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Abstract.  

 

Non-additive mixing plays a key role on the properties of molecular fluids and solids. In this work, 

the potential for athermal order-disorder phase transitions is explored in non-additive binary 

colloidal nanoparticles that form substitutionally ordered compounds; namely, for equimolar 

mixtures of octahedra+spheres which form a CsCl lattice compound, and cubes+spheres which 

form a NaCl crystal. Monte Carlo simulations that target phase coexistence conditions were used 

to examine the effect on compound formation of varying degrees of negative non-additivity created 

by component size asymmetry and by size-tunable indentations in the polyhedra’s facets, intended 

to allow the nestling of neighboring spheres. Our results indicate that the stabilization of the 

compound crystal requires a relatively large degree of negative non-additivity which depends on 

particle geometry and the packing of the relevant phases. It is found that negative non-additivity 

can be achieved in mixtures of large spheres and small cubes having no indentations and lead to 

the athermal crystallization of the NaCl lattice. For similarly sized components, athermal 
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congruent transitions are attainable and non-additivity can be generated through indentations, 

especially for the cubes+spheres system. Increasing indentation leads to lower phase coexistence 

free energy and pressure in the cubes + spheres system but has the opposite effect in the octahedra 

+ spheres system. These results indicate a stronger stabilizing effect on the athermal compound 

phase by the cubes’ indentations, where a deeper nestling of the spheres leads to a denser 

compound phase and a larger reduction in the associated pressure-volume free-energy term.  

 

1. INTRODUCTION 

Multicomponent nanocrystal superlattices can possess unique crystal structures, size-dependent 

properties, and (upon etching off one component) high surface-to-volume ratios, providing a 

versatile platform for potential applications in optical, electronic, magnetic, and catalytic 

materials.1–5 However, designing mixtures that can assemble into these superlattices presents the 

key challenge of requiring the fine-tuning the interparticle interaction strengths, component 

shapes, composition, and external conditions. 6–11 Previous studies have investigated the 

interactions driving colloidal mixture assembly and the interplay between enthalpic and entropic 

forces. 12–16 Typically, substitutionally ordered solids or stoichiometric compounds need a selective 

interaction between the unlike species since, without a preference for the type of neighboring 

particles, mixing entropy will tend to favor random mixing and consequently substitutionally 

disordered solids. To assemble athermal solid compounds, the loss of mixing entropy associated 

with the arrangement of different components in a well-defined repeating pattern must be 

outweighed by the gains in packing entropy and the decrease of the pressurevolume (pV) 

contribution to the free-energy (which while an enthalpic effect is sometimes folded into the 

packing entropy concept). One possible approach to increase the packing entropy gain is to utilize 
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the entropic lock-and-key attraction of shape-complementary particles that generate a negative 

non-additive mixing. 17–19   Non-additive mixing is more widely associated with molecular fluids 

and occurs when the volume of the mixed state is either larger (positive) or smaller (negative) than 

the sum of the individual components’ volumes prior to mixing. At a microscopic level, such 

mixing non-idealities can be correlated with a cross-interaction mixing rule where the 

characteristic length “σ” of the contact distance between two particles A and B differs from the 

arithmetic average of the characteristic contact lengths for A pairs and B pairs, i.e., 𝜎𝐴𝐵  =

 ((𝜎𝐴𝐴 + 𝜎𝐵𝐵) 2⁄  + Δ) with 0); for spherical sites, this corresponds to a violation of the so-

called Lorentz’s additivity rule.  

In colloidal systems, some examples of non-additive mixing include the depletion effect of 

polymeric depletants on large colloidal particles as embodied by the Asakura-Oosawa model,20 the 

Kumar-Molinero model21 model of a binary mixture of spherical particles having   > 0  that lead 

to the formation of a wide variety of mesophases, and hard-sphere mixtures with  < 0 which form 

compound solids via congruent melting/freezing (i.e., where the phase transition between isotropic 

and crystal phases occurs at the same composition). 22 As an application for studying non-additivity 

in superlattice formation, our group proposed a general rule15,23,24 to maximize the thermodynamic 

stability of mixtures of spheres and either cubes or octahedra that are known to form crystals with 

NaCl and CsCl lattices experimentally.11 In the case of an equimolar mixture of spheres and flat 

cubes with not too dissimilar sizes, our previous computational study revealed that the formation 

of a congruent phase transition occurs only with a strong enough inter-species attraction energy. 

However, we showed in a subsequent study on the same mixture that by replacing flat cubes by 

dimpled cubes with high indentation sizes, a congruent transition into a purely athermal crystalline 

phase was achievable. Furthermore, we correlated the extent of mixing non-additivity of the 
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components with their ability to stabilize the athermal NaCl phase in equilibrium with the isotropic 

phase.25 That computational study demonstrated that the strength of inter-species entropic bonds 

and the formation of ordered phases can be tuned by modifying the size of concavities on polyhedra 

facets or the sphere-to-cube ratio so as to reduce the geometric frustration (and enhance space 

tessellation) in the compound phase.  

Our previous study 25 explored only a limited range of component size ratios and hence did not 

consider cases where the compound could be regarded as an interstitial solid where the smaller 

component fits snugly into the lattice interstices among the large particles. In this study we hence 

first fill that gap by exploring how large component size asymmetries may lead to the formation 

of athermal compounds. We further aim to investigate the effect on the compound formation of 

nanoparticle ‘valence’, referring to the number of facets per polyhedron, given that dimpled 

polyhedra have been experimentally synthesized, including tetrahedra, cubes, and dodecahedra. 26–

32 We thus sought to determine if athermal superlattice formation could be replicated in other 

systems besides that of spheres+dimpled cubes, and whether packing entropy or vibration entropy 

was more significant in stabilizing the athermal phase. For this purpose, we applied a similar 

methodology to that used for the cubes + spheres system25 to a mixture of octahedra + spheres, 

enhancing the entropic bonds by carving indentations to the octahedra facets where the spheres 

could partially nestle. These dimples allow the octahedra-sphere contact distance to be closer 

which can result in negative mixing non-additivity ( < 0). We also explored the phase diagram 

of the octahedra-sphere system as a function of the indentation ratio and size ratio between the 

components, which are experimentally attainable. By comparing the results of both systems, 

spheres+cubes and spheres+octahedra, we are able to identify their distinct and common features 

that modulate the forces driving the formation of athermal compound phases.  
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The rest of the paper is organized as follows. In Section 2 we describe the models and methodology 

employed. In Section 3 we present and analyze our main results and in Section 4 we conclude by 

outlining the main takeaways and an outlook for future work. 

  

2. COMPUTATIONAL METHODS  

2.1. System and force field 

The system studied in this work consists of a polyhedron (cube or octahedra) with side a and 

spheres with diameter σ, and the model follows a similar parameterization as that of our previous 

study on indented cubes and spheres.25 The interaction between like particles is purely repulsive, 

while unlike particles interact through a square-well potential.  

𝑈11 = 𝑈22 = {
∞, if overlap
0, otherwise

   𝑈12 =  {

∞, if overlap
−𝜀∗, 𝑟 ≤ 𝑟𝑐 , 𝛿 ≤ 𝛿𝑐 = 0.4𝑑𝑓

0, otherwise

 (1) 

Equation (1) states that if no overlap occurs, an energetic contact −* ensues between a polyhedron 

and a sphere if the distance between the centers of the particles (r) is within a cutoff distance rc 

and the distance between the center of the sphere and the vector extending outward from the center 

of the octahedra facet and perpendicular to it (δ, see Fig. 1(a)) is less than 𝛿𝑐. This range of 

energetic contact is depicted as a green region in Fig. 1(a). In this study, 𝛿𝑐 is set to 40% of the 

diameter of the circle inscribed in the polyhedra facet (𝑑𝑓), as shown in Figure 1(a) for the 

octahedra case, and 𝑟𝑐 is set to be the minimum distance between the sphere and the polyhedra plus 

15% of the side a: 



6 

 

𝑟𝑐 = ℎ +
𝜎

2
+  0.15𝑎 (2) 

 

Here, ℎ is the radius of the sphere inscribed in the polyhedron, which for the octahedron 

corresponds to  √6/6a and for the cube to half its edge (a/2). The extent of indentation is defined 

by the indentation diameter (𝑑ℎ), whose maximum value corresponds to 𝑑𝑓 = √3/3𝑎  for 

octahedra and 𝑑𝑓 = 𝑎 for cubes. The distance d defined in Figure 1(b) should be less than 𝑑𝑚𝑖𝑛 

which is dependent on 𝑑ℎ: 

𝑑𝑚𝑖𝑛  =  ℎ + 
1

2
√𝜎2 − 𝑑ℎ

2 
(3) 

𝛿𝑚𝑎𝑥  =  
𝑑ℎ

2
 −  √

𝜎2

4
− (𝑑 −  ℎ)2 

(4) 

 

where 𝛿𝑚𝑎𝑥 defines the maximum  𝛿 that a sphere can have without overlapping with the edge of 

the polyhedra. The criteria for overlap between the polyhedral and sphere are based on Arvo’s 

algorithm.33 The overlap check between a sphere and an octahedron was based on finding the 

distance between a point (i.e., the center of the sphere) and a triangle (i.e., the octahedron’s facet 

closest to the sphere) as described in Ref. 33. Finally, the overlap between non-convex polyhedra is 

based on the separating axes theorem34 with indentation-related modifications explained in more 

detail in our previous paper.25 We chose to use dimensionless parameters to characterize the 

systems of interest as summarized in Table 1.  
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(a) 

 
(b) 

 

(c) 

 
 

(d) 

Figure 1: (a-b) Schematics of the system geometry and parameters used in criteria for 

determining overlap for non-convex octahedron (gray) +sphere (red) pairs. The green translucent 

region in (a) depicts the positions of the sphere’s center associated with an energetic contact 

(−*).  (c) Representation of the indentation on octahedra facets. (d) Example of the contact 

(nestling) of a sphere and an indentation on the octahedron facet. 

 

Table 1: Design parameters for the spheres + dimpled polyhedra system. 

Symbol Meaning  
Range for 

cubes  

Range for 

octahedra 
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𝜆 
Ratio of indentation diameter (𝑑ℎ) to the 

polyhedron edge (a) 

0.0 – 1.0 0.0-0.58 

𝜁 
Ratio of sphere diameter (𝜎) to 

polyhedron edge (a) 

1.19-1.36 0.9-1.25 

𝜀∗ 
Contact energy between polyhedron and 

sphere (Eq. (1)) 

0.0 – 1.0 0.0-1.5 

 

To quantify the extent of non-additivity of our systems, we developed a non-additivity parameter 

for a binary component system. We utilized the same metric for the non-additivity parameter, Δv 

in Eq. (5), as in our previous study on cubes and spheres.25 To calculate this parameter in our case, 

we used the volume of the compound phase, henceforth to be denoted as C*, at infinite pressure 

(densest state) and the volumes of the densest individual phases of the pure components, namely, 

the FCC lattice for spheres, the cubic crystal for cubes, and the Minkowski crystal for octahedra:  

Δ𝑣 =
𝑣(C∗, 𝑝 = ∞)

𝑥𝑠𝑝ℎ𝑣(spheres, 𝑝 = ∞) + (1 − 𝑥𝑠𝑝ℎ)𝑣(polyhedra, 𝑝 = ∞)
− 1 

(5) 

 

where xsph is the mole fraction of spheres. While Δ𝑣 could be seen as a blunt probe of the tendency 

for nonadditivty in a C*-forming mixture, unlike the ‘microscopic’ Lorentz mixing rule, it has the 

advantage that it can be equally applied regardless of the anisotropy of the NP shapes or 

interparticle potential shape. We note that in our previous paper25 the reported Δ𝑣 values were 

slightly underestimated due to a miscalculation; the correct values for the relevant system 

(cubes+spheres) are given in the results section 3.5. 
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2.2. Simulations Details 

To study the C* (compound) and I (isotropic) phases, we used Monte Carlo (MC) simulations in 

the isothermal-isobaric ensemble (N1N2PT). For the C* phase, we started with a perfect CsCl or 

NaCl lattice, while for the I phase, we used a pre-equilibrated isotropic system. The total number 

of particles was equal to 1458 for the CsCl phase and 1728 for the NaCl phase with a fixed number 

ratio of polyhedra to spheres (N1 = N2). Our simulation results are reported in reduced units: 𝜀∗ =

𝜀𝛽, 𝑣 = 𝑉/𝑁𝐿3, 𝑝 = 𝛽𝑃𝐿3, and  𝜌 = 𝑁𝐿3/𝑉, where the reciprocal temperature 𝛽 is set to 1  and L 

is equal to 𝑎/√2 for the CsCl phase of octahedra + spheres and to 𝑎/2 for the NaCl phase of cubes 

and spheres.  

We traced coexistence lines between the C* phase and the I phase as a function of system design 

parameters 𝜆, ζ, and 𝜀∗, defined in Table 1 using the FENEX method. The FENEX method uses a 

series of polynomials approximations to integrate the equation of the intensive free energy : 

𝑑 = 𝑧𝑑𝑓 +  𝑣𝑑𝑝  (6) 

where 𝑣 =  (𝜕𝜙 𝜕𝛽𝑃)⁄
𝑓,𝛽

= 𝑉/𝑁, and 𝑧 =  (𝜕𝜙 𝜕𝑓)⁄
𝛽𝑃,𝛽

 and f is a field parameter of the system 

Hamiltonian, i.e. (f =λ, ζ, or ε*). The derivative z is evaluated in simulation using a finite 

perturbation approximation: 

𝑧 ≈  −
1

𝑁𝛿𝑓
ln

∑ exp[−𝛽𝑈(𝑓 + 𝛿𝑓) − 𝛽𝑃𝑉]

∑ exp[−𝛽𝑈(𝑓) − 𝛽𝑃𝑉]
= −

1

𝑁𝛿𝑓
ln〈exp[−𝛽𝑈(𝑓 + 𝛿𝑓) + 𝛽𝑈(𝑓)]〉 (7) 

Here, 𝛿𝑓 is a small perturbation on the control variable 𝑓. If we can decouple 𝑓 from U (i.e., 

𝛽𝑈(𝑓) = 𝑓𝑈 ), as for the case when 𝑓 =  𝜀∗, Eq. (7) can be written as: 

𝑧 ≈  
〈𝑈〉

𝑁
 (8) 
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The full description and derivation of the FENEX method can be found in the previous papers 

about the formation of compound phases15,23,25 and relevant software is also available on our group 

GitHub page (github.com/escobedo-lab/FENEX). For every point along the estimated coexistence 

line estimated with the FENEX method, we conducted simulations that consisted of 3×106 MC 

cycles, with the first 106 cycles used for equilibration. Additional cycles were carried out if there 

were large volume fluctuations during the simulation (signaling a lack of convergence or a 

tendency to a phase transition/inversion). Each cycle involved N translation moves, N/2 rotational 

moves (for the polyhedra only), N/5 swap moves, and 3 volume attempts. For the 

octahedra+spheres system, the box shape was variable, allowing triclinic volume moves. To 

calculate z in Eq. (7) when integrating over 𝜆 or 𝜁, we conducted one virtual move per MC cycle 

to change the size of the indentation or the sphere. Since errors accrue the farther one takes the 

integration from the original coexistence point, we conducted consistency checks by carrying out 

integrations following alternate paths (e.g., integrating first over energy and then over size ratio, 

or vice versa) which started and ended at the same set of conditions (λ, ζ, 𝜀∗). The average relative 

error in the end-point coexistence pressures found this way was ~ 10% or less.  

The initial point to jump-start a coexistence line describing the effect of the non-convexity ratio 

was obtained from interfacial pining simulations for the flat-faced polyhedra and spheres system. 

We followed the iterative protocol laid out in Ref. 35 to obtain the coexistence pressure point (and 

associated coexistence phase densities). The order parameter chosen to pin the interfacial was the 

specific volume (v = 1.81) and the initial guess for the coexistence pressure was set to p = 8.02; 

the volumes of the crystalline and isotropic phases were retrieved as described in Ref. 24. The 

overall system consisted of 2196 particles, the original box shape had an elongated shape (~2.5:1 
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aspect ratio) to accommodate bulk-like regions of both phases, and the pinning spring constant 

was set to 1800 L3/. Typically, 4-5 iterations were needed to attain convergence in pressure. 

In analogy to systems of large + small hard spheres that form the NaCl solid,36 we expect that for 

the athermal system of flat smaller cubes and larger spheres, the associated NaCl phase (if 

attainable) upon decompression would continuously transition into an interstitial solid solution 

(ISS) as the number of cubes decreases from the stoichiometric composition while being in 

equilibrium with an isotropic phase of nearly pure cubes. To approximately map this NaCl-to-ISS 

transition pressure, we used the following protocol:  

1. Simulate the crystalline phase at equimolar composition for a given P.  

2. Create an elongated box along the z axis containing the crystalline phase from step 1 and 

an isotropic phase of small cubes that share the cross section from step 1. The box contained 

5184 particles, of which 2736 were in the NaCl phase (cubes and spheres) and 2448 were 

cubes in the isotropic phase at their initial state. The global number fraction of cubes was 

equal to 0.74.   

3. Simulate the box from step 2 in the NPzT ensemble at the same given P (where Lx= Ly 

remain fixed). Translation moves for the small cubes were treated separately from those 

for the large spheres. Cubes had two types of translational moves:  aggressive moves with 

a large step size fixed at to ¼ Lx (to allow cubes to hop over across interstitial spots) and 

milder moves (to allow local equilibration) where the step size was chosen to keep the 

acceptance ratio ~ 10%. For the translation moves of the spheres, the acceptance ratio was 

kept at 30%. We also used strip volume moves37 along the box’s z axis to help volume 

equilibration of larger boxes. 
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4. Calculate the fraction of the interstices (xi) between the spheres in the crystalline phase that 

are filled with cubes, noting that xi ≈ 1 in the NaCl phase and xi < 1 in the ISS. 

5. Repeat steps 1-4 until finding the smallest pressure for which the xi ≈ 1 is found. 

After completing the simulations, we calculated several order parameters (OPs) to characterize the 

crystalline phase. The average cubatic orientational order parameter P4 was found from: 38 

𝑃4  =  
1

14𝑁2
∑ 35

𝑖𝑗

|𝒖𝑖𝑗 ∙ 𝒏|
4

− 30|𝒖𝑖𝑗 ∙ 𝒏|
2

+ 3 
(9) 

 

where 𝑁2 is the number of cubes, 𝒖𝑖𝑗 is the unit vector of particle i along its axis j, and 𝐧 is the 

unit vector that maximizes P4. We determined if the C* phase maintained the expected 

substitutional order of the compound phase through the short-range compositional order parameter 

(SROP):39  

SROP =  
1

𝑁
∑

𝑡𝑖 

𝑁𝑛
𝑖

 
(10) 

Here, 𝑁𝑛 is the number of unlike nearest neighbors of a given particle in the compound phase, 

which is equal to eight for CsCl and six for NaCl. 𝑡𝑖 is the number of different-species neighbors 

of particle i among its 𝑁𝑛  closest neighbors. 

We quantified the extent of NP fluctuations in the C* phase to evaluate the effect of the 

indentations on local mobility.  NVT simulations were carried out at the density corresponding to 

the C* phase at equilibrium with the I phase with N translation and N/2 rotational moves with high 

acceptance probabilities (between 75% and 95%) and without swap moves to mimic pseudo-

diffusive particle dynamics.40,41 Unwrapped coordinates were stored every 103 MC cycles to 

calculate the mean square displacement as a function of the MC cycles (ΔC𝑡): 
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𝑅𝑀𝑆𝐷𝑡 = √
∑ ∑ |𝑟𝑡+𝑗

𝑖 − 𝑟𝑗
𝑖|

2𝑁𝑀𝐶−ΔC𝑡
𝑗=0

𝑁
𝑖=1

𝑁(𝑁𝑀𝐶 − ΔC𝑡)
 

(11) 

where 𝑁𝑀𝐶 is the total number of MC cycles and r is the center of mass of the particle. A correction 

for the whole-system drift was accounted for by subtracting |𝑟𝑡+𝑗
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 − 𝑟𝑗

𝑎𝑣𝑒𝑟𝑎𝑔𝑒|
2
from every 

particle.  

 

3. RESULTS  

3.1. Non-additivity Parameter Calculation for Flat Polyhedra+Spheres 

A system is considered to have a negative non-additive volume of mixing if Δv < 0. In the 

absence of indentations, non-additivity can be achieved when the spheres are larger than the 

polyhedra as shown in   

Figure 2. We see that a more negative non-additivity value is achieved for the cubes+spheres case 

because the NaCl lattice is more amenable to accommodate the small cubes in the octahedral 

interstices between the spheres. For the CsCl system, the achievable negative non-additivity is 

very weak and occurs at a lower size ratio ζ = 1.19. For size ratios greater than 6, the cubes in the 

NaCl phase start to lose orientational order and eventually reach a rotator-like state as seen by the 

drop in the P4 parameter. A similar drop in the orientation order is also observed for the octahedra 

in the CsCl phase for large ζ.  

A high degree of negative non-additivity can be generally associated with conditions that are 

favorable for the stabilization of the compound phase C*, the reason is that at a high enough 

pressure phi where incompressibility sets in, the likely phases competing with the C* phase are the 
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solid phases for the pure components which would be brought about by phase segregation. The 

Gibbs free energy change from the pure component to the C* state at those conditions is 

  Δ𝐺 = 𝑝ℎ𝑖(𝑉∗ − 𝑥1𝑉1 − 𝑥2𝑉2) + 𝑇(𝑆∗ − 𝑥1𝑆1 − 𝑥2𝑆2)   (12) 

where xi, Vi, and Si are the mole fraction, volume, and entropy of component i, and V* and S* are 

the volume and entropy of the C* phase. As a first approximation we could assume that particles 

are ‘frozen’ in their lattice structures (noting also that the C* lacks mixing entropy), so that 

entropies before and after compounding are comparable and small, and the entropy term in Eq. 

(12) can be neglected: 

   Δ𝐺 ≈ 𝑝ℎ𝑖(𝑉∗ − 𝑥1𝑉1 − 𝑥2𝑉2) ∝ Δ𝑣     (13) 

Thus if Δv < 0, then ΔG < 0, and the C* phase will be more stable than the phase-segregated state 

of the pure components’ solid phases. This scenario should remain true for a range of p < phi as 

long as the S term remains small.  

The above argument provides the basis for explaining the occurrence of the NaCl phase in other 

athermal systems with asymmetrically sized components. Indeed, Filion et. al. 36 found that 

mixtures of small and larger hard spheres with size ratios between 2.22 and 3.33 have 

noncongruent athermal behavior, where the athermal NaCl-lattice phase transitions first to an 

interstitial solid solution (ISS) at a fixed number of spheres and cubes. It can be shown that for 

such binary mixtures of hard spheres, the athermal NaCl phase can be stabilized in the region of 

component size ratios in which the corresponding Δv < 0.25 Indeed, for the system of small and 

large spheres, the non-additivity parameter ranges from -0.02 to -0.047 in the size ratio range of 

2.22 < ζ < 3.33 associated with the athermal NaCl crystallization, with a minimum of Δv = -0.47 
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for ζ  2.75 (see Fig. 2(a)). We also show below that a mixture of small cubes and large spheres 

expectedly exhibited a phase behavior similar to that of small + large spheres.  

 
(a) 

(b) 

 

Figure 2: (a) Non-additive mixing parameter as defined in Eq.  (5) as a function of ζ for λ = 0. 

Insets show the spheres+cubes NaCl phase (for  = 2.5) and spheres+octahedra CsCl phase (for  

= 1.19) at their maximal negative non-additivity points. Red dashed line corresponds to NaCl phase 
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for equimolar large + small hard spheres. (b) Orientation order parameter (P4) of the polyhedra in 

the crystalline C* phase as a function of the size ratio. Simulations were carried out at P*=1000 

and λ = 0. 

The distinguishing features of the ISS phase are: (i) the non-fixed, lower than stoichiometric 

ratio of guest (small/‘solute’) component to host (larger/‘solvent’) component), which leaves 

empty some of the host crystal interstitial sites and, (ii) the usually weaker bonding and disparate 

size ratio between components which may allow the diffusion of guest particles through the 

network of empty interstitial lattice sites. While the ISS phase and the stoichiometric compound 

phase share the same underlying lattice geometry and could both be seen as being C* phases, in 

this paper we associate the C* phase specifically for the latter as this is the basis for the 

calculation of the non-additivity parameter v.  

 

3.2 Non-additive phase behavior for small flat cubes and large spheres   

As shown in  

Figure 2, athermal mixtures of flat cubes and spheres with significantly unequal size ratios can 

lead to significant negative non-additivity.  

To verify that the associated NaCl C* phase can be formed in such systems, we calculated the 

transition pressure between the ISS and the C* phase for the size ratio corresponding to the 

minimum value of Δv using interfacial simulations. In Figure 3 we show the relationship between 

the pressure and the filling fraction xfilling of the ISS phase. The filling fractions is defined as the 

ratio between the number of polyhedral in the C* phase and the maximum number of polyhedral 

in the C* phase. The smallest pressure for which xfilling ≈ 1 corresponds to the transition pressure 
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between the NaCl and ISS phases (for convenience the threshold value to assign a NaCl character 

was set to xfilling = 0.99). Note that vC* increases sharply as this transition point is approached 

because of the rapid loss of cubes in the C* phase. Congruent or incongruent athermal behavior 

with the flat octahedra+spheres was not achieved for the CsCl lattice, probably due to the low 

values of the non-additivity parameter for the CsCl. The NaCl lattice with octahedra + spheres 

transitioned into a disordered state even at high pressure and with energetic interactions between 

the sphere and the octahedra facet. 

 

 

 
(a) 

 
(b) 
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(c) 

Figure 3: (a) Filling fraction (xfilling) of the cubes+sphere NaCl phase in equilibrium with a cubic 

isotropic phase in an interfacial simulation (blue line) and average volume per particle of the 

cube phase (vi) and the C* phase (vC*) as a function of pressure (P*). Simulation done for ζ = 2.5 

and 𝜀∗ = 0. (b) Snapshots of the simulated interfacial system for P*= 0.8 and xfilling = 0.98 and (c) 

P*= 0.5 and xfilling = 0.74. 

 

3.3 Non-additivity Parameter Calculation for Dented Polyhedra+Spheres 

Figure 4 shows the relation between Δv and λ for both mixtures of polyhedra and spheres. It can 

be seen that compared to the octahedra+spheres mixture (which forms the CsCl phase for 

comparably sized components), the cubes+spheres mixture (which forms the NaCl phase) has a 

more positive value of the Δv non-additivity parameter for the flat case but also a wider range of 

negative non-additivity values for large indentations. We attribute this difference to the geometric 

restriction on the maximum achievable indentation diameter for the octahedra+spheres system; 

while using smaller spheres would allow their deeper penetration into the dents and a more 

negative non-additivity, this can also causes the destabilization of the CsCl phase.15,23 A similar 

destabilization of the C* phase occurs in the cubes+spheres mixtures for sufficiently low ζ and 

large λ, but the NaCl lattice can accommodate larger indentations (relative to the facet edge) for 

large ζ. On the other hand, for larger size ratios the effects of the indentations on Δv are small since 
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the spheres are too big to fit inside the facet dents. Although any indentation size can create an 

entropic polyhedron-sphere facet bonding effect, and octahedra indeed have more facets than 

cubes, our previous study on cubes showed that attaining significant negative non-additivity (as 

per Δv values) is a good indicator that such a bonding effect will be sufficiently strong to stabilize 

the athermal C* phase.  

 
(a) 

 

 
(b) 
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Figure 4:   Non-additive mixing parameter as defined in Eq.  (5) as a function of indentation 

ratio (λ) and different values of size ratio (𝜁) for (a) the NaCl phase of cubes+spheres and (b) the 

CsCl phase of octahedra+spheres. 

 

3.4 Effect of indentation on the phase behavior of similarly sized components in 

octahedra + spheres mixture. 

Given that only very small degrees of negative non-additivity is attainable for this system (as per 

Figs. 2 and 4), we started our exploration of the phase behavior with a system having sufficiently 

large energetic selectivity to ensure that a congruent transition to the CsCl phase was 

thermodynamically favored. Accordingly, we started the integration at the point corresponding to 

𝜆 = 0, 𝜀∗ = 1.15, 𝜁 = 1.00, and 𝑝 = 7.15, with properties obtained from an interfacial 

simulation. Initially, we integrated over changes on the indentation ratio (𝜆) and size ratio (𝜁) at 

fixed 𝜀∗ to assess the effect of introducing the concavities on the octahedra’s facets. Figure 5 shows 

the curves of coexistence pressure and (as inset) free energy (ϕ) as a function of . For 𝜁 = 1.23, 

the variations in pressure and free-energy are negligible, indicating that the nestling of the 

relatively large spheres inside the small octahedra dents is minimal due to the limited accessible 

space created by the indentations. Additionally, for smaller 𝜁, octahedra are larger than their lattice 

spacing so neighboring octahedra interact and can couple their positions and orientations while, in 

the larger 𝜁 region, larger spheres prevent this type of interactions. Figure 6 shows the coexistence 

pressures and order parameters as a function of 𝜁 for  𝜆 = 0 and 0.57 and fixed energy parameter. 

There is a clear drop in the orientational order (P4) and short-range compositional order (SROP) 

when the spheres are made bigger. Additionally, the plots show that the optimal 𝜁 with regards to 
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the C* phase order parameter is higher for the indented octahedra when compared to the flat case 

(𝜆 = 0), which was also observed for the cube + sphere system.25 However, note that the increase 

in indentation leads to an increase in both coexistence ϕ and pressure, which is contrary to what 

was observed for the cubes + spheres system at any size ratio.25 These ϕ values are readily available 

from the FENEX calculations and, according to the optimization rule advocated in Ref. 23, the 

more stable C* phase should be associated with lower ϕ values. The increase in ϕ can be partially 

explained by examining the terms contributing to the free energy as per Eq. (6). Figure 7(a) shows 

that for the cube-containing system the volume of the crystalline phase decreases at a faster rate 

with  than that for the isotropic phase, while for the octahedra-containing system, the difference 

in volume between the CsCl and I phases is smaller and largely insensitive to . (Note that the 

curves for the octahedra+sphere system stop at λ = 0.57 in Figure 7 as this corresponds to the 

maximum viable indentation). The derivative of the free energy for the indentation ratio, Eq. (7), 

also indicates that the indentations have a larger effect on the isotropic phase than on the crystalline 

phase (Figure 7(b)). Plots of how both the average volume and free-enery derivative z change for 

the crystalline and isotropic phases are available in Figures S2 and S3 of the supplementary 

material. These two factors led to the increase in free energy with indentation size and to the 

conclusion that, at least for the conditions examined in Figs. 4 and 5, the introduction of 

indentations in the octahedra has a net destabilizing effect on the CsCl phase relative to the 

isotropic phase.  
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Figure 5: Coexistence pressure vs. indentation ratio (𝜆)  of an equimolar mixture of octahedra + 

spheres for  𝜀∗ = 1.1 for different size ratios (𝜁).  Inset shows how the relative coexistence free 

energy changes with indentation ratio (𝜆). 
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(a) 

 

(b) 

 

Figure 6: Coexistence pressure (red), orientation order parameter, P4, (blue dots), and short-

ranger order parameter, SROP, (blue crosses) vs. size ratio (𝜁)  for  the equimolar mixture of 

octahedra + spheres with  𝜀∗ = 1.1 and for (a) 𝜆 = 0.57, and (b) 𝜆 = 0.  
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(a) 

 
(b) 

 

Figure 7: (a) Average volume ratio between the C* and I at equilibrium as a function of the 

indentation ratio (𝜆). (b) Average ratio of derivative z of Eq.  (7) between the C* and I phases at 

equilibrium as a function of the indentation ratio (𝜆). The lines correspond to: (-♦-) octahedra+ 

sphere mixture at  𝜀∗ = 1.1 and (-■-) cube+ sphere mixture at 𝜀∗ = 0.55. 
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3.5 Comparison between Octahedra+Spheres and Cubes+Spheres cases. 

The most significant finding of our previous paper 25 on the cubes + spheres system was the 

discovery of a relatively large region in 𝜆 − 𝜁 parameter space that resulted in an athermal I-C* 

congruent phase behavior. To find this region for the octahedra+sphere system, a thermal (non-

zero ) initial point was chosen to start the integration for convenience. We then calculated the 

phase diagram for fixed values of ζ and λ for varying values of the strength of the inter-species 

attraction energy parameter (𝜀∗). In Figure 8 (a), we highlight the region of the phase diagram 

where the athermal congruent I-C* phase transition was found for spheres+octahedra and 

spheres+cubes systems. In both cases, the actual athermal region (at finite pressures) is consistent 

with, but a subset of, the conditions where the non-additivity parameter (for infinite pressure) is 

negative in Figure 2, supporting the tenet that athermal congruent phase transition is largely driven 

by a decrease in the pV term of the free energy. Note that athermal congruent behavior (𝜀∗ = 0) for 

the C* phase formed by octahedra + spheres is only reached for the maximum value of the 

indentation size 𝜆 = 0.57 and a very narrow range of size ratios (ζ) from 1.01 to 1.05. The athermal 

region for the octahedra+spheres system also coincided with the region with the highest structural 

order of the C* phase in Figure 6.   More details about the relationship between  and the minimum 

values of 𝜀∗ necessary to stabilize the C* phase are provided in the supplementary material.  

Overall, the athermal region of the C* phase stability is significantly smaller for the 

octahedra+spheres system than that for the cubes + spheres system, which is attributed to the 

smaller pV change in the octahedra+sphere system associated with the relatively smaller 

octahedron’s facets and concomitant indentations achievable.  That equimolar mixtures of spheres 

and cubes in a NaCl lattice arrangement are better at filling an available volume than equimolar 

mixtures of spheres and cubes in a CsCl lattice arrangement is well encapsulated by the difference 
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in magnitude of the non-additive parameter v which acts as a surrogate of the C*-phase formation 

driving force: while both types of mixtures can achieve negative v values, the former system can 

attain an order of magnitude larger negative v values as illustrated for flat and dented polyhedra 

in Figs. 2(a) and 4 respectively.  

 
(a) 

 
(b) 

Figure 8: (a) ζ-λ region (shaded in gray and black dots) where athermal (ε* = 0) I-C* phase 

behavior occurred in our simulations for the (a) cubes+spheres system (b) octahedra+spheres 

system. The pink shaded region corresponds to negative values of non-additive mixing parameter 

Δv calculated as per Eq. (5). 
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3.6 Driving forces for athermal congruent phase behavior  

For the congruent phase transition from the isotropic to the C* phase one can write the change 

in the Gibbs free-energy (G) as: 

   Δ𝐺 = Δ𝑈 + 𝑝Δ𝑉 − 𝑇Δ𝑆     (14) 

where U is potential energy and Δ refers to the change upon phase transition (C* minus isotropic). 

For the athermal systems, we can drop the ΔU term. 

Our analysis of the cubes + spheres system showed that one of the major factors contributing to 

the athermal I-C* phase transition is the larger decrease in pV term during the transition as the 

indentation ratio increased, as demonstrated in Figure 9(a) for the athermal system. This decrease 

helps to stabilize the crystalline phase as it tends to make ΔG more negative, thus counteracting 

the loss of entropy in the C* phase (i.e., from the loss of rotational entropy of the cubes and the 

loss of mixing entropy to create substitutional order). Indeed, at the athermal isotropic-C* phase 

coexistence point where ΔG = 0, Eq. (14) shows that since ΔV < 0 (and ΔU = 0), then S < 0, i.e., 

the C* phase has expectedly less entropy than the isotropic phase. For the octahedra+spheres 

system, due to the restricted conditions where congruent transition occurs, we could not conduct a 

comparison of pV values across indentation values for 𝜀∗= 0. Hence, in Figure 9(b) we show the 

relationship between pV and indentations for 𝜀∗=1.1. The decrease in pV effect only happens for 

the size ratio where the athermal phase behavior was found as expected. However, it is unclear 

whether larger indentations may tend to increase the vibrational entropy of the C* lattice and hence 

help reduce the magnitude of |ΔS|.44  To probe this question, we monitored the root mean squared 

displacement (RMSD) of the species in the crystalline phases at coexistence. The particles’ 

fluctuations from their respective lattice positions (as calculated through the MSD) can be seen as 
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quantifying the amplitude of particle vibrations and hence be a contributor to the total particle 

entropy (noting that, at thermal equilibrium between phases, any contribution from momenta or 

kinetic degrees of freedom cancel out in ΔS).42 In Figure 10, we display the RMSD displacement 

for the athermal NaCl phase of cubes+spheres at equilibrium for two indentation values. We 

observe that larger indentation slightly decreases the average RMSD, implying a decrease in 

vibrational entropy (with the lattice spacing remaining constant). We also made the same 

comparison for the octahedra + spheres CsCl phase, albeit we could not compare athermal systems 

because of the lack of a large athermal region for dented octahedra. Nevertheless, we detected the 

same trend of decreasing in vibrational entropy with indentation ratio, as shown in Fig. S5 of the 

supplementary material. 



29 

 

 

 

(a) 

 

 (b) 

Figure 9: Difference in the reduced volume p(𝑣𝑐∗ − 𝑣𝐼) as a function of the indentation ratio (λ) 

and different size ratios (ζ) at isotropic-C* phase coexistence for (a) the cubes +sphere system in 

the athermal region, (b) the octahedra +sphere system for 𝜀∗ = 1.1.  
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Figure 10: Average Mean squared displacement as a function of the MC cycles for the athermal 

NaCl phase. Size ratio was kept the same (𝜁 = 1.23) for these plots and error bars appear as 

vertical lines.  

 

The pV effect caused by the indentations can be associated with the strengthening of the 

polyhedra-sphere entropic bonds and, in the athermal systems, an entropic bond that can be as 

strong as the energetic bond needed to stabilize the C* phase with flat polyhedra at conditions 

when it was otherwise unfeasible. Figure 11 shows that expectedly the average bond distance 

between the polyhedra and spheres is shorter for larger λ (for fixed ) due to the extent of sphere-

dent nestling behavior which is what effectively leads to a more efficient packing and a larger pV 

effect upon ordering (as quantified in Fig. 4a and Fig. 7). We can then associate stronger bonds 

with shorter interspecies bond lengths.  
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(a) (b) 

Figure 11: Probability distributions of normalized bond length between spheres and polyhedra 

for two values of indentations in the crystalline phase at coexistence. The bond length is  

normalized by the contact distance between the center of the sphere and the center of a flat 

polyhedron (𝜎𝑖𝑗) for (a) NaCl phase at 𝜀∗ = 0.55 and 𝜎𝑖𝑗 = 𝑎/2 + 𝜎/2 = 2.23, and (b) CsCl 

phase at  𝜀∗ = 1.1 and 𝜎𝑖𝑗 = ℎ/2 + 𝜎/2 = 1.41. 

 

4. CONCLUSIONS AND OUTLOOK 

In this work we have examined how negative volumetric mixing non-additivity associated with 

the formation of the compound crystal from equimolar polyhedra+spheres binary mixtures can be 

generated by tuning the component size asymmetry and the presence of concavities in the 

polyhedra facets, and how such non-additivity correlates with the isotropic-crystalline athermal 

phase behavior, including congruent athermal crystallization. Two polyhedral shapes were 
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considered, cubes and octahedra, which when blended with spheres can form a crystalline 

compound C* with the NaCl and CsCl lattice, respectively.   

First, we find that negative non-additivity (as quantified by our Δv parameter) can be observed in 

mixtures of flat cubes and larger spheres, and that for relatively large spheres where Δv < 0, an 

athermal noncongruent isotropic-C* phase behavior ensues. This also demonstrates that it is the 

pV contraction associated with the C*-phase formation (relative to the hypothetical competing 

state of segregated crystalline phases of the pure components) that is the main driving force that 

stabilizes such an athermal C* phase. While negative non-additive is also observed in mixtures of 

flat octahedra and spheres, this is very tenuous and restricted to a narrow range of component sizes; 

our simulations failed to any find finite-pressure conditions where the corresponding athermal C* 

phase was stable.  

For the octahedra+spheres system, we used a specialized thermodynamic integration method to 

trace phase coexistence lines as a function of three main system variables, namely, the interspecies 

attraction strength, indentation ratio, and size ratio. Our findings suggest that the effect of facet 

indentations was not very beneficial in this case; specifically, increasing indentation led to higher 

coexistence free energy and pressure in the octahedra + spheres system. These trends contrasted 

with those observed in the cubes and spheres system at any size ratio. Furthermore, the athermal 

region for the octahedra+spheres system was limited to λ = 0.57 and size ratios ranging from 1.01 

to 1.05 while a broader ζ-λ region was observed in our previous study of cubes+spheres. We also 

found that the reduction in the pV term of the C* phase free energy resulting from the addition of 

indentations is the main force driving the athermal congruent phase transition and that this 

decrease, being smaller for the octahedra+spheres system, is responsible for the observed 

differences across systems. Our study also revealed that the presence of indentations slightly 
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decreases the particle vibrational entropy. However, this effect is compensated for by the gains 

associated with the strengthening of the entropic bonds.  

We note that effective athermal, non-additive interactions can be abstracted even when ordering 

is aided by underlying anisotropic energetic interactions and external fields. One relevant 

example occurs in the self-assembly of binary systems of spherical colloidal particles into quasi-

2D superlattices at a fluid-fluid interface.43,44 In such a case, the components’ centers of mass 

occupy different planes due to differences in how the two species interact with the two fluids, 

leading to rather unique superlattices. Such a system could be “coarse-grained” into a 2D binary 

mixture of "non-additive" co-planar hard disks where some overlap is only allowed between 

disks of unlike species.43,44 

Overall, our findings provide specific ranges for the geometric parameters related to indentation 

and component sizes that drive the athermal phase ordering behavior of particles and form the 

basis for ongoing work. The impact of negative non-additive mixing on phase transition kinetics 

can also be studied via molecular simulations, as we previously demonstrated with a system of 

patchy particles having positive non-additivity.45 Besides the geometry of the system, the 

relationship between the valence of the polyhedra particles and the indentation ratio can be 

explored further in simulations with other polyhedra particles of varying valence such as 

tetrahedral and dodecahedral frames. 27,32 A general question that we are expecting to address is: 

Can we use v calculations to predict the favorable assembly of hard small polyhedra (flat or 

dented) + large spheres into a "AmBn" lattice, for any polyhedra shape and for any lattice compound 

AmBn (where m/n indicate different stoichiometry)? Additionally, one could investigate the effects 

of size polydispersity 23,46 and the strength of the entropic bonds on the phase behavior and 

mechanical strength of these materials. Note that even pure component systems (where each 
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particle exhibits convex and concave regions) can also exhibit different ordered phases realizing 

varying degrees of nonaditivity.47-48 In summary, our findings provide insights into how designing 

particle shapes that partially relieve geometrical frustration to attain denser structural packings can 

aid in the stabilization of compound crystals and can thus inform the design of new materials. 
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