+

`(f).

The following mixing result for the Glauber dynamics is known for spin systems with
nearest-neighbor interactions; it holds for Holant problems and tensor network contractions
(see Sections 4 and 5 for definitions) as well since one can view these as spin systems defined
on hypergraphs (also known as Markov random fields) and the proof approach of [��, ��] still
works when the underlying hypergraph has bounded maximum degree.

������� ��� ([��, ��])� Let ` be the Gibbs distribution of a spin system or a Holant problem or
a tensor network contraction defined on an <-vertex graph of maximum degree �. If ` is spectrally
independent with constant [ and the marginal bound for ` is 1, then the Glauber dynamics mixes
in ⇠< log < steps where ⇠ = ⇠(�, [, 1) is a constant independent of <.

��� ���������

For < sets �1, . . . , �<, let
Œ

<

✓=1 �✓ = �1 ⇥ · · · ⇥ �< denote the Cartesian product of them.

��� �� �� ��� � �� (Stability)� For an integer < � 1 andK ✓ C<, we say a multivariate polyno-
mial % 2 C[H1, . . . , H<] isK-stable if %(H1, . . . , H<) < 0 whenever (H1, . . . , H<) 2 K . In particular,
ifK =

Œ
<

✓=1 � for some � ✓ C, then we simply say % is �-stable.

������� ��� (Hurwitz’ Theorem)� Let < � 1 be an integer andK ✓ C< be an open connected
set. Suppose that { 5;}1

;=1 is a sequence of non-vanishing analytic functions onK that converges
to 5 uniformly on compact subsets ofK . Then 5 is either non-vanishing onK or else identically
zero.

��� ������� �����

We refer to subsets of the complex plane as regions. Note that this is slightly nonstandard in
Complex Analysis, where a region (or domain) is more commonly defined as a non-empty open
connected subset of C.

Let � ✓ C be a region. Denote the complement of � by �c = C \ �, its interior by �o, its
closure by �, and its boundary by m�. We say � is unbounded if for any " 2 R+ there exists H 2 �
such that |H | > " ; otherwise it is called bounded. For H 2 C let dist(H, �) = infE2� |E � H | be the
distance from H to � on the complex plane.

For a region � ✓ C and H 2 C, we define � + H = {E + H : E 2 �}, H� = {HE : E 2 �}, and
��1 = (� \ {0})�1 = {E�1 : E 2 � \ {0}}. For �1, �2 ✓ C, let �1 · �2 = {HE : H 2 �1,E 2 �2} denote
their Minkowski product; in particular, for � ✓ C let �2 = � · � = {HE : H,E 2 �} (meanwhile we
shall write

Œ2
✓=1 � = � ⇥ � = {(H,E) : H,E 2 �} for the Cartesian product).
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For H 2 C and @ 2 R+, let D(H, @) = {E 2 C : |E� H | < @} denote the open disk centered at H
with radius @, and let D(H, @) = {E 2 C : |E � H |  @} denote the closed disk. An (open or closed)
polydisk is a Cartesian product of (open or closed) disks. For Y 2 R+, let HY = {F + 7 G : F < �Y}
and HY = {F + 7 G : F  �Y} be open and closed half-planes.

Let � ✓ C be a non-empty open region. We say E, H 2 � are (path-)connected in � if
there exists a continuous map W : [0, 1] ! � such that W(0) = E and W(1) = H. Observe
that connectivity in � is an equivalence relation, and we call each equivalence class a (path-
)connected component of �. The region � is said to be (path-)connected if every two points from �
are connected in �; namely, � has a unique connected component which is itself. If � is open
then every connected component of � is also open.

A non-empty open connected region � ✓ C is called simply connected if its complement
in the Riemann sphere (C [ 1) is also connected. A Jordan curve (simple closed curve) is a
continuous map W : [0, 1] ! C such that W(0) = W(1) and the restriction of W to [0, 1) is injective.
The Jordan curve theorem states that for a Jordan curve W, the complement of its image on the
complex plane consists of exactly two open connected components; one of these components is
bounded called the interior and the other is unbounded called the exterior. A non-empty open
connected region � ✓ C is simply connected if and only if for every Jordan curve W whose image
is contained in �, the interior of W is also contained in �.

��� ������� ��������

We present here a few useful theorems in Complex Analysis which can be found in many
textbooks, see e.g. [��]. Throughout, we select the principal branch for the complex functions
H 7! log H and H 7! H

1/3 .

������� ��� (Schwarz-Pick Theorem)� Let 5 : D(0, 1) ! D(0, 1) be a holomorphic function.
Then

| 5 0(0) |  1 � | 5 (0) |2  1.

For open regions �1, �2 ✓ C, a function 5 : �1 ! �2 is said to be biholomorphic if 5 is a
bijective holomorphic function whose inverse is also holomorphic.

������� ��� (RiemannMapping Theorem)� Let � ✓ C be a non-empty open simply connected
region that is not C. Then for any H 2 � there exists a unique biholomorphic mapping 5 : � !
D(0, 1) such that

5 (H) = 0 and 5
0(H) 2 R+.

������� ��� (Koebe’s One-Quarter Theorem)� Let � ✓ C and let 5 : D(0, 1) ! � be an
injective holomorphic function. Then

D

✓
5 (0), 1

4
| 5 0(0) |

◆
✓ �.
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������� ��� (Multivariate Open Mapping Theorem, [��� ������� �����])� Let < � 1 be
an integer and let K ✓ C< be a non-empty open connected subset of C<. Let 5 : K ! C be a
non-constant holomorphic function. Then the image of 5 is an open connected region.

�� ������������ �������� ������������ ��� ���������

In this section, we deduce spectral independence of a distribution from the stability of the
associated partition function, and thus prove Theorems 1.7, 1.8 and 1.11.

We first show that pinning preserves stability of the partition function if the zero-free
region is unbounded and contains 0 in its closure. Intuitively, the pinning fD = 9 for 9 < 0
corresponds to taking _D,9 = 1 (which is achieved by taking derivative with respect to _D,9),
and the pinning fD = 0 corresponds to taking _D,9 = 0 for all 9 2 &1. Hence, under an arbitrary
pinning the conditional partition function is just the original partition function specialized at1
and 0 for specific external fields, and the fact that the closure of the zero-free region contains1
(i.e., unboundedness) and 0 guarantees that after specialization the resulted partition function
is still stable. This is formalized by the following lemma.

����� ���� Let {�D,9 ✓ C : (D, 9) 2 P1} be a collection of non-empty open connected regions
such that for every (D, 9) 2 P1 the region �D,9 is unbounded and 0 ✓ �D,9. If the multivariate
partition function /E is

� Œ
(D,9)2P1 �D,9

�
-stable, then for every pinning g 2 T the multivariate

conditional partition function /
g

E
is

� Œ
(D,9)2Pg

1
�D,9

�
-stable.

Next, we show the following theorem for deriving spectral independence under various
assumptions in the multivariate setting, from which one can deduce the bounds on spectral
independence given in Theorems 1.7, 1.8 and 1.11.

������� ���� Let {�D,9 ✓ C : (D, 9) 2 P1} be a collection of non-empty open connected regions,
and let , : P1 ! R+ such that _D,9 2 R+ \ �D,9 for each (D, 9) 2 P1. Suppose that for every pinning
g 2 T the multivariate conditional partition function /

g

E
is

� Œ
(D,9)2Pg

1
�D,9

�
-stable. Then the Gibbs

distribution ` = `E,, with external fields , is spectrally independent with constant

[ =
2
1X

2 , (4)

where 1 is the marginal bound for ` and

X = min
(D,9)2P1

1
_D,9

dist(_D,9, m�D,9).

Furthermore:
1. For each D 2 + let �D ✓ C be the connected component of the intersection

—
92&1

1
_D,9

�D,9 that
contains 1 (note that 1 2 1

_D,9

�D,9 for all (D, 9)). If for every D 2 + the region �D is unbounded
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and 0 2 �D, then spectral independence holds with constant

[ =
8
X

.

In particular, the statement is true if R+ ✓ �D,9 for each (D, 9) 2 P1.
2. If there exists _⇤ 2 R+ such that _D,9 2 (0, _⇤) ✓ �D,9 for every (D, 9) 2 P1, then spectral

independence holds with constant

[ =
8
X

min
⇢
1 � 1

1

,

_max

1(_⇤ � _max)
+ 1

�
,

where _max = max(D,9)2P1 _D,9.
3. If there exists _⇤ 2 R+ such that _D,9 2 (_⇤,1) ✓ �D,9 for every (D, 9) 2 P1, then spectral

independence holds with constant

[ =
8
X

min
⇢
1 � 1

1

,

_
⇤

1(_min � _
⇤) + 1

�
,

where _min = min(D,9)2P1 _D,9.

We prove Theorem 3.2 by upper bounding the absolute row sum of the influence matrix
�g

`
for any pinning g 2 T ; namely, for each (C, 8) 2 Pg we bound the sum of absolute values of

the influences from (C, 8) to all other pairs (D, 9) 2 Pg, see Lemma 3.4. We accomplish this by
strengthening and generalizing the proof strategy in [�].

At a high level, the work [�] views the sum of absolute influences as the derivative of
some function 5 produced by the conditional partition functions. The variables of 5 are just the
external fields of the partition function which lie in some zero-free region � and the stability of
the conditional partition functions guarantees that the image of 5 is contained in some nice
region �0. In [�], the authors study sector-stability of the partition function for the binary state
space {0, 1}+ ; in particular, both the zero-free region � and the region �0 containing the image
are sectors for their choice of 5 . Then, by applying conformal mappings between the sector
and the unit disk, the derivative of 5 can be upper bounded using the Schwarz-Pick Theorem
(Theorem 2.5).

However, here we are facing a more challenging situation since we are trying to establish
spectral independence from an arbitrary zero-free region � for any discrete product space &+ .
In fact, for us the regions � and �0 are in abstract form and to apply the Schwarz-Pick Theorem
we need to design good mappings from � and �0 to the unit disk. This is achieved by utilizing
tools from Complex Analysis, especially the Riemann Mapping Theorem (Theorem 2.6). See
Sections 3.3.1 and 3.3.2 for details of this part.

We now provide the proofs of Theorems 1.7, 1.8 and 1.11 from the introduction.

����� �� ������� ��� � Follows from Lemma 3.1 and Item 1 of Theorem 3.2. ⌅

����� �� ������� ��� � Follows from Items 2 and 3 of Theorem 3.2. ⌅
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����� �� ������� ��� � � Follows from Equation (4) of Theorem 3.2. ⌅

After proving Lemma 3.1 in Section 3.1, we establish Theorem 3.2 in Section 3.2 and prove
Lemma 3.4, a central lemma for bounding the absolute sum of influences, in Section 3.3.

��� ������������ �� ��������� ����� ��������

In this subsection we present the proof of Lemma 3.1.
Let g 2 T be an arbitrary pinning on � ✓ + and let* = +

g = + \ � be the set of unpinned
vertices. We consider the conditional partition function /

g

E
under the pinning g. As discussed

earlier, one can view /
g

E
as obtained from the original partition function /E by specializing at 0

and taking derivatives for certain variables provided by the pinning g. To be more precise, we
define �0 = {D 2 � : gD = 0} to be the set of vertices pinned to spin 0, and let �1 = {D 2 � : gD < 0}
be those pinned to nonzero spins. We also define g1 = g�1 to be the pinning restricted to vertices
with nonzero spins. The key observation here is that

/
g

E
(,) =

✓
m

m,�1,g1
/E(,)

◆ �����
,�0=0

(5)

where ,�0 = 0 represents plugging in _D,9 = 0 for all D 2 �0 and 9 2 &1, and m

m,�1,g1
represents

taking derivatives m

m_D,gD

for all D 2 �1. Hence, to establish Lemma 3.1 it su�ces to show that
specialization at 0 and di�erentiation preserves �-stability if the zero-free region � is unbounded
and 0 2 �. This is actually true for any multi-a�ne polynomial, which is a polynomial whose
monomials are all square-free.

����� ���� Let < � 1 be an integer and let �1, . . . , �< ✓ C be non-empty open connected regions.
Let % 2 C[H1, . . . , H<] be a multi-a�ne polynomial and assume that % is (Œ<

✓=1 �✓)-stable. Then:
1. (Inversion) The polynomial %1(H1, H2, . . . , H<) = H1%( 1

H1
, H2, . . . , H<) is (��11 ⇥Œ

<

✓=2 �✓)-stable;
2. (Specialization) If 0 2 �1, then the polynomial %2(H2, . . . , H<) = %(0, H2, . . . , H<) is either

(Œ<

✓=2 �✓)-stable or identically zero;
3. (Di�erentiation) If �1 is unbounded, then the polynomial %3(H2, . . . , H<) = m

mH1
%(H1, H2, . . . , H<)

is either (Œ<

✓=2 �✓)-stable or identically zero.

����� � Consider first the inversion property. Suppose for sake of contradiction that %1 is
not (��11 ⇥ Œ

<

✓=2 �✓)-stable. Then there exists E1 2 ��11 and H✓ 2 �✓ for 2  ✓  < such that
%1(E1, H2, . . . , H<) = 0. Note that E1 = 1/H1 for some H1 2 �1 \ {0}. It follows that

0 = H1%1(E1, H2, . . . , H<) = H1E1%

✓
1
E1

, H2, . . . , H<

◆
= %(H1, H2, . . . , H<),

contradicting to the stability of %. Hence, we have the desired stability for %1.
Next consider specialization. Since �1 is open and 0 2 �1, there exists a sequence of complex

numbers {Z;}1
;=1 such that Z; 2 �1 and lim;!1 Z; = 0. Let 5;(H2, . . . , H<) = %(Z;, H2, . . . , H<)
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be a polynomial of degree  deg(%) for each ;. Then 5; is (Œ<

✓=2 �✓)-stable by the stability
assumption of %. Furthermore, the sequence { 5;}1

;=1 converges to %2 coe�cient-wise, and
hence uniformly on compact subsets; see, e.g., Lemma 33 in [�]. Hurwitz’ Theorem (Theorem 2.4)
then implies that %2 is either (

Œ
<

✓=2 �✓)-stable or identically zero, as claimed.
Last we consider di�erentiation. Since �1 is open and unbounded, we deduce that the

region ��11 = {1/H : H 2 �1 \ {0}} is open and satisfies 0 2 ��11 . Recall that we have shown
the inversion %1(H1, H2, . . . , H<) = H1%( 1

H1
, H2, . . . , H<) is (��11 ⇥ Œ

<

✓=2 �✓)-stable. Now observe that,
for a multi-a�ne polynomial %, the derivative %3 of % with respect to H1 is the same as the
specialization of %1 at H1 = 0:

%3(H2, . . . , H<) =
m

mH1
%(H1, H2, . . . , H<) = %1(0, H2, . . . , H<).

Hence, we immediately conclude from previous results that %3 is either (Œ<

✓=2 �✓)-stable or
identically zero. ⌅

Lemma 3.1 is an immediate consequence of Lemma 3.3.

����� �� ����� ��� � Observe that the partition function Equation (2) is multi-a�ne. The
lemma then follows from Equation (5) and Lemma 3.3. Notice that the conditional partition
functions are never identically zero since pinnings are extendable to valid full configurations.

⌅

��� ������ �� �������� ������������

In this subsection we prove Theorem 3.2.
An important observation is that it is su�cient to assume 1 2 �D,9 for every (D, 9) 2 P1 and

consider the Gibbs distribution with the all-one external fields 1. In general, given the external
field _D,9 2 �D,9 for each (D, 9), we may reweight the configurations by

eE(f) = E(f)
÷

D2+ : fD<0
_D,fD

, 8f 2 � (6)

and the new partition function is

/eE(,) =
’
f2�

eE(f),f . (7)

In particular, /E(,) = /eE(1) and `E,, = `eE,1 for the given , = (_D,9). In other words, we
hide the external fields into the weight of configurations and under the new weights we are
interested in the all-one external fields. This will simplify the notations. Note that, if for
g 2 T the multivariate conditional partition function /

g

E
is

� Œ
(D,9)2Pg

1
�D,9

�
-stable, then the

reweighted conditional partition function /
geE is

� Œ
(D,9)2Pg

1
e�D,9�-stable wheree�D,9 = 1

_D,9

�D,9 for
each (D, 9) 2 P1.
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In the rest of this section, we assume that 1 2 �D,9 and consider the case of all-one external
fields. The following lemma is an important step towards deducing Theorem 3.2; it builds upon
the proof strategy of [�] while generalizing their result.

����� ���� Consider the Gibbs distribution ` = `E,1 with the all-one external fields 1. Let g 2 T
be a fixed pinning and let {�D,9 ✓ C : (D, 9) 2 Pg

1 } be a collection of non-empty open connected
regions such that 1 2 �D,9 for each (D, 9) 2 Pg

1 . For every D 2 +
g let �D ✓ C be the connected

component of the intersection
—

0<92�g

D

�D,9 that contains 1. If the multivariate conditional partition
function /

g

E
is

� Œ
(D,9)2Pg

1
�D,9

�
-stable, then the influence matrix �g

`
under the pinning g satisfies

EigMax(�g

`
) 

���g

`

��
1  min

8>><
>>:

2
1X

2 ,
8
X

max
g2T

(D,9)2Pg

dist
⇣
1, Cg

D,9

⌘9>>=
>>;
,

where: 1 is the marginal bound for `;

X := min
(D,9)2Pg

1

dist
�
1, m�D,9

�
; >

g

D,9
:= `

g (fD = 9); (8)

Cg

D,9
:= � 1

>
g

D,9

�
�D,9 � 1

��1 =
(
� 1
>
g

D,9
(H � 1) : H 2 �D,9 \ {1}

)
, for 9 < 0; (9)

Cg

D,0 :=
1
>
g

D,0

⇣
(�D � 1)�1 + 1

⌘
=

(
H

>
g

D,0(H � 1) : H 2 �D \ {1}
)
. (10)

The following two lemmas are helpful for bounding the distance dist(1, Cg

D,9
) in Lemma 3.4.

����� ���� Let g 2 T and (D, 9) 2 Pg

1 .
1. If �D,9 is unbounded, then

dist
⇣
1, Cg

D,9

⌘
 1.

2. Let UD,9 = inf
�
�D,9 \ R+

�
and VD,9 = sup

�
�D,9 \ R+

�
. Then

dist
⇣
1, Cg

D,9

⌘
 min

(
UD,9

>
g

D,9
(1 � UD,9)

+
1 � >

g

D,9

>
g

D,9

,

1
>
g

D,9
(VD,9 � 1) + 1

)
,

with the convention that 1
1 = 0 if VD,9 = 1.

����� ���� Let g 2 T and (D, 0) 2 Pg.
1. If 0 2 �D, then

dist
⇣
1, Cg

D,0

⌘
 1.

2. Let UD = inf (�D \ R+) and VD = sup (�D \ R+). Then

dist
⇣
1, Cg

D,0

⌘
 min

(
UD

>
g

D,0(1 � UD)
+ 1, 1

>
g

D,0(VD � 1) +
1 � >

g

D,0

>
g

D,0

)
,
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with the convention that 1
1 = 0 if VD = 1.

Combining Lemmas 3.4 to 3.6, we are able to establish Theorem 3.2. The proofs of Lem-
mas 3.5 and 3.6 are technical and we postpone them to Appendix B. The proof of Lemma 3.4 is
presented in Section 3.3.

����� �� ������� ��� � As discussed at the beginning of this subsection, we can reweight
the configurations by Equation (6) and consider the all-one external fields under the new
weights, so that Lemma 3.4 applies. In particular, for an arbitrary pinning g 2 T the reweighted
conditional partition function /

geE given by Equation (7) is
� Œ

(D,9)2Pg

1
e�D,9�-stable wheree�D,9 =

1
_D,9

�D,9 for each (D, 9) 2 P1. Thus, the first upper bound in Lemma 3.4 implies that the Gibbs
distribution ` = `E,, = `eE,1 is spectrally independent with constant [ = 2/(1X2) where 1 is the
marginal bound for ` and

X = min
(D,9)2P1

dist
⇣
1, me�D,9⌘ = min

(D,9)2P1

1
_D,9

dist
�
_D,9, m�D,9

�

as claimed.
For each D 2 + , lete�D = �D ✓ C be the connected component of the intersection

—
92&1

e�D,9 =—
92&1

1
_D,9

�D,9 that contains 1. Then we further have the following.
1. If for every D 2 + the region e�D is unbounded and 0 is contained in the closure of e�D,

then the first part of Lemmas 3.5 and 3.6 implies that dist(1, Cg

D,9
)  1 for all g 2 T and

(D, 9) 2 Pg. Hence, by the second upper bound in Lemma 3.4 spectral independence holds
with constant [ = 8/X.
If R+ ✓ �D,9 for each (D, 9) 2 P1, then by definitione�D is unbounded and 0 is contained in
the closure ofe�D for every D 2 + ; therefore, spectral independence holds with [ = 8/X.

2. If there exists _⇤ 2 R+ such that _D,9 2 (0, _⇤) ✓ �D,9 for every (D, 9) 2 P1, then one has

UD,9 = inf
⇣e�D,9 \ R+⌘ = 0, VD,9 = sup

⇣e�D,9 \ R+⌘ � _
⇤

_D,9

,

UD = inf
⇣e�D \ R+⌘ = 0, VD = sup

⇣e�D \ R+⌘ � _
⇤

_D,max
,

where _D,max = max92&1 _D,9  _max. Thus, we deduce from the second part of Lemmas 3.5
and 3.6 that for all g 2 T and (D, 9) 2 Pg,

dist
⇣
1, Cg

D,9

⌘
 min

(
1 � >

g

D,9

>
g

D,9

,

_D,9

>
g

D,9
(_⇤ � _D,9)

+ 1
)

 min
⇢
1 � 1

1

,

_max

1(_⇤ � _max)
+ 1

�
, for 9 < 0;

dist
⇣
1, Cg

D,0

⌘
 min

(
1,

_D,max

>
g

D,0(_⇤ � _D,max)
+
1 � >

g

D,0

>
g

D,0

)
 1.
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The second bound in Lemma 3.4 then yields the desired bound on spectral independence.
Note that wemay assume ` is supported on at least two configurations so that (1�1)/1 � 1,
namely 1  1/2; otherwise ` is concentrated on a single configuration and spectral
independence holds with constant 0.

3. If there exists _⇤ 2 R+ such that _D,9 2 (_⇤,1) ✓ �D,9 for every (D, 9) 2 P1, then one has

UD,9 = inf
⇣e�D,9 \ R+⌘  _

⇤

_D,9

, VD,9 = sup
⇣e�D,9 \ R+⌘ = 1,

UD = inf
⇣e�D \ R+⌘  _

⇤

_D,min
, VD = sup

⇣e�D \ R+⌘ = 1,

where _D,min = min92&1 _D,9. Thus, we deduce from the second part of Lemmas 3.5 and 3.6
that for all g 2 T and (D, 9) 2 Pg,

dist
⇣
1, Cg

D,9

⌘
 min

(
_
⇤

>
g

D,9
(_D,9 � _

⇤) +
1 � >

g

D,9

>
g

D,9

, 1

)
 1, for 9 < 0;

dist
⇣
1, Cg

D,0

⌘
 min

(
_
⇤

>
g

D,0(_D,min � _
⇤) + 1,

1 � >
g

D,0

>
g

D,0

)

 min
⇢

_
⇤

1(_min � _
⇤) + 1,

1 � 1

1

�
.

The second bound in Lemma 3.4 then yields the bound on spectral independence as
wanted. ⌅

������ ���� For Item 2 of Theorem 3.2 our proof actually yields a more complicated but
stronger constant for spectral independence:

[ =
8
X

max
8>><
>>:
1, max

g2T
(D,9)2Pg

1

(
min

(
1 � >

g

D,9

>
g

D,9

,

_D,9

>
g

D,9
(_⇤ � _D,9)

+ 1
))9>>=

>>;
.

For Item 3, the constant is:

[ =
8
X

max
8>><
>>:
1, max

g2T
(D,0)2Pg

(
min

(
1 � >

g

D,0

>
g

D,0
,

_
⇤

>
g

D,0(_D,min � _
⇤) + 1

))9>>=
>>;
.

These two bounds are more robust in the sense of Remark 1.9, namely, when some external
fields are close to _

⇤ while others are close to 0 (respectively,1).

��� �������� ��� �������� ��� �� ����������� ����� �� ����� ���

Let g 2 T be an arbitrary pinning and fix g. We will give an upper bound on the absolute row
sum of the associated influence matrix �g

`
under g, which then provides an upper bound on
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the maximum eigenvalue of �g

`
. In particular, for (C, 8) 2 Pg we define

e(g
`
(C, 8) :=

’
(D,9)2Pg

���g

`
(C, 8; D, 9)

�� = ’
(D,9)2Pg:D<C

��
`
g (fD = 9 | fC = 8) � `

g (fD = 9)
�� (11)

to be the absolute sum of influences in the row (C, 8), and define

(
g

`
(C, 8) :=

’
(D,9)2Pg

1

���g

`
(C, 8; D, 9)

�� = ’
(D,9)2Pg

1 :D<C

��
`
g (fD = 9 | fC = 8) � `

g (fD = 9)
�� (12)

to be the partial absolute sum of influences for pairs (D, 9) with 9 < 0 in the row (C, 8). Notice
that one has e(g

`
(C, 8)  2(g

`
(C, 8), because for each (D, 0) 2 Pg it follows from the triangle

inequality that
��
`
g (fD = 0 | fC = 8) � `

g (fD = 0)
��  ’

92�g

D
\{0}

��
`
g (fD = 9 | fC = 8) � `

g (fD = 9)
��
.

Hence,
EigMax(�g

`
) 

���g

`

��
1 = max

(C, 8)2Pg

e(g
`
(C, 8)  2 max

(C, 8)2Pg

(
g

`
(C, 8). (13)

The rest of the proof aims to bound (
g

`
(C, 8) for a fixed (C, 8) 2 Pg. We consider two cases

8 < 0 and 8 = 0 separately, and prove the following.

����� ���� For 8 < 0 we have

(
g

`
(C, 8)  min

⇢
1
1X

2 ,
4
X

dist
⇣
1, Cg

C, 8

⌘�
.

����� ���� For 8 = 0 we have

(
g

`
(C, 0)  min

⇢
1
1X

2 ,
4
X

dist
⇣
1, Cg

C,0

⌘�
.

Lemma 3.4 follows immediately from these two lemmas.

����� �� ����� ��� � Combining Equation (13) and Lemmas 3.8 and 3.9. ⌅

����� ����� �� ����� ���

Fix (C, 8) 2 Pg

1 . We follow the proof approach of [�] and view (
g

`
(C, 8) as the derivative of a

certain function related to the partition function; the lemma then follows from an application
of the Schwarz-Pick Theorem (Theorem 2.5) for bounding the derivative. For ease of notation
we write

P0 := {(D, 9) 2 Pg

1 : D < C} and K :=
÷

(D,9)2P0
�D,9 .

Recall that >g
C, 8

= `
g (fC = 8). Define the multivariate complex function 5 : K ! C as

5 (,) = 1
>
g

C, 8

/
g[(C, 8)
E

(,)
/
g

E
(, [ 1C)

, for , 2 K (14)



�� � �� �������� ������������ ��� ��������� ��� ������������ �� ����������� ��������

where g [ (C, 8) 2 T is the pinning that combines g and fC = 8, and , [ 1C is the vector of
external fields that combines , and the all-one fields 1C at C (i.e., _C, 80 = 1 for all 0 < 8

0 2 �g

C
);

notice that
/
g

E
(, [ 1C) =

’
8
02�g

C

/
g[(C, 80)
E

(,).

Note that 5 is well-defined since by our assumption /
g

E
(, [ 1C) < 0 whenever each _D,9 2 �D,9.

The following claim summarizes several important properties of the function 5 .

����� ����� Let 5 : K ! C be the multivariate complex function defined by Equation (14).
1. The function 5 is well-defined and holomorphic onK , and 5 (1) = 1.
2. For every (D, 9) 2 P0,

m 5

m_D,9

����
,=1

= �g

`
(C, 8; D, 9).

3. Suppose that 5 . 1. LetA ✓ C be an open region defined as

A := � 1
>
g

C, 8

�
�C, 8 � 1

��1
. (15)

Then 1 8 A. LetA1 be the connected component ofA
c
which contains 1. ThenA1 is open

and simply connected, and
image( 5 ) ✓ A1.

If 5 ⌘ 1, then Item 2 of Claim 3.10 implies that �g

`
(C, 8; D, 9) = 0 for all (D, 9) 2 P0, and

hence (g
`
(C, 8) = 0. In the rest of the proof we assume that 5 . 1.

Given Claim 3.10, in order to bound (
g

`
(C, 8) it su�ces to bound kr 5 (1)k1. We do this

by taking holomorphic functions i : D(0, 1) ! K , k : A1 ! D(0, 1) and considering their
composition with the function 5 . The bound on kr 5 (1)k1 would then follow from the Schwarz-
Pick Theorem which bounds the derivative of a holomorphic function from the open unit dist
into itself.

We now formalize this idea. Let i : D(0, 1) ! K be a holomorphic vector-valued function
such that for every (D, 9) 2 P0, the (D, 9)-coordinate function iD,9 : D(0, 1) ! �D,9 is holomorphic
and satisfies iD,9 (0) = 1 and i0

D,9
(0) 2 R+ if�g

`
(C, 8; D, 9) � 0while i0

D,9
(0) 2 R� if�g

`
(C, 8; D, 9) 

0. Hence, i(0) = 1 and i
0
D,9

(0)�g

`
(C, 8; D, 9) � 0 for all (D, 9). Meanwhile, for the regionA1 given

in Item 3 of Claim 3.10, let k : A1 ! D(0, 1) be a holomorphic function such that k0(1) 2 R+.
We will specify our choice of i and k soon. Also, we point out here that our assumptions
i
0
D,9

(0) 2 R+/R� and k
0(1) 2 R+ would not cause strong restrictions; they can be easily satisfied

by considering rotations i(47\H) and 4
7\
k(H).
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Given such i and k, we define the holomorphic function � : D(0, 1) ! D(0, 1) given by
� = k � 5 � i. Notice that � (0) = k(1). The derivative �0(0) at 0 is real and can be bounded by

�
0(0) = k

0(1)
’

(D,9)2P0
i
0
D,9

(0) m 5

m_D,9

����
,=1

= k
0(1)

’
(D,9)2P0

i
0
D,9

(0)�g

`
(C, 8; D, 9)

� k
0(1) min

(D,9)2P0

n���i0
D,9

(0)
���o (g

`
(C, 8), (16)

where the second equality follows from Item 2 of Claim 3.10 and the inequality is due to our as-
sumption that i0

D,9
(0)�g

`
(C, 8; D, 9) � 0 for each (D, 9). The Schwarz-Pick Theorem (Theorem 2.5)

implies that �0(0)  1, and hence we obtain

(
g

`
(C, 8)  1

k
0(1)

✓
min

(D,9)2P0

���i0
D,9

(0)
���
◆�1

. (17)

It remains to choose i and k. Consider first the function i. For each (D, 9) 2 P0 we let

XD,9 := dist
�
1, m�D,9

�
and jD,9 := sgn(�g

`
(C, 8; D, 9)) =

8>><
>>:
+1, �g

`
(C, 8; D, 9) � 0;

�1, �g

`
(C, 8; D, 9) < 0.

(18)

We then define iD,9 : D(0, 1) ! �D,9 by

iD,9 (H) = 1 + jD,9XD,9H. (19)

Observe that i is holomorphic, i(0) = 1, and i
0
D,9

(H) = jD,9XD,9 has the same sign as�g

`
(C, 8; D, 9)

for each (D, 9). Recall that X = min(D,9)2P1 dist
�
1, m�D,9

�
, and thus

min
(D,9)2P0

���i0
D,9

(0)
��� = min

(D,9)2P0
XD,9 � X. (20)

Next, we decidek. Wewill actually give two choices ofk, denoted byk1 andk2 respectively,
which correspond to the two bounds in Lemma 3.8.

We first consider the simpler choice k1. Let XC, 8 = dist
�
1, m�C, 8

�
� X, and soD(1, XC, 8) ✓ �C, 8 .

Then, the regionA from Item 3 of Claim 3.10 satisfies

A = � 1
>
g

C, 8

�
�C, 8 � 1

��1 ◆ � 1
>
g

C, 8

�
D(1, XC, 8) � 1

��1 = 1
>
g

C, 8
XC, 8

D(0, 1)c.

It follows that
A1 ✓ Ac ✓ 1

>
g

C, 8
XC, 8

D (0, 1) .

We can define k1 : A1 ! D(0, 1) as

k1(H) = >
g

C, 8
XC, 8 H.
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Then, k1 is holomorphic, k0
1(H) = >

g

C, 8
XC, 8 2 R+, and

1
k
0
1(1)

=
1

>
g

C, 8
XC, 8

 1
1X

. (21)

Combining Equations (17), (20) and (21), we obtain

(
g

`
(C, 8)  1

1X
2 .

This shows the first bound in Lemma 3.8.
Next, we define k2. Since ; < A1 ( C is open and simply connected by Item 3 of Claim 3.10,

the RiemannMapping Theorem (Theorem2.6) implies that there exists a (unique) biholomorphic
mapping k2 : A1 ! D(0, 1) such that k2(1) = 0 and k

0
2(1) 2 R+. Write ⌘ = k

�1
2 , which is a

bijective holomorphic function from D(0, 1) to A1 satisfying ⌘(0) = 1. Then, Koebe’s One-
Quarter Theorem (Theorem 2.7) shows that

1
4
|⌘0(0) |  dist(1, mA1)  dist(1,A) = dist

⇣
1, Cg

C, 8

⌘
.

It follows that
1

k
0
2(1)

= ⌘
0(0)  4dist

⇣
1, Cg

C, 8

⌘
. (22)

Combining Equations (17), (20) and (22), we get

(
g

`
(C, 8)  4

X

dist
⇣
1, Cg

C, 8

⌘
,

which is the second bound in Lemma 3.8.

������ ��� �� The proof of Lemma 3.8 (and also Lemma 3.9 in Section 3.3.2) leaves the
possibility of further improvements on the spectral independence bounds for specific problems.
Here in the proof we are given regionsK andA1 in abstract forms and the choices of i and k

may not be optimal for specific instances; in particular, the Riemann Mapping Theorem only
shows the existence of a biholomorphic mapping and there is no guarantee that such a choice is
the best possible. Hence, for specific problems and specific zero-free regions, one may be able
to pick i and k in a smarter way to achieve a better bound on spectral independence.

It remains to prove Claim 3.10. The following lemma is helpful to us.

����� ����� Let S ✓ C be a non-empty open connected region such that S is unbounded and
S < C. If S1 is a connected component of S

c
, then S1 is open and simply connected.

����� � Clearly S1 is open and connected. If S1 is not simply connected, then there exists
a Jordan curve (simple closed curve) W in S1 whose interior region contains a point H0 8 S1.
Note that we can actually find a point H from the interior of W such that H 2 S; if not, then the
whole interior of W is contained in Sc

and thus H0 8 S1 is connected to S1 in Sc
, contradicting
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to the assumption that S1 is a connected component of Sc
. Since the interior of W is open, this

further implies that the interior of W contains a point H 2 S. Meanwhile, since S is unbounded
the exterior of W contains a point E 2 S. Now, as S is connected there exists a path > in S
connecting H and E. Note that >must intersect with W, because the interior and exterior of W
are disconnected. This yields a contradiction since W ✓ S1 ✓ Sc while > ✓ S. ⌅

Notice that the assumption of S being unbounded is necessary; for example, if S = D(0, 1)
then Sc

= C \ D(0, 1) = {H 2 C : |H | > 1} is open and connected, but not simply connected.
We complete the proof of Lemma 3.8 with the proof of Claim 3.10.

����� �� ��� �� ���� � 1. Since /g

E
(,[1C) < 0whenever , 2 K by our stability assumption,

the function 5 is well-defined and holomorphic onK . Also, by definition we have 5 (1) = 1.

2. Let (D, 9) 2 P0. Then one has

m 5

m_D,9

=
1
>
g

C, 8

 
1

/
g

E
(, [ 1C)

✓
m

m_D,9

/
g[(C, 8)
E

(,)
◆
� /

g[(C, 8)
E

(,)
/
g

E
(, [ 1C)2

✓
m

m_D,9

/
g

E
(, [ 1C)

◆!
.

Suppose g is a pinning on � ✓ + and let* = +
g[(C, 8) = + \� \ {C} be the set of unpinned vertices

under the pinning g [ (C, 8). We deduce that,

m

m_D,9

/
g[(C, 8)
E

(,) =
’

f2�: f�=g,fC= 8
E(f) · m

m_D,9

,f*

=
’

f2�: f�=g,fC= 8,fD=9
E(f),f*\{D}

= /
g[(C, 8)[(D,9)
E

(,).

Similarly,
m

m_D,9

/
g

E
(, [ 1C) = /

g[(D,9)
E

(, [ 1C).

We then get

m 5

m_D,9

����
,=1

=
1
>
g

C, 8

 
/
g[(C, 8)[(D,9)
E

(1)
/
g

E
(1) � /

g[(C, 8)
E

(1) · /g[(D,9)
E

(1)
/
g

E
(1)2

!

=
1

`
g (fC = 8)

�
`
g (fC = 8, fD = 9) � `

g (fC = 8)`g (fD = 9)
�

= �g

`
(C, 8; D, 9),

as claimed.

3. We first show that image( 5 ) ✓ Ac. Suppose for sake of contradiction that 5 (,) 2 A for some
, 2 K . Then there exists 1 < G 2 �C, 8 such that

� 1
>
g

C, 8
( G � 1) = 5 (,) = 1

>
g

C, 8

/
g[(C, 8)
E

(,)
/
g

E
(, [ 1C)

.



�� � �� �������� ������������ ��� ��������� ��� ������������ �� ����������� ��������

It follows that
/
g

E
(, [ ,C) = G/

g[(C, 8)
E

(,) +
’

8< 8
02�g

C

/
g[(C, 80)
E

(,) = 0,

where ,C is the vector of external fields at C defined by _C, 8 = G and _C, 80 = 1 for 8
0 2 �g

C
\ {0, 8}.

This contradicts our stability assumption that /g

E
(, [ ,C) < 0. Therefore, we have shown that

image( 5 ) ✓ Ac.
Now, sinceK is open and connected and 5 is a non-constant holomorphic function, the

Open Mapping Theorem (Theorem 2.8) implies that image( 5 ) is open and connected. Thus, we
have image( 5 ) ✓ (Ac)o = Ac

; note that in particular 1 2 Ac
. Furthermore, since image( 5 ) is

connected one has image( 5 ) ✓ A1, the connected component ofAc
containing 1. The region

A1 is open and connected by definition. It remains to show thatA1 is simply connected, which
follows immediately from Lemma 3.12 and the fact thatA is connected and unbounded. ⌅

����� ����� �� ����� ���

The proof of Lemma 3.9 is similar to that of Lemma 3.8. We will use the same notations and
only emphasize a few key steps that di�er.

Recall that
P0 = {(D, 9) 2 Pg

1 : D < C} and K =
÷

(D,9)2P0
�D,9 .

Define the multivariate complex function 6 : K ! C as

6 (,) = 1
>
g

C,0

/
g[(C,0)
E

(,)
/
g

E
(, [ 1C)

, for , 2 K (23)

where g [ (C, 0) 2 T is the pinning combining g and fC = 0, and , [ 1C is the vector of external
fields that combines , and 1C. The following claim is analogous to Claim 3.10 and summarizes
key properties of the function 6 .

����� ����� Let 6 : K ! C be the multivariate complex function defined by Equation (23).
1. The function 6 is well-defined and holomorphic onK , and 6 (1) = 1.
2. For every (D, 9) 2 P0,

m 5

m_D,9

����
,=1

= �g

`
(C, 0; D, 9).

3. Suppose that 6 . 1. Let B ✓ C be an open region defined as

B :=
1
>
g

C,0

⇣
(�C � 1)�1 + 1

⌘
. (24)

Then 1 8 B. Let B1 be the connected component of B
c
which contains 1. Then B1 is open

and simply connected, and
image(6) ✓ B1.
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We may assume that 6 . 1 since otherwise (g
`
(C, 0) = 0 and the lemma is trivial. Again we

choose holomorphic functions i : D(0, 1) ! K , k : B1 ! D(0, 1) and consider the holomorphic
function ⌧ : D(0, 1) ! D(0, 1) defined as ⌧ = k � 6 � i. Just as in the proof of Lemma 3.8, we
let i : D(0, 1) ! K be a holomorphic vector-valued function such that for every (D, 9) 2 P0,
the (D, 9)-coordinate function iD,9 : D(0, 1) ! �D,9 is holomorphic and satisfies iD,9 (0) = 1
and i

0
D,9

(0) 2 R+ if �g

`
(C, 8; D, 9) � 0 while i

0
D,9

(0) 2 R� if �g

`
(C, 8; D, 9)  0. Meanwhile, let

k : B1 ! D(0, 1) be a holomorphic function such that k0(1) 2 R+. Hence, we have ⌧(0) = k(1),
and by Claim 3.13 ⌧0(0) 2 R can be bounded by

⌧
0(0) � k

0(1) min
(D,9)2P0

n���i0
D,9

(0)
���o (g

`
(C, 0),

which is analogous to Equation (16). We then deduce the analog of Equation (17) from the
Schwarz-Pick Theorem (Theorem 2.5):

(
g

`
(C, 0)  1

k
0(1)

✓
min

(D,9)2P0

���i0
D,9

(0)
���
◆�1

. (25)

We specify next our choice of i and k. The function i is the same one as in the proof
of Lemma 3.8, and is given by Equation (19). In particular, Equation (20) still holds. We also
give two choices of the function k, denoted by k3 and k4 respectively, corresponding to the two
bounds in Lemma 3.9.

Consider first k3. Recall that �C ✓ C is defined to be the connected component of the
intersection

—
0< 82�g

C

�C, 8 that contains 1. Let XC = dist (1, m�C) � X and thus D(1, XC) ✓ �C. Then
we have

B =
1
>
g

C,0

⇣
(�C � 1)�1 + 1

⌘
◆ 1

>
g

C,0

⇣
D(0, XC)�1 + 1

⌘
=

1
>
g

C,0XC
D(XC, 1)c,

and hence
B1 ✓ Bc ✓ 1

>
g

C,0XC
D (XC, 1) .

We define k3 : B1 ! D(0, 1) as
k3(H) = >

g

C,0XCH � XC.

Observe that k3 is holomorphic, k0
3(H) = >

g

C,0XC 2 R+, and

1
k
0
3(1)

=
1

>
g

C,0XC
 1

1X

. (26)

Combining Equations (20), (25) and (26), we obtain

(
g

`
(C, 0)  1

1X
2 .

This shows the first bound in Lemma 3.9.
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Finally, we define k4. Since ; < B1 ( C is open and simply connected by Claim 3.13,
there exists a (unique) biholomorphic mapping k4 : B1 ! D(0, 1) such that k4(1) = 0 and
k
0
4(1) 2 R+ by the Riemann Mapping Theorem (Theorem 2.6). Let ⌘ = k

�1
4 be the holomorphic

mapping from D(0, 1) to B1 with ⌘(0) = 1. We deduce from the Koebe’s One-Quarter Theorem
(Theorem 2.7) that

1
4
|⌘0(0) |  dist(1, mB1)  dist(1,B) = dist

⇣
1, Cg

C,0

⌘
,

and hence
1

k
0
4(1)

= ⌘
0(0)  4dist

⇣
1, Cg

C,0

⌘
. (27)

Combining Equations (20), (25) and (27), we get

(
g

`
(C, 0)  4

X

dist
⇣
1, Cg

C,0

⌘
,

which is the second bound in Lemma 3.9.

We end this section with the proof of Claim 3.13.

����� �� ��� �� ���� � Item 1 follows from the stability of the partition function and Item 2
can be deduced by direct calculations. We omit the details here and refer to the proof of
Claim 3.10.

For Item 3, again we first show that image(6) ✓ Bc. Suppose for sake of contradiction that
6 (,) 2 B for some , 2 K . Then there exists 1 < G 2 �C ✓ —

0< 82�g

C

�C, 8 such that

G

>
g

C,0( G � 1) = 6 (,) = 1
>
g

C,0

/
g[(C,0)
E

(,)
/
g

E
(, [ 1C)

.

It follows that
/
g

E
(, [ G1C) = /

g[(C,0)
E

(,) +
’

0< 82�g

C

G/
g[(C, 8)
E

(,) = 0,

where G1C represents the vector of external fields at C defined by _C, 8 = G for all 0 < 8 2 �g

C
. This

contradicts the stability assumption of the partition function. Therefore, image(6) ✓ Bc. The
Open Mapping Theorem (Theorem 2.8) then implies that image(6) ✓ B1 which is the connected
component of Bc

containing 1. Meanwhile, notice that the region �C is open and connected
since it is a connected component of the open set

—
0< 82�g

C

�C, 8 , and so B is open, connected, and
unbounded. Hence, Lemma 3.12 shows that B1 is open and simply connected. This completes
the proof of the claim. ⌅

�� �������� ������������ ��� ������ ��������� ������ ��������

Let ⌧ = (+ , ⇢) be a graph of maximum degree �. We consider the Holant problem in the binary
symmetric case, which we now describe. Let { 5D}D2+ : N! R�0 be a family of functions, one
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for each vertex D 2 + in the input graph. One should think of each 5D as representing a local
constraint on the assignments to edges incident to D. Since we are restricting ourselves to the
binary case, our configurations f will map edges to {0, 1}. Furthermore, since we are restricting
ourselves to the symmetric case, our local functions 5D will only depend on the number of edges
incident to Dwhich are mapped to 1. With these { 5D}D2+ in hand, we may write the multivariate
partition function as

/⌧ (_) =
’

f:⇢!{0,1}

÷
D2+

5D( |f⇢(D) |)
÷
42⇢

_
1{f4=1}
4

, (28)

where ⇢(D) is the set of all edges adjacent to D, f⇢(D) is the configuration restricted on ⇢(D), and
|f⇢(D) | is the number of edges in ⇢(D) with assignment 1.

This class of problems is already incredibly rich, and encompasses many classical objects
studied in combinatorics and statistical physics including the following:

Matchings/Monomer-Dimer Model: Assume all 5D are the same and given by the “at-most-
one” function:

5D(9) =
8>><
>>:
1, if 9 = 0, 1;

0, if 9 � 2.

Then /⌧ (1) yields the number of matchings (of any size) in ⌧.
Weighted Edge Covers: Assume all 5D are the same and given by the weighted “at-least-one”
function:

5D(9) =
8>><
>>:
d, if 9 = 0;

1, if 9 � 1.

In the case d = 0, then /⌧ (1) yields the number of edge covers of ⌧, that is, subsets of edges
such that every vertex is incident to at least one selected edge.
Weighted Even Subgraphs: In this case, all 5D are the same and given by the weighted
“parity” function. More specifically, for a fixed positive parameter d > 0, we have

5D(9) =
8>><
>>:
1, if 9 is even;

d, if 9 is odd.

In the case d = 0, then /⌧ (1) counts the number of even subgraphs, that is, subsets of
edges such that all vertices have even degrees in the resulting subgraph. (Note that when
d = 0, the Glauber dynamics is not ergodic.)
Ising Model on Line Graphs: In this case, each 5D depends on the degree of D. If V > 0 is
some fixed parameter (independent of D), and 3 = deg(D), then we have

5D(9) =
8>><
>>:
V
(92)V(3�92 ) , if 0  9  3;

0, o/w.
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In all of the above examples, prior works managed to show that the Glauber dynamics
admits an inverse polynomial spectral gap ([��] for matchings, [��] for edge covers, [��] for
weighted even subgraphs, and [��] for the Ising model in the antiferromagnetic V < 1 regime).
Furthermore, all of these results were obtained via the canonical paths method [��], and its
winding extension [��]. However, one down-side behind these results is that the spectral gap
bounds are suboptimal, and do not yield optimal mixing times nor sub-Gaussian concentration
estimates. In contrast, by combining our framework with known zero-free regions for these
models and the local-to-global mixing result of [��], we obtain optimal mixing times and sub-
Gaussian concentration results for these problems in the bounded-degree regime.

One of the convenient aspects of our approach is that establishing the required zero-free
region for the complicated multivariate partition function can be boiled down to establishing
stability for a bounded-degree univariate polynomial with coe�cients coming from the local
functions 5D. This was one of the main insights of [��, ��, ��]. More specifically, if � is the
maximum degree of the input graph ⌧ = (+ , ⇢), and 5D : [3] ! R�0 is the local function for
some vertex D 2 + , where 3 = deg(D)  �, then define the corresponding local polynomial at D
by

%D(H) =
3’

9=0

✓
3

9

◆
5D(9)H9 . (29)

A circular region on the complex plane is the interior or exterior of a disk, or an open
half-plane. [��] showed using Asano–Ruelle contractions [�, ��] that in the case all 5D are the
same, and all %D are �-stable for an open half-plane � ✓ C, the multivariate partition function is
�-stable where � =

⇥
�(�c)2

⇤c. This result actually holds for any circular region � ✓ C assuming
that either� is convex or every local polynomial %D has degree deg(D); under these assumptions
one can apply the famous Grace–Walsh–Szegö Coincidence Theorem to the local polynomials,
see [��, ��]. A straightforward generalization of their techniques yields the following.

������� ��� ([��])� Let ⌧ = (+ , ⇢) be a graph. Let { 5D}D2+ : N ! R�0 be a family of local
functions, and let {�D}D2+ be a family of circular regions containing 0 such that for every D 2 + ,
either �D is convex or 5D(deg(D)) > 0. If for every D 2 + , the local polynomial %D is �D-stable,
then the multivariate partition function /⌧ (_) is

Œ
42⇢ �4 stable, where for each edge 4 = {C, D},

�4 =
�
��c

C
· �c

D

�c ✓ C.
Using Theorem 4.1, [��] established zero-free regions for a large class of Holant problems

satisfying generalized second-order recurrences, including matchings, weighted edge covers,
and weighted even subgraphs. Our main theorems Theorems 1.1, 1.2 and 1.4 build upon these
zero-free results as well as Theorems 1.7 and 2.2 (note that we can obtain spectral independence
for matchings from Theorems 1.7 and 4.1, which was already known in [��] with a better bound
by correlation decay proofs). Zero-free regions were also established for weighted edge covers
and the antiferromagnetic Ising model on line graphs in [��], using techniques from [��].
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Before proving the main theorems, we will need the following simple lemma concerning
the case where the regions �C are half-planes. Recall that HY = {F + 7 G : F < �Y} and HY =

{F + 7 G : F  �Y} for Y 2 R+.

����� ��� (Lemma 5 in [��])� For Y > 0, let � = (�H2
Y
)c be a region. Then � contains R+, and

for every _ 2 R+ we have dist(_, m�) = _ + Y
2 if _ 2 (0, Y2), and dist(_, m�) = 2Y

p
_ if _ 2 [Y2,1).

For completeness, we provide a proof in Appendix B. With these tools in hand, we deduce
strong zero-free regions for the above examples. We use these to prove our main mixing results
Theorems 1.1, 1.2 and 1.4. Note that by Lemma 3.1 and Theorem 3.2, one can in fact establish
rapid mixing results for these models with non-uniform external fields, though we only state
the uniform case for simplicity.

����� �� ������� ��� � By Theorem 2.2, it su�ces to prove [-spectral independence for
[ = $�,_,d(1). By Theorem 1.7, it su�ces to prove that the multivariate partition function
Equation (28) is �-stable, where � ✓ C is an open connected region containing R+ and X =
1
_
dist(_, m�) = ��,_,d(1).

It is more convenient for us to work with the model on complements of weighted edge
covers, whose partition function is the inversion of that for weighted edge covers. For this, the
local polynomial is given by

%D(H) = (1 + H)deg(D) � (1 � d)Hdeg(D) ,

which is H
c
1/2-stable. Then by Theorem 4.1, the inversion of the weighted edge cover partition

function /⌧ (_) is
⇣
�H21/2

⌘c
-stable, and therefore /⌧ (_) is �-stable for

� =
h⇣
�H21/2

⌘ci�1
= [�D(�1, 1)2]c.

This region � is also derived in [��]. We remark that the region �D(�1, 1)2 is cardioid-shaped,
and its complement � is an open connected region containing R+; see Lemma 3.9 and Figure 1
in [��]. Hence, we have R+ ✓ � and X = ��,_,d(1) as wanted. ⌅

����� �� ������� ��� � We may assume d 2 (0, 1) since if d = 1 then we get a trivial
product distribution. Once again, by Theorem 2.2, it su�ces to prove [-spectral independence
for [ = $�,_,d(1), and by Theorem 1.7, it su�ces to prove that the multivariate partition function
Equation (28) is �-stable, where � ✓ C is an open connected region containing R+ and X =
1
_
dist(_, m�) = ��,_,d(1).

For this, observe that the local polynomial is given by

%D(H) =
deg(D)’
9=0

✓
deg(D)

9

◆ ✓
1 + d

2
+ 1 � d

2
(�1)9

◆
H
9

=
1 + d

2
(1 + H)deg(D) + 1 � d

2
(1 � H)deg(D) .
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Since 0 < d < 1, the roots of %D are given by l�BD
l+BD where l 2 C satisfies ldeg(D) = �1, and BD 2 R+

is given by

BD =
✓
1 + d

1 � d

◆1/deg(D)
> 1.

It follows that %D is
h
D

⇣
� B

2
D
+1

B
2
D
�1 ,

2BD
B
2
D
�1

⌘ic
-stable. Then by Theorem 4.1, /⌧ (_) is

Œ
42⇢ �4-stable,

where for each edge 4 = CD 2 ⇢,

�4 =

�D

✓
� B

2
C
+ 1

B
2
C
� 1

,

2BC
B
2
C
� 1

◆
· D

✓
� B

2
D
+ 1

B
2
D
� 1

,

2BD
B
2
D
� 1

◆�c
.

In particular, /⌧ (_) is �-stable for

� =

"
�D

✓
� B

2 + 1
B
2 � 1

,

2B
B
2 � 1

◆2#c
✓ �4, 84 2 ⇢, where B =

✓
1 + d

1 � d

◆1/�
> 1.

The region � is open and connected. Observe that we have � ◆
⇣
�H2B�1

B+1

⌘c
. Hence, by

Lemma 4.2 we have R+ ✓ � and X = ��,_,d(1) as wanted. ⌅

����� �� ������� ��� � By Theorem 2.2 it su�ces to prove [-spectral independence for
[ = $�,V,W,_ (1). By Theorem 1.7 it su�ces to prove that the multivariate partition function
Equation (28) is �-stable, where � ✓ C is an open connected region containing R+ and X =
1
_
dist(_, m�) = ��,V,W,_ (1).

For this, observe that the local polynomial is given by

%D(H) =
deg(D)’
9=0

✓
deg(D)

9

◆
V
(92)W(

deg(D)�9
2 )

H
9
.

By Proposition 4.3 below (see Section 4.1 for the proof), all roots of these polynomials are strictly
negative reals, i.e., they are contained in (�1,�Ydeg(D)] for some constant Ydeg(D) = Ydeg(D) (V, W) >
0 depending only on deg(D), V, W. Then by Theorem 4.1, /⌧ (_) is

Œ
42⇢ �4-stable, where for each

edge 4 = CD 2 ⇢,
�4 =

⇣
�HYdeg(C) · HYdeg(D)

⌘c
.

In particular, /⌧ (_) is �-stable for � = (�H2
Y
)c where Y = min13� Y3 depends only on �, V, W.

The region � is open and connected, and by Lemma 4.2 it containsR+ andwe have X = ��,V,W,_ (1)
as wanted. ⌅

��� ��������� ��� ����������������� �������� ���� ������

In this subsection, we analyze the roots of the local polynomial for antiferromagnetic two-spin
edge models, which is needed in the proof of Theorem 1.4 above. We generalize a result due
to [��] which proves that the local polynomial for the antiferromagnetic edge Ising model has
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strictly negative real roots. We achieve this by generalizing their arguments to all antiferromag-
netic two-spin edge models.

������ �� ��� ��� (Generalization of Lemma 4.3 in [��])� For every V � 0, W > 0 with
VW < 1 and every positive integer 3 � 1, the univariate polynomial

%3 (H) =
3’

9=0

✓
3

9

◆
V
(92)W(3�92 )H9

has strictly negative real roots.

We prove this via an inductive approach, relying on the following decomposition of %3 .

����� ���� For every V � 0, W > 0 and every positive integer 3 � 1, we have that

%3+1(H) = W
3
%3 (H/W) + H%3 (VH).

����� � We have

%3+1(H) =
3+1’
9=0

✓
3 + 1
9

◆
|  {z  }
=(3

9
)+( 3

9�1)

V
(92)W(3+1�92 )

H
9

=
3’

9=0

✓
3

9

◆
V
(92)W(3+1�92 )

H
9 +

3’
9=0

✓
3

9

◆
V
(9+12 )W(3�92 )H9+1

=
3’

9=0

✓
3

9

◆
V
(92)W(3�92 )W3�9H9 + H

3’
9=0

✓
3

9

◆
V
(92)W(3�92 )V9H9

= W
3
%3 (H/W) + H%3 (VH). ⌅

����� �� ������ �� ��� ��� � If V = 0 then %3 is linear and the proposition is immediate.
We may assume V > 0. We prove via induction the following stronger claim: The roots
@1 > · · · > @3 of %3 are distinct, real, and strictly negative, and further satisfy @7/@7+1 < VW.
The cases 3 = 0, 1 are vacuous. When 3 = 2, the polynomial %2(H) = VH

2 + 2H + W has roots
(�1 ±

p
1 � VW)/V, which are distinct, real, and strictly negative since VW < 1. One can also

check that @1/@2 < VW via a straightforward calculation. This establishes the base case.
Assume the stronger conclusion holds for some 3 � 2. By Lemma 4.4, we may write

%3+1(H) = W
3
%3 (H/W) + H%3 (VH). If @1 > · · · > @3 are the roots of %3 , then W@1 > · · · > W@3 are

the roots of W3%3 (H/W), and 0 = @0/V > @1/V > · · · > @3/V are the roots of H%3 (VH), where for
convenience we define @0 = 0. First, we claim that the roots of W3%3 (H/W) interlace the roots of
H%3 (VH), i.e.,

0 = @0/V > W@1 > @1/V > W@2 > · · · > @3�1/V > W@3 > @3/V.

To see this, observe that W@7 > @7/V since VW < 1, and @7�1/V > W@7 since @7�1/@7 < VW by the
induction hypothesis for %3 .
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Now, we claim that for each 7 = 2, . . . , 3, the evaluations

%3+1(W@7) = W@7%3 (VW@7) and %3+1(@7�1/V) = W
3
%3 (@7�1/VW)

are nonzero and have di�erent signs. Observe that VW@7 , @7�1/VW 2 (@7 , @7�1); hence, the eval-
uations %3 (VW@7) and %3 (@7�1/VW) are nonzero and have the same sign, and we deduce the
claim by @7 < 0. It then follows from the Intermediate Value Theorem that %3+1 has a root
A7 2 (W@7 , @7�1/V) for each 7 = 2, . . . , 3.

Moreover, %3+1 also has a root A1 2 (W@1, 0) and a root A3+1 2 (�1, @3/V). Observe that the
evaluations %3+1(W@1) = W@1%3 (VW@1) and %3+1(0) = W

3
%3 (0) are nonzero and have di�erent

signs since 0 > VW@1 > @1, and the Intermediate Value Theorem implies a root A1 2 (W@1, 0).
Meanwhile, %3+1(@3/V) = W

3
%3 (@3/VW) and %3 (�1) are nonzero and have the same sign since

�1 < @3/VW < @3 . Also, %3 (�1) and %3+1(�1) have di�erent signs since the two polynomials
di�er in degree by 1. This shows that %3+1(@3/V) and %3+1(�1) are nonzero and have di�erent
signs, and the Intermediate Value Theorem shows the existence of a root A3+1 2 (�1, @3/V).

To summarize, we prove that %3+1 has roots A1 > · · · > A3+1 which are distinct strictly nega-
tive real numbers and (taking @0 = 0 and @3+1 = �1 for convenience) satisfy A7 2 (W@7 , @7�1/V) for
any 7 = 1, . . . , 3 + 1. To finish the induction, we need to show that A7/A7+1 < VW for all 7 = 1, . . . , 3,
which follows by A7/A7+1 < (W@7)/(@7/V) = VW. ⌅

�� �������� ������������ ��� �������� ����� �������������
��� ������ ������� ������������

In this section, we study spectral independence for general tensor network contractions and
weighted graph homomorphisms. Unlike binary symmetric Holant problems, where rapid
mixing of the Glauber dynamics was already known for our main examples such as matchings
[��], Ising model on line graphs [��], edge covers [��], and weighted even subgraphs [��],
in the setting we consider here, rapid mixing for any local Markov chain was not known
beyond simple and standard path coupling arguments. Prior works [��, ��, ��, ��] had studied
these problems but only from the perspective of deterministic approximation algorithms using
Barvinok’s polynomial interpolation method [�]. While these algorithms run in polynomial
time for bounded-degree graphs, the exponent typically depends on the maximum degree, and
are more di�cult to implement.

Here, we show that the Glauber dynamics mixes in $(< log <) steps for these problems on
bounded-degree graphs, yielding significantly faster and simpler algorithms for computing the
partition function. We again reduce rapid mixing to spectral independence via Theorem 2.2,
and then reduce spectral independence to the existence of a su�ciently large zero-free region
for the multivariate partition function via Theorem 3.2. Fortunately, such zero-free regions
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were already obtained in prior works, as they are the entire basis for Barvinok’s polynomial
interpolation method. We leverage them here in a completely black-box manner.

��� �������� ����� �������������

Here, we study weighted graph homomorphisms, which may also be viewed as spin systems
on vertices. In the bounded-degree setting, we show that the Glauber dynamics on vertex
configurations for these models mixes in $(< log <) steps, provided the weights are su�ciently
close to 1. This is analogous to classical mixing results stating the Glauber dynamics mixes
rapidly in the “high-temperature” regime.

������� ��� (Spectral Independence for Weighted Graph Homomorphisms)� Fix a positive
integer ? � 2, let ⌧ = (+ , ⇢) be a graph with maximum degree  �, and for each edge CD 2 ⇢, let
�
CD 2 R?⇥?�0 be a (not necessarily symmetric) nonnegative matrix. There exists a universal constant

W ⇡ 0.56 independent of ?,⌧, {�CD}CD2⇢ such that if |�CD( 8, 9) � 1|  W

�+W � Y for some Y > 0, all
CD 2 ⇢ and all 8, 9 2 [?], then the associated graph homomorphism distribution ` on vertex
configurations f : + ! [?] given by

`(f) /
÷
CD2⇢

�
CD(f(C), f(D))

is [-spectrally independent for some constant [ = [(�, Y). In particular, if �, Y = �(1), then the
Glauber dynamics for sampling from ` mixes in $(< log <) steps.

������ ���� A straightforward application of the classical Dobrushin uniqueness condition
yields rapid mixing when |�CD( 8, 9) � 1| . 1

2� for all CD 2 ⇢ and all 8, 9 2 [?].

The zero-free region for the graph homomorphism partition function was studied in [��].
We state here a slightly more general theorem, the proof of which is included in Appendix A.1
for completeness.

������� ��� (Zeros for Weighted Graph Homomorphisms; [��])� Fix a positive integer
? � 2, let ⌧ = (+ , ⇢) be a graph with maximum degree  �, and for each edge 4 = CD 2 ⇢, let
�
CD 2 C?⇥? be a (not necessarily symmetric or Hermitian) complex matrix. There exists a universal

constant W ⇡ 0.56 independent of ?,⌧, {�CD}CD2⇢ such that if |�CD( 8, 9) � 1| < W

�+W for all CD 2 ⇢

and all 8, 9 2 [?], then for every ( ✓ + and every q : ( ! [?], the graph homomorphism partition
function ’

f:+![?]
f |(=q

÷
CD2⇢

�
CD(f(C), f(D))

with pinning q is nonzero.

We give below the proof of Theorem 5.1.
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����� �� ������� ��� � By Theorem 3.2, it su�ces to prove that themultivariate partition
function ’

f:+![?]
f |(=q

÷
CD2⇢

�
CD(f(C), f(D))

÷
D2+

_D,f(D) (30)

is nonzero in the polydiskD =
�
_ 2 C+⇥[?] :

��
_D,9 � 1

��
< 2,8D 2 + ,89 2 [?]

 
for all pinnings q,

where 2 = 2(�, Y) > 0 is some constant depending only on �, Y but not ⌧. Define a new set of
matrices {�̃CD}CD2⇢ by

�̃
CD( 8, 9) = �

CD( 8, 9) · _1/deg(C)
C, 8

· _1/deg(D)
D,9

, 8CD 2 ⇢,8 8, 9 2 [?] .

Note that the partition function for ⌧, {�̃CD}CD2⇢ is precisely given in Equation (30).
Since |�CD( 8, 9) � 1|  W

�+W � Y, there exists our desired 2(�, Y) > 0 such that |_C, 8 � 1|, |_D,9 �
1| < 2(�, Y) implies |�̃CD( 8, 9) � 1| < W

�+W , for all CD 2 ⇢ and all 8, 9 2 [?]. It follows from
Theorem 5.3 that the multivariate partition function Equation (30) is nonzero. As this holds for
all _ 2 D, we are done. ⌅

��� ������ ������� ������������

Here, we study general tensor network contractions, which is a partition function of a dis-
tribution over configurations on edges of a graph. Tensor networks are heavily studied in
quantum computing [��, �, ��] and are also used to model Holant problems [��, ��, ��]. In the
bounded-degree setting, we also show that the Glauber dynamics on edge configurations for
these models mixes in $(< log <) steps, provided the weights are su�ciently close to 1. Again,
this is analogous to classical mixing results stating the Glauber dynamics mixes rapidly in the
“high-temperature” regime.

To state our main result, let us first define tensor network contraction. Given a graph
⌧ = (+ , ⇢) and a collection of local functions { 5D : [?]⇢(D) ! R�0}D2+ on configurations on edges,
we define the associated tensor network distribution ` over edge configurations f : ⇢ ! [?] to
be given by

`(f) /
÷
D2+

5D(f |⇢(D)). (31)

The associated partition function, known as a tensor network contraction, is given by’
f:⇢![?]

÷
D2+

5D(f |⇢(D)).

The name “tensor network” comes from the fact that each 5D may be viewed as a tensor with
axes corresponding to edges in ⇢(D) and indexed by [?]. This is a vast generalization of the
Holant problems considered in Section 4 (see, for instance, Equation (28)), where ? = 2 and
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each local function 5D is symmetric. Zeros for tensor network contractions were analyzed in
[��] in the symmetric case.

������� ��� (Spectral Independence for Tensor Network Distribution)� Fix a positive
integer ? � 2, let ⌧ = (+ , ⇢) be a graph with maximum degree  �, and for each vertex D 2 + ,
let 5D : [?]⇢(D) ! R�0 be a nonnegative function on configurations of edges incident to D. There
exists a universal constant W ⇡ 0.56 independent of ?,⌧, { 5D}D2+ such that if | 5D(U) � 1|  W

�+1+W � Y

for some Y > 0, all D 2 + and all U : ⇢(D) ! [?], then the tensor network distribution ` on edge
configurations f : ⇢ ! [?] given by Equation (31) is [-spectrally independent for some constant
[ = [(�, Y). In particular, if �, Y = �(1), then the Glauber dynamics for sampling from ` mixes in
$(< log <) steps.

������ ���� A straightforward application of the classical Dobrushin uniqueness condition
yields rapid mixing when | 5D(U) � 1| . 1

4(��1) for all D 2 + and all U : ⇢(D) ! [?].

To establish this spectral independence, we need a su�ciently large zero-free region.
This was proved by [��] in the symmetric case, where each local function 5D depends only on
the number of incident edges that are mapped to each color in [?]. It turns out using nearly
identical arguments, one can obtain the following more general theorem. We provide a proof
in Appendix A.2 for completeness.

������� ��� (Zeros of Tensor Network Contractions; [��])� Fix a positive integer ? � 2, let
⌧ = (+ , ⇢) be a graph with maximum degree  �, and for each vertex D 2 + , let 5D : [?]⇢(D) ! C
be a complex function on configurations of edges incident to D. There exists a universal constant
W ⇡ 0.56 independent of ?,⌧, { 5D}D2+ such that if | 5D(U) � 1| < W

�+1+W for all D 2 + and all U :
⇢(D) ! [?], then for every � ✓ ⇢ and every q : � ! [?], the tensor network contraction’

f:⇢![?]
f |�=q

÷
D2+

5D(f |⇢(D))

with pinning q is nonzero.

We give below the proof of Theorem 5.4.

����� �� ������� ��� � By Theorem3.2, it su�ces to prove that themultivariate partition
function ’

f:⇢![?]
f |�=q

÷
D2+

5D(f |⇢(D))
÷
42⇢

_4,f(4) (32)

is nonzero whenever _ lies in the polydiskD = {_ 2 C⇢⇥[?] : |_4,9 � 1| < 2,84 2 ⇢,89 2 [?]} for
all pinnings q, where 2 = 2(�, Y) > 0 is some constant depending only on �, Y but not ⌧. Define
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a new set of local constraint functions { 5̃D}D2+ by

5̃D(U) = 5D(U) ·
÷

42⇢(D)
_
1/2
4,U(4) , 8D 2 + ,8U : ⇢(D) ! [?] .

Note that the partition function for ⌧, { 5̃D}D2+ is precisely given in Equation (32).
Since | 5D(U)�1|  W

�+1+W �Y, there exists our desired 2(�, Y) > 0 such that |_4,9�1| < 2(�, Y)
for all 4 2 ⇢(D) implies | 5̃D(U) � 1| < W

�+1+W , for all D 2 + and all U : ⇢(D) ! [?]. It follows from
Theorem 5.6 that the multivariate partition function Equation (32) is nonzero. As this holds for
all _ 2 D, we are done. ⌅

�� ����������������� �� ��� �������� ����

In this section, we state a general result for mixing of an arbitrary measure on the discrete cube
{�1, 1}<. For this, we fix an arbitrary potential 5 : {�1, 1}< ! R. A standard result from analysis
of Boolean functions says that 5 admits a unique representation as a multilinear polynomial
5 (F) = Õ

(✓[<] 5̂ (()
Œ

72( F7 . This representation is known as the Fourier-Walsh transform of 5
(see [��] and references therein), and the coe�cients 5̂ (() are known as the Fourier coe�cients.
[�] showed that when the Fourier coe�cients, as well as the degree deg 5 of 5 as a multilinear
polynomial, are su�ciently small, then one has a zero-free disk for the corresponding partition
function

Õ
F2{�1,1}< 4

5 (F) . We convert this via Theorem 3.2 into a corresponding statement for
the spectral independence of the distribution. Since we do not assume that 5 arises from a
spin system (or, more generally, tensor network) on a bounded-degree graph, we only obtain a
spectral gap bound with a relatively large exponent using Theorem 2.1 proved in [�, �].

������� ���� Let 5 : {�1, 1}< ! R and Y > 0 be given, and assume that
p
deg 5 · !( 5 )  ⇠ � Y,

where ⇠ ⇡ 0.55 is an absolute constant, and !( 5 ) := max72[<]
Õ

(✓[<]:(37
��
5̂ (()

��. Further assume
that the associated Gibbs distribution ` on {�1, 1}< given by

`(F) / exp( 5 (F))

is 1-marginally bounded for some 1 > 0. Let b := 2⇠p
deg 5

�2!( 5 ). Then ` is [-spectrally independent
where [ is a constant depending only on 1 and b. In particular, ` is $(1)-spectrally independent
if Y, deg( 5 ), 1 = �(1).

������ ���� One may also view !( 5 ) as bounding the Lipschitz constant of 5 .
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������ ���� A standard calculation using Dobrushin uniqueness condition yields that the
Glauber dynamics is rapidly mixing when

max
72[<]

’
(✓[<]:(37

( |( | � 1) ·
��
5̂ (()

��
< 1,

which can be weakened to (deg( 5 ) � 1) · !( 5 ) < 1. These bounds are in general not comparable
with the above due to the square root. While this bound is stronger when deg( 5 ) is small, the
above is stronger when most of the Fourier mass of 5 is on high-degree monomials.

������ ���� A standard notion in analysis of Boolean functions is also that of “influence”,
which to avoid confusion with the notion of pairwise influence used to define spectral inde-
pendence, we refer to as “voter influence”. This terminology is consistent with the traditional
applications of analysis of Boolean functions to social choice theory and voting systems; see
[��] and references therein. A standard result in analysis of Boolean functions says that the
“voter influence” of coordinate 7 is precisely’

(✓[<]:(37

��
5̂ (()

��2
.

Hence, while we do not establish a formal connection between small “voter influence” and
strong spectral independence guarantees, our result Theorem 6.1 says this is true at least
morally.

We need the following zero-free result from [�].

������� ��� ([�])� Let 5 : {�1, 1}< ! C be given, and assume that
p
deg( 5 ) · !( 5 ) < ⇠,

where ⇠ ⇡ 0.55 is an absolute constant, and !( 5 ) := max72[<]
Õ

(✓[<]:(37
��
5̂ (()

��. Then for every
( ✓ [<] and every pinning q : ( ! {�1, 1}, we have that the partition function of the associated
Gibbs measure on {�1, 1}< with pinning q is nonzero:’

F2{�1,1}<:F |(=q
exp( 5 (F)) < 0.

We now prove Theorem 6.1.

����� �� ������� ��� � By Theorem 3.2, it su�ces to prove that themultivariate partition
function ’

F2{�1,1}<:F |(=q
exp( 5 (F))

÷
72[<]:F7=1

_7 (33)

is nonzero whenever _ lies in the set D = {_ 2 C< : |_7 � 1| < 2,87 2 [<]} for all pinnings
q, where 2 = 2(b) > 0 is a constant depending only on b but not <. Define a new function
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6 : {�1, 1}< ! C by

6 (F) = 5 (F) +
<’
7=1

1 + F7

2
log _7 = 5 (F) +

’
72[<]:F7=1

log _7 .

Then exp(6 (F)) = exp( 5 (F))Œ
72[<]:F7=1 _7 and the partition function

Õ
F2{�1,1}<:F |(=q exp(6 (F))

associated with 6 is precisely our desired multivariate partition function Equation (33). Our
goal is to apply Theorem 6.5 to 6 and deduce our desired stability statement.

First, it is clear from the definition of 6 that the Fourier coe�cients of 6 are given by

6̂ (() =

8>>>>><
>>>>>:

5̂ ((), if |( | > 1;

5̂ (7) + 1
2 log _7 , if ( = {7} for some 7 2 [<];

5̂ (;) + 1
2
Õ

<

7=1 log _7 , if ( = ;.

It follows that

!(6)  !( 5 ) + 1
2
max
72[<]

|log _7 | .

Note that deg(6) = deg( 5 ) (unless deg( 5 )  1, in which case spectral independence and rapid
mixing is trivial). Hence, if _ 2 C< satisfies | log _7 | < b for all 7 2 [<], then rearranging yields
precisely that

p
deg(6) ·!(6) < ⇠ and the zero-freeness follows from Theorem 6.5. Furthermore,

it is clear that the set {_ 2 C< : | log _7 | < b,87 2 [<]} containsD for a value of 2(b) > 0 which
depends only on b, just by continuity of the logarithm. ⌅

�� ������ ����������

One open problem of our work is to obtain spectral independence for sampling 1-matchings
and 1-edge-covers for general 1 on all graphs. It was shown in [��] that the Glauber dynamics
for sampling 1-matchings (respectively, 1-edge-covers) mixes rapidly when 1  7 (respectively,
1  2); their proof approach relies on the canonical paths technique and in particular, the
winding method [��]. In a recent paper [��], spectral independence was established for 1-
matchings and 1-edge-covers for all 1 on bounded-degree graphs.

����������
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In this section, we supply proofs of the main zero-free statements used in Section 5. As noted
earlier, for technical reasons, we need straightforward generalizations of prior results which
do not make symmetry assumptions. We manage to adapt previous arguments without much
additional e�ort, which we provide here for completeness.

Themain idea in these zero-free proofs is to do induction by conditioning on the assignment
of fewer and fewer vertices (respectively, edges) for weighted homomorphisms (respectively,
tensor networks). However, one needs to strengthen the inductive hypothesis beyond simple
zero-freeness. To the best of our knowledge, this type of argument was first pioneered by
Barvinok, and has had a wide range of applications; see [�, �, ��, ��] for applications besides
those discussed in this paper.

The crucial tool is the following geometric lemma, which provides a kind of “reverse
triangle inequality”. The version below is due to Boris Bukh; a weaker version, with cos(\/2)
replaced by

p
cos \, was known due to [��]. See [�] for a proof.

����� ��� (Angle Lemma)� Let F1, . . . , F< 2 C be nonzero complex numbers viewed as vectors
in R2. Suppose there is an angle 0  \ < 2c/3 such that for all 7, 8, the angle between F7 , F8 is at
most \. Then we have the lower bound

��Õ<

7=1 F7
�� � cos(\/2)Õ<

7=1 |F7 |.

��� ������ ��� �������� ����� �������������

Our goal in this subsection is to prove Theorem 5.3, i.e., that the weighted graph homomorphism
partition function

/
(

q
(�) =

’
f:+![?]
f |(=q

÷
CD2⇢

�
CD(f(C), f(D))

is nonzero in a large polydisk around 1, where ( ✓ + ,q : ( ! [?], and we view /
(

q
(�) as a

polynomial with variables {�CD( 8, 9)}CD2⇢, 8,92[?] . For convenience, for a X > 0, define

U(X) = {� = {�CD}CD2⇢ : |�CD( 8, 9) � 1| < X,8CD 2 ⇢,8 8, 9 2 [?]}.

Additionally, for a partial configuration q : ( ! [?], a vertex C 2 + \ ( and a spin 8 2 [?], we
write qC, 8 : ( [ {C} ! [?] for the unique extension of q with qC, 8 (C) = 8.

We will need the following lemmas to implement an inductive approach.

����� ��� (Lemma 3.3 from [��])� Let g, X > 0, and suppose � 2 U(X). Let ( ✓ + , q : ( ! [?],
C 2 + \ ( be arbitrary. Assume the following hold:
(1) /

([{C}
qC, 8

(�) < 0 for every C 2 + \ ( and every 8 2 [?];
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(2) For every C 2 + \ ( and every 8 2 [?], we have

|/([{C}
qC, 8

(�) | � g

�

’
D⇠C

’
92[?]

|�CD( 8, 9) | ·
���� m

m�
CD( 8, 9)/

([{C}
qC, 8

(�)
���� .

Then for every C 2 + \ ( and every 8, 9 2 [?], the angle between /([{C}
qC, 8

(�) and /([{C}
qC,9

(�) in C is at
most 2X�

g(1�X) .

����� � By assumption (1), the relevant partition functions are nonzero, and so the logarithm
is well-defined when applied to these partition functions and we may bound the angle between
/
([{C}
qC, 8

(�) and /
([{C}
qC,9

(�) by
���log /([{C}

qC, 8

(�) � log /([{C}
qC,9

(�)
��� . (34)

The strategy is towrite /([{C}
qC,9

(�) as /([{C}
qC, 8

(�̃) for some �̃ 2 U(X)which di�ers from � by a small
number of coordinates, and then apply the Fundamental Theorem of Calculus and assumption
(2). For every D ⇠ C, we set �̃CD( 8, 2) = �

CD(9, 2) for every 2 2 [?], and �̃
CD(✓, 2) = �

CD(✓, 2) for
all ✓ < 8. For all other edges DE 2 ⇢, we set �̃DE = �

DE.
It is clear that /([{C}

qC,9

(�) = /
([{C}
qC, 8

(�̃). By the Fundamental Theorem of Calculus, we may
upper bound Equation (34) by

max
⌫2U(X)

’
D⇠C

’
22[?]

���� m

m�
CD( 8, 2) log /

([{C}
qC, 8

(⌫)
���� · |�CD( 8, 2) � �̃

CD( 8, 2) ||                      {z                      }
2X since �,�̃2U(X)

 2X
1 � X

max
⌫2U(X)

’
D⇠C

’
22[?]

|�CD( 8, 2) | · 1

|/([{C}
qC, 8

(⌫) |
·
���� m

m�
CD( 8, 2)/

([{C}
qC, 8

(⌫)
����

|                                                                     {z                                                                     }
�/g by assumption (2)

 2X�
g(1 � X) . ⌅

����� ��� (Lemma 3.4 from [��])� Let 0  \ < 2c/3, X > 0, and suppose � 2 U(X). Let
( ✓ + , q : ( ! [?] be arbitrary. Assume the following hold:
(1) /

([{C}
qC, 8

(�) < 0 for every C 2 + \ ( and every 8 2 [?];
(2) The angle between /

([{C}
qC, 8

(�) and /([{C}
qC,9

(�) in C is at most \, for every C 2 + \ ( and every
8, 9 2 [?].

Then for every C 2 (, we have the lower bound

|/(

q
(�) | � cos(\/2)

�

’
D⇠C

’
92[?]

|�CD(q(C), 9) | ·
���� m

m�
CD(q(C), 9)/

(

q
(�)

���� .
����� � If D 2 ( as well, then there is a unique 9 2 [?] for which m

m�
CD(q(C),9)/

(

q
(�) < 0,

namely 9 = q(D). In this case, �CD(q(C), 9) · m

m�
CD(q(C),9)/

(

q
(�) = /

(

q
(�). Otherwise, D 8 ( and

m

m�
CD(q(C),9)/

(

q
(�) = 1

�
CD(q(C),9) · /

([{D}
qD,9

(�), where qD,9 is the unique extension of qmapping D to 9.
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Combining these two observations, we obtain
’
D⇠C

’
92[?]

|�CD(q(C), 9) | ·
���� m

m�
CD(q(C), 9)/

(

q
(�)

����
= |# (C) \ ( | · |/(

q
(�) | +

’
D⇠C:D8(

’
92[?]

|/([{D}
qD,9

(�) |

 |# (C) \ ( | · |/(

q
(�) | + 1

cos(\/2)

������
’

D⇠C:D8(

’
92[?]

/
([{D}
qD,9

(�)

������|                       {z                       }
=|# (C)\( |·|/(

q
(�) |

(Lemma A.1)

 �
cos(\/2) · |/

(

q
(�) |.

Rearranging yields the desired result. ⌅

With these lemmas in hand, we can now prove the main zero-free result.

����� �� ������� ��� � Let 0 < \ < 2c/3 be a parameter to be determined later, set
g = cos(\/2), and let X > 0 satisfy \ = 2X�

g(1�X) ; in particular, X =
1
2�\ cos(\/2)

1+ 1
2�\ cos(\/2)

. We show by
descending induction on |( | that the following three statements are all true:
(i) For every ( ✓ + , q : ( ! [?] and � 2 U(X), we have /(

q
(�) < 0.

(ii) For every ( ✓ + , C 2 + \ (, q : ( ! [?], � 2 U(X) and 8, 9 2 [?], the angle between
/
([{C}
qC, 8

(�) and /
([{C}
qC,9

(�) in C is at most \.
(iii) For every ( ✓ + , C 2 (, � 2 U(X), we have the inequality

|/(

q
(�) | � cos(\/2)

�

’
D⇠C

’
92[?]

|�CD(q(C), 9) | ·
���� m

m�
CD(q(C), 9)/

(

q
(�)

���� .

The base case ( = + is easily verified since /(

q
(�) = Œ

CD2⇢ �
CD(q(C),q(D)), a product of nonzero

complex numbers.
Now, let ( ✓ + with |( | < |+ |.

Proof of (i) Let C 2 + \ (, which exists since |( | < |+ |. It follows that (i) holds for ( [ {C} by
the inductive hypothesis. Since /(

q
(�) = Õ

92[?] /
([{C}
qC,9

(�), Lemma A.1 applied to /(

q
(�) yields (i)

assuming that (ii) holds. We prove (ii) below.
Proof of (ii) Let C 2 + \ (, which exists since |( | < |+ |. Then (i) and (iii) hold for ( [ {C} by the
inductive hypothesis. (ii) then follows by Lemma A.2.
Proof of (iii) Let C 2 (. Then (i) holds for ( [ {C} by the inductive hypothesis. Since (ii) holds
for ( (as proved earlier), we may then apply Lemma A.3, yielding (iii) for (.

Now, we choose 0 < \ < 2c/3. As we wish to maximize the size of our zero-free region, namely
X, we need to maximize \ cos(\/2). As shown in [��], the maximum is attained when 2/\ =
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tan(\/2), which has solution \
⇤ ⇡ 1.72067 and has objective value F⇤ = \

⇤ cos(\⇤/2) ⇡ 1.12219.
This yields X =

F
⇤
2

�+ F
⇤
2
as claimed. ⌅

��� ������ ��� ������ ������� ������������

Our goal in this subsection is to prove Theorem 5.6, i.e., that the tensor network partition
function

/
�

q
(⌘) =

’
f:⇢![?]
f |�=q

÷
D2+

⌘D(f |⇢(D))

is nonzero in a large polydisk around 1, where � ✓ ⇢,q : � ! [?], and we view /
�

q
(·) as a

polynomial with variables {⌘D(U)}D,U. We prove the following stronger result.

������� ��� (Generalization of Theorem 6 from [��])� Let ⌧ = (+ , ⇢) be a graph of maxi-
mum degree  �. Then for every � ✓ ⇢, q : � ! [?], [ > 0, and 0  \ < 2c/3, the function /

�

q
(⌘)

is nonzero whenever ⌘ 2 Œ
D2+ (D(X, [), where

(D(X, [) =
n
⌘D : [?]⇢(D) ! C : |⌘D(U)�⌘D(V) |<X, 8U,V:⇢(D)![?],

|⌘D(U) |�[, 8U:⇢(D)![?]

o

and X = [ ·min
n
1, \ cos(\/2)�+1

o
.

Before we prove this result, let us see how this gives Theorem 5.6.

����� �� ������� ��� � Observe that (D(X, [) contains a disk around 1 of radius min{X/2,
1 � [}. Using Theorem A.4 and given that X = [ · min

n
1, \ cos(\/2)�+1

o
, where 0 < \ < 2c/3, our

goal is to maximize \ cos(\/2) over 0 < \ < 2c/3 to obtain the largest zero-free disk. As shown
in [��], this maximum is attained when 2/\ = tan(\/2), which has solution \

⇤ ⇡ 1.72067 and
has objective value F⇤ = \

⇤ cos(\⇤/2) ⇡ 1.12219. Given this, to obtain the largest possible radius

disk, we equalize 1�[ and X/2 = [ · F
⇤

2(�+1) . Solving, we obtain [ = 1
1+ F

⇤
2(�+1)

, yielding radius
F
⇤

2(�+1)
1+ F

⇤
2(�+1)

as desired. ⌅

It remains to prove Theorem A.4. We will need the following lemmas to implement an inductive
approach.

����� ��� (Lemma 8 from [��])� Let g > 0, � ✓ ⇢, q : � ! [?] and C 2 + be arbitrary.
Suppose for all ⌘ 2 Œ

D2+ (D(X, [) and all k : � [ ⇢(C) ! [?] extending q, the following hold:
(1) /

�[⇢(C)
k

(⌘) < 0;
(2) For all D 2 # (C) [ {C}, we have

|/�[⇢(C)
k

(⌘) | � g

’
U:⇢(D)![?]

compatible with k

|⌘D(U) | ·
���� m

m⌘D(U)
/
�[⇢(C)
k

(⌘)
���� .
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Then for all extensions k, k̃ : � [ ⇢(C) ! C of q, the angle between /
�[⇢(C)
k

and /�[⇢(C)
k̃

(⌘) in C is
at most X(�+1)

g[
.

����� � By assumption (1), the relevant partition functions are nonzero, and so the logarithm
is well-defined when applied to these partition functions and we may bound the angle between
/
�[⇢(C)
k

(⌘) and /
�[⇢(C)
k̃

(⌘) by
���log /�[⇢(C)

k
(⌘) � log /�[⇢(C)

k̃

(⌘)
��� . (35)

The strategy is to write /�[⇢(C)
k̃

(⌘) as /�[⇢(C)
k

(⌘̃) for some ⌘̃ 2 Œ
D2+ (D(X, [) which di�ers from ⌘

by a small number of coordinates, and then apply the Fundamental Theorem of Calculus and
assumption (2). Let D 2 + . We consider three cases.

v 8 N(u) [ {u}: In this case, k, k̃ agree on ⇢(D) and so we may simply take ⌘D = ⌘̃D.
v 2 N(u): In this case, k, k̃ di�er only on the single edge CD. If U : ⇢(D) ! [?] agrees with
k on CD, then let U0 : ⇢(D) ! [?] be given by replacing U(CD) = k(CD) with k̃(CD), and
take ⌘̃D(U) = ⌘D(U0). Otherwise, just set ⌘̃D(U) = ⌘D(U). (Note that it does not really matter
what we set ⌘̃D(U) to since /�[⇢(C)

k
(⌘) only has the term ⌘D(U) when U agrees with k on CD.

However, we wish to minimize the number of coordinates in which ⌘, ⌘̃ di�er.)
v = u: In this case, just set ⌘̃D(k |⇢(D)) = ⌘D(k̃ |⇢(D)) and ⌘̃D(U) = ⌘D(U) for all U < k |⇢(D) .

It is clear that /�[⇢(C)
k̃

(⌘) = /
�[⇢(C)
k

(⌘̃). By the Fundamental Theorem of Calculus, we may upper
bound Equation (35) by

max
F2Œ

D2+ (D(X,[)

’
D2# (C)[{C}

’
U:⇢(D)![?]

compatible with k

���� m

m⌘D(U)
log /�[⇢(C)

k
(F)

���� · ��⌘D(U) � ⌘̃D(U)
��

 X

[

max
F2Œ

D2+ (D(X,[)

’
D2# (C)[{C}|     {z     }

�+1

’
U:⇢(D)![?]

compatible with k

|⌘D(U) | ·
1

|/�[⇢(C)
k

(F) |
·
���� m

m⌘D(U)
/
�[⇢(C)
k

(F)
����

|                                                                       {z                                                                       }
1/g by assumption (2)

(Definition of (D(X, [))

 X(� + 1)
g[

. ⌅

����� ��� (Lemma 9 from [��])� Let 0  \ < 2c/3, C 2 + , � ✓ ⇢ satisfying � ◆ ⇢(C),
and q : � ! [?]. Suppose for all D 2 # (C) [ {C}, all ⌘ 2 Œ

D2+ (D(X, [), and all extensions
k, k̃ : � [ ⇢(D) ! [?] of q, the following hold:
(1) /

�[⇢(D)
k

(⌘) < 0;
(2) The angle between /

�[⇢(D)
k

(⌘) and /�[⇢(D)
k̃

(⌘) in C is at most \.
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Then for all D 2 # (C) [ {C} and all ⌘ 2 Œ
D2+ (D(X, [), we have

|/�

q
(⌘) | � cos(\/2)

’
U:⇢(D)![?]

compatible with q

|⌘D(U) | ·
���� m

m⌘D(U)
/
�

q
(⌘)

���� .

����� � The conclusion is trivially true if D = C, since by the assumption ⇢(C) ✓ �, there is
only one U : ⇢(D) ! [?] compatible with q, namely q |⇢(C) itself. In this case, ⌘D(U) divides
/
�

q
(⌘) and we can replace cos(\/2) by 1.

Suppose D 2 # (C). Since /�

q
(⌘) = Õ

k:�[⇢(D)![?]
k|�=q

/
�[⇢(D)
k

(⌘), assumptions (1) and (2) make

Lemma A.1 applicable, yielding

|/�

q
(⌘) | � cos(\/2)

’
k:�[⇢(D)![?]

k|�=q

|/�[⇢(D)
k

(⌘) |

= cos(\/2)
’

U:⇢(D)![?]
compatible with k

|⌘D(U) | ·
���� m

m⌘D(U)
/
�

q
(⌘)

����

as desired. ⌅

With these lemmas in hand, we may now proceed with the proof of Theorem A.4.

����� �� ������� ��� � Let [ > 0 and 0  \ < 2c/3 be arbitrary, and take g = cos(\/2),
X = [ ·min

�
1, \g

�+1
 
. We show by descending induction on |� | that the following three statements

are all true:
(i) For every � ✓ ⇢, q : � ! [?] and ⌘ 2 Œ

D2+ (D(X, [), we have /�

q
(⌘) < 0.

(ii) For every � ✓ ⇢, C 2 + , q : � ! [?], ⌘ 2 Œ
D2+ (D(X, [) and k, k̃ : �[⇢(C) ! [?] extending

q, the angle between /
�[⇢(C)
k

(⌘) and /
�[⇢(C)
k̃

(⌘) in C is at most \.
(iii) For every � ✓ ⇢, C 2 + satisfying ⇢(C) ✓ �, q : � ! [?], ⌘ 2 Œ

D2+ (D(X, [) and D 2
# (C) [ {C}, we have the inequality

|/�

q
(⌘) | � cos(\/2)

’
U:⇢(D)![?]

compatible with q

|⌘D(U) | ·
���� m

m⌘D(U)
/
�

q
(⌘)

���� .

The base case � = ⇢ is easily verified since /
�

q
(⌘) =

Œ
D2+ ⌘D(q |⇢(D)), a product of nonzero

complex numbers.
Now, let � ✓ ⇢ with |� | < |⇢ |.

Proof of (i) Let D 2 + with ⇢(D) * �. Since |�[⇢(D) | > |� |, (i) holds for �[⇢(D) by the inductive
hypothesis. Since /�

q
(⌘) = Õ

k:�[⇢(D)![?]
k|�=q

/
�[⇢(D)
k

(⌘), Lemma A.1 applied to /
�[⇢(D)
k

(⌘) yields (i)

assuming that (ii) holds. We prove (ii) below.
Proof of (ii) Let C 2 + and q : � ! [?]. If ⇢(C) ✓ �, then the claim is trivially true since
k = k̃ = q. Otherwise, assume ⇢(C) * � and let k, k̃ : � [ ⇢(C) ! [?] extend q. Since
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|� [ ⇢(C) | > |� |, (i) and (iii) hold for � [ ⇢(C) by the inductive hypothesis. Applying Lemma A.5
to � [ ⇢(C) then yields (ii).
Proof of (iii) Let C 2 + with ⇢(C) ✓ �. Without loss of generality, we may assume such an C

exists since otherwise, there is nothing to prove. Let D 2 # (C) [ {C}. If ⇢(D) ✓ �, then (iii)
trivially holds with cos(\/2) replaced by 1, since there is only one term in the summation,
namely U = q |⇢(D) . Hence, assume ⇢(D) * �. In this case, |� [ ⇢(D) | > |� | and so (i) holds for
� [ ⇢(D) by the inductive hypothesis. Since (ii) for � holds (as proved earlier), we may then
apply Lemma A.6, yielding (iii) for �. ⌅

�� ������ �� ��������� ������

����� �� ����� ��� � By definition we have

dist
⇣
1, Cg

D,9

⌘
= inf

1<H2�D,9

������
1

>
g

D,9
(H � 1) � 1

����� .
If �D,9 is unbounded, then there exists a sequence {H<} such that 1 < H< 2 �D,9 and lim<!1 |H< | =
1. Therefore,

dist
⇣
1, Cg

D,9

⌘
 lim inf

<!1

������
1

>
g

D,9
(H< � 1) � 1

�����  1 + lim inf
<!1

1
>
g

D,9
|H< � 1| = 1.

This shows the first part.
For the second part, observe that UD,9 < 1 < VD,9 since �D,9 is open and 1 2 �D,9. Hence, we

obtain

dist
⇣
1, Cg

D,9

⌘
 inf

F2�D,9\(0,1)

������
1

>
g

D,9
(F � 1) � 1

����� =
1

>
g

D,9
(1 � UD,9)

� 1 =
UD,9

>
g

D,9
(1 � UD,9)

+
1 � >

g

D,9

>
g

D,9

,

and also

dist
⇣
1, Cg

D,9

⌘
 inf

F2�D,9\(1,1)

������
1

>
g

D,9
(F � 1) � 1

����� =
1

>
g

D,9
(VD,9 � 1) + 1.

The second part follows. ⌅

����� �� ����� ��� � By definition we have

dist
⇣
1, Cg

D,0

⌘
= inf

1<H2�D

�����
H

>
g

D,0(H � 1) � 1

����� .
If 0 2 �D, then there exists a sequence {H<} such that 1 < H< 2 �D,9 and lim<!1 H< = 0. Therefore,

dist
⇣
1, Cg

D,0

⌘
 lim inf

<!1

�����
H<

>
g

D,0(H< � 1) � 1

�����  1 + lim inf
<!1

|H< |
>
g

D,0 |H< � 1| = 1.

This shows the first part.
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For the second part, observe that UD < 1 < VD since �D is open and 1 2 �D,9. Hence, we
obtain

dist
⇣
1, Cg

D,0

⌘
 inf

F2�D\(0,1)

�����
F

>
g

D,0(F � 1) � 1

����� =
UD

>
g

D,0(1 � UD)
+ 1,

and also

dist
⇣
1, Cg

D,0

⌘
 inf

F2�D\(1,1)

�����
F

>
g

D,0(F � 1) � 1

����� =
VD

>
g

D,0(VD � 1) � 1 =
1

>
g

D,0(VD � 1) +
1 � >

g

D,0

>
g

D,0
.

The second part follows. ⌅

����� �� ����� ��� � It was shown in [��] that

� =
⇣
�H2

Y

⌘c
=

�
d4

7\ : d(1 � cos \) < 2Y2, 0  \ < 2c
 
.

To make this more interpretable, we rewrite the set in Cartesian coordinates. If H = d4
7\, then

by Euler’s formula we may write H = F + 7 G where F = d cos \ and G = d sin \. We then obtain

d(1 � cos \) < 2Y2

() d < F + 2Y2

() F
2 + G

2
< (F + 2Y2)2

() G
2
< 4Y2(F + Y

2).

Therefore, we see that
� =

�
F + 7 G : G2 < 4Y2(F + Y

2)
 
,

which clearly contains R+.
Furthermore, for _ 2 R+ we have

dist(_, m�) = inf
H2m�

|H � _ |

= inf
(F, G)2R2: G2=4Y2(F+Y2)

p
(F � _)2 + G

2

= inf
F2[�Y2,1)

p
(F � _)2 + 4Y2(F + Y

2)

=

8>><
>>:
_ + Y

2
, _ 2 (0, Y2);

2Y
p
_, _ 2 [Y2,1).

This establishes the lemma. ⌅

���� � ��
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