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EFX Exists for Three Agents∗
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We study the problem of distributing a set of indivisible goods among agents with additive valuations in a fair manner. The fairness

notion under consideration is envy-freeness up to any good (EFX). Despite significant efforts by many researchers for several years,

the existence of EFX allocations has not been settled beyond the simple case of two agents. In this paper, we show constructively

that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture of Caragiannis et al. [11] by showing an

instance with three agents for which there is a partial EFX allocation (some goods are not allocated) with higher Nash welfare than

that of any complete EFX allocation.
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1 INTRODUCTION

Fair division of resources is a fundamental problem in many disciplines, including computer science, economics, and

social choice theory. All problems in this field aim to divide a set of items among a set of agents in a “fair" manner.

Early mentions of such problems date back to the Bible and Greek mythology. Even today, several real-world problems

fall into this domain: dividing inheritance property, partnership dissolutions, splitting rent among tenants, splitting taxi

fare among passengers, dividing household tasks/chores among all the tenants, and so on. Despite its fundamentality,

a rigorous mathematical study of fair division was initiated only in the 1940s, when Steinhaus formally introduced

the cake-cutting problem. Since then, there has been substantial research on the existence and computation of fair

allocations. We briefly mention the broad spectrum of problems harbored by this field: The items to be divided can

be divisible or indivisible, and can be further categorized as desirable goods or undesirable bads/chores. Motivated by

different applications, there are several fairness notions applicable in each of the aforementioned settings, giving rise to

several distinct problems. The setting with divisible items (goods or chores) shares strong connections to the classical
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2 Chaudhury, Garg and Mehlhorn

market equilibrium theory in microeconomics. In this paper, we focus on fair division of indivisible goods (also referred

to as discrete fair division of goods).

An instance of discrete fair division is given by a set 𝑀 of𝑚 indivisible goods and a set of 𝑛 agents. Each agent 𝑖

has a valuation function 𝑣𝑖 : 2
𝑀 → R≥0 that quantifies the amount of utility agent 𝑖 derives from each subset of items.

Throughout this paper, we assume additive valuations, which are the most well-studied class of valuations. Here, for all

𝑖 ∈ [𝑛], we have 𝑣𝑖 (𝑆) :=
∑

𝑗∈𝑆 𝑣𝑖 ({ 𝑗}) for all 𝑆 ⊆ 𝑀 . Our goal is to determine a partition 𝑋 = ⟨𝑋1, 𝑋2, . . . , 𝑋𝑛⟩ of 𝑀
into 𝑛 bundles, such that 𝑋𝑖 is allocated to agent 𝑖 , and 𝑋 is “fair". One of the most fundamental notions of fairness

is that of envy-freeness, where no agent 𝑖 envies another agent 𝑗 ’s bundle, i.e., for all agents 𝑖 , 𝑗 with 𝑖 ≠ 𝑗 we have

𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗 ). However, an envy-free allocation does not always exist, e.g., consider dividing a single valuable good

among two agents. In any feasible allocation, the agent with no good will envy the agent that has been allocated one

good. This necessitates the study of relaxed notions of envy-freeness. To this end, we mention the first relaxation of

envy-freeness that was introduced, namely, envy-freeness up to one good (EF1).

Envy-freeness up to one good (EF1). This relaxation was introduced by Budish [9]. An allocation 𝑋 is said to be EF1 if

no agent 𝑖 envies another agent 𝑗 after the removal of some good in 𝑗 ’s bundle, i.e., 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗 \ 𝑔) for some 𝑔 ∈ 𝑋 𝑗 .

So we allow 𝑖 to envy 𝑗 , but the envy must disappear after the removal of some valuable good (according to agent 𝑖)

from 𝑗 ’s bundle. Note that there is no actual removal: This is simply to assess how agent 𝑖 values his own bundle when

compared to 𝑗 ’s bundle. It is well known that an EF1 allocation always exists, and it can be obtained in polynomial

time using the famous envy-cycles procedure by Lipton et al. [28]. However, an EF1 allocation may be unsatisfactory:

Intuitively, EF1 only requires that envy disappears after the removal of the most valuable good, say 𝑔, according to the

envying agent 𝑖 from the envied agent 𝑗 ’s bundle—however, in many cases, 𝑔 might be the primary reason for very

large envy to exist in the first place, e.g., when 𝑖’s value for 𝑔 is more than one-half of 𝑖’s value for 𝑗 ’s bundle. Therefore,

stronger notions of fairness are desirable in many circumstances. To this end, we discuss envy-freeness up to any good

(EFX).

Envy-freeness up to any good (EFX). This relaxation was introduced by Caragiannis et al. [12]. An allocation 𝑋 is said

to be EFX if no agent 𝑖 envies another agent 𝑗 after the removal of any good in 𝑗 ’s bundle, i.e., 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗 \ 𝑔) for
all 𝑔 ∈ 𝑋 𝑗 . Unlike EF1, in an EFX allocation, the envy between any pair of agents disappears after the removal of the

least valuable good (according to agent 𝑖) from 𝑗 ’s bundle. Note that every EFX allocation is an EF1 allocation, but not

vice-versa. Consider a simple example of two agents with additive valuations and three goods {𝑎, 𝑏, 𝑐} from [15], where

the agents’ valuations for individual goods are as follows,

𝑔1 𝑔2 𝑔3

𝐴𝑔𝑒𝑛𝑡 1 1 1 2

𝐴𝑔𝑒𝑛𝑡 2 1 1 2

.

Observe that 𝑔3 is twice as valuable than 𝑔1 or 𝑔2 for both agents. An allocation where one agent gets {𝑔1} and the

other gets {𝑔2, 𝑔3} is EF1 but not EFX. The only possible EFX allocation is where one agent gets {𝑔3} and the other gets

{𝑔1, 𝑔2}, which is clearly fairer than the given EF1 allocation. This example also shows how EFX helps to rule out some

unsatisfactory EF1 allocations. Caragiannis et al. [11] remarked that

“Arguably, EFX is the best fairness analog of envy-freeness of indivisible items.”
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EFX Exists for Three Agents 3

While an EF1 allocation is always guaranteed to exist, very little is known about the existence of EFX allocations

(“despite significant effort" in Caragiannis et al. [12]). In fact, this problem is considered as fair division’s biggest open

question, e.g., Procaccia [31] remarked that

“This fundamental and deceptively accessible question is open. In my view, it is the successor of envy-free

cake cutting as fair division’s biggest problem.”

Plaut and Roughgarden [30] showed two scenarios in which EFX allocations are guaranteed to exist: (𝑖) All agents
have identical valuations (i.e., 𝑣1 = 𝑣2 = · · · = 𝑣𝑛), and (𝑖𝑖) Two agents (i.e., 𝑛 = 2). Unfortunately, starting from

three agents, even for the well-studied class of additive valuations, it is open whether EFX allocations exist. Plaut and

Roughgarden [30] also remarked that

“The problem seems highly non-trivial even for three players with different additive valuations.”

Our main contribution in this paper is answering the question of the existence of EFX allocations when there are

three agents.

Theorem. EFX allocations always exist for three agents with additive valuations.

EFX with charity: Quite recently, there have been studies [11, 15] that consider relaxations of EFX, called “EFX with

charity”. Here, we look for partial EFX allocations, where not all goods need to be allocated (some of them remain

unallocated). There is a trivial such allocation where no good is allocated to any agent. Therefore, the goal is to determine

allocations with some qualitative or quantitative bound on the set of unallocated goods. For instance, Chaudhury et

al. [15] showed how to determine a partial EFX allocation 𝑋 and a pool of unallocated goods 𝑃 such that no agent

envies the pool (i.e. for any agent 𝑖 , we have 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑃)), and 𝑃 has less than 𝑛 goods (i.e., |𝑃 | < 𝑛), even in the

case of general valuations. In the case of additive valuations, Caragiannis et al. [11] showed the existence of a partial

EFX allocation 𝑋 = ⟨𝑋1, 𝑋2, . . . , 𝑋𝑛⟩, where every agent gets at least half the value of his bundle in the allocation that

maximizes the Nash welfare i.e., the geometric mean of agents’ valuations (suggesting that unallocated goods are not

too valuable).

While the standard economic notion of efficiency is Pareto-optimality, where no agent can be made happier without

making another agent worse, the maximum possible Nash welfare is a stronger notion of efficiency, which implies

Pareto-optimality. Another added benefit of using Nash welfare is that, unlike Pareto-optimality, it establishes a total

efficiency order (which extends the partial efficiency order established by Pareto-optimality) in the space of allocations,

i.e., any pair of allocations is comparable from an efficiency point of view – the one with higher Nash welfare is more

efficient. Thus, we can quantify the efficiency of a fair allocation by its Nash welfare approximation [11]. The result of

Caragiannis et al. [11] implies that there are partial EFX allocations with high Nash welfare (a 2-approximation of the

maximum possible Nash welfare). Indeed, it is a natural question to ask whether there are complete EFX allocations (all

goods are allocated) with high Nash welfare. To this end, Caragiannis et al. [11] conjectured:

“In particular, we suspect that adding an item to an allocation problem (that provably has an EFX allocation)

yields another problem that also has an EFX allocation with at least as high Nash welfare as the initial

one.”1

Note that if the above conjecture is true, it will imply the existence of complete EFX allocations with at least 2

approximation of the maximum possible Nash welfare. Unfortunately, we show (in Section 5) that the above conjecture

is false.

1
This was posed as a monotonicity conjecture in their presentation at ACM EC 2019.
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4 Chaudhury, Garg and Mehlhorn

To disprove the conjecture, we exhibit an instance where there exists a partial EFX allocation with higher Nash

welfare than the Nash welfare of any complete EFX allocation. Thus, the existence of EFX allocations with high Nash

welfare remains open, even in the setting with three agents. It is known that when agents have binary valuations,

there exist EFX allocations that maximize the Nash welfare [24]. However, investigating the existence of efficient EFX

allocations or settings under which efficient EFX allocations can be guaranteed is an interesting and important direction

for future research.

Furthermore, the instance in Section 5 also highlights an inherent barrier in the current techniques for determining

EFX allocations: Several of the existing algorithms for approximate EFX allocations ([30]) and EFX allocations with

charity ([15]) start with a partial EFX allocation and determine another partial EFX allocation with higher Nash welfare

iteratively by cleverly allocating some unallocated goods and unallocating some allocated goods. However, our instance

in Section 5 shows that such approaches will not help if our goal is to determine a complete EFX allocation.

A large part of our work in this paper develops better tools to overcome this particular barrier, and we consider the

tools introduced here as the most innovative technical contribution of our work. We believe that these tools and the

instance may help resolve the major open problem of the existence of EFX allocations for more than three agents and

for more general valuations (positively or negatively).

1.1 Our Contributions

Our major contribution in this paper is to prove that an EFX allocation always exists when there are three agents with

additive valuations. The proof is algorithmic. To discuss our techniques, we first briefly highlight how we overcome

two barriers in the current techniques.

Splitting bundles: We first sketch the simple algorithm of Plaut and Roughgarden [30] that determines an EFX

allocation when all agents have the same valuation function, say 𝑣 . Let us restrict our attention to the special case

where there are no zero marginals, i.e., for any 𝑆 ⊆ 𝑀 and 𝑔 ∉ 𝑆 , we have 𝑣 (𝑆 ∪ 𝑔) > 𝑣 (𝑆). Also, note that since

agents have the same valuation function, if 𝑣 (𝑋𝑖 ) < 𝑣 (𝑋 𝑗 \ 𝑔) for two agents 𝑖 and 𝑗 for some 𝑔 ∈ 𝑋 𝑗 then we have

𝑣 (𝑋𝑖min ) < 𝑣 (𝑋 𝑗 \ 𝑔) where 𝑖min is the agent with the lowest valuation. The algorithm in [30] starts with an arbitrary

allocation (not necessarily EFX), and as long as there are agents 𝑖 and 𝑗 such that 𝑣 (𝑋𝑖 ) < 𝑣 (𝑋 𝑗 \ 𝑔) for some 𝑔 ∈ 𝑋 𝑗 ,

the algorithm takes the good 𝑔 away from 𝑗 ( 𝑗 ’s new bundle is 𝑋 𝑗 \ 𝑔) and adds it to 𝑖min’s bundle (𝑖min’s new bundle

is 𝑋𝑖min ∪ 𝑔). Also, note that after re-allocation, the only changed bundles are that of 𝑖min and 𝑗 , and both of them

have valuations still higher than 𝑖min’s initial valuation: 𝑣 (𝑋𝑖min ∪ 𝑔) > 𝑣 (𝑋𝑖min ) and 𝑣 (𝑋 𝑗 \ 𝑔) > 𝑣 (𝑋𝑖min ). Observe that
such an operation increases the valuation of an agent with the lowest valuation. Thus, after finitely many applications

of this re-allocation we must arrive at an EFX allocation. Note that this crucially uses the fact that the agents have

identical valuations. In the general case, the valuation of agent 𝑗 may drop significantly after removing 𝑔 and 𝑗 ’s current

valuation may be even less than 𝑖min’s initial valuation. Therefore, it is important to understand how agents value good(s)

that we move across the bundles. To this end, we carefully split every bundle into upper and lower half bundles (see (1)

in Section 2). We systematically quantify the agent’s relative valuations agents have for these upper and lower half

bundles. In most cases, we can move these bundles from one agent to the other and improve the valuation of some of

the agents while still guaranteeing the EFX property. This idea is detailed in Sections 3 and 4.

A new potential function: We need to show that there is progress after every swap of half bundles. The typical

method here is to show improvement of the valuation vector on the Pareto front (see [15] and [30]). However, there are

limitations to this approach: In particular, we show an instance and a partial EFX allocation such that the valuation

Manuscript submitted to ACM
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EFX Exists for Three Agents 5

vector of any complete EFX allocation does not Pareto dominate the valuation vector of the existing partial EFX

allocation. To overcome this barrier, we first pick an arbitrary agent 𝑎 at the beginning and show that whenever we

are unable to improve the valuation vector on the Pareto front, we can strictly increase 𝑎’s valuation. In other words,

the valuation of a particular agent 𝑎 never decreases throughout re-allocations, and it improves after finitely many

re-allocations, showing convergence. A more elaborate discussion on this technique is presented in Section 2.

1.2 Further Related Work

Fair division has received significant attention since the seminal work of Steinhaus [32] in the 1940s, where he introduced

the cake-cutting problem among 𝑛 > 2 agents. Perhaps the two most crucial notions of fairness properties that can be

guaranteed in the case of divisible goods are envy-freeness and proportionality. In a proportional allocation, each agent

receives a bundle that they value at least 1/𝑛 times their value for the entire set of goods. As mentioned earlier, none of

these two notions can be guaranteed in the case of indivisible goods. While EF1 and EFX are fairness notions that relax

envy-freeness, the most popular notions of fairness that relax proportionality for indivisible goods are maximin share

(MMS), proportionality up to one good (PROP1), proportionality up to any good (PROPx), and proportionality up to the

maximin good (PROPm). The MMS was introduced by Budish [9]. While MMS allocations do not always exist [26],

there has been extensive work to come up with approximate MMS allocations [2, 6, 8, 9, 20–22, 26]. On the other hand,

PROPx is stronger than PROPm, which is stronger than PROP1. While PROPx allocations do not always exist [29],

PROPm allocations are guaranteed to exist [5].

While much research effort goes into finding fair allocations, there has also been a lot of interest in guaranteeing

efficient fair allocations. A standard notion of efficiency is Pareto-optimality2. Caragiannis et al. [12] showed that any

allocation that has the maximum Nash welfare is guaranteed to be Pareto-optimal (efficient) and EF1 (fair). Therefore,

the Nash welfare of an allocation is also considered as a measure of efficiency and fairness of an allocation. However,

finding an allocation with the maximum Nash welfare is APX-hard [27], and its approximation has recently received a

lot of attention, e.g., [3, 4, 7, 13, 16–19]. Barman et al. [7] gave a pseudopolynomial algorithm to find an allocation that

is both EF1 and Pareto-optimal.

Applications: There are several real-world scenarios where resources need to be divided fairly and efficiently, e.g.,

splitting rent among tenants, dividing inheritance property in a family, splitting taxi fares among riders, and many

more. One example of fair division techniques used in practice is Spliddit [1]. Since its launch in 2014, Spliddit has had

several thousands of users [12]. For more details on Spliddit, we refer the reader to [23, 30]. Another example is Course

Allocate, which is used by the Wharton School at the University of Pennsylvania to fairly allocate 350 courses to 1700

MBA students [10, 30]. Kurokawa et al. [25] used leximin fairness to allocate unused classrooms in public schools to

charter schools in California. The best part of the allocations determined in all these applications is that they yield

results that not only seem fair in most instances but also come with mathematical guarantees.

2 PRELIMINARIES AND BASIC TOOLS

An instance 𝐼 of fair allocation problem is a triple ⟨[3], 𝑀,V⟩, where we have three agents 1, 2, and 3, a set 𝑀 of𝑚

indivisible goods, and a set of valuation functionsV = {𝑣1, 𝑣2, 𝑣3}, where each 𝑣𝑖 : 2𝑀 → R≥0 captures the utility agent

𝑖 has for all the different subsets of goods that can be allocated. We assume that the valuation functions are additive

2
An allocation 𝑋 = ⟨𝑋1, . . . , 𝑋𝑛 ⟩ is Pareto-optimal if there is no allocation 𝑌 = ⟨𝑌1, . . . , 𝑌𝑛 ⟩ where 𝑣𝑖 (𝑌𝑖 ) ≥ 𝑣𝑖 (𝑋𝑖 ) for all 𝑖 ∈ [𝑛] and 𝑣𝑗 (𝑌𝑗 ) >
𝑣𝑗 (𝑋 𝑗 ) for some 𝑗 .
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6 Chaudhury, Garg and Mehlhorn

(𝑣𝑖 (𝑆) =
∑
𝑔∈𝑆 𝑣𝑖 ({𝑔}) for all 𝑆 ⊆ 𝑀) and normalized (𝑣𝑖 (∅) = 0). For ease of notation, we write 𝑣𝑖 (𝑔) for 𝑣𝑖 ({𝑔}). Further,

we write 𝑆 ⊕𝑖 𝑇 for 𝑣𝑖 (𝑆) ⊕ 𝑣𝑖 (𝑇 ) with ⊕ ∈ {≤, ≥, <, >}. Given an allocation 𝑋 = ⟨𝑋1, 𝑋2, . . . , 𝑋𝑛⟩ we say that 𝑖 strongly

envies a bundle 𝑆 ⊆ 𝑀 if 𝑋𝑖 <𝑖 𝑆 \ 𝑔 for some 𝑔 ∈ 𝑆 , and we say that 𝑖 weakly envies 𝑆 if 𝑋𝑖 <𝑖 𝑆 but 𝑋𝑖 ≥𝑖 𝑆 \ 𝑔 for all
𝑔 ∈ 𝑆 . From this perspective an allocation is an EFX allocation if and only if no agent strongly envies another agent.

From here on, whenever we refer to an allocation, we refer to a partial allocation, i.e., one where all goods may not

be allocated. We call an allocation 𝑋 , a complete allocation, if all goods are allocated in 𝑋 .

Non-degenerate instances: We call an instance 𝐼 = ⟨[3], 𝑀,V⟩ non-degenerate if and only if no agent values two

different sets equally, i.e., for all 𝑖 ∈ [3] we have 𝑣𝑖 (𝑆) ≠ 𝑣𝑖 (𝑇 ) for all 𝑆 ≠ 𝑇 . We first show that it suffices to deal with

non-degenerate instances. Let𝑀 = {𝑔1, 𝑔2, . . . , 𝑔𝑚}. We perturb any instance 𝐼 to 𝐼 (𝜀) = ⟨[3], 𝑀,V(𝜀)⟩, where for every
𝑣𝑖 ∈ V we define 𝑣 ′

𝑖
∈ V(𝜀), as

𝑣 ′𝑖 (𝑔 𝑗 ) = 𝑣𝑖 (𝑔 𝑗 ) + 𝜀2
𝑗 .

Lemma 1. Let 𝛿 = min𝑖∈[3] min𝑆,𝑇 : 𝑣𝑖 (𝑆 )≠𝑣𝑖 (𝑇 ) |𝑣𝑖 (𝑆) − 𝑣𝑖 (𝑇 ) | and let 𝜀 > 0 be such that 𝜀 · 2𝑚+1 < 𝛿 . Then

(1) For any agent 𝑖 and 𝑆,𝑇 ⊆ 𝑀 such that 𝑣𝑖 (𝑆) > 𝑣𝑖 (𝑇 ), we have 𝑣 ′𝑖 (𝑆) > 𝑣
′
𝑖
(𝑇 ).

(2) 𝐼 (𝜀) is a non-degenerate instance. Furthermore, if 𝑋 = ⟨𝑋1, 𝑋2, 𝑋3⟩ is an EFX allocation for 𝐼 (𝜀) then 𝑋 is also an

EFX allocation for 𝐼 .

Proof. For the first statement of the lemma, observe that

𝑣 ′𝑖 (𝑆) − 𝑣
′
𝑖 (𝑇 ) = 𝑣𝑖 (𝑆) − 𝑣𝑖 (𝑇 ) + 𝜀 (

∑︁
𝑔𝑗 ∈𝑆\𝑇

2
𝑗 −

∑︁
𝑔𝑗 ∈𝑇 \𝑆

2
𝑗 )

≥ 𝛿 − 𝜀
∑︁

𝑔𝑗 ∈𝑇 \𝑆
2
𝑗

≥ 𝛿 − 𝜀 · (2𝑚+1 − 1)

> 0 .

For the second statement of the lemma, consider any two sets 𝑆,𝑇 ⊆ 𝑀 such that 𝑆 ≠ 𝑇 . Now, for any 𝑖 ∈ [3], if
𝑣𝑖 (𝑆) ≠ 𝑣𝑖 (𝑇 ), we have 𝑣 ′𝑖 (𝑆) ≠ 𝑣 ′

𝑖
(𝑇 ) by the first statement of the lemma. If 𝑣𝑖 (𝑆) = 𝑣𝑖 (𝑇 ), we have 𝑣 ′𝑖 (𝑆) − 𝑣

′
𝑖
(𝑇 ) =

𝜀 (∑𝑔𝑗 ∈𝑆\𝑇 2
𝑗 −∑

𝑔𝑗 ∈𝑇 \𝑆 2
𝑗 ) ≠ 0 (as 𝑆 ≠ 𝑇 ). Therefore, 𝐼 (𝜀) is non-degenerate.

For the final claim, let us assume that 𝑋 is an EFX allocation in 𝐼 (𝜀) and not an EFX allocation in 𝐼 . Then, there exist

𝑖, 𝑗 , and 𝑔 ∈ 𝑋 𝑗 such that 𝑣𝑖 (𝑋 𝑗 \ 𝑔) > 𝑣𝑖 (𝑋𝑖 ). In that case, we have 𝑣 ′
𝑖
(𝑋 𝑗 \ 𝑔) > 𝑣 ′

𝑖
(𝑋𝑖 ) by the first statement of the

lemma, implying that 𝑋 is not an EFX allocation in 𝐼 (𝜀) as well, which is a contradiction. □

Henceforth, we assume that the given instance is non-degenerate. Note that non-degeneracy implies that all goods have

positive value for all agents as otherwise if for agent 𝑖 , we have 𝑣𝑖 ({𝑔}) = 0, then 𝑣𝑖 (𝑇 ∪ {𝑔}) = 𝑣𝑖 (𝑇 ), for any 𝑇 such that

𝑔 ∉ 𝑇 .

Overall approach: An allocation 𝑋 ′ Pareto dominates an allocation 𝑋 if 𝑣𝑖 (𝑋𝑖 ) ≤ 𝑣𝑖 (𝑋 ′
𝑖
) for all 𝑖 with strict inequality

for at least one 𝑖 . The existing algorithms for “EFX with charity” [15] or “approximate EFX allocations” [30] construct a

sequence of (partial) EFX allocations in which each allocation Pareto dominates its predecessor. However, we exhibit in

Section 5 an EFX allocation that is not Pareto dominated by any complete EFX allocation. Thus, we need a more flexible

approach in the search for a complete EFX allocation.
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EFX Exists for Three Agents 7

We name the agents 𝑎, 𝑏, and 𝑐 arbitrarily and consider the lexicographic ordering of the triples

𝜙 (𝑋 ) = (𝑣𝑎 (𝑋𝑎), 𝑣𝑏 (𝑋𝑏 ), 𝑣𝑐 (𝑋𝑐 )),

i.e., 𝜙 (𝑋 ) ≺lex 𝜙 (𝑋 ′) (𝑋 ′ dominates 𝑋 ) if (i) 𝑣𝑎 (𝑋𝑎) < 𝑣𝑎 (𝑋 ′
𝑎) or (ii) 𝑣𝑎 (𝑋𝑎) = 𝑣𝑎 (𝑋 ′

𝑎) and 𝑣𝑏 (𝑋𝑏 ) < 𝑣𝑏 (𝑋 ′
𝑏
) or (iii)

𝑣𝑎 (𝑋𝑎) = 𝑣𝑎 (𝑋 ′
𝑎) and 𝑣𝑏 (𝑋𝑏 ) = 𝑣𝑏 (𝑋 ′

𝑏
) and 𝑣𝑐 (𝑋𝑐 ) < 𝑣𝑐 (𝑋 ′

𝑐 ). We construct a sequence of allocations in which each

allocation dominates its predecessor. Of course, if 𝑋 ′
Pareto dominates 𝑋 , then it also dominates 𝑋 , so we can use all

the update rules in [15].

Our goal then is to iteratively construct a sequence of EFX allocations such that each EFX allocation dominates its

predecessor.

Most envious agent. We use the notion of a most envious agent, introduced in [15]. Consider an allocation 𝑋 , and a

set 𝑆 ⊆ 𝑀 that is envied by at least one agent. For an agent 𝑖 such that 𝑆 >𝑖 𝑋𝑖 , we “measure the envy” that agent 𝑖

has for 𝑆 by 𝜅𝑋 (𝑖, 𝑆), where 𝜅𝑋 (𝑖, 𝑆) is the size of a smallest subset of 𝑆 that 𝑖 still envies, i.e., 𝜅𝑋 (𝑖, 𝑆) is the smallest

cardinality of a subset 𝑆 ′ of 𝑆 such that 𝑆 ′ >𝑖 𝑋𝑖 . Thus, the smaller the value of 𝜅𝑋 (𝑖, 𝑆), the greater the envy of agent 𝑖

for the set 𝑆 . So let 𝜅𝑋 (𝑆) = min𝑖∈[3]𝜅𝑋 (𝑖, 𝑆). Naturally, we define the set of the most envious agents 𝐴𝑋 (𝑆) for a set 𝑆
as the set of agents with smallest values of 𝜅𝑋 (𝑖, 𝑆), i.e.,

𝐴𝑋 (𝑆) = {𝑖 | 𝑆 >𝑖 𝑋𝑖 and 𝜅𝑋 (𝑖, 𝑆) = 𝜅𝑋 (𝑆)} .

The following simple observation about the most envious agents of specific kinds of bundles will be useful.

Observation 2. Given any allocation 𝑋 , and an unallocated good 𝑔, for any 𝑖 ∈ [3], 𝐴𝑋 (𝑋𝑖 ∪ 𝑔) ≠ ∅.

Proof. It suffices to prove that there exists at least one agent 𝑖 who strictly prefers 𝑋𝑖 ∪ 𝑔 over his own bundle in

allocation 𝑋 . This is guaranteed since we are dealing with non-degenerate instances, in which 𝑋𝑖 ∪ 𝑔 >𝑖 𝑋𝑖 . □

Champions and Champion Graph 𝑀𝑋 . Let 𝑋 be an EFX allocation at any stage in our algorithm, and let 𝑔 be an

unallocated good. We say that 𝑖 champions 𝑗 (with respect to 𝑔) if 𝑖 is a most envious agent for𝑋 𝑗 ∪𝑔, i.e., 𝑖 ∈ 𝐴𝑋 (𝑋 𝑗 ∪𝑔).
We define the champion graph 𝑀𝑋 , where each vertex corresponds to an agent and there is a directed edge (𝑖, 𝑗) ∈ 𝑀𝑋

if and only if 𝑖 champions 𝑗 (with respect to 𝑔). Note that strictly speaking, a champion graph is defined based on the

allocation 𝑋 and the unallocated good 𝑔. However, in most of the discussion that follows, the unallocated good 𝑔 is the

unallocated good with which we start an iteration of our algorithm. Thus, we keep the notation of the champion graph

(𝑀𝑋 ) free from the unallocated good, and remind the reader that unless stated explicitly the champions and champion

graphs are defined with respect to the partial EFX allocation 𝑋 and the unallocated good 𝑔 with which every iteration

of the algorithm starts.

Observation 3. The champion graph𝑀𝑋 is cyclic.

Proof. By Observation 2, we have that the set of champions of any agent is never empty. Therefore, every vertex in

𝑀𝑋 has at least one incoming edge. Thus,𝑀𝑋 is cyclic. □

If 𝑖 champions 𝑗 , we define 𝐺𝑖 𝑗 as a largest cardinality subset of 𝑋 𝑗 ∪ 𝑔 such that (𝑋 𝑗 ∪ 𝑔) \ 𝐺𝑖 𝑗 >𝑖 𝑋𝑖 . Since the

valuations are additive, note that such a subset can be identified efficiently as the set 𝐾 of the 𝑘 least valuable goods for

𝑖 in 𝑋 𝑗 ∪ 𝑔 such that (𝑋 𝑗 ∪ 𝑔) \ 𝐾 >𝑖 𝑋𝑖 and 𝑘 is maximum. Now we make some small observations.

Proposition 4. Assume 𝑖 champions 𝑗 .
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8 Chaudhury, Garg and Mehlhorn

(1) We have ((𝑋 𝑗 ∪ 𝑔) \𝐺𝑖 𝑗 ) \ ℎ ≤𝑘 𝑋𝑘 for all ℎ ∈ (𝑋 𝑗 ∪ 𝑔) \𝐺𝑖 𝑗 and all agents 𝑘 including 𝑖 .

(2) If agent 𝑘 does not champion 𝑗 , we have (𝑋 𝑗 ∪ 𝑔) \𝐺𝑖 𝑗 ≤𝑘 𝑋𝑘 .

Proof. Note that by definition, 𝐺𝑖 𝑗 is a largest cardinality subset of 𝑋 𝑗 ∪ 𝑔 such that 𝑖 values (𝑋 𝑗 ∪ 𝑔) \𝐺𝑖 𝑗 more

than 𝑋𝑖 . This implies that (𝑋 𝑗 ∪ 𝑔) \𝐺𝑖 𝑗 is a smallest cardinality subset of 𝑋 𝑗 ∪ 𝑔 that 𝑖 values more than 𝑋𝑖 . Thus,

| (𝑋 𝑗 ∪𝑔) \𝐺𝑖 𝑗 | = 𝜅𝑋 (𝑖, 𝑋 𝑗 ∪𝑔). Since 𝑖 champions 𝑗 , we have that 𝑖 ∈ 𝐴𝑋 (𝑋 𝑗 ∪𝑔) and thus 𝜅𝑋 (𝑖, 𝑋 𝑗 ∪𝑔) = 𝜅𝑋 (𝑋 𝑗 ∪𝑔).
Now, no agent 𝑘 values a subset of 𝑋 𝑗 ∪ 𝑔 of size less than 𝜅𝑋 (𝑘,𝑋 𝑗 ∪ 𝑔) more than 𝑋𝑘 . Note that ((𝑋 𝑗 ∪ 𝑔) \𝐺𝑖 𝑗 ) \ ℎ
has size 𝜅𝑋 (𝑋 𝑗 ∪ 𝑔) − 1 < 𝜅𝑋 (𝑘,𝑋 𝑗 ∪ 𝑔), and thus ((𝑋 𝑗 ∪ 𝑔) \𝐺𝑖 𝑗 ) \ ℎ ≤𝑘 𝑋𝑘 .

Now if 𝑘 did not champion 𝑗 then 𝜅𝑋 (𝑘,𝑋 𝑗 ∪ 𝑔) < 𝜅𝑋 (𝑋 𝑗 ∪ 𝑔). Thus, | (𝑋 𝑗 ∪ 𝑔) \𝐺𝑖 𝑗 | = 𝜅𝑋 (𝑋 𝑗 ∪ 𝑔) < 𝜅𝑋 (𝑘,𝑋 𝑗 ∪ 𝑔).
Since 𝑘 values any subset of 𝑋 𝑗 ∪ 𝑔 of size less than 𝜅𝑋 (𝑘,𝑋 𝑗 ∪ 𝑔) at most 𝑋𝑘 , we have (𝑋 𝑗 ∪ 𝑔) \𝐺𝑖 𝑗 ≤𝑘 𝑋𝑘 . □

We next mention two cases where it is known how to obtain a Pareto dominating EFX allocation from an existing

EFX allocation. For an allocation 𝑋 , we define the envy graph 𝐸𝑋 , whose vertices represent agents, and in which there

is a directed edge from 𝑖 to 𝑗 if 𝑖 envies 𝑗 , i.e., 𝑋 𝑗 >𝑖 𝑋𝑖 . We can assume without loss of generality that 𝐸𝑋 is acyclic.

Fact 5 ([28]). Let 𝑋 = ⟨𝑋1, 𝑋2, 𝑋3⟩ be an EFX allocation. Then, there exists another EFX allocation 𝑌 = ⟨𝑌1, 𝑌2, 𝑌3⟩,
where for all 𝑖 ∈ [3], 𝑌𝑖 = 𝑋 𝑗 for some 𝑗 ∈ [3], such that 𝐸𝑌 is acyclic and 𝜙 (𝑌 ) ⪰lex 𝜙 (𝑋 ) (strict inequality holds if 𝐸𝑋 is

cyclic).

Proposition 6 ([15]). Consider an EFX allocation 𝑋 . Let 𝑠 be any agent and let 𝑔 be an unallocated good. If 𝑖 champions

𝑠 and 𝑖 is reachable from 𝑠 in 𝐸𝑋 , then there is an EFX allocation 𝑌 Pareto dominating 𝑋 . Additionally, agent 𝑠 is strictly

better off in 𝑌 , i.e., 𝑌𝑠 >𝑠 𝑋𝑠 .

Proof. We have that 𝑖 is reachable from 𝑠 in 𝐸𝑋 . Let 𝑡1 → 𝑡2 → · · · → 𝑡𝑘 be the path from 𝑡1 = 𝑠 to 𝑡𝑘 = 𝑖 in 𝐸𝑋 .

We determine a new allocation 𝑌 as follows:

𝑌𝑡 𝑗 = 𝑋𝑡 𝑗+1 for 𝑗 ∈ [𝑘 − 1]

𝑌𝑖 = (𝑋𝑠 \𝐺𝑖𝑠 ) ∪ 𝑔

𝑌ℓ = 𝑋ℓ for all other ℓ .

Note that every agent along the path has strictly improved his valuation: Agents 𝑡1 to 𝑡𝑘−1 got bundles they envied

in 𝐸𝑋 and agent 𝑖 championed 𝑠 and got (𝑋𝑠 \ 𝐺𝑖𝑠 ∪ 𝑔), which is more valuable to 𝑖 than 𝑋𝑖 (by definition of 𝐺𝑖𝑠 ).

Also, every other agent retained their previous bundles and thus their valuations are not lower than before. Thus,

𝜙 (𝑌 ) ≻lex 𝜙 (𝑋 ) and also 𝑌𝑠 >𝑠 𝑋𝑠 (𝑠 was an agent along the path). It only remains to argue that 𝑌 is EFX. To this end,

consider any two agents 𝑗 and 𝑗 ′. We wish to show that 𝑗 does not strongly envy 𝑗 ′ in 𝑌 .

Case 𝑗 ′ ≠ 𝑖: Note that 𝑌𝑗 ′ = 𝑋ℓ for some ℓ ∈ [3] ( 𝑗 ′ either received a bundle of another agent when we shifted

the bundles along the path or retained the previous bundle). Also, note that 𝑌𝑗 ≥𝑗 𝑋 𝑗 (no agent is worse off in

𝑌 ). Therefore, 𝑌𝑗 ≥𝑗 𝑋 𝑗 ≥𝑗 𝑋ℓ \ ℎ =𝑗 𝑌𝑗 ′ \ ℎ for all ℎ ∈ 𝑌𝑗 ′ ( 𝑗 did not strongly envy ℓ in 𝑋 as 𝑋 was EFX).

Case 𝑗 ′ = 𝑖: We have 𝑌𝑗 ′ = (𝑋𝑠 \𝐺𝑖𝑠 ) ∪ 𝑔. Since 𝑖 championed 𝑠 , by Proposition 4 (part 1) we have that ((𝑋𝑠 \
𝐺𝑖𝑠 ) ∪ 𝑔) \ ℎ ≤𝑗 𝑋 𝑗 . Like earlier, 𝑌𝑗 ≥𝑗 𝑋 𝑗 (no agent is worse off in 𝑌 ). Thus, 𝑗 does not strongly envy 𝑖 . □

Proposition 6 implies that if there is some unallocated good and (𝑖) if the envy graph 𝐸𝑋 has a single source
3
or (𝑖𝑖)

any agent champions himself then there is a strictly Pareto dominating EFX allocation.

3
A source is a vertex in 𝐸𝑋 with in-degree zero.
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EFX Exists for Three Agents 9

Corollary 7. Let 𝑋 be an EFX allocation, and 𝑔 be an unallocated good. If 𝐸𝑋 has a single source 𝑠 , or𝑀𝑋 has a 1-cycle

involving agent 𝑠 , then there is an EFX allocation 𝑌 that Pareto dominates 𝑋 in which 𝑌𝑠 >𝑠 𝑋𝑠 .

Proof. If 𝐸𝑋 has a single source 𝑠 , the champion of 𝑠 (which always exist, by Observation 2) is reachable from 𝑠 in

𝐸𝑋 . If𝑀𝑋 has a 1-cycle involving agent 𝑠 then again the champion of 𝑠 (which is 𝑠 itself) is reachable from 𝑠 in 𝐸𝑋 . In

both cases, since the champion of 𝑠 is reachable from 𝑠 in the envy graph 𝐸𝑋 , there is a Pareto dominating allocation 𝑌

such that 𝑌𝑠 >𝑠 𝑋𝑠 by Proposition 6. □

Hence, starting from Section 3, we only discuss the cases where the envy-graph has more than one source and there are

no self-champions. We start with some simple yet crucial observations.

Observation 8. If 𝑖 champions 𝑗 (with respect to 𝑔) and 𝑋𝑖 ≥𝑖 𝑋 𝑗 , then 𝑔 ∉ 𝐺𝑖 𝑗 , 𝐺𝑖 𝑗 ⊆ 𝑋 𝑗 , and 𝐺𝑖 𝑗 <𝑖 𝑔.

Proof. We have 𝑖 ∈ 𝐴𝑋 (𝑋 𝑗 ∪ 𝑔). Since 𝑔 ∉ 𝑋 𝑗 ,𝐺𝑖 𝑗 ⊆ 𝑋 𝑗 ∪ 𝑔, and valuations are additive, we have that 𝑣𝑖 ((𝑋 𝑗 ∪ 𝑔) \
𝐺𝑖 𝑗 ) = 𝑣𝑖 (𝑋 𝑗 ) + 𝑣𝑖 (𝑔) − 𝑣𝑖 (𝐺𝑖 𝑗 ). Again since 𝑖 ∈ 𝐴𝑋 (𝑋 𝑗 ∪ 𝑔), by the definition of 𝐺𝑖 𝑗 , (𝑋 𝑗 ∪ 𝑔) \𝐺𝑖 𝑗 >𝑖 𝑋𝑖 , and hence,

𝑣𝑖 (𝑋𝑖 ) < 𝑣𝑖 (𝑋 𝑗 ) + 𝑣𝑖 (𝑔) − 𝑣𝑖 (𝐺𝑖 𝑗 ). Now we have 𝑋𝑖 ≥𝑖 𝑋 𝑗 , implying that 𝐺𝑖 𝑗 <𝑖 𝑔, and therefore, 𝑔 ∉ 𝐺𝑖 𝑗 . □

Observation 8 tells us that if 𝑖 champions 𝑗 , and 𝑖 does not envy 𝑗 , then 𝐺𝑖 𝑗 ⊆ 𝑋 𝑗 . Therefore, we can split the bundle

of agent 𝑗 into two parts𝐺𝑖 𝑗 and 𝑋 𝑗 \𝐺𝑖 𝑗 . We refer to𝐺𝑖 𝑗 as the lower-half bundle of 𝑗 , and to 𝑋 𝑗 \𝐺𝑖 𝑗 as the upper-half

bundle of 𝑗 , and visualize the bundle of agent 𝑗 as

𝑋 𝑗 =

𝑋 𝑗 \𝐺𝑖 𝑗

𝐺𝑖 𝑗

( 𝑗)

if 𝑖 champions 𝑗 and 𝑖 does not envy 𝑗 . (1)

We collect some more facts about the values of lower and upper half bundles.

Observation 9. If 𝑖 champions 𝑗 and 𝑗 does not champion himself (self-champion), then we have𝐺𝑖 𝑗 ≠ ∅ and𝐺𝑖 𝑗 ≥𝑗 𝑔.

Proof. Since 𝑗 does not self-champion, by Proposition 4 (part 2), we have that (𝑋 𝑗 ∪ 𝑔) \𝐺𝑖 𝑗 ≤𝑗 𝑋 𝑗 . Since 𝑔 ∉ 𝑋 𝑗

and 𝐺𝑖 𝑗 ⊆ 𝑋 𝑗 ∪ 𝑔 we have 𝑣 𝑗 ((𝑋 𝑗 ∪ 𝑔) \𝐺𝑖 𝑗 ) = 𝑣 𝑗 (𝑋 𝑗 ) + 𝑣 𝑗 (𝑔) − 𝑣 𝑗 (𝐺𝑖 𝑗 ) ≤ 𝑣 𝑗 (𝑋 𝑗 ), implying that 𝐺𝑖 𝑗 ≥𝑗 𝑔. Since the

value of 𝑔 for 𝑗 is non-zero, 𝐺𝑖 𝑗 is non-empty. □

Observation 10. Let 𝑖 champion 𝑗 , and 𝑋𝑖 ≥𝑖 𝑋 𝑗 . Let 𝑖′ champion 𝑘 and 𝑋𝑖′ ≥𝑖′ 𝑋𝑘 . If 𝑖 does not champion 𝑘 , then

𝑋 𝑗 \𝐺𝑖 𝑗 >𝑖 𝑋𝑘 \𝐺𝑖′𝑘 .

Proof. Since 𝑖 ∈ 𝐴𝑋 (𝑋 𝑗 ∪ 𝑔) and 𝑋𝑖 ≥𝑖 𝑋 𝑗 , by Observation 8, we have 𝑔 ∉ 𝐺𝑖 𝑗 . Thus, 𝐺𝑖 𝑗 ⊆ 𝑋 𝑗 . By the same

reasoning, 𝑔 ∉ 𝐺𝑖′𝑘 and𝐺𝑖′𝑘 ⊆ 𝑋𝑘 . Therefore, (𝑋 𝑗 ∪𝑔) \𝐺𝑖 𝑗 = (𝑋 𝑗 \𝐺𝑖 𝑗 ) ∪𝑔, and (𝑋𝑘 ∪𝑔) \𝐺𝑖′𝑘 = (𝑋𝑘 \𝐺𝑖′𝑘 ) ∪𝑔. By the
definition of𝐺𝑖 𝑗 , we have (𝑋 𝑗 \𝐺𝑖 𝑗 ) ∪𝑔 >𝑖 𝑋𝑖 . Since 𝑖 ∉ 𝐴𝑋 (𝑋𝑘 ∪𝑔), we have𝑋𝑖 ≥𝑖 (𝑋𝑘 \𝐺𝑖′𝑘 ) ∪𝑔 by Proposition 4 (part

2). Combining the two inequalities, we have (𝑋 𝑗 \𝐺𝑖 𝑗 ) ∪ 𝑔 >𝑖 (𝑋𝑘 \𝐺𝑖′𝑘 ) ∪ 𝑔, which implies 𝑋 𝑗 \𝐺𝑖 𝑗 >𝑖 𝑋𝑘 \𝐺𝑖′𝑘 . □

In the upcoming sections, we show how to derive a dominating EFX allocation from an existing EFX allocation.

Corollary 7 already deals with the cases when either 𝐸𝑋 has a single source or𝑀𝑋 has a 1-cycle (Recall that 1-cycles in

𝑀𝑋 imply the existence of self champions). We proceed under the following general assumptions: 𝐸𝑋 is cycle-free and has

at least two sources and there is no 1-cycle in𝑀𝑋 . We distinguish the remaining cases by the number of sources in 𝐸𝑋 . A

broad summary of the case analysis in the paper is outlined in Table 1
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10 Chaudhury, Garg and Mehlhorn

Table 1. A broad overview of the cases considered in this paper.

𝐸𝑋 has 1 source 𝐸𝑋 has 2 sources 𝐸𝑋 has 3 sources

𝑀𝑋 has 1 cycle Corollary 7 Corollary 7 Corollary 7

𝑀𝑋 has 2 cycle Corollary 7 Section 4 Section 3.1

𝑀𝑋 has 3 cycle Corollary 7 Section 4 Section 3.2

3 EXISTENCE OF EFX: THREE SOURCES IN 𝐸𝑋

If 𝐸𝑋 has three sources, the allocation 𝑋 is envy-free, i.e., 𝑋𝑖 ≥𝑖 𝑋 𝑗 for all 𝑖 and 𝑗 . We make a case distinction by whether

or not𝑀𝑋 contains a 2-cycle. Let 𝑔 denote an unallocated good.

3.1 2-cycle in𝑀𝑋

Assume without loss of generality that agent 2 champions agent 1 and agent 1 champions agent 2. Since 𝑋1 ≥1 𝑋2

and 𝑋2 ≥2 𝑋1, the bundles 𝑋1 and 𝑋2 decompose according to (1). Since neither 1 nor 2 self-champion (as𝑀𝑋 has no

1-cycle), by Observation 10, we have 𝑋2 \𝐺12 >1 𝑋1 \𝐺21 and 𝑋1 \𝐺21 >2 𝑋1 \𝐺12. We swap the upper-halves of 𝑋1

and 𝑋2 to obtain

𝑋 ′ =

𝑋2 \𝐺12

𝐺21

(1)

𝑋1 \𝐺21

𝐺12

(2)

𝑋3

(3)

.

Note that agent 3 has the same valuation as before, while 1 and 2 are strictly better off. If 𝑋 ′
is EFX we are done. So

assume otherwise. We first determine the potential strong envy edges.

• From 1: We replaced the more valuable (according to 1) 𝑋2 \𝐺12 in 𝑋2 with the less valuable 𝑋1 \𝐺21 and left 𝑋3

unchanged. Thus, 1 is strictly better off and according to him, the valuations of the bundles of 2 and 3 in 𝑋 ′
is at

most the valuation of their bundles in 𝑋 . As 1 did not envy 2 and 3 before in 𝑋 , 1 does not envy 2 and 3 in 𝑋 ′
.

• From 2: A symmetrical argument shows that 2 does not envy 1 and 3.

• From 3: For agent 3, the sum of the valuations of agents 1 and 2 has not changed by the swap and 3 envied

neither 1 nor 2 before the swap. Thus, 3 envies at most one of the agents 1 and 2 after the swap. Assume without

loss of generality that he envies agent 2. We then replace the lower-half bundle of agent 2 (𝐺12) with 𝑔 to obtain

𝑋 ′′ =

𝑋2 \𝐺12

𝐺21

(1)

𝑋1 \𝐺21

𝑔

(2)

𝑋3

(3)

.

In 𝑋 ′′
, agent 2 is still strictly better off than in 𝑋 since by the definition of 𝐺21, we have (𝑋1 \𝐺21) ∪ 𝑔 >2 𝑋2.

Thus, 𝑋 ′′
Pareto dominates 𝑋 . We still need to show that 𝑋 ′′

is EFX. To this end, observe that as we have not

changed the bundles of agents 1 and 3, there is no strong envy between them. So we only need to exclude

strong envy edges to and from agent 2.

– Nobody strongly envies agent 2: Note that 2 championed 1. Thus, ((𝑋1 \𝐺21) ∪ 𝑔) \ ℎ ≤1 𝑋1 and ((𝑋1 \
𝐺21) ∪𝑔) \ℎ ≤3 𝑋3 for all ℎ ∈ (𝑋1 \𝐺21) ∪𝑔 by Proposition 4 (part 1). Since both 1 and 3 are not worse off

than before, they do not strongly envy 2.
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EFX Exists for Three Agents 11

Agent 1 𝑋3 \𝐺13 >1 max1 (𝑋1 \𝐺21, 𝑋2 \𝐺32)
Agent 2 𝑋1 \𝐺21 >2 max2 (𝑋2 \𝐺32, 𝑋3 \𝐺13)
Agent 3 𝑋2 \𝐺32 >3 max3 (𝑋3 \𝐺13, 𝑋1 \𝐺21)

Table 2. No 2-cycle in𝑀𝑋 : Ordering for the upper half bundles.

Agent 1 𝐺21 >1 𝑔 >1 𝐺13

Agent 2 𝐺32 >2 𝑔 >2 𝐺21

Agent 3 𝐺13 >3 𝑔 >3 𝐺32

Table 3. No 2-cycle in𝑀𝑋 : Ordering for the lower half bundles. Furthermore, 𝑔 ∉ 𝐺13, 𝑔 ∉ 𝐺21, and 𝑔 ∉ 𝐺32.

– Agent 2 does not envy anyone: We have that (𝑋1 \𝐺21) ∪ 𝑔 >2 𝑋2. According to agent 2, the valuation of

the current bundles of 1 and 3 is at most their previous ones, and 2 did not envy them before (when he had

𝑋2). Hence, 2 does not envy 1 and 3.

We have thus shown that 𝑋 ′′
is EFX and Pareto dominates 𝑋 . Actually, the strategy described above handles a more

general situation. It yields a Pareto dominating EFX allocation as long as 3 envies neither 1 nor 2 initially, even if 1 and

2 envied (not strongly envied) 3 initially:

Remark 11. Let 𝑋 be an EFX allocation, and let 𝑔 be an unallocated good. If𝑀𝑋 has a 2-cycle, say involving agents 1

and 2, and agent 3 envies neither 1 nor 2, then there exists an EFX allocation 𝑌 Pareto dominating 𝑋 .

Remark 11 will be helpful when we deal with certain instances where 𝐸𝑋 has two sources later in Section 4.

3.2 No 2-cycle in𝑀𝑋

We now consider the case when𝑀𝑋 has no two cycle. Since𝑀𝑋 is cyclic and we neither have a 1-cycle nor a 2-cycle,

we must have a 3-cycle. Let us assume without loss of generality that agent 𝑖 + 1 is the unique champion of agent 𝑖

(indices are modulo 3, so 𝑖 + 1 corresponds to (𝑖 mod 3) + 1). Since, in addition, 𝑖 + 1 does not envy 𝑖 , all three bundles

decompose according to (1) and the current allocation can be written as

𝑋 =

𝑋1 \𝐺21

𝐺21

(1)

𝑋2 \𝐺32

𝐺32

(2)

𝑋3 \𝐺13

𝐺13

(3)

.

Let us collect what we know for agent 1’s valuation of the upper-half bundles: 1 uniquely champions 3, while 2 and

3 uniquely champion 1 and 2, respectively. Also, the current allocation is envy-free. Thus, 𝑋𝑖 ≥ 𝑋 𝑗 for all 𝑖, 𝑗 ∈ [3].
By Observation 10, we know that 𝑋3 \𝐺13 >1 max1 (𝑋1 \𝐺21, 𝑋2 \𝐺32), where max1 (𝑋1 \𝐺21, 𝑋2 \𝐺32) indicates 1’s
favorite bundle out of 𝑋1 \𝐺21 and 𝑋2 \𝐺32, i.e., 𝑋3 \𝐺13 is 1’s favorite upper-half bundle.

Now, let us collect what we know for agent 1’s valuation of the lower-half bundles: 1 champions 3 and does not envy

3’s bundle. Thus, by Observation 8, 𝐺13 <1 𝑔 and 𝑔 ∉ 𝐺13. Also, 1 does not champion himself, and 3 champions 1. Thus,

by Observation 9, 𝑔 ≤1 𝐺21. We can make similar statements about agents 2 and 3. Since 𝑔 ∉ 𝐺21, and our instance is

assumed to be non-degenerate, we even have 𝑔 <1 𝐺21. Tables 2 and 3 summarize this information.
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12 Chaudhury, Garg and Mehlhorn

We first move to an allocation where everyone gets their favorite upper-half bundle (we achieve this by performing

a cyclic shift of the upper-half bundles). Thus, the new allocation is:

𝑋 ′ =

𝑋3 \𝐺13

𝐺21

(1)

𝑋1 \𝐺21

𝐺32

(2)

𝑋2 \𝐺32

𝐺13

(3)

.

Clearly, every agent is strictly better off, and thus, 𝑋 ′
Pareto dominates 𝑋 . If 𝑋 ′

is EFX, we are done. So we assume

otherwise. What envy edges could exist? We first observe that no agent will envy the agent from whom it took its

upper-half during the cyclic shift.

Observation 12. In 𝑋 ′, agent 𝑖 + 1 does not envy agent 𝑖 for all 𝑖 ∈ [3] (indices are modulo 3).

Proof. We just show the proof for 𝑖 = 1, and the other cases follow symmetrically. Note that 2 values its current

upper-half more than 1’s upper-half (it has its favorite upper-half): 𝑋1 \𝐺21 >2 𝑋3 \𝐺13. Similarly 2’s also values its

lower-half more than 1’s lower-half:𝐺32 ≥2 𝑔 >2 𝐺21. Therefore, 2 values his entire bundle more than 1’s bundle, and

hence does not envy 1. □

Therefore, the only envy edges (and hence strong envy edges) can be from agent 𝑖 to agent 𝑖 + 1 as shown in the

following figure.
4

1 2 3

We now distinguish two cases depending on the number of such strong envy edges.

Three strong envy edges: In this case, the envy-graph is a 3-cycle. We perform a cyclic shift of the bundles and obtain

an EFX allocation Pareto dominating the initial allocation 𝑋 .

At most two strong envy edges: Note that in this case, there is a strong envy edge from at least one agent 𝑖 ∈ [3] to
𝑖 + 1 and there is no strong envy edge from at least one agent 𝑗 ∈ [3] to 𝑗 + 1. Let us assume without loss of generality

that there is a strong envy edge from 1 to 2 , there may or may not be a strong envy edge from 2 to 3, and there is no

strong envy edge from 3 to 1.

1 2 3

Note that 1 is strictly better off in 𝑋 ′
than in 𝑋 . The existence of envy from 1 and 2, despite this improvement, allows

us to say more about the preference ordering of the upper-half and the lower-half bundles.

Observation 13. If 1 envies 2 in 𝑋 ′, 𝑋1 \𝐺21 >1 𝑋2 \𝐺32, and 𝐺32 >1 𝐺21.

4
In the figures that follow, we use red edges to indicate strong envy, and blue edges to indicate weak envy.
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EFX Exists for Three Agents 13

Proof. We argue by contradiction. Therefore, assume that either 𝑋1 \𝐺21 ≤1 𝑋2 \𝐺32 or𝐺32 ≤1 𝐺21. If 𝑋1 \𝐺21 ≤1

𝑋2 \𝐺32, then

(𝑋1 \𝐺21) ∪𝐺32 ≤1 (𝑋2 \𝐺32) ∪𝐺32

= 𝑋2

≤1 𝑋1 (since 1 did not envy 2 before)

<1 (𝑋3 \𝐺13) ∪𝐺21 (since 1 is better off than before)

implying that 1 does not envy 2, a contradiction. If 𝐺32 ≤1 𝐺21, then

(𝑋1 \𝐺21) ∪𝐺32 ≤1 (𝑋1 \𝐺21) ∪𝐺21

= 𝑋1

<1 (𝑋3 \𝐺13) ∪𝐺21 (since 1 is better off than before)

again implying that 1 does not envy 2, a contradiction. □

So we now have

𝑋2 \𝐺32 <1 𝑋1 \𝐺21 <1 𝑋3 \𝐺13 and 𝐺13 <1 𝑔 <1 𝐺21 <1 𝐺32 . (2)

We replace the lower-half bundle of 2 (𝐺32) by 𝑔 to obtain

𝑋 ′′ =

𝑋3 \𝐺13

𝐺21

(1)

𝑋1 \𝐺21

𝑔

(2)

𝑋2 \𝐺32

𝐺13

(3)

.

Note that agents 1 and 3 are still strictly better off (as we have not changed their bundles after the cyclic shift of the

upper-half bundles) than in 𝑋 . Agent 2 championed 1, thus, 𝑋1 \𝐺21 ∪ 𝑔 >2 𝑋2, and agent 2 is also strictly better off.

Hence, 𝑋 ′′
Pareto dominates 𝑋 . If there are no strong envy edges, then we are done. So assume otherwise. We first

note that the only possible strong envy edge is from 2 to 3:

• Agent 1 does not envy anyone: 1 did not envy 3 in 𝑋 ′
and the bundles of 1 and 3 are the same in 𝑋 ′

and 𝑋 ′′
.

1 does not envy 2 anymore as he prefers his own upper-half bundle and lower-half bundle to 2’s upper-half

bundle and lower-half bundle respectively, i.e., 𝑋3 \𝐺13 >1 𝑋1 \𝐺21 (from Table 2) and𝐺21 ≥1 𝑔 (from Table 3).

• Agent 3 does not envy anyone: We use a similar argument. 3 did not envy 1 in 𝑋 ′
and the bundles of 1 and 3

are the same in 𝑋 ′
and 𝑋 ′′

. 3 does not envy 2 as well as he prefers his own upper-half bundle and lower-half

bundle to 2’s upper-half bundle and lower-half bundle respectively, namely 𝑋2 \𝐺32 >3 𝑋1 \𝐺21 (from Table 2)

and 𝐺13 ≥3 𝑔 (from Table 3).

• Agent 2 does not envy 1: Note that agent 2 has his favorite upper-half bundle and values it more than 1’s

upper-half bundle: 𝑋1 \𝐺21 >2 𝑋3 \𝐺13 (from Table 2) and 2 also values his lower-half bundle more than 1’s

lower-half bundle: 𝑔 >2 𝐺21 (from Table 3).

Therefore, the only possible strong envy edge is from 2 to 3 as shown below.

1 2 3

Similar to Observation 13, we can now infer more about 2’s preference ordering for the bundles:
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14 Chaudhury, Garg and Mehlhorn

Proposition 14. If 2 strongly envies 3 in 𝑋 ′′, we have 𝑋2 \𝐺32 >2 𝑋3 \𝐺13 and 𝐺13 >2 𝐺32.

Proof. As in Observation 13, we argue by contradiction. Therefore, assume that either 𝑋2 \𝐺32 ≤2 𝑋3 \𝐺13 or

𝐺13 ≤2 𝐺32. If 𝑋2 \𝐺32 ≤2 𝑋3 \𝐺13, then

(𝑋2 \𝐺32) ∪𝐺13 ≤2 (𝑋3 \𝐺13) ∪𝐺13

= 𝑋3

≤2 𝑋2 (since 2 did not envy 3 before)

<2 (𝑋1 \𝐺21) ∪ 𝑔 (as 2 is better off than before)

implying that 2 does not envy 3, a contradiction. If 𝐺13 ≤2 𝐺32, then

(𝑋2 \𝐺32) ∪𝐺13 ≤2 (𝑋2 \𝐺32) ∪𝐺32

= 𝑋2

<1 (𝑋1 \𝐺21) ∪ 𝑔 (as 2 is better off than before)

again implying that 2 does not envy 3, a contradiction. □

So we now have

𝑋3 \𝐺13 <2 𝑋2 \𝐺32 <2 𝑋1 \𝐺21 and 𝐺21 <2 𝑔 <2 𝐺32 < 𝐺13 . (3)

We are ready to construct the final allocation. To this end, consider the bundle (𝑋1 \𝐺21) ∪𝐺13. Note that,

(𝑋1 \𝐺21) ∪𝐺13 >2 (𝑋1 \𝐺21) ∪𝐺32 (as 𝐺13 >2 𝐺32 from Proposition 14)

≥2 (𝑋1 \𝐺21) ∪ 𝑔 (as 𝐺32 ≥2 𝑔 from Table 3)

>2 𝑋2 (as 2 championed 1) .

Let 𝑍 be a smallest cardinality subset of (𝑋1 \𝐺21) ∪𝐺13 such that 𝑍 >2 𝑋2. Since 𝑔 ∉ 𝑋1 and 𝑔 ∉ 𝐺13, 𝑔 ∉ 𝑍 . We now

give two allocations, depending on how much 3 values 𝑍 .

Case 𝑍 >3 𝑋3: Consider

𝑋 ′′′ =

𝑋3 \𝐺13

𝑔

(1)

𝑋2 \𝐺32

𝐺32

(2)

𝑍

(3)

.

Since 1 was the champion of 3, we have (𝑋3 \𝐺13) ∪ 𝑔 >1 𝑋1. Thus, 1 and 3 are strictly better off, and 2 has the

same bundle as in 𝑋 . Therefore, 𝑋 ′′′
Pareto dominates 𝑋 . We still need to show that 𝑋 ′′′

is EFX.

• Nobody strongly envies agent 1: Since 1 is the champion of 3, we have that ((𝑋3 \𝐺13) ∪ 𝑔) \ ℎ <2 𝑋2 and

((𝑋3 \𝐺13) ∪ 𝑔) \ ℎ <3 𝑋3 for all ℎ ∈ (𝑋3 \𝐺13) ∪ 𝑔 by Proposition 4 (part 1). As both 2 and 3 are not

worse off than in 𝑋 , neither of them strongly envies (𝑋3 \𝐺13) ∪ 𝑔.
• Nobody envies agent 2: Both 1 and 3 are strictly better off than in 𝑋 and they did not envy 𝑋2 in 𝑋 . Thus,

they do not envy 𝑋2 now.

• Nobody strongly envies agent 3: We first show that 1 does not envy (𝑋1 \𝐺21) ∪𝐺13. This follows from

the observation that 1 prefers his own upper-half bundle to 𝑋1 \ 𝐺21 and lower-half bundle to 𝐺13:
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EFX Exists for Three Agents 15

𝑋3 \𝐺13 >1 𝑋1 \𝐺21 (from Table 2) and 𝑔 >1 𝐺13 (from Table 3). Thus, (𝑋3 \𝐺13) ∪𝑔 >1 (𝑋1 \𝐺21) ∪𝐺13.

Therefore, 1 does not envy 𝑍 either, as 𝑍 ⊆ (𝑋1 \𝐺21) ∪𝐺13.

Agent 2 does not strongly envy 𝑍 since 𝑍 is a smallest cardinality subset of (𝑋1 \𝐺21) ∪𝐺13 that 2 values

more than 𝑋2. Thus, 𝑍 \ ℎ ≤2 𝑋2 for all ℎ ∈ 𝑍 .
Case 𝑍 ≤3 𝑋3: Consider

𝑋 ′′′ =

𝑋3 \𝐺13

𝐺32

(1)

𝑍

(2)

𝑋2 \𝐺32

𝑔

(3)

.

We first show that 1 is strictly better off in 𝑋 ′′′
than in 𝑋 . Observe that

(𝑋3 \𝐺13) ∪𝐺32 >1 (𝑋3 \𝐺13) ∪𝐺21 (by Observation 13)

≥1 (𝑋3 \𝐺13) ∪ 𝑔 (𝐺21 ≥1 𝑔 from Table 3)

>1 𝑋1 (as 1 championed 3) .

Agent 2 is better off as 𝑍 >2 𝑋2 by definition of 𝑍 . Agent 3 is also better off than in 𝑋 as it championed 2 and

thus 𝑋2 \𝐺32 ∪ 𝑔 >3 𝑋3. Thus, all agents are strictly better off, and hence 𝑋 ′′′
Pareto dominates 𝑋 . We next

show that 𝑋 ′′′
is EFX.

• Nobody envies agent 1: Agent 2 does not envy 1 since

(𝑋3 \𝐺13) ∪𝐺32 <2 (𝑋2 \𝐺32) ∪𝐺32 (by Proposition 14)

= 𝑋2

<2 𝑍 (by definition of Z) .

Agent 3 does not envy 1 either since he prefers his current upper-half bundle to and lower-half bundle to

1’s upper-half bundle and lower-half bundle, respectively, i.e., 𝑋2 \𝐺32 >3 𝑋3 \𝐺13 (from Table 2) and

𝑔 >3 𝐺32 (from Table 3).

• Nobody envies agent 2: Observe that 1 does not envy (𝑋1 \𝐺21) ∪𝐺13 since 1 is strictly better off, 𝐺21 ≥1

𝑔 >1 𝐺13 from Table 3, and𝐺32 >1 𝐺21 by Observation 13. Thus, (𝑋3 \𝐺13) ∪𝐺32 >1 (𝑋1 \𝐺21) ∪𝐺21 >1

(𝑋1 \𝐺21) ∪𝐺13. Therefore, 1 does not envy 𝑍 either as 𝑍 ⊆ (𝑋1 \𝐺21) ∪𝐺13. Agent 3 does not envy 2

since (𝑋2 \𝐺32) ∪ 𝑔 >3 𝑋3 (see above) and 𝑋3 ≥3 𝑍 .

• Nobody strongly envies agent 3: Since 3 is the champion of 2, we have ((𝑋2 \ 𝐺32) ∪ 𝑔) \ ℎ <2 𝑋2 and

((𝑋2 \𝐺32) ∪ 𝑔) \ ℎ <1 𝑋1 for all ℎ ∈ (𝑋2 \𝐺32) ∪ 𝑔 by Proposition 4 (part 1). As both 1 and 2 are strictly

better off (in 𝑋 ′′′
) than in 𝑋 , neither of them strongly envies (𝑋2 \𝐺32) ∪ 𝑔.

We have thus shown that given an allocation 𝑋 such that 𝐸𝑋 has three sources and𝑀𝑋 has a 3-cycle, there exists an

EFX allocation 𝑌 Pareto dominating 𝑋 . We summarize our main result for this section:

Lemma 15. Let 𝑋 be a an EFX allocation and 𝑔 be an unallocated good. If 𝐸𝑋 has three sources, then there is an EFX

allocation 𝑌 Pareto dominating 𝑋 .

4 EXISTENCE OF EFX: TWO SOURCES IN 𝐸𝑋

Let us assume that agents 1 and 2 are the sources, and let (1, 3) ∈ 𝐸𝑋 . We have two configurations for 𝐸𝑋 now, depending

on whether or not (2, 3) ∈ 𝐸𝑋 . If (2, 3) ∈ 𝐸𝑋 , it is relatively straightforward to determine a new EFX allocation Pareto
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1 2

3

Fig. 1. Envy Graph for two sources when (2, 3) ∉ 𝐸𝑋 : Green nodes correspond to the agents. Blue edges are the edges in 𝐸𝑋 .

dominating 𝑋 . Agent 3 is reachable from both 1 and 2 in 𝐸𝑋 , and hence, if 3 champions either 1 or 2, we have a Pareto

dominating EFX allocation by Proposition 6. If 3 champions neither 1 nor 2, 1 and 2 must be champions of each other

(Recall that no agent self-champions). Also note that 3 envies neither 1 nor 2. Therefore, by Remark 11, we have a

Pareto dominating EFX allocation. Henceforth, we assume that (2, 3) ∉ 𝐸𝑋 .
The envy graph of the scenario is now as shown in Figure 1. Next, we discuss the possible configurations of the

champion graph𝑀𝑋 . We show that most configurations are easily handled. If 3 champions 1, then by Proposition 6,

there is a Pareto dominating EFX allocation. If 3 does not champion 1, and since 1 does not self-champion, agent 2

champions 1. If now 1 champions 2, we have a 2-cycle in𝑀𝑋 involving 1 and 2, and 3 envies neither of them. Therefore

by Remark 11, there is a Pareto dominating EFX allocation. Thus, we may assume that 1 does not champion 2. Since 2

does not self-champion, agent 3 champions 2. There are only three possible configurations for 𝑀𝑋 now, depending on who

champions 3 (only 1, only 2, both 1 and 2 as 3 does not self-champion) (see Figure 2).

1 2

3

1 2

3

1 2

3

Fig. 2. The possible states of𝑀𝑋 that require further discussion: Green nodes correspond to the agents. Blue edges are the edges in
𝐸𝑋 and green edges are the edges in𝑀𝑋 . There is a unique configuration of 𝐸𝑋 and three different configurations of𝑀𝑋 .

We now show how to deal with these configurations of 𝑀𝑋 . In Section 3, we showed how to move from the current

allocation 𝑋 to an allocation that Pareto dominates 𝑋 . In Section 5, we show that this is impossible in this particular

configuration of 𝐸𝑋 and𝑀𝑋 . More specifically, we exhibit an EFX allocation 𝑋 that is not Pareto dominated by any

complete EFX allocation. We also show that there is no complete EFX allocation with higher Nash welfare than 𝑋 ,

thereby falsifying a conjecture of Caragiannis et al. [11].

Recall that our potential is 𝜙 (𝑋 ) = (𝑣𝑎 (𝑋𝑎), 𝑣𝑏 (𝑋𝑏 ), 𝑣𝑐 (𝑋𝑐 )). We move to an allocation in which agent 𝑎 is strictly

better off. We distinguish the cases: 𝑎 = 1, 𝑎 = 2, and 𝑎 = 3.

Also, recall that we are in the scenario where 2 champions 1 and 2 does not envy 1. Similarly 3 champions 2 and 3

does not envy 2. Therefore, by Observation 8, we have that 𝑔 ∉ 𝐺21 and 𝑔 ∉ 𝐺32, and hence, the bundles 𝑋1 and 𝑋2

decompose according to (1). Also, since 2 champions 1 and 1 does not self-champion, by Observation 9, we have that

𝐺21 ≠ ∅, and a similar argument also shows that 𝐺32 ≠ ∅.
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EFX Exists for Three Agents 17

4.1 Agent 𝑎 is agent 1 or 3

We start from the allocation

𝑋 =

𝑋1 \𝐺21

𝐺21

(1)

𝑋2 \𝐺32

𝐺32

(2)

𝑋3

(3)

.

Our goal is to determine an EFX allocation in which 1 and 3 are strictly better off (2 may be worse off). To this end, we

consider

𝑋 ′ =
𝑋3

(1)

𝑋1 \𝐺21

𝐺32

(2)

𝑋2 \𝐺32

𝑔

(3)

.

In 𝑋 ′
, every agent is better off than in 𝑋 : 1 is better off because 𝑋3 >1 𝑋1 (1 envied 3 in 𝐸𝑋 ). We now show that

2 is better off: 2 championed 1 and 3 championed 2. Also, 2 did not self-champion, 2 did not envy 1 and 3 did not

envy 2 . Therefore, by Observation 10, (setting 𝑖 = 𝑘 = 2, 𝑗 = 1, 𝑖′ = 3), we have that 𝑋1 \ 𝐺21 >2 𝑋2 \ 𝐺32. Hence,

(𝑋1 \𝐺21) ∪𝐺32 >2 (𝑋2 \𝐺32) ∪𝐺32 = 𝑋2. Thus, 2 is also better off. Agent 3 is better off as 3 championed 2, and by the

definition of 𝐺32, we have (𝑋2 \𝐺32 ∪ 𝑔) >3 𝑋3. Thus, 𝑋
′
Pareto dominates 𝑋 . If 𝑋 ′

is EFX, we are done. So assume

otherwise. We show that the only possible strong envy edge will be from 1 to 2.

• Nobody envies 1: Note that 1 has 𝑋3 and neither 2 nor 3 envied 𝑋3 earlier (3 had 𝑋3 and 2 did not envy 3). Since

both 2 and 3 are better off than before, they do not envy 1.

• Nobody strongly envies 3: We will show that 1 does not strongly envy 3 and 2 does not envy 3. Agent 3

championed 2 and 1 did not. Therefore, by Proposition 4 (part 1) we have ((𝑋2 \𝐺32) ∪ 𝑔) \ ℎ ≤1 𝑋1 for all

ℎ ∈ (𝑋2 \𝐺32) ∪ 𝑔. Since 1 is better off than in 𝑋 , it does not strongly envy 3. Agent 2 does not envy 3 since he

prefers both of his parts over the corresponding parts of agent 3. This was argued above for the top part and

follows from Observation 9.

• 3 does not envy 2: 3 championed 2 and 3 did not envy 2 earlier. Therefore by Observation 8, we have that

𝐺32 <3 𝑔. Therefore (𝑋1 \𝐺21) ∪𝐺32 <3 (𝑋1 \𝐺21) ∪ 𝑔. Since 2 championed 1 and 3 did not, by Proposition 4

(part 2), we have ((𝑋1 \𝐺21) ∪ 𝑔) ≤3 𝑋3. Since 3 is better off than in 𝑋 , 3 does not envy 2.

Thus, the only strong envy edge is from 1 to 2. The current state of the envy-graph is depicted below:

1 2 3

Let 𝑍 be a smallest cardinality subset of (𝑋1 \𝐺21) ∪𝐺32 that 2 values more than max2 ((𝑋2 \𝐺32) ∪ 𝑔,𝑋3), where
max2 ((𝑋2 \ 𝐺32) ∪ 𝑔,𝑋3) is defined as the more valuable bundle out of (𝑋2 \ 𝐺32) ∪ 𝑔 and 𝑋3 according to 2. Note

that max2 ((𝑋2 \𝐺32) ∪ 𝑔,𝑋3) ≤2 (𝑋1 \𝐺21) ∪𝐺32 since 2 does not envy neither 1 nor 3 in 𝑋 ′
. Since the instance is

non-degenerate, the inequality is strict, and hence 𝑍 exists. We now consider two allocations depending on 1’s value

for 𝑍 .
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Case 𝑍 ≤1 𝑋3: We replace 2’s current bundle with 𝑍 and obtain

𝑋 ′′ =
𝑋3

(1)

𝑍

(2)

𝑋2 \𝐺32

𝑔

(3)

.

Agents 1 and 3 have the same bundles as in 𝑋 ′
and hence are strictly better off than in 𝑋 . Thus, 𝑋 ′′

dominates

𝑋 , as 𝑎 = 1 or 𝑎 = 3 and 𝑎 is strictly improved. We next show that 𝑋 ′′
is EFX. Since the only bundle we have

changed is that of 2, and there were no strong envy edges between 1 and 3 earlier, it suffices to show that there

are no strong envy edges to and from 2.

• Nobody envies 2: 3 did not envy the set (𝑋1 \𝐺21) ∪𝐺32. As 𝑍 ⊆ (𝑋1 \𝐺21) ∪𝐺32, agent 3 does not envy

𝑍 either 1 does not envy 𝑍 because we are in the case where 𝑍 ≤1 𝑋3.

• 2 does not envy anyone: This follows from the definition of 𝑍 itself since 𝑍 >2 max2 ((𝑋2 \𝐺32) ∪ 𝑔,𝑋3).
Case 𝑍 >1 𝑋3: In this case, we consider

𝑋 ′′ =
𝑍

(1)

max2 ((𝑋2 \𝐺32) ∪ 𝑔,𝑋3)

(2)

min2 ((𝑋2 \𝐺32) ∪ 𝑔,𝑋3)

(3)

.

Agent 1 is still strictly better off than in 𝑋 as we are in the case 𝑍 >1 𝑋3 >1 𝑋1, and agent 3 is not worse off

than before as both 𝑋3 and (𝑋2 \𝐺32) ∪ 𝑔 are at least as valuable to him as his previous bundle 𝑋3. We first

show that 𝑋 ′′
is EFX.

• 1 does not envy anyone: We are in the case where 𝑍 >1 𝑋3 and 1 did not envy (𝑋2 \𝐺32) ∪ 𝑔 when he had

𝑋3 himself (and now 1 is better off than with 𝑋3). Thus, 1 does not envy anyone.

• 2 does not strongly envy anyone: Since 2 chooses the better bundle out of𝑋3 and (𝑋2\𝐺32)∪𝑔, 2 does not envy
3. Agent 2 does not strongly envy 1 since by the definition of 𝑍 , we have 𝑍 \ℎ ≤2 max2 ((𝑋2 \𝐺32) ∪𝑔,𝑋3)
for all ℎ ∈ 𝑍 . However, note that 2 envies 1. Thus, 2 does not envy 3 and does not strongly envy 1 (but

envies 1).

• 3 does not strongly envy anyone: 3 did not envy the set (𝑋1 \ 𝐺21) ∪ 𝐺32,
5
and 𝑋3 ≤ 𝑋 ′′

3
as we argued

above. Thus, 3 will not envy 𝑍 either as 𝑍 ⊆ (𝑋1 \𝐺21) ∪𝐺32. We next show that 3 does not strongly envy

2, observe that (𝑋2 \𝐺32) ∪ 𝑔 >3 𝑋3. Therefore, if min2 ((𝑋2 \𝐺32) ∪ 𝑔,𝑋3) = (𝑋2 \𝐺32) ∪ 𝑔, we are done.
So assume min2 ((𝑋2 \𝐺32) ∪ 𝑔,𝑋3) = 𝑋3. Since 3 championed 2 and from Proposition 4 (part 1), we have

that ((𝑋2 \𝐺32) ∪ 𝑔) \ ℎ ≤3 𝑋3 for all ℎ ∈ (𝑋2 \𝐺32) ∪ 𝑔: Thus, 3 does not strongly envy 2.

Now if 𝑎 = 1, we are done, as 𝑋 ′′
is EFX and agent 1 strictly improved. So assume 𝑎 = 3. If min2 ((𝑋2 \𝐺32) ∪

𝑔,𝑋3) = (𝑋2 \𝐺32) ∪ 𝑔, then agent 3 is strictly better off and we are done. This leaves the case that agent 3 gets

𝑋3, and hence

𝑋 ′′ =
𝑍

(1)

𝑋2 \𝐺32

𝑔

(2)

𝑋3

(3)

.

5
We repeat the argument made earlier: 3 championed 2 and 3 did not envy 2 earlier. Therefore, by Observation 8 we have that 𝐺32 <3 𝑔. Hence,

(𝑋1 \𝐺21 ) ∪𝐺32 <3 (𝑋1 \𝐺21 ) ∪ 𝑔. Since 2 championed 1 and 3 did not, by Proposition 4 (part 2), we have ( (𝑋1 \𝐺21 ) ∪ 𝑔) ≤3 𝑋3 .
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The envy graph 𝐸𝑋 ′′ with respect to allocation 𝑋 ′′
is a path (shown below): 1 does not envy anyone, 2 envies 1

(not strongly) and does not envy 3, and 3 envies 2.

1 2 3

Also, note that we have some unallocated goods, e.g., the goods in 𝐺21. Recall that we argued 𝐺21 ≠ ∅ in the

paragraph just before Section 4.1. Consider any good 𝑔′ ∈ 𝐺21. Since 3 is the only source in 𝐸𝑋 ′′ , by Corollary 7,

there is an EFX allocation𝑋 ′′′
Pareto dominating𝑋 ′′

, where𝑋 ′′′
3

>3 𝑋
′′
3

= 𝑋3. Thus, we have an EFX allocation

𝑋 ′′′
that dominates 𝑋 (as agent 3 is strictly better off and 𝑎 = 3).

4.2 Agent 𝑎 is agent 2

Recall that we argued just before the beginning of Section 4.1 that 𝑔 ∉ 𝐺21 and 𝑔 ∉ 𝐺32. The current EFX allocation 𝑋 is

𝑋 =

𝑋1 \𝐺21

𝐺21

(1)

𝑋2 \𝐺32

𝐺32

(2)

𝑋3

(3)

.

Our aim is to determine an EFX allocation, in which agent 2 has a bundle more valuable than 𝑋2. First, observe that

(𝑋1 \𝐺21) ∪ 𝑔 is such a bundle. As 2 championed 1, we have (𝑋1 \𝐺21) ∪ 𝑔 >2 𝑋2 by the definition of 𝐺21. We also

observe that both agents 1 and 3 value 𝑋3 as least as much as 𝑋2 and (𝑋1 \𝐺21) ∪ 𝑔.

Observation 16. 𝑋3 >𝑖 max𝑖 (𝑋2, ((𝑋1 \𝐺21) ∪ 𝑔) for 𝑖 ∈ {1, 3}.

Proof. We argue ≥𝑖 ; strict inequality then follows from non-degeneracy. Nobody envies 2 in 𝑋 . Thus, 𝑋2 ≤3 𝑋3,

and 𝑋2 ≤1 𝑋1 <1 𝑋3 (the strict inequality holds as 1 envies 3 in 𝑋 ).

Agent 2 is the unique champion of 1 in 𝑋 (both 1 and 3 do not champion 1). Therefore, by Proposition 4 (part 2), we

have (𝑋1 \𝐺21) ∪ 𝑔 ≤3 𝑋3 and (𝑋1 \𝐺21) ∪ 𝑔 ≤1 𝑋1 <1 𝑋3 (the strict inequality holds as 1 envies 3 in 𝑋 ). □

For 𝑖 ∈ {1, 3}, let 𝜅𝑖 be the size of a smallest subset 𝑍𝑖 of 𝑋3 such that 𝑍𝑖 >𝑖 max𝑖 ((𝑋1 \𝐺21) ∪ 𝑔,𝑋2). We use the

relative size of 𝜅1 and 𝜅3 to differentiate between agents 1 and 3. We use𝑤 (winner) to denote the agent with the smaller

value of 𝜅𝑖 , i.e.,𝑤 = 1 if 𝜅1 ≤ 𝜅3 and𝑤 = 3 if 𝜅1 > 𝜅3. We use ℓ (loser) for the other agent. Consider

𝑋 ′ =
𝑋3

(𝑤)

maxℓ (𝑋2, (𝑋1 \𝐺21) ∪ 𝑔)

(ℓ)

minℓ (𝑋2, (𝑋1 \𝐺21) ∪ 𝑔)

(2)

.

In 𝑋 ′
, the only possible strong envy edge is from ℓ to𝑤 . By Observation 16,𝑤 envies neither ℓ nor 2. Note that 2

championed 1 and therefore, (𝑋1 \𝐺21) ∪ 𝑔 >2 𝑋2, but by Proposition 4 (part 1), we have ((𝑋1 \𝐺21) ∪ 𝑔) \ ℎ ≤2 𝑋2

for all ℎ ∈ (𝑋1 \𝐺21) ∪ 𝑔. Thus, 2 gets a bundle worth at least 𝑋2 and does not strongly envy ℓ . Agent 2 also does not

envy𝑤 (as he did not envy 𝑋3 when he had 𝑋2). Agent ℓ does not envy 2 as he chooses the better bundle out of 𝑋2 and

𝑋1 \𝐺21 ∪𝑔. Thus, the only possible strong envy edge is from ℓ to𝑤 . How we proceed then depends on whether or not

ℓ strongly envies𝑤 .
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ℓ does not strongly envy𝑤 : Then, 𝑋 ′
is EFX. Ifminℓ (𝑋2, (𝑋1 \𝐺21) ∪𝑔) = (𝑋1 \𝐺21) ∪𝑔, we are done as 𝑋 ′

dominates

𝑋 (2 is strictly better off and 𝑎 = 2). So assume otherwise. Then,

𝑋 ′ =
𝑋3

(𝑤)

𝑋1 \𝐺21 ∪ 𝑔

(ℓ)

𝑋2

(2)

.

By Observation 16, ℓ envies𝑤 . Since 2 only envies ℓ , ℓ only envies𝑤 , and𝑤 does not envy anyone, the envy graph 𝐸𝑋 ′

is a path with source 2.

2 ℓ 𝑤

Also, note that there are unallocated goods, namely the goods in𝐺21 (we argued just before the beginning of Section 4.1

that 𝐺21 ≠ ∅). Therefore, by Corollary 7, there is an EFX allocation 𝑋 ′′
, in which 2 is strictly better off. Thus, 𝑋 ′′

dominates 𝑋 as 2 is strictly better off and 𝑎 = 2.

ℓ strongly envies 𝑤 : We keep removing the least valuable good according to 𝑤 from 𝑤 ’s bundle, until ℓ does not

strongly envy𝑤 anymore. Let 𝑍 be the bundle obtained in this way. Consider

𝑋 ′ =
𝑍

(𝑤)

maxℓ (𝑋2, (𝑋1 \𝐺21) ∪ 𝑔)

(ℓ)

minℓ (𝑋2, (𝑋1 \𝐺21) ∪ 𝑔)

(2)

.

Claim 17. 𝑤 does not envy 2 and ℓ .

Proof. Recall that 𝜅𝑤 is the smallest cardinality of a subset of 𝑋3 that 𝑤 still values more than max𝑤 (𝑋2, (𝑋1 \
𝐺21) ∪ 𝑔); 𝜅𝑤 was defined just after Observation 16. Such a set can be obtained by removing 𝑤 ’s |𝑋3 | − 𝜅𝑤 least

valuable goods from 𝑋3. Observe that 𝑍 is obtained by removing |𝑋3 | − |𝑍 | of 𝑤 ’s least valuable goods from 𝑋3. If

|𝑍 | ≥ 𝜅𝑤 , 𝑤 will envy neither 2 nor ℓ . If |𝑍 | < 𝜅𝑤 ≤ 𝜅ℓ (recall that 𝜅𝑤 ≤ 𝜅ℓ ), let ℎ be the last good removed. Then,

ℓ strongly envies 𝑍 ∪ ℎ (otherwise we would not have removed ℎ), meaning that there exists ℎ′ ∈ 𝑍 ∪ ℎ such that

(𝑍 ∪ ℎ) \ ℎ′ >ℓ maxℓ (𝑋2, (𝑋1 \𝐺21) ∪ 𝑔). Thus, there is a subset of 𝑋3 of size | (𝑍 ∪ ℎ) \ ℎ′ | < 𝜅𝑤 + 1 − 1 = 𝜅𝑤 that ℓ

values more than maxℓ (𝑋2, (𝑋1 \𝐺21) ∪ 𝑔), a contradiction to 𝜅𝑤 ≤ 𝜅ℓ . □

The allocation 𝑋 ′
is EFX:𝑤 envies neither 2 nor ℓ , ℓ does not strongly envy𝑤 , ℓ does not envy 2, and 2 envies neither

ℓ nor 𝑤 . If minℓ (𝑋2, (𝑋1 \𝐺21) ∪ 𝑔) is 𝑋1 \𝐺21 ∪ 𝑔, then we are done as 𝑋 ′
dominates 𝑋 (2 is strictly better off and

𝑎 = 2). So assume otherwise. Then

𝑋 ′ =
𝑍

(𝑤)

𝑋1 \𝐺21 ∪ 𝑔

(ℓ)

𝑋2

(2)

.

In 𝑋 ′
, 𝑤 envies nobody (by Claim 17), 2 envies ℓ , and ℓ may or may not envy 𝑤 . We distinguish cases according to

whether or not ℓ envies𝑤 .

2 ℓ 𝑤
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Case ℓ envies𝑤 : Then, the current envy graph is a path with 2 as the source.

2 ℓ 𝑤

Since there are unallocated goods, namely the goods in 𝐺21 (we argued just before the beginning of Section 4.1

that𝐺21 ≠ ∅), by Corollary 7, there is an EFX allocation 𝑋 ′′
in which agent 2 is strictly better off. The allocation

𝑋 ′′
dominates 𝑋 (as 2 is strictly better off and 𝑎 = 2).

Case ℓ does not envy𝑤 : Then, the current envy graph has two sources, namely 𝑤 and 2, and one envy edge

from 2 to ℓ .

2 ℓ 𝑤

There are at least two unallocated goods, the goods in 𝐺21 (we argued just before the beginning of Section 4.1

that 𝐺21 ≠ ∅) and the goods in 𝑋3 \ 𝑍 (note that this set is not empty; we definitely have removed at least one

good from 𝑋3 as ℓ strongly envied it in 𝑋 ′
). Now consider the allocation 𝑋 ′

and some 𝑔′ ∈ 𝐺21. If the champion

of 2 is 2 itself or ℓ (definition of champion based on allocation 𝑋 ′
and the unallocated good 𝑔′), by Proposition 6

there is an EFX allocation 𝑌 where the source, namely 2, is strictly better off and hence 𝑌 will dominate 𝑋 .

So assume that the champion of 2 is 𝑤 , i.e., 𝑤 ∈ 𝐴𝑋 ′ (𝑋 ′
2
∪ 𝑔′). Let 𝑔′′ ∈ 𝑋3 \ 𝑍 be the last element that we

removed from 𝑋3 when we constructed 𝑍 from 𝑋3. Then, ℓ strongly envies 𝑍 ∪ 𝑔′′ and, according to𝑤 , 𝑔′′ is
the least valuable good in 𝑍 ∪𝑔′′. We observe that ℓ is the unique champion of𝑤 (definition of champion based

on allocation 𝑋 ′
and the unallocated good 𝑔′′), i.e., 𝐴𝑋 ′ (𝑋 ′

𝑤 ∪ 𝑔′′) = {ℓ}.

Proposition 18. For any good 𝑔′′ ∈ 𝑋3 \ 𝑍 , we have 𝐴𝑋 ′ (𝑋 ′
𝑤 ∪ 𝑔′′) = {ℓ}.

Proof. We have 𝑋 ′
𝑤 = 𝑍 . First we show that 2 ∉ 𝐴𝑋 ′ (𝑍 ∪ 𝑔′′). Note that 𝑍 ∪ 𝑔′′ ⊆ 𝑋3. Since 𝑋2 ≥2 𝑋3 (as 2

did not envy 3 in 𝑋 ), 2 will not envy 𝑍 ∪ 𝑔′′ either.
By the construction of 𝑍 , 𝑔′′ is𝑤 ’s least valuable good in 𝑍 ∪𝑔′′. Thus, the removal of any good from 𝑍 ∪𝑔′′ will
result in a bundle whose value for𝑤 is no more than the value of 𝑍 for𝑤 . Therefore, 𝜅𝑋 ′ (𝑤,𝑍 ∪𝑔′′) = |𝑍 ∪𝑔′′ |
(Recall that 𝜅𝑋 (𝑖, 𝑆) is the size of the smallest subset of 𝑆 which is more valuable to 𝑖 than 𝑋𝑖 ). Note that ℓ

strongly envies 𝑍 ∪𝑔′′. Hence, there exists ℎ ∈ 𝑍 ∪𝑔′′ such that (𝑍 ∪𝑔′′) \ℎ >ℓ 𝑋
′
ℓ
. Therefore, 𝜅𝑋 ′ (ℓ, 𝑍 ∪𝑔′′) ≤

|(𝑍 ∪𝑔′′) \ℎ | = |𝑍 ∪𝑔′′ | −1 < 𝜅𝑋 (𝑤,𝑍 ∪𝑔′′). Thus,𝑤 does not self-champion and hence𝐴𝑋 ′ (𝑍 ∪𝑔′′) = {ℓ}. □

Consider

𝑋 ′′ =
(𝑋 ′

2
∪ 𝑔′) \𝐺𝑤2

(𝑤)

(𝑋 ′
𝑤 ∪ 𝑔′′) \𝐺ℓ𝑤

(ℓ)

𝑋 ′
ℓ

(2)
or equivalently

𝑋 ′′ =
(𝑋2 ∪ 𝑔′) \𝐺𝑤2

(𝑤)

(𝑍 ∪ 𝑔′′) \𝐺ℓ𝑤

(ℓ)

(𝑋1 \𝐺21) ∪ 𝑔

(2)

.

Note that every agent is strictly better off than in 𝑋 ′
.𝑤 championed 2, and by the definition of 𝐺𝑤2, we have

(𝑋 ′
2
∪𝑔′) \𝐺𝑤2 >𝑤 𝑋 ′

𝑤 . Similarly, ℓ championed𝑤 , and by the definition of𝐺ℓ𝑤 , we have (𝑋 ′
𝑤∪𝑔′′) \𝐺ℓ𝑤 >ℓ 𝑋

′
ℓ
.

Agent 2 is better off as 2 envied ℓ in 𝑋 ′
i.e. 𝑋 ′

2
<2 𝑋

′
ℓ
. Now we have an allocation 𝑋 ′′

in which agent 2 is strictly
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better off than it was in 𝑋 . Thus, 𝑋 ′′
dominates 𝑋 (as 𝑎 = 2). It suffices to show that 𝑋 ′′

is EFX now. To this

end, observe that,

• Nobody strongly envies𝑤 :𝑤 championed 2. Thus, by Proposition 4 (part 1), we have that ((𝑋 ′
2
∪𝑔′) \𝐺𝑤2) \

ℎ ≤2 𝑋
′
2
and ((𝑋 ′

2
∪ 𝑔′) \𝐺𝑤2) \ ℎ ≤ℓ 𝑋

′
ℓ
for all ℎ ∈ ((𝑋 ′

2
∪ 𝑔′) \𝐺𝑤2). Since both 2 and ℓ are better off

than before (in 𝑋 ′
), they do not strongly envy𝑤 .

• Nobody strongly envies ℓ : The argument is very similar to the previous case. ℓ championed 2. Thus, by

Proposition 4 (part 1), we have that ((𝑋 ′
𝑤 ∪ 𝑔′′) \𝐺ℓ𝑤) \ ℎ ≤2 𝑋

′
2
and ((𝑋 ′

𝑤 ∪ 𝑔′′) \𝐺ℓ𝑤) \ ℎ ≤𝑤 𝑋 ′
𝑤 for

all ℎ ∈ ((𝑋 ′
𝑤 ∪ 𝑔′′) \𝐺ℓ𝑤). Since both 2 and𝑤 are better off than before (than they were in 𝑋 ′

), they do

not strongly envy𝑤 .

• Nobody strongly envies 2: Both𝑤 and ℓ did not envy 𝑋 ′
ℓ
(ℓ had 𝑋 ′

ℓ
and𝑤 did not envy ℓ) when they had 𝑋 ′

𝑤

and 𝑋 ′
ℓ
itself. Both𝑤 and ℓ are strictly better off than they were in 𝑋 ′

. Therefore, they also do not envy 2.

We conclude that there is an EFX allocation dominating 𝑋 in the case, 𝑎 = 2 as well. This allows us to summarize our

main result for this section as follows,

Lemma 19. Let 𝑋 be an EFX allocation, and let 𝑔 be an unallocated good, where the envy graph 𝐸𝑋 has two sources.

Then, there is an EFX allocation 𝑌 dominating 𝑋 .

Having covered all the cases, we arrive at our main result:

Theorem 20. For any instance 𝐼 = ⟨[3], 𝑀,V⟩ where all 𝑣𝑖 ∈ V are additive, an EFX allocation always exists.

Proof. We start off with an empty allocation (𝑋𝑖 = ∅ for all 𝑖 ∈ [3]), which is trivially EFX. As long as 𝑋 is not a

complete EFX allocation, there is an allocation 𝑌 that dominates 𝑋 : If 𝐸𝑋 has a single source or𝑀𝑋 has a 1-cycle, there

is a dominating EFX allocation 𝑌 by Corollary 7. Lemmas 15 and 19 establish the existence of 𝑌 when 𝐸𝑋 has multiple

sources and𝑀𝑋 does not have a 1-cycle. Since 𝜙 is bounded from above, the process must stop. When it stops, we have

arrived at a complete EFX allocation. □

5 BARRIERS IN CURRENT TECHNIQUES
In this section, we highlight some barriers to the current techniques for computing EFX allocations. We give an instance

with three agents and seven goods such that there is an EFX allocation for six of the goods that is not Pareto dominated

by any complete EFX allocation for the full set of goods. We also generalize this example and give an instance with an

EFX allocation which has a Nash welfare larger than the Nash welfare of any complete EFX allocation. These examples

make it unlikely that there is an iterative algorithm towards a complete EFX allocation that improves the current EFX

allocation in each iteration either in the sense of Pareto domination or in the sense of Nash welfare (like the algorithms

in [30] and [15]). The second example also falsifies the EFX monotonicity conjecture (see Conjecture 23) by Caragiannis

et al. [11].

Theorem 21. For the instance given in Table 4, the partial allocation 𝑋 = ⟨𝑋1, 𝑋2, 𝑋3⟩, where

𝑋1 = {𝑔2, 𝑔3, 𝑔4} 𝑋2 = {𝑔1, 𝑔5} 𝑋3 = {𝑔6} ,

is an EFX allocation of the first six goods. No complete EFX allocation Pareto dominates 𝑋 .

Proof. Note that 𝑣1 (𝑋1) = 16, 𝑣2 (𝑋2) = 15, and 𝑣3 (𝑋3) = 10. We will show that there is no complete EFX allocation

𝑋 ′
with 𝑣1 (𝑋 ′

1
) ≥ 16, 𝑣2 (𝑋 ′

2
) ≥ 15 and 𝑣3 (𝑋 ′

3
) ≥ 10. To this end, we systematically consider potential bundles 𝑋 ′

1
that

can keep 𝑎1’s valuation at or above 16.
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𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7

𝑎1 8 2 12 2 0 17 1

𝑎2 5 0 9 4 10 0 3

𝑎3 0 0 0 0 9 10 2

Table 4. An instance where no complete EFX allocation dominates the EFX allocation 𝑋 for the first six goods defined in the text. The
valuations are assumed to be additive and the entry in row 𝑖 and column 𝑗 is the value of good 𝑗 for agent 𝑖 .

Let us first assume 𝑔6 ∈ 𝑋 ′
1
, and hence, 𝑣1 (𝑋 ′

1
) ≥ 17. Now, to ensure 𝑣3 (𝑋 ′

3
) ≥ 10, we need to allocate 𝑔5 and 𝑔7 to 𝑎3.

We are left with goods 𝑔1, 𝑔2, 𝑔3 and 𝑔4. In order to ensure 𝑣2 (𝑋 ′
2
) ≥ 15, we definitely need to allocate 𝑔1, 𝑔3 and 𝑔4 to

𝑎2. Now even if we allocate the remaining good 𝑔2 to 𝑎1, we will have 𝑣1 (𝑋 ′
1
) = 𝑣1 ({𝑔2, 𝑔6}) = 19 < 20 = 𝑣1 ({𝑔1, 𝑔3}) ≤

𝑣1 (𝑋 ′
2
\ 𝑔4). Therefore, 𝑎1 will strongly envy 𝑎2. Thus, 𝑔6 ∉ 𝑋

′
1
.

If 𝑔6 ∉ 𝑋
′
1
and 𝑣1 (𝑋 ′

1
) ≥ 16, 𝑋 ′

1
must contain 𝑔3 (the total valuation for 𝑎1 of all the goods other than 𝑔3 and 𝑔7 is less

than 16). We need to consider several subcases.

Assume 𝑔1 ∈ 𝑋 ′
1
first. Since 𝑋 ′

1
already contains 𝑔1 and 𝑔3, the goods that can be allocated to 𝑎2 and 𝑎3 are 𝑔2, 𝑔4, 𝑔5,

𝑔6, and 𝑔7. In order to ensure 𝑣2 (𝑋 ′
2
) ≥ 15 we need to allocate 𝑔4, 𝑔5, and 𝑔7 to 𝑎2. Even if we allocate all the remaining

goods (𝑔2 and 𝑔6) to 𝑎3, we have 𝑣3 (𝑋 ′
3
) = 𝑣3 ({𝑔3, 𝑔6}) = 10 < 11 = 𝑣3 ({𝑔5, 𝑔7}) ≤ 𝑣3 (𝑋 ′

2
\ 𝑔4). Therefore, 𝑎3 will

strongly envy 𝑎2.

Thus, 𝑔1 ∉ 𝑋
′
1
. Since neither 𝑔1 nor 𝑔6 belongs to 𝑋

′
1
, the only way to ensure 𝑣1 (𝑋 ′

1
) ≥ 16 is to at least allocate 𝑔2, 𝑔3,

and 𝑔4 to 𝑎1(we can allocate more). Similarly, given that the goods not allocated yet are 𝑔1, 𝑔5, 𝑔6, and 𝑔7, the only way

to ensure 𝑣1 (𝑋 ′
2
) ≥ 15 is to allocate at least 𝑔1 and 𝑔5 to 𝑎2. Similarly, the only way to ensure 𝑣3 (𝑋 ′

3
) ≥ 10 now is to

allocate at least 𝑔6 to 𝑎3. We next show that adding 𝑔7 to any one of the existing bundles will cause a violation of the

EFX property.

• Adding 𝑔7 to 𝑋
′
1
: 𝑎2 strongly envies 𝑎1 as 𝑣2 (𝑋 ′

2
) = 15 < 16 = 𝑣2 ({𝑔3, 𝑔4, 𝑔7}) = 𝑣2 (𝑋 ′

1
\ 𝑔2).

• Adding 𝑔7 to 𝑋
′
2
: 𝑎3 strongly envies 𝑎2 as 𝑣3 (𝑋 ′

3
) = 10 < 11 = 𝑣3 ({𝑔5, 𝑔7}) = 𝑣3 (𝑋 ′

2
\ 𝑔1).

• Adding 𝑔7 to 𝑋
′
3
: 𝑎1 strongly envies 𝑎3 as 𝑣1 (𝑋 ′

1
) = 16 < 17 = 𝑣1 (𝑔6) = 𝑣1 (𝑋 ′

3
\ 𝑔7).

Thus, there exists no complete EFX allocations Pareto dominating 𝑋 . □

We now move on to the second example. We will modify the example in Table 4 to highlight some barriers in the

existence of “efficient" EFX allocations. There has been quite a lot of recent work aiming to compute fair allocations

that are also efficient. The common measures of efficiency in economics are “Pareto optimality" (where we cannot

make any single agent strictly better off without harming another agent) and “Nash welfare" (the geometric mean of

the valuations of the agents). Quite recently, Caragiannis et al. [11] showed that there exist EFX allocations that are

efficient (with good guarantees on Nash welfare). In particular, they show,

Theorem 22 ([11]). Let 𝑋 ∗ = ⟨𝑋 ∗
1
, 𝑋 ∗

2
, . . . , 𝑋 ∗

𝑛⟩ be an allocation that maximizes the Nash welfare. Then, there exists a

partial allocation 𝑌 = ⟨𝑌1, 𝑌2, . . . , 𝑌𝑛⟩ such that

• For all 𝑖 ∈ 𝑁 we have 𝑌𝑖 ⊆ 𝑋 ∗
𝑖
.

• 𝑌 is EFX.

• 𝑣𝑖 (𝑌𝑖 ) ≥ 1

2
𝑣𝑖 (𝑋 ∗

𝑖
).
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𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7

𝑎1 𝜀3 + 6𝜀5 2𝜀5 10 − 𝜀3 𝜀3 10 − 2𝜀3 10 + 3𝜀5 𝜀5

𝑎2 𝜀 0 10 − 𝜀2 + 𝜀6 2𝜀2 10 0 𝜀 − 𝜀2
𝑎3 0 0 0 0 10 − 𝜀4 10 2𝜀4

Table 5. An instance where no complete EFX allocation has larger Nash welfare than the EFX allocation 𝑋 for the first six goods
defined in the text. The valuations are assumed to be additive and the entry in row 𝑖 and column 𝑗 is the value of good 𝑗 for agent 𝑖 ; 𝜀
is positive, but infinitesimally small.

In the same paper, the authors mention that if the following conjecture is true, then there exist complete EFX

allocations that are efficient as well.
6

Conjecture 23. Adding an item to an instance that admits an EFX allocation results in another instance that admits

an EFX allocation with Nash welfare at least as high as that of the partial allocation before.

We will now show that this conjecture is false, which suggests that EFX demands “too much fairness" and some

“trade-offs with efficiency" may be necessary. In particular, we construct an instance 𝐼 ′, such that there exists an EFX

allocation 𝑋 with Nash welfare NW (𝑋 ) strictly larger than the Nash welfare NW (𝑋 ′) of any complete EFX allocation

𝑋 ′
. From the example in Table 4, it is clear that in any complete EFX allocation, we need to decrease the valuation of

one of the agents. The high level idea is to modify 𝐼 to 𝐼 ′ such that the decrease in valuation of one of the agents is

significantly more than the increase in valuation of the other agents.

The goal of the rest of this section is to show the following theorem.

Theorem 24. For the instance 𝐼 ′ with three agents and seven goods given in Table 5, the allocation 𝑋 = ⟨𝑋1, 𝑋2, 𝑋3⟩,
where

𝑋1 = {𝑔2, 𝑔3, 𝑔4} 𝑋2 = {𝑔1, 𝑔5} 𝑋3 = {𝑔6} ,

is an EFX allocation of the first six goods whose Nash welfare is larger than the Nash welfare of any complete EFX allocation.

Observe that NW (𝑋 ) = ((10 + 2𝜀5) · (10 + 𝜀) · (10))1/3. Let 𝑋 ′
be a complete EFX allocation with maximum Nash

welfare.

Lemma 25. 𝑋 ′ allocates the goods 𝑔3, 𝑔5 and 𝑔6 to distinct agents. Additionally,

• 𝑋 ′
2
contains exactly one good from {𝑔3, 𝑔5}.

• 𝑋 ′
3
contains exactly one good from {𝑔5, 𝑔6}.

Proof. Consider the following complete EFX allocation 𝑋 = ⟨𝑋1, 𝑋2, 𝑋3⟩:

𝑋1 = {𝑔6} 𝑋2 = {𝑔3, 𝑔4, 𝑔7} 𝑋3 = {𝑔1, 𝑔2, 𝑔5} .

It is easy to verify that𝑋 is EFX and NW (𝑋 ) = ((10+3𝜀5) (10+𝜀 +𝜀6) (10−𝜀4))1/3. Since𝑋 ′
is a complete EFX allocation

with maximum Nash welfare, we have NW (𝑋 ′) ≥ NW (𝑋 ). If 𝑔3, 𝑔5, and 𝑔6 are not allocated to distinct agents, there is

an agent 𝑎𝑖 who does not get any of these goods. The valuation of this agent is at most 4𝜀 (since 𝜀 is the maximum

valuation of any agent for any good outside the set {𝑔3, 𝑔5, 𝑔6}). The valuation of the other two agents can be at most

3 · (10+𝜀) +4𝜀 = 30+7𝜀 (since 𝜀 is the maximum valuation of any agent for any good outside the set {𝑔3, 𝑔5, 𝑔6}, and 10+𝜀
6
In their talk at ACM EC 2019 they explicitly mentioned this as the “Monotonicity Conjecture".
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upper bounds the maximum valuation of any good in {𝑔3, 𝑔5, 𝑔6}). Thus, NW (𝑋 ′) ≤ ((4𝜀) · (30 + 7𝜀)2)1/3 < NW (𝑋 )
for sufficiently small 𝜀.

A similar argument shows that 𝑋 ′
2
contains at least one good from {𝑔3, 𝑔5} and 𝑋 ′

3
contains at least one good from

{𝑔5, 𝑔6} (since these are the only goods that the agents value close to 10). Since the goods 𝑔3, 𝑔5, and 𝑔6 are allocated to

distinct agents, 𝑎2 will get exactly one good from {𝑔3, 𝑔5} and 𝑎3 will get exactly one good from {𝑔5, 𝑔6}. □

Let us denote the set {𝑔5, 𝑔6, 𝑔7} as VAL3, the goods valuable for agent 𝑎3. Note that 𝑣3 (𝑋 ′
3
) = 𝑣3 (𝑋 ′

3
∩VAL3). We will

now prove our claim by studying the cases that arise depending on 𝑋 ′
3
∩ VAL3. By Lemma 25, 𝑋 ′

3
∩ VAL3 is non-empty

and contains exactly one of 𝑔5 and 𝑔6. Thus, 𝑋
′
3
∩ VAL3 can be {𝑔5}, {𝑔6}, {𝑔5, 𝑔7}, or {𝑔6, 𝑔7} only.

Lemma 26. If 𝑋 ′
3
∩ VAL3 = {𝑔5}, then NW (𝑋 ′) < NW (𝑋 ).

Proof. We have that 𝑣3 (𝑋 ′
3
) = 𝑣3 (𝑋 ′

3
∩ VAL3) = 10 − 𝜀4. Lemma 25 implies that 𝑋 ′

2
contains 𝑔3 and 𝑋

′
1
contains 𝑔6.

Note that 𝑋 ′
1
cannot contain any additional good other than 𝑔6 as this would lead to 𝑎3 strongly envying 𝑎1 (note that

𝑣3 (𝑔6) = 10 > 10 − 𝜀4 = 𝑣3 (𝑋 ′
3
)). Therefore 𝑣1 (𝑋 ′

1
) = 10 + 3𝜀5. Now we distinguish two cases depending on whether or

not 𝑋 ′
2
contains 𝑔1.

• 𝑔1 ∈ 𝑋 ′
2
: In this case, 𝑋 ′

2
= {𝑔1, 𝑔3}, as otherwise 𝑎1 strongly envies 𝑎2 (note that 𝑣1 (𝑋 ′

1
) = 10 + 3𝜀5 < 10 + 6𝜀5 =

𝑣1 ({𝑔1, 𝑔3}), and hence, 𝑣2 (𝑋 ′
2
) = 𝑣2 ({𝑔1, 𝑔3}) = 10 + 𝜀 + 𝜀6 − 𝜀2. Thus,

𝑣1 (𝑋 ′
1
)

𝑣1 (𝑋1)
= 1 + 𝜀5

10 + 2𝜀5
,

𝑣2 (𝑋 ′
2
)

𝑣2 (𝑋2)
= 1 − 𝜀2 − 𝜀6

10 + 𝜀 , and
𝑣3 (𝑋 ′

3
)

𝑣3 (𝑋3)
≤ 1,

and hence, NW (𝑋 ′)/NW (𝑋 ) < 1.

• 𝑔1 ∉ 𝑋
′
2
: Then, 𝑣2 (𝑋 ′

2
) ≤ 𝑣2 (remaining goods) = 𝑣2 ({𝑔2, 𝑔3, 𝑔4, 𝑔7}) = 10 + 𝜀 + 𝜀6, and hence,

NW (𝑋 ′)
NW (𝑋 ) = ((1 + 𝜀5

10 + 2𝜀5
) (1 + 𝜀6

10 + 𝜀 ) (1 −
𝜀4

10

))1/3 < 1. □

Lemma 27. If 𝑋 ′
3
∩ VAL3 = {𝑔5, 𝑔7}, then NW (𝑋 ′) < NW (𝑋 ).

Proof. This proof follows the proof of Lemma 26 closely. We have 𝑣3 (𝑋 ′
3
) = 𝑣3 (𝑋 ′

3
∩ VAL3) = 10 + 𝜀4. Lemma 25

implies that𝑋 ′
2
contains𝑔3 and𝑋

′
1
contains𝑔6. We now distinguish two cases depending on whether or not {𝑔1, 𝑔4} ⊆ 𝑋 ′

2
.

• {𝑔1, 𝑔4} ⊆ 𝑋 ′
2
: Then, 𝑎1 strongly envies 𝑎2 as 𝑣1 (𝑋 ′

1
) ≤ 𝑣1 (remaining goods) = 𝑣1 ({𝑔2, 𝑔6}) = 10 + 5𝜀5 <

10 + 6𝜀5 = 𝑣1 ({𝑔1, 𝑔3}) ≤ 𝑣1 (𝑋 ′
2
\ 𝑔4).

• {𝑔1, 𝑔4} ⊈ 𝑋 ′
2
. Then, 𝑣2 (𝑋 ′

2
) ≤ 𝑣2 ({𝑔1, 𝑔2, 𝑔3}) = 10 + 𝜀 − 𝜀2 + 𝜀6 (not giving the less valuable 𝑔4 and giving

everything else that remains). Also, 𝑣1 (𝑋 ′
1
) ≤ 𝑣1 ({𝑔1, 𝑔2, 𝑔4, 𝑔6}) = 10 + 2𝜀3 + 11𝜀5. Thus,

𝑣1 (𝑋 ′
1
)

𝑣1 (𝑋1)
= 1 + 2𝜀3 + 9𝜀5

10 + 2𝜀5
,

𝑣2 (𝑋 ′
2
)

𝑣2 (𝑋2)
= 1 − 𝜀2 − 𝜀6

10 + 𝜀 , and
𝑣3 (𝑋 ′

3
)

𝑣3 (𝑋3)
= 1 + 𝜀4

10

,

and hence, NW (𝑋 ′) < NW (𝑋 ). □

Lemma 28. If 𝑋 ′
3
∩ VAL3 = {𝑔6, 𝑔7}, then NW (𝑋 ′) < NW (𝑋 ).
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Proof. We have 𝑣3 (𝑋 ′
3
) = 𝑣3 (𝑋 ′

3
∩ VAL3) = 10 + 2𝜀4. By Lemma 25, one of 𝑔3 and 𝑔5 will be allocated to each of 𝑎2

and 𝑎1. We argue that 𝑔1 ∈ 𝑋 ′
1
. If 𝑔1 ∉ 𝑋

′
1
, then

𝑣1 (𝑋 ′
1
) ≤ max (𝑣1 (𝑔3), 𝑣1 (𝑔5)) + 𝑣1 ({𝑔2, 𝑔4})

= (10 − 𝜀3) + 𝜀3 + 2𝜀5

< 10 + 3𝜀5

= 𝑣1 (𝑔6)

= 𝑣1 (𝑋 ′
3
\ 𝑔7),

and hence, 𝑎1 strongly envies 𝑎3.

Therefore 𝑔1 ∈ 𝑋 ′
1
. But we still have 𝑣1 (𝑋 ′

1
) ≤ max (𝑣1 (𝑔3), 𝑣1 (𝑔5)) + 𝑣1 ({𝑔1, 𝑔2, 𝑔4}) = (10 − 𝜀3) + (2𝜀3 + 8𝜀5) =

10 + 𝜀3 + 8𝜀5. However, since 𝑔1 ∈ 𝑋 ′
1
, we have that 𝑣2 (𝑋 ′

2
) ≤ max (𝑣2 (𝑔3), 𝑣2 (𝑔5)) + 𝑣2 ({𝑔2, 𝑔4}) = 10 + 2𝜀2. Thus,

𝑣1 (𝑋 ′
1
)

𝑣1 (𝑋1)
= 1 + 𝜀3 + 6𝜀5

10 + 2𝜀5
,

𝑣2 (𝑋 ′
2
)

𝑣2 (𝑋2)
≤ 1 − 𝜀 − 2𝜀2

10 + 𝜀 , and
𝑣3 (𝑋 ′

3
)

𝑣3 (𝑋3)
= 1 + 2𝜀4

10

,

and hence, NW (𝑋 ′) < NW (𝑋 ). □

Lemma 29. If 𝑋 ′
3
∩ VAL3 = {𝑔6} and 𝑔3 ∈ 𝑋 ′

2
, then NW (𝑋 ′) < NW (𝑋 ).

Proof. We have 𝑣3 (𝑋 ′
3
) = 𝑣3 (𝑋 ′

3
∩ VAL3) = 10. Since 𝑔3 and 𝑔5 are allocated to 𝑎1 and 𝑎2, respectively, and 𝑔3 ∈ 𝑋 ′

2
,

we have 𝑔5 ∈ 𝑋 ′
1
by Lemma 25. We now distinguish two cases depending, on whether or not 𝑔1 ∈ 𝑋 ′

2
.

• 𝑔1 ∈ 𝑋 ′
2
: Then, 𝑋 ′

2
cannot contain any other goods than 𝑔1 and 𝑔3, else 𝑎1 will strongly envy 𝑎2: 𝑣1 (𝑋 ′

1
) ≤

𝑣1 (remaining goods) ≤ 𝑣1 ({𝑔2, 𝑔4, 𝑔5, 𝑔7}) = 10 − 𝜀3 + 3𝜀5 < 10 + 6𝜀5 = 𝑣1 ({𝑔1, 𝑔3}). Therefore 𝑣2 (𝑋 ′
2
) =

𝑣2 ({𝑔1, 𝑔3}) = 10 + 𝜀 − 𝜀2 + 𝜀6. Also, note that 𝑣1 (𝑋 ′
1
) ≤ 𝑣1 ({𝑔2, 𝑔4, 𝑔5, 𝑔7}) = 10 − 𝜀3 + 3𝜀5. In that case, the

valuations of both 𝑎1 and 𝑎2 decrease, and that of 𝑎3 does not increase. Thus, NW (𝑋 ′) < NW (𝑋 ).
• 𝑔1 ∉ 𝑋

′
2
: Then,𝑋 ′

2
cannot contain both of𝑔4 and𝑔7, else𝑎1 will strongly envy𝑎2: 𝑣1 (𝑋 ′

1
) ≤ 𝑣1 (remaining goods) =

𝑣1 ({𝑔1, 𝑔2, 𝑔5}) = 10 − 𝜀3 + 8𝜀5 < 10 = 𝑣1 ({𝑔3, 𝑔4}) = 𝑣1 (𝑋 ′
2
\ 𝑔7). Therefore, 𝑣2 (𝑋 ′

2
) ≤ max (𝑣2 (𝑔4), 𝑣2 (𝑔7)) +

𝑣2 (remaining goods) ≤ max (𝑣2 (𝑔4), 𝑣2 (𝑔7))+𝑣2 ({𝑔2, 𝑔3}) = 10+𝜀−2𝜀2+𝜀6 and 𝑣1 (𝑋 ′
1
) ≤ 𝑣1 ({𝑔1, 𝑔2, 𝑔4, 𝑔5, 𝑔7}) =

10 + 9𝜀5. Thus,

𝑣1 (𝑋 ′
1
)

𝑣1 (𝑋1)
= 1 + 7𝜀5

10 + 2𝜀5
,

𝑣2 (𝑋 ′
2
)

𝑣2 (𝑋2)
≤ 1 − 2𝜀2 − 𝜀6

10 + 𝜀 , and
𝑣3 (𝑋 ′

3
)

𝑣3 (𝑋3)
= 1,

and hence, NW (𝑋 ′) < NW (𝑋 ). □

Lemma 30. If 𝑋 ′
3
∩ VAL3 = {𝑔6} and 𝑔3 ∉ 𝑋 ′

2
, then NW (𝑋 ′) < NW (𝑋 ).

Proof. We have 𝑣3 (𝑋 ′
3
) = 𝑣3 (𝑋 ′

3
∩ VAL3) = 10. Since 𝑔3 ∉ 𝑋

′
2
, we have 𝑔5 ∈ 𝑋 ′

2
and 𝑔3 ∈ 𝑋 ′

1
by Lemma 25. We now

distinguish two cases depending on whether or not 𝑔7 ∈ 𝑋 ′
2
.

• 𝑔7 ∈ 𝑋 ′
2
: Then, 𝑋 ′

2
cannot contain any other goods than 𝑔5 and 𝑔7, else 𝑎3 will strongly envy 𝑎2: 𝑣3 (𝑋 ′

3
) = 10 <

10 + 𝜀4 = 𝑣3 ({𝑔5, 𝑔7}). Therefore, 𝑣2 (𝑋 ′
2
) = 𝑣2 ({𝑔5, 𝑔7}) = 10 + 𝜀 − 𝜀2 and 𝑣1 (𝑋 ′

1
) ≤ 𝑣1 (remaining goods) =

𝑣1 ({𝑔1, 𝑔2, 𝑔3, 𝑔4}) = 10 + 𝜀3 + 8𝜀5. Thus,

𝑣1 (𝑋 ′
1
)

𝑣1 (𝑋1)
= 1 + 𝜀3 + 6𝜀5

10 + 2𝜀5
,

𝑣2 (𝑋 ′
2
)

𝑣2 (𝑋2)
≤ 1 − 𝜀2

10 + 𝜀 , and
𝑣3 (𝑋 ′

3
)

𝑣3 (𝑋3)
= 1,

and hence, NW (𝑋 ′) < NW (𝑋 ).
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• 𝑔7 ∉ 𝑋
′
2
: Then,𝑋 ′

2
cannot contain both of𝑔1 and𝑔4 else𝑎1 will strongly envy𝑎2: 𝑣1 (𝑋 ′

1
) ≤ 𝑣1 (remaining goods) =

𝑣1 ({𝑔2, 𝑔3, 𝑔7}) = 10−𝜀3+3𝜀5 < 10−𝜀3+6𝜀5 = 𝑣1 ({𝑔1, 𝑔5}) = 𝑣1 (𝑋 ′
2
\𝑔4). Now we consider two cases depending

on whether or not 𝑔1 ∈ 𝑋 ′
2
.

– 𝑔1 ∈ 𝑋 ′
2
: Then, 𝑋 ′

2
cannot have 𝑔4. Thus, 𝑣2 (𝑋 ′

2
) ≤ 𝑣2 (𝑔1) + 𝑣2 (remaining goods) = 𝑣2 (𝑔1) + 𝑣2 ({𝑔2, 𝑔5}) =

10+ 𝜀 = 𝑣2 (𝑋2). Note that 𝑋 ′
1
cannot have all of the remaining goods 𝑔2, 𝑔3, 𝑔4, 𝑔7, else 𝑎2 will strongly envy

𝑎1: 𝑣2 (𝑋 ′
2
) ≤ 10+𝜀 < 10+𝜀 +𝜀6 = (10−𝜀2 +𝜀6) + (2𝜀2) + (𝜀 −𝜀2) = 𝑣2 ({𝑔3, 𝑔4, 𝑔7}) = 𝑣2 ({𝑔2, 𝑔3, 𝑔4, 𝑔7} \𝑔2).

Therefore, 𝑋 ′
1
is a strict subset of {𝑔2, 𝑔3, 𝑔4, 𝑔7}, and it should contain 𝑔7 (as we are in the case where

neither 𝑋 ′
2
nor 𝑋 ′

3
can have 𝑔7). Since 𝑎1’s valuation for 𝑔7 is strictly less than his valuation for any of 𝑔2, 𝑔3,

and 𝑔4, we have that 𝑣1 (𝑋 ′
1
) < 𝑣1 ({𝑔2, 𝑔3, 𝑔4}) = 𝑣1 (𝑋1). Since we are in the case where 𝑣2 (𝑋 ′

2
) ≤ 𝑣2 (𝑋2)

and 𝑣3 (𝑋 ′
3
) = 𝑣3 (𝑋3), we have NW (𝑋 ′) < NW (𝑋 ).

– 𝑔1 ∉ 𝑋
′
2
: Then, 𝑣2 (𝑋 ′

2
) ≤ 𝑣2 (remaining goods) = 𝑣2 ({𝑔2, 𝑔4, 𝑔5}) = 10+2𝜀2 and 𝑣1 (𝑋 ′

1
) ≤ 𝑣1 ({𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔7}) =

10 + 𝜀3 + 9𝜀5. Thus,

𝑣1 (𝑋 ′
1
)

𝑣1 (𝑋1)
= 1 + 𝜀3 + 7𝜀5

10 + 2𝜀5
,

𝑣2 (𝑋 ′
2
)

𝑣2 (𝑋2)
≤ 1 − 𝜀 − 2𝜀2

10 + 𝜀 , and
𝑣3 (𝑋 ′

3
)

𝑣3 (𝑋3)
= 1,

and hence, NW (𝑋 ′) < NW (𝑋 ). □

Lemmas 29 and 30 immediately imply the following:

Lemma 31. If 𝑋 ′
3
∩ VAL3 = {𝑔6}, then NW (𝑋 ′) < NW (𝑋 ).

We are now ready to show the proof of Theorem 24.

Proof. (of Theorem 24) Lemma 25 implies that 𝑎3 gets exactly one good from {𝑔5, 𝑔6}. Thus, 𝑋 ′
3
∩ VAL3 ≠ ∅, and

{𝑔5, 𝑔6} ⊈ 𝑋 ′
3
∩ VAL3. So 𝑋 ′

3
∩ VAL3 ∈ {{𝑔5} , {𝑔6} , {𝑔5, 𝑔7} , {𝑔6, 𝑔7}}. However, Lemmas 26, 27, 28, and 31 imply that

in all of these cases, NW (𝑋 ′) < NW (𝑋 ). □
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