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Abstract.

Non-additive mixing plays a key role on the properties of molecular fluids and solids. In this work,
the potential for athermal order-disorder phase transitions is explored in non-additive binary
colloidal nanoparticles that form substitutionally ordered compounds; namely, for equimolar
mixtures of octahedra+spheres which form a CsCl lattice compound, and cubes+spheres which
form a NaCl crystal. Monte Carlo simulations that target phase coexistence conditions were used
to examine the effect on compound formation of varying degrees of negative non-additivity created
by component size asymmetry and by size-tunable indentations in the polyhedra’s facets, intended
to allow the nestling of neighboring spheres. Our results indicate that the stabilization of the
compound crystal requires a relatively large degree of negative non-additivity which depends on
particle geometry and the packing of the relevant phases. It is found that negative non-additivity
can be achieved in mixtures of large spheres and small cubes having no indentations and lead to

the athermal crystallization of the NaCl lattice. For similarly sized components, athermal
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congruent transitions are attainable and non-additivity can be generated through indentations,
especially for the cubes+spheres system. Increasing indentation leads to lower phase coexistence
free energy and pressure in the cubes + spheres system but has the opposite effect in the octahedra
+ spheres system. These results indicate a stronger stabilizing effect on the athermal compound
phase by the cubes’ indentations, where a deeper nestling of the spheres leads to a denser

compound phase and a larger reduction in the associated pressure-volume free-energy term.

1. INTRODUCTION

Multicomponent nanocrystal superlattices can possess unique crystal structures, size-dependent
properties, and (upon etching off one component) high surface-to-volume ratios, providing a
versatile platform for potential applications in optical, electronic, magnetic, and catalytic
materials.'> However, designing mixtures that can assemble into these superlattices presents the
key challenge of requiring the fine-tuning the interparticle interaction strengths, component
shapes, composition, and external conditions. ®'' Previous studies have investigated the
interactions driving colloidal mixture assembly and the interplay between enthalpic and entropic
forces. 1271 Typically, substitutionally ordered solids or stoichiometric compounds need a selective
interaction between the unlike species since, without a preference for the type of neighboring
particles, mixing entropy will tend to favor random mixing and consequently substitutionally
disordered solids. To assemble athermal solid compounds, the loss of mixing entropy associated
with the arrangement of different components in a well-defined repeating pattern must be
outweighed by the gains in packing entropy and the decrease of the pressurexvolume (pV)
contribution to the free-energy (which while an enthalpic effect is sometimes folded into the

packing entropy concept). One possible approach to increase the packing entropy gain is to utilize
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the entropic lock-and-key attraction of shape-complementary particles that generate a negative
non-additive mixing. ' Non-additive mixing is more widely associated with molecular fluids
and occurs when the volume of the mixed state is either larger (positive) or smaller (negative) than
the sum of the individual components’ volumes prior to mixing. At a microscopic level, such
mixing non-idealities can be correlated with a cross-interaction mixing rule where the
characteristic length “o” of the contact distance between two particles A and B differs from the
arithmetic average of the characteristic contact lengths for A pairs and B pairs, 1.e., o4 =
((044 + 0)/2 + A) with A#0); for spherical sites, this corresponds to a violation of the so-

called Lorentz’s additivity rule.

In colloidal systems, some examples of non-additive mixing include the depletion effect of
polymeric depletants on large colloidal particles as embodied by the Asakura-Oosawa model,* the
Kumar-Molinero model?! model of a binary mixture of spherical particles having A > 0 that lead
to the formation of a wide variety of mesophases, and hard-sphere mixtures with A <0 which form
compound solids via congruent melting/freezing (i.e., where the phase transition between isotropic
and crystal phases occurs at the same composition). 2> As an application for studying non-additivity
in superlattice formation, our group proposed a general rule!>**?* to maximize the thermodynamic
stability of mixtures of spheres and either cubes or octahedra that are known to form crystals with
NaCl and CsCl lattices experimentally.!'! In the case of an equimolar mixture of spheres and flat
cubes with not too dissimilar sizes, our previous computational study revealed that the formation
of a congruent phase transition occurs only with a strong enough inter-species attraction energy.
However, we showed in a subsequent study on the same mixture that by replacing flat cubes by
dimpled cubes with high indentation sizes, a congruent transition into a purely athermal crystalline

phase was achievable. Furthermore, we correlated the extent of mixing non-additivity of the



components with their ability to stabilize the athermal NaCl phase in equilibrium with the isotropic
phase.?> That computational study demonstrated that the strength of inter-species entropic bonds
and the formation of ordered phases can be tuned by modifying the size of concavities on polyhedra
facets or the sphere-to-cube ratio so as to reduce the geometric frustration (and enhance space

tessellation) in the compound phase.

Our previous study 25 explored only a limited range of component size ratios and hence did not
consider cases where the compound could be regarded as an interstitial solid where the smaller
component fits snugly into the lattice interstices among the large particles. In this study we hence
first fill that gap by exploring how large component size asymmetries may lead to the formation
of athermal compounds. We further aim to investigate the effect on the compound formation of
nanoparticle ‘valence’, referring to the number of facets per polyhedron, given that dimpled
polyhedra have been experimentally synthesized, including tetrahedra, cubes, and dodecahedra. %
32 We thus sought to determine if athermal superlattice formation could be replicated in other
systems besides that of spheres+dimpled cubes, and whether packing entropy or vibration entropy
was more significant in stabilizing the athermal phase. For this purpose, we applied a similar
methodology to that used for the cubes + spheres system? to a mixture of octahedra + spheres,
enhancing the entropic bonds by carving indentations to the octahedra facets where the spheres
could partially nestle. These dimples allow the octahedra-sphere contact distance to be closer
which can result in negative mixing non-additivity (A < 0). We also explored the phase diagram
of the octahedra-sphere system as a function of the indentation ratio and size ratio between the
components, which are experimentally attainable. By comparing the results of both systems,
spheres+cubes and spheres+octahedra, we are able to identify their distinct and common features

that modulate the forces driving the formation of athermal compound phases.



The rest of the paper is organized as follows. In Section 2 we describe the models and methodology
employed. In Section 3 we present and analyze our main results and in Section 4 we conclude by

outlining the main takeaways and an outlook for future work.

2. COMPUTATIONAL METHODS

2.1. System and force field

The system studied in this work consists of a polyhedron (cube or octahedra) with side a and
spheres with diameter o, and the model follows a similar parameterization as that of our previous
study on indented cubes and spheres.?® The interaction between like particles is purely repulsive,

while unlike particles interact through a square-well potential.
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Equation (1) states that if no overlap occurs, an energetic contact —£* ensues between a polyhedron
and a sphere if the distance between the centers of the particles (7) is within a cutoff distance r.
and the distance between the center of the sphere and the vector extending outward from the center
of the octahedra facet and perpendicular to it (J, see Fig. 1(a)) is less than §.. This range of
energetic contact is depicted as a green region in Fig. 1(a). In this study, &, is set to 40% of the
diameter of the circle inscribed in the polyhedra facet (df), as shown in Figure 1(a) for the
octahedra case, and 7. is set to be the minimum distance between the sphere and the polyhedra plus

15% of the side a:
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Here, h is the radius of the sphere inscribed in the polyhedron, which for the octahedron
corresponds to v/6/6a and for the cube to half its edge (a/2). The extent of indentation is defined
by the indentation diameter (dj), whose maximum value corresponds to dy = V3/3a for
octahedra and dy = a for cubes. The distance d defined in Figure 1(b) should be less than d,;y,

which is dependent on dj,:
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where 8,4, defines the maximum § that a sphere can have without overlapping with the edge of
the polyhedra. The criteria for overlap between the polyhedral and sphere are based on Arvo’s
algorithm.** The overlap check between a sphere and an octahedron was based on finding the
distance between a point (i.e., the center of the sphere) and a triangle (i.e., the octahedron’s facet
closest to the sphere) as described in Ref. 3. Finally, the overlap between non-convex polyhedra is
based on the separating axes theorem>* with indentation-related modifications explained in more
detail in our previous paper.?> We chose to use dimensionless parameters to characterize the

systems of interest as summarized in Table 1.
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Figure 1: (a-b) Schematics of the system geometry and parameters used in criteria for
determining overlap for non-convex octahedron (gray) +sphere (red) pairs. The green translucent

region in (a) depicts the positions of the sphere’s center associated with an energetic contact

(—€*). (c) Representation of the indentation on octahedra facets. (d) Example of the contact

(nestling) of a sphere and an indentation on the octahedron facet.

Table 1: Design parameters for the spheres + dimpled polyhedra system.

Range for

Range for

Symbol Meaning

cubes

octahedra




5 Ratio of indentation diameter (d) tothe | 0.0-1.0 0.0-0.58
polyhedron edge (a)
Ratio of sphere diameter (o) to 1.19-1.36 0.9-1.25
( polyhedron edge (a)
. Contact energy between polyhedron and 0.0-1.0 0.0-1.5
© sphere (Eq. (1))

To quantify the extent of non-additivity of our systems, we developed a non-additivity parameter
for a binary component system. We utilized the same metric for the non-additivity parameter, Av
in Eq. (5), as in our previous study on cubes and spheres.?> To calculate this parameter in our case,
we used the volume of the compound phase, henceforth to be denoted as C*, at infinite pressure
(densest state) and the volumes of the densest individual phases of the pure components, namely,
the FCC lattice for spheres, the cubic crystal for cubes, and the Minkowski crystal for octahedra:

_ v(C\p = ) B 5)
~ xspnv(spheres, p = ©) + (1 — x4,,)v(polyhedra, p = )

Av

where x,p; is the mole fraction of spheres. While Av could be seen as a blunt probe of the tendency
for nonadditivty in a C*-forming mixture, unlike the ‘microscopic’ Lorentz mixing rule, it has the
advantage that it can be equally applied regardless of the anisotropy of the NP shapes or
interparticle potential shape. We note that in our previous paper® the reported Av values were
slightly underestimated due to a miscalculation; the correct values for the relevant system

(cubestspheres) are given in the results section 3.5.



2.2. Simulations Details

To study the C* (compound) and I (isotropic) phases, we used Monte Carlo (MC) simulations in
the isothermal-isobaric ensemble (N1N2PT). For the C* phase, we started with a perfect CsCl or
NaCl lattice, while for the I phase, we used a pre-equilibrated isotropic system. The total number
of particles was equal to 1458 for the CsCl phase and 1728 for the NaCl phase with a fixed number
ratio of polyhedra to spheres (N1 = N>). Our simulation results are reported in reduced units: €* =
eB,v =V /NL3,p = BPL3,and p = NL3/V, where the reciprocal temperature 3 is setto 1 and L
is equal to a/v/2 for the CsCl phase of octahedra + spheres and to a/2 for the NaCl phase of cubes
and spheres.

We traced coexistence lines between the C* phase and the I phase as a function of system design
parameters A, ¢, and €*, defined in Table 1 using the FENEX method. The FENEX method uses a

series of polynomials approximations to integrate the equation of the intensive free energy ¢:
d¢=zdf + vdp (6)

where v = (6¢/6ﬁP)f‘ﬁ =V/N,andz = (a¢/af)ﬁpﬁ and fis a field parameter of the system

Hamiltonian, i.e. (f =4, {, or ¢). The derivative z is evaluated in simulation using a finite

perturbation approximation:
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Here, 6f is a small perturbation on the control variable f. If we can decouple f from U (i.e.,
BU(f) = fU ), as for the case when f = €%, Eq. (7) can be written as:

) ®)

Z = —

N



The full description and derivation of the FENEX method can be found in the previous papers

about the formation of compound phases'>**°

and relevant software is also available on our group
GitHub page (github.com/escobedo-lab/FENEX). For every point along the estimated coexistence
line estimated with the FENEX method, we conducted simulations that consisted of 3x10° MC
cycles, with the first 10° cycles used for equilibration. Additional cycles were carried out if there
were large volume fluctuations during the simulation (signaling a lack of convergence or a
tendency to a phase transition/inversion). Each cycle involved N translation moves, N/2 rotational
moves (for the polyhedra only), N/5 swap moves, and 3 volume attempts. For the
octahedra+spheres system, the box shape was variable, allowing triclinic volume moves. To
calculate z in Eq. (7) when integrating over A or {, we conducted one virtual move per MC cycle
to change the size of the indentation or the sphere. Since errors accrue the farther one takes the
integration from the original coexistence point, we conducted consistency checks by carrying out
integrations following alternate paths (e.g., integrating first over energy and then over size ratio,

or vice versa) which started and ended at the same set of conditions (4, {, €*). The average relative

error in the end-point coexistence pressures found this way was ~ 10% or less.

The initial point to jump-start a coexistence line describing the effect of the non-convexity ratio
was obtained from interfacial pining simulations for the flat-faced polyhedra and spheres system.
We followed the iterative protocol laid out in Ref. * to obtain the coexistence pressure point (and
associated coexistence phase densities). The order parameter chosen to pin the interfacial was the
specific volume (v = 1.81) and the initial guess for the coexistence pressure was set to p = 8.02;
the volumes of the crystalline and isotropic phases were retrieved as described in Ref. 2. The

overall system consisted of 2196 particles, the original box shape had an elongated shape (~2.5:1
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aspect ratio) to accommodate bulk-like regions of both phases, and the pinning spring constant

was set to 1800 L/, Typically, 4-5 iterations were needed to attain convergence in pressure.

In analogy to systems of large + small hard spheres that form the NaCl solid,*® we expect that for
the athermal system of flat smaller cubes and larger spheres, the associated NaCl phase (if
attainable) upon decompression would continuously transition into an interstitial solid solution
(ISS) as the number of cubes decreases from the stoichiometric composition while being in
equilibrium with an isotropic phase of nearly pure cubes. To approximately map this NaCl-to-ISS

transition pressure, we used the following protocol:

1. Simulate the crystalline phase at equimolar composition for a given P.

2. Create an elongated box along the z axis containing the crystalline phase from step 1 and
an isotropic phase of small cubes that share the cross section from step 1. The box contained
5184 particles, of which 2736 were in the NaCl phase (cubes and spheres) and 2448 were
cubes in the isotropic phase at their initial state. The global number fraction of cubes was
equal to 0.74.

3. Simulate the box from step 2 in the NP, T ensemble at the same given P (where L= L,
remain fixed). Translation moves for the small cubes were treated separately from those
for the large spheres. Cubes had two types of translational moves: aggressive moves with
a large step size fixed at to % L, (to allow cubes to hop over across interstitial spots) and
milder moves (to allow local equilibration) where the step size was chosen to keep the
acceptance ratio ~ 10%. For the translation moves of the spheres, the acceptance ratio was
kept at 30%. We also used strip volume moves®’ along the box’s z axis to help volume

equilibration of larger boxes.
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4. Calculate the fraction of the interstices (x;) between the spheres in the crystalline phase that
are filled with cubes, noting that x;= 1 in the NaCl phase and x;< 1 in the ISS.

5. Repeat steps 1-4 until finding the smallest pressure for which the x;= 1 is found.

After completing the simulations, we calculated several order parameters (OPs) to characterize the

crystalline phase. The average cubatic orientational order parameter P4 was found from:

1 4 2 9
tj

where N, is the number of cubes, u;; is the unit vector of particle i along its axis j, and n is the

unit vector that maximizes P;. We determined if the C* phase maintained the expected
substitutional order of the compound phase through the short-range compositional order parameter

(SROP):®

1t (10)
SROP = —z#
NZLaN,
L

Here, N,, is the number of unlike nearest neighbors of a given particle in the compound phase,
which is equal to eight for CsCl and six for NaCl. t; is the number of different-species neighbors
of particle i among its N,, closest neighbors.

We quantified the extent of NP fluctuations in the C* phase to evaluate the effect of the
indentations on local mobility. NVT simulations were carried out at the density corresponding to
the C* phase at equilibrium with the I phase with N translation and N/2 rotational moves with high
acceptance probabilities (between 75% and 95%) and without swap moves to mimic pseudo-
diffusive particle dynamics.***! Unwrapped coordinates were stored every 10> MC cycles to

calculate the mean square displacement as a function of the MC cycles (AC,):
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where Ny, is the total number of MC cycles and r is the center of mass of the particle. A correction

. . 2
for the whole-system drift was accounted for by subtracting |ravemg ¢ —rfverag el from every

t+j j

particle.

3. RESULTS
3.1. Non-additivity Parameter Calculation for Flat Polyhedra+Spheres

A system is considered to have a negative non-additive volume of mixing if Av < 0. In the
absence of indentations, non-additivity can be achieved when the spheres are larger than the

polyhedra as shown in

Figure 2. We see that a more negative non-additivity value is achieved for the cubes+spheres case
because the NaCl lattice is more amenable to accommodate the small cubes in the octahedral
interstices between the spheres. For the CsCl system, the achievable negative non-additivity is
very weak and occurs at a lower size ratio { = 1.19. For size ratios greater than 6, the cubes in the
NaCl phase start to lose orientational order and eventually reach a rotator-like state as seen by the
drop in the P4 parameter. A similar drop in the orientation order is also observed for the octahedra

in the CsCl phase for large C.

A high degree of negative non-additivity can be generally associated with conditions that are
favorable for the stabilization of the compound phase C*, the reason is that at a high enough

pressure p,; where incompressibility sets in, the likely phases competing with the C* phase are the
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solid phases for the pure components which would be brought about by phase segregation. The

Gibbs free energy change from the pure component to the C* state at those conditions is
AG =ppi (V" —x1Vy = x5V5) + T(S™ — %151 — %252) (12)

where x;, V;, and S; are the mole fraction, volume, and entropy of component 7, and V'* and S* are
the volume and entropy of the C* phase. As a first approximation we could assume that particles
are ‘frozen’ in their lattice structures (noting also that the C* lacks mixing entropy), so that
entropies before and after compounding are comparable and small, and the entropy term in Eq.

(12) can be neglected:
AG = phi(V* - x1V1 - x2V2) X Av (13)

Thus if Av <0, then AG < 0, and the C* phase will be more stable than the phase-segregated state

of the pure components’ solid phases. This scenario should remain true for a range of p < ps; as

long as the S term remains small.

The above argument provides the basis for explaining the occurrence of the NaCl phase in other
athermal systems with asymmetrically sized components. Indeed, Filion et. al. 3 found that
mixtures of small and larger hard spheres with size ratios between 2.22 and 3.33 have
noncongruent athermal behavior, where the athermal NaCl-lattice phase transitions first to an
interstitial solid solution (ISS) at a fixed number of spheres and cubes. It can be shown that for
such binary mixtures of hard spheres, the athermal NaCl phase can be stabilized in the region of
component size ratios in which the corresponding Av < 0.2° Indeed, for the system of small and
large spheres, the non-additivity parameter ranges from -0.02 to -0.047 in the size ratio range of

2.22 < { < 3.33 associated with the athermal NaCl crystallization, with a minimum of Av = -0.47
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for € = 2.75 (see Fig. 2(a)). We also show below that a mixture of small cubes and large spheres

expectedly exhibited a phase behavior similar to that of small + large spheres.
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Figure 2: (a) Non-additive mixing parameter as defined in Eq. (5) as a function of { for 4 = 0.
Insets show the spheres+cubes NaCl phase (for = 2.5) and spheres+octahedra CsCl phase (for ¢

= 1.19) at their maximal negative non-additivity points. Red dashed line corresponds to NaCl phase
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for equimolar large + small hard spheres. (b) Orientation order parameter (P4) of the polyhedra in
the crystalline C* phase as a function of the size ratio. Simulations were carried out at P*=1000

and A= 0.

The distinguishing features of the ISS phase are: (i) the non-fixed, lower than stoichiometric
ratio of guest (small/*solute’) component to host (larger/‘solvent’) component), which leaves
empty some of the host crystal interstitial sites and, (ii) the usually weaker bonding and disparate
size ratio between components which may allow the diffusion of guest particles through the
network of empty interstitial lattice sites. While the ISS phase and the stoichiometric compound
phase share the same underlying lattice geometry and could both be seen as being C* phases, in
this paper we associate the C* phase specifically for the latter as this is the basis for the

calculation of the non-additivity parameter Av.

3.2 Non-additive phase behavior for small flat cubes and large spheres

As shown in

Figure 2, athermal mixtures of flat cubes and spheres with significantly unequal size ratios can

lead to significant negative non-additivity.

To verify that the associated NaCl C* phase can be formed in such systems, we calculated the
transition pressure between the ISS and the C* phase for the size ratio corresponding to the
minimum value of Av using interfacial simulations. In Figure 3 we show the relationship between
the pressure and the filling fraction xzuine of the ISS phase. The filling fractions is defined as the
ratio between the number of polyhedral in the C* phase and the maximum number of polyhedral

in the C* phase. The smallest pressure for which xsuine = 1 corresponds to the transition pressure
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between the NaCl and ISS phases (for convenience the threshold value to assign a NaCl character
was set to xauinge = 0.99). Note that vex increases sharply as this transition point is approached
because of the rapid loss of cubes in the C* phase. Congruent or incongruent athermal behavior
with the flat octahedra+spheres was not achieved for the CsCl lattice, probably due to the low
values of the non-additivity parameter for the CsCl. The NaCl lattice with octahedra + spheres

transitioned into a disordered state even at high pressure and with energetic interactions between

the sphere and the octahedra facet.

1.2

1.0 . . . .
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Figure 3: (a) Filling fraction (xsuing) of the cubes+sphere NaCl phase in equilibrium with a cubic
isotropic phase in an interfacial simulation (blue line) and average volume per particle of the
cube phase (vi) and the C* phase (vc+) as a function of pressure (P*). Simulation done for { = 2.5
and €* = 0. (b) Snapshots of the simulated interfacial system for P*= 0.8 and xuine= 0.98 and (c)
P*=0.5 and xsuing= 0.74.

3.3 Non-additivity Parameter Calculation for Dented Polyhedra+Spheres

Figure 4 shows the relation between Av and A for both mixtures of polyhedra and spheres. It can
be seen that compared to the octahedratspheres mixture (which forms the CsCl phase for
comparably sized components), the cubes+spheres mixture (which forms the NaCl phase) has a
more positive value of the Av non-additivity parameter for the flat case but also a wider range of
negative non-additivity values for large indentations. We attribute this difference to the geometric
restriction on the maximum achievable indentation diameter for the octahedra+spheres system;
while using smaller spheres would allow their deeper penetration into the dents and a more
negative non-additivity, this can also causes the destabilization of the CsCl phase.'>? A similar
destabilization of the C* phase occurs in the cubes+spheres mixtures for sufficiently low ¢ and
large A, but the NaCl lattice can accommodate larger indentations (relative to the facet edge) for

large {. On the other hand, for larger size ratios the effects of the indentations on Av are small since
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the spheres are too big to fit inside the facet dents. Although any indentation size can create an
entropic polyhedron-sphere facet bonding effect, and octahedra indeed have more facets than
cubes, our previous study on cubes showed that attaining significant negative non-additivity (as

per Av values) is a good indicator that such a bonding effect will be sufficiently strong to stabilize

the athermal C* phase.
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Figure 4: Non-additive mixing parameter as defined in Eq. (5) as a function of indentation
ratio (4) and different values of size ratio ({) for (a) the NaCl phase of cubes+spheres and (b) the
CsCl phase of octahedra+spheres.

3.4 Effect of indentation on the phase behavior of similarly sized components in

octahedra + spheres mixture.

Given that only very small degrees of negative non-additivity is attainable for this system (as per
Figs. 2 and 4), we started our exploration of the phase behavior with a system having sufficiently
large energetic selectivity to ensure that a congruent transition to the CsCl phase was
thermodynamically favored. Accordingly, we started the integration at the point corresponding to
A=0, ¢ =115, (=1.00, and p = 7.15, with properties obtained from an interfacial
simulation. Initially, we integrated over changes on the indentation ratio (1) and size ratio ({) at
fixed €* to assess the effect of introducing the concavities on the octahedra’s facets. Figure 5 shows
the curves of coexistence pressure and (as inset) free energy (¢) as a function of A. For { = 1.23,
the variations in pressure and free-energy are negligible, indicating that the nestling of the
relatively large spheres inside the small octahedra dents is minimal due to the limited accessible
space created by the indentations. Additionally, for smaller {, octahedra are larger than their lattice
spacing so neighboring octahedra interact and can couple their positions and orientations while, in
the larger ¢ region, larger spheres prevent this type of interactions. Figure 6 shows the coexistence
pressures and order parameters as a function of { for 4 =0 and 0.57 and fixed energy parameter.
There is a clear drop in the orientational order (P4) and short-range compositional order (SROP)

when the spheres are made bigger. Additionally, the plots show that the optimal { with regards to
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the C* phase order parameter is higher for the indented octahedra when compared to the flat case
(A = 0), which was also observed for the cube + sphere system.?> However, note that the increase
in indentation leads to an increase in both coexistence ¢ and pressure, which is contrary to what
was observed for the cubes + spheres system at any size ratio.>> These ¢ values are readily available
from the FENEX calculations and, according to the optimization rule advocated in Ref. %, the
more stable C* phase should be associated with lower ¢ values. The increase in ¢ can be partially
explained by examining the terms contributing to the free energy as per Eq. (6). Figure 7(a) shows
that for the cube-containing system the volume of the crystalline phase decreases at a faster rate
with A than that for the isotropic phase, while for the octahedra-containing system, the difference
in volume between the CsCl and I phases is smaller and largely insensitive to A. (Note that the
curves for the octahedratsphere system stop at A = 0.57 in Figure 7 as this corresponds to the
maximum viable indentation). The derivative of the free energy for the indentation ratio, Eq. (7),
also indicates that the indentations have a larger effect on the isotropic phase than on the crystalline
phase (Figure 7(b)). Plots of how both the average volume and free-enery derivative z change for
the crystalline and isotropic phases are available in Figures S2 and S3 of the supplementary
material. These two factors led to the increase in free energy with indentation size and to the
conclusion that, at least for the conditions examined in Figs. 4 and 5, the introduction of
indentations in the octahedra has a net destabilizing effect on the CsCl phase relative to the

isotropic phase.
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Figure 5: Coexistence pressure vs. indentation ratio (4) of an equimolar mixture of octahedra +
spheres for ¢* = 1.1 for different size ratios ({). Inset shows how the relative coexistence free

energy changes with indentation ratio (4).
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Figure 6: Coexistence pressure (red), orientation order parameter, P4, (blue dots), and short-
ranger order parameter, SROP, (blue crosses) vs. size ratio ({) for the equimolar mixture of

octahedra + spheres with ¢* = 1.1 and for (a) A =0.57, and (b) A= 0.
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Figure 7: (a) Average volume ratio between the C* and I at equilibrium as a function of the
indentation ratio (4). (b) Average ratio of derivative z of Eq. (7) between the C* and I phases at
equilibrium as a function of the indentation ratio (4). The lines correspond to: (-4-) octahedra+

sphere mixture at €* = 1.1 and (-m-) cube+ sphere mixture at €* = (0.55.
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3.5 Comparison between Octahedra+Spheres and Cubes+Spheres cases.

The most significant finding of our previous paper > on the cubes + spheres system was the
discovery of a relatively large region in A — { parameter space that resulted in an athermal I-C*
congruent phase behavior. To find this region for the octahedra+sphere system, a thermal (non-
zero g*) initial point was chosen to start the integration for convenience. We then calculated the
phase diagram for fixed values of { and /A for varying values of the strength of the inter-species
attraction energy parameter (¢*). In Figure 8 (a), we highlight the region of the phase diagram
where the athermal congruent I-C* phase transition was found for spherestoctahedra and
spheres+cubes systems. In both cases, the actual athermal region (at finite pressures) is consistent
with, but a subset of, the conditions where the non-additivity parameter (for infinite pressure) is
negative in Figure 2, supporting the tenet that athermal congruent phase transition is largely driven
by a decrease in the pV term of the free energy. Note that athermal congruent behavior (¢* = 0) for
the C* phase formed by octahedra + spheres is only reached for the maximum value of the
indentation size A = 0.57 and a very narrow range of size ratios ({) from 1.01 to 1.05. The athermal
region for the octahedra+spheres system also coincided with the region with the highest structural
order of the C* phase in Figure 6. More details about the relationship between A and the minimum

values of €* necessary to stabilize the C* phase are provided in the supplementary material.

Overall, the athermal region of the C* phase stability is significantly smaller for the
octahedrat+spheres system than that for the cubes + spheres system, which is attributed to the
smaller pV change in the octahedrat+sphere system associated with the relatively smaller
octahedron’s facets and concomitant indentations achievable. That equimolar mixtures of spheres
and cubes in a NaCl lattice arrangement are better at filling an available volume than equimolar
mixtures of spheres and cubes in a CsCl lattice arrangement is well encapsulated by the difference
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in magnitude of the non-additive parameter Av which acts as a surrogate of the C*-phase formation
driving force: while both types of mixtures can achieve negative Av values, the former system can
attain an order of magnitude larger negative Av values as illustrated for flat and dented polyhedra

in Figs. 2(a) and 4 respectively.
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Figure 8: (a) (-A region (shaded in gray and black dots) where athermal (¢* = 0) [-C* phase

behavior occurred in our simulations for the (a) cubestspheres system (b) octahedra+spheres
system. The pink shaded region corresponds to negative values of non-additive mixing parameter

Av calculated as per Eq. (5).
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3.6 Driving forces for athermal congruent phase behavior

For the congruent phase transition from the isotropic to the C* phase one can write the change
in the Gibbs free-energy (G) as:

AG = AU + pAV —TAS (14)
where U is potential energy and A refers to the change upon phase transition (C* minus isotropic).
For the athermal systems, we can drop the AU term.

Our analysis of the cubes + spheres system showed that one of the major factors contributing to
the athermal I-C* phase transition is the larger decrease in pV term during the transition as the
indentation ratio increased, as demonstrated in Figure 9(a) for the athermal system. This decrease
helps to stabilize the crystalline phase as it tends to make AG more negative, thus counteracting
the loss of entropy in the C* phase (i.e., from the loss of rotational entropy of the cubes and the
loss of mixing entropy to create substitutional order). Indeed, at the athermal isotropic-C* phase
coexistence point where AG = 0, Eq. (14) shows that since AV <0 (and AU = 0), then AS <0, i.e.,
the C* phase has expectedly less entropy than the isotropic phase. For the octahedra+spheres
system, due to the restricted conditions where congruent transition occurs, we could not conduct a
comparison of pJ values across indentation values for £*= 0. Hence, in Figure 9(b) we show the
relationship between pJ and indentations for €*=1.1. The decrease in p} effect only happens for
the size ratio where the athermal phase behavior was found as expected. However, it is unclear
whether larger indentations may tend to increase the vibrational entropy of the C* lattice and hence
help reduce the magnitude of |AS|.** To probe this question, we monitored the root mean squared
displacement (RMSD) of the species in the crystalline phases at coexistence. The particles’

fluctuations from their respective lattice positions (as calculated through the MSD) can be seen as
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quantifying the amplitude of particle vibrations and hence be a contributor to the total particle
entropy (noting that, at thermal equilibrium between phases, any contribution from momenta or
kinetic degrees of freedom cancel out in AS).* In Figure 10, we display the RMSD displacement
for the athermal NaCl phase of cubes+spheres at equilibrium for two indentation values. We
observe that larger indentation slightly decreases the average RMSD, implying a decrease in
vibrational entropy (with the lattice spacing remaining constant). We also made the same
comparison for the octahedra + spheres CsCl phase, albeit we could not compare athermal systems
because of the lack of a large athermal region for dented octahedra. Nevertheless, we detected the
same trend of decreasing in vibrational entropy with indentation ratio, as shown in Fig. S5 of the

supplementary material.
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Figure 9: Difference in the reduced volume p(v,, — v;) as a function of the indentation ratio (1)
and different size ratios ({) at isotropic-C* phase coexistence for (a) the cubes +sphere system in

the athermal region, (b) the octahedra +sphere system for €* = 1.1.
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Figure 10: Average Mean squared displacement as a function of the MC cycles for the athermal
NaCl phase. Size ratio was kept the same (¢ = 1.23) for these plots and error bars appear as

vertical lines.

The pV effect caused by the indentations can be associated with the strengthening of the
polyhedra-sphere entropic bonds and, in the athermal systems, an entropic bond that can be as
strong as the energetic bond needed to stabilize the C* phase with flat polyhedra at conditions
when it was otherwise unfeasible. Figure 11 shows that expectedly the average bond distance
between the polyhedra and spheres is shorter for larger A (for fixed ) due to the extent of sphere-
dent nestling behavior which is what effectively leads to a more efficient packing and a larger pV’
effect upon ordering (as quantified in Fig. 4a and Fig. 7). We can then associate stronger bonds

with shorter interspecies bond lengths.
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Figure 11: Probability distributions of normalized bond length between spheres and polyhedra
for two values of indentations in the crystalline phase at coexistence. The bond length is
normalized by the contact distance between the center of the sphere and the center of a flat
polyhedron (o;;) for (a) NaCl phase at €* = 0.55 and 0;; = a/2 + /2 = 2.23, and (b) CsCl
phase at ¢*=1.1ando;; = h/2+0/2 = 1.41.

4. CONCLUSIONS AND OUTLOOK

In this work we have examined how negative volumetric mixing non-additivity associated with
the formation of the compound crystal from equimolar polyhedra+spheres binary mixtures can be
generated by tuning the component size asymmetry and the presence of concavities in the
polyhedra facets, and how such non-additivity correlates with the isotropic-crystalline athermal

phase behavior, including congruent athermal crystallization. Two polyhedral shapes were
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considered, cubes and octahedra, which when blended with spheres can form a crystalline

compound C* with the NaCl and CsCl lattice, respectively.

First, we find that negative non-additivity (as quantified by our Av parameter) can be observed in
mixtures of flat cubes and larger spheres, and that for relatively large spheres where Av < 0, an
athermal noncongruent isotropic-C* phase behavior ensues. This also demonstrates that it is the
pV contraction associated with the C*-phase formation (relative to the hypothetical competing
state of segregated crystalline phases of the pure components) that is the main driving force that
stabilizes such an athermal C* phase. While negative non-additive is also observed in mixtures of
flat octahedra and spheres, this is very tenuous and restricted to a narrow range of component sizes;
our simulations failed to any find finite-pressure conditions where the corresponding athermal C*

phase was stable.

For the octahedra+spheres system, we used a specialized thermodynamic integration method to
trace phase coexistence lines as a function of three main system variables, namely, the interspecies
attraction strength, indentation ratio, and size ratio. Our findings suggest that the effect of facet
indentations was not very beneficial in this case; specifically, increasing indentation led to higher
coexistence free energy and pressure in the octahedra + spheres system. These trends contrasted
with those observed in the cubes and spheres system at any size ratio. Furthermore, the athermal
region for the octahedra+spheres system was limited to 4 = 0.57 and size ratios ranging from 1.01
to 1.05 while a broader {-4 region was observed in our previous study of cubes+spheres. We also
found that the reduction in the pJ term of the C* phase free energy resulting from the addition of
indentations is the main force driving the athermal congruent phase transition and that this
decrease, being smaller for the octahedra+spheres system, is responsible for the observed

differences across systems. Our study also revealed that the presence of indentations slightly
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decreases the particle vibrational entropy. However, this effect is compensated for by the gains

associated with the strengthening of the entropic bonds.

We note that effective athermal, non-additive interactions can be abstracted even when ordering
is aided by underlying anisotropic energetic interactions and external fields. One relevant
example occurs in the self-assembly of binary systems of spherical colloidal particles into quasi-
2D superlattices at a fluid-fluid interface.*** In such a case, the components’ centers of mass
occupy different planes due to differences in how the two species interact with the two fluids,
leading to rather unique superlattices. Such a system could be “coarse-grained” into a 2D binary
mixture of "non-additive" co-planar hard disks where some overlap is only allowed between

disks of unlike species.****

Overall, our findings provide specific ranges for the geometric parameters related to indentation
and component sizes that drive the athermal phase ordering behavior of particles and form the
basis for ongoing work. The impact of negative non-additive mixing on phase transition kinetics
can also be studied via molecular simulations, as we previously demonstrated with a system of
patchy particles having positive non-additivity.* Besides the geometry of the system, the
relationship between the valence of the polyhedra particles and the indentation ratio can be
explored further in simulations with other polyhedra particles of varying valence such as
tetrahedral and dodecahedral frames. >’*? A general question that we are expecting to address is:
Can we use Av calculations to predict the favorable assembly of hard small polyhedra (flat or
dented) + large spheres into a "AmB," lattice, for any polyhedra shape and for any lattice compound
AmBn (Where m/n indicate different stoichiometry)? Additionally, one could investigate the effects
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of size polydispersity and the strength of the entropic bonds on the phase behavior and

mechanical strength of these materials. Note that even pure component systems (where each

33



particle exhibits convex and concave regions) can also exhibit different ordered phases realizing
varying degrees of nonaditivity.*’** In summary, our findings provide insights into how designing
particle shapes that partially relieve geometrical frustration to attain denser structural packings can

aid in the stabilization of compound crystals and can thus inform the design of new materials.
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