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We study the problem of distributing a set of indivisible goods among agents with additive valuations in a fair manner. The fairness
notion under consideration is envy-freeness up to any good (EFX). Despite significant efforts by many researchers for several years,
the existence of EFX allocations has not been settled beyond the simple case of two agents. In this paper, we show constructively
that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture of Caragiannis et al. [11] by showing an
instance with three agents for which there is a partial EFX allocation (some goods are not allocated) with higher Nash welfare than

that of any complete EFX allocation.
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1 INTRODUCTION

Fair division of resources is a fundamental problem in many disciplines, including computer science, economics, and
social choice theory. All problems in this field aim to divide a set of items among a set of agents in a “fair" manner.
Early mentions of such problems date back to the Bible and Greek mythology. Even today, several real-world problems
fall into this domain: dividing inheritance property, partnership dissolutions, splitting rent among tenants, splitting taxi
fare among passengers, dividing household tasks/chores among all the tenants, and so on. Despite its fundamentality,
a rigorous mathematical study of fair division was initiated only in the 1940s, when Steinhaus formally introduced
the cake-cutting problem. Since then, there has been substantial research on the existence and computation of fair
allocations. We briefly mention the broad spectrum of problems harbored by this field: The items to be divided can
be divisible or indivisible, and can be further categorized as desirable goods or undesirable bads/chores. Motivated by
different applications, there are several fairness notions applicable in each of the aforementioned settings, giving rise to

several distinct problems. The setting with divisible items (goods or chores) shares strong connections to the classical
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2 Chaudhury, Garg and Mehlhorn

market equilibrium theory in microeconomics. In this paper, we focus on fair division of indivisible goods (also referred
to as discrete fair division of goods).

An instance of discrete fair division is given by a set M of m indivisible goods and a set of n agents. Each agent i
has a valuation function v;: 2¥ — R that quantifies the amount of utility agent i derives from each subset of items.
Throughout this paper, we assume additive valuations, which are the most well-studied class of valuations. Here, for all
i € [n], we have v;(S) := ¥ jes0i({j}) for all S € M. Our goal is to determine a partition X = (X1, Xz,...,Xn) of M
into n bundles, such that X; is allocated to agent i, and X is “fair". One of the most fundamental notions of fairness
is that of envy-freeness, where no agent i envies another agent j’s bundle, i.e., for all agents i, j with i # j we have
0;(X;) 2 v;(Xj). However, an envy-free allocation does not always exist, e.g., consider dividing a single valuable good
among two agents. In any feasible allocation, the agent with no good will envy the agent that has been allocated one
good. This necessitates the study of relaxed notions of envy-freeness. To this end, we mention the first relaxation of

envy-freeness that was introduced, namely, envy-freeness up to one good (EF1).

Envy-freeness up to one good (EF1). This relaxation was introduced by Budish [9]. An allocation X is said to be EF1 if
no agent i envies another agent j after the removal of some good in j’s bundle, i.e., v;(X;) > v;(X; \ g) for some g € X;.
So we allow i to envy j, but the envy must disappear after the removal of some valuable good (according to agent i)
from j’s bundle. Note that there is no actual removal: This is simply to assess how agent i values his own bundle when
compared to j’s bundle. It is well known that an EF1 allocation always exists, and it can be obtained in polynomial
time using the famous envy-cycles procedure by Lipton et al. [28]. However, an EF1 allocation may be unsatisfactory:
Intuitively, EF1 only requires that envy disappears after the removal of the most valuable good, say g, according to the
envying agent i from the envied agent j’s bundle—however, in many cases, g might be the primary reason for very
large envy to exist in the first place, e.g., when i’s value for g is more than one-half of i’s value for j’s bundle. Therefore,
stronger notions of fairness are desirable in many circumstances. To this end, we discuss envy-freeness up to any good
(EFX).

Envy-freeness up to any good (EFX). This relaxation was introduced by Caragiannis et al. [12]. An allocation X is said
to be EFX if no agent i envies another agent j after the removal of any good in j’s bundle, i.e., v;(X;) > v;(Xj \ g) for
all g € X;. Unlike EF1, in an EFX allocation, the envy between any pair of agents disappears after the removal of the
least valuable good (according to agent i) from j’s bundle. Note that every EFX allocation is an EF1 allocation, but not
vice-versa. Consider a simple example of two agents with additive valuations and three goods {a, b, ¢} from [15], where

the agents’ valuations for individual goods are as follows,

91|92 | 93
Agent1|| 1 | 1| 2

Agent2 || 1 |1 | 2

Observe that g3 is twice as valuable than g; or g for both agents. An allocation where one agent gets {g;} and the
other gets {g2, g3} is EF1 but not EFX. The only possible EFX allocation is where one agent gets {g3} and the other gets
{91, g2}, which is clearly fairer than the given EF1 allocation. This example also shows how EFX helps to rule out some

unsatisfactory EF1 allocations. Caragiannis et al. [11] remarked that

“Arguably, EFX is the best fairness analog of envy-freeness of indivisible items.”
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EFX Exists for Three Agents 3

While an EF1 allocation is always guaranteed to exist, very little is known about the existence of EFX allocations
(“despite significant effort” in Caragiannis et al. [12]). In fact, this problem is considered as fair division’s biggest open

question, e.g., Procaccia [31] remarked that

“This fundamental and deceptively accessible question is open. In my view, it is the successor of envy-free

cake cutting as fair division’s biggest problem.”

Plaut and Roughgarden [30] showed two scenarios in which EFX allocations are guaranteed to exist: (i) All agents
have identical valuations (i.e., v; = v = --- = vp), and (ii) Two agents (i.e., n = 2). Unfortunately, starting from
three agents, even for the well-studied class of additive valuations, it is open whether EFX allocations exist. Plaut and

Roughgarden [30] also remarked that
“The problem seems highly non-trivial even for three players with different additive valuations.”

Our main contribution in this paper is answering the question of the existence of EFX allocations when there are

three agents.
THEOREM. EFX allocations always exist for three agents with additive valuations.

EFX with charity: Quite recently, there have been studies [11, 15] that consider relaxations of EFX, called “EFX with
charity”. Here, we look for partial EFX allocations, where not all goods need to be allocated (some of them remain
unallocated). There is a trivial such allocation where no good is allocated to any agent. Therefore, the goal is to determine
allocations with some qualitative or quantitative bound on the set of unallocated goods. For instance, Chaudhury et
al. [15] showed how to determine a partial EFX allocation X and a pool of unallocated goods P such that no agent
envies the pool (i.e. for any agent i, we have v;(X;) > v;(P)), and P has less than n goods (i.e., |P| < n), even in the
case of general valuations. In the case of additive valuations, Caragiannis et al. [11] showed the existence of a partial
EFX allocation X = (X1, Xy, ..., Xy), where every agent gets at least half the value of his bundle in the allocation that
maximizes the Nash welfare i.e., the geometric mean of agents’ valuations (suggesting that unallocated goods are not
too valuable).

While the standard economic notion of efficiency is Pareto-optimality, where no agent can be made happier without
making another agent worse, the maximum possible Nash welfare is a stronger notion of efficiency, which implies
Pareto-optimality. Another added benefit of using Nash welfare is that, unlike Pareto-optimality, it establishes a total
efficiency order (which extends the partial efficiency order established by Pareto-optimality) in the space of allocations,
i.e., any pair of allocations is comparable from an efficiency point of view — the one with higher Nash welfare is more
efficient. Thus, we can quantify the efficiency of a fair allocation by its Nash welfare approximation [11]. The result of
Caragiannis et al. [11] implies that there are partial EFX allocations with high Nash welfare (a 2-approximation of the
maximum possible Nash welfare). Indeed, it is a natural question to ask whether there are complete EFX allocations (all

goods are allocated) with high Nash welfare. To this end, Caragiannis et al. [11] conjectured:

“In particular, we suspect that adding an item to an allocation problem (that provably has an EFX allocation)
yields another problem that also has an EFX allocation with at least as high Nash welfare as the initial

one.”!

Note that if the above conjecture is true, it will imply the existence of complete EFX allocations with at least 2
approximation of the maximum possible Nash welfare. Unfortunately, we show (in Section 5) that the above conjecture
is false.

This was posed as a monotonicity conjecture in their presentation at ACM EC 2019.
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4 Chaudhury, Garg and Mehlhorn

To disprove the conjecture, we exhibit an instance where there exists a partial EFX allocation with higher Nash
welfare than the Nash welfare of any complete EFX allocation. Thus, the existence of EFX allocations with high Nash
welfare remains open, even in the setting with three agents. It is known that when agents have binary valuations,
there exist EFX allocations that maximize the Nash welfare [24]. However, investigating the existence of efficient EFX
allocations or settings under which efficient EFX allocations can be guaranteed is an interesting and important direction
for future research.

Furthermore, the instance in Section 5 also highlights an inherent barrier in the current techniques for determining
EFX allocations: Several of the existing algorithms for approximate EFX allocations ([30]) and EFX allocations with
charity ([15]) start with a partial EFX allocation and determine another partial EFX allocation with higher Nash welfare
iteratively by cleverly allocating some unallocated goods and unallocating some allocated goods. However, our instance
in Section 5 shows that such approaches will not help if our goal is to determine a complete EFX allocation.

A large part of our work in this paper develops better tools to overcome this particular barrier, and we consider the
tools introduced here as the most innovative technical contribution of our work. We believe that these tools and the
instance may help resolve the major open problem of the existence of EFX allocations for more than three agents and

for more general valuations (positively or negatively).

1.1 Our Contributions

Our major contribution in this paper is to prove that an EFX allocation always exists when there are three agents with
additive valuations. The proof is algorithmic. To discuss our techniques, we first briefly highlight how we overcome

two barriers in the current techniques.

Splitting bundles: We first sketch the simple algorithm of Plaut and Roughgarden [30] that determines an EFX
allocation when all agents have the same valuation function, say v. Let us restrict our attention to the special case
where there are no zero marginals, i.e., for any S € M and g ¢ S, we have (S U g) > v(S). Also, note that since
agents have the same valuation function, if v(X;) < v(Xj \ g) for two agents i and j for some g € X; then we have
0(Xi,m) < 0(Xj \ g) where ipmi, is the agent with the lowest valuation. The algorithm in [30] starts with an arbitrary
allocation (not necessarily EFX), and as long as there are agents i and j such that v(X;) < v(Xj \ g) for some g € Xj,
the algorithm takes the good g away from j (j’s new bundle is X \ g) and adds it to im;n’s bundle (imin’s new bundle
is X;

have valuations still higher than ip,;,’s initial valuation: o (X;

U g). Also, note that after re-allocation, the only changed bundles are that of i, and j, and both of them
uUg) > 0(Xi,,) and o(X; \ g) > v(X;,,;,). Observe that

such an operation increases the valuation of an agent with the lowest valuation. Thus, after finitely many applications

min
min min min
of this re-allocation we must arrive at an EFX allocation. Note that this crucially uses the fact that the agents have
identical valuations. In the general case, the valuation of agent j may drop significantly after removing g and j’s current
valuation may be even less than ip;p’s initial valuation. Therefore, it is important to understand how agents value good(s)
that we move across the bundles. To this end, we carefully split every bundle into upper and lower half bundles (see (1)
in Section 2). We systematically quantify the agent’s relative valuations agents have for these upper and lower half
bundles. In most cases, we can move these bundles from one agent to the other and improve the valuation of some of

the agents while still guaranteeing the EFX property. This idea is detailed in Sections 3 and 4.

A new potential function: We need to show that there is progress after every swap of half bundles. The typical
method here is to show improvement of the valuation vector on the Pareto front (see [15] and [30]). However, there are

limitations to this approach: In particular, we show an instance and a partial EFX allocation such that the valuation
Manuscript submitted to ACM
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EFX Exists for Three Agents 5

vector of any complete EFX allocation does not Pareto dominate the valuation vector of the existing partial EFX
allocation. To overcome this barrier, we first pick an arbitrary agent a at the beginning and show that whenever we
are unable to improve the valuation vector on the Pareto front, we can strictly increase a’s valuation. In other words,
the valuation of a particular agent a never decreases throughout re-allocations, and it improves after finitely many

re-allocations, showing convergence. A more elaborate discussion on this technique is presented in Section 2.

1.2 Further Related Work

Fair division has received significant attention since the seminal work of Steinhaus [32] in the 1940s, where he introduced
the cake-cutting problem among n > 2 agents. Perhaps the two most crucial notions of fairness properties that can be
guaranteed in the case of divisible goods are envy-freeness and proportionality. In a proportional allocation, each agent
receives a bundle that they value at least 1/n times their value for the entire set of goods. As mentioned earlier, none of
these two notions can be guaranteed in the case of indivisible goods. While EF1 and EFX are fairness notions that relax
envy-freeness, the most popular notions of fairness that relax proportionality for indivisible goods are maximin share
(MMS), proportionality up to one good (PROP1), proportionality up to any good (PROPx), and proportionality up to the
maximin good (PROPm). The MMS was introduced by Budish [9]. While MMS allocations do not always exist [26],
there has been extensive work to come up with approximate MMS allocations [2, 6, 8, 9, 20-22, 26]. On the other hand,
PROPx is stronger than PROPm, which is stronger than PROP1. While PROPx allocations do not always exist [29],
PROPm allocations are guaranteed to exist [5].

While much research effort goes into finding fair allocations, there has also been a lot of interest in guaranteeing
efficient fair allocations. A standard notion of efficiency is Pareto-optimality®. Caragiannis et al. [12] showed that any
allocation that has the maximum Nash welfare is guaranteed to be Pareto-optimal (efficient) and EF1 (fair). Therefore,
the Nash welfare of an allocation is also considered as a measure of efficiency and fairness of an allocation. However,
finding an allocation with the maximum Nash welfare is APX-hard [27], and its approximation has recently received a
lot of attention, e.g., [3, 4, 7, 13, 16—19]. Barman et al. [7] gave a pseudopolynomial algorithm to find an allocation that
is both EF1 and Pareto-optimal.

Applications: There are several real-world scenarios where resources need to be divided fairly and efficiently, e.g.,
splitting rent among tenants, dividing inheritance property in a family, splitting taxi fares among riders, and many
more. One example of fair division techniques used in practice is Spliddit [1]. Since its launch in 2014, Spliddit has had
several thousands of users [12]. For more details on Spliddit, we refer the reader to [23, 30]. Another example is Course
Allocate, which is used by the Wharton School at the University of Pennsylvania to fairly allocate 350 courses to 1700
MBA students [10, 30]. Kurokawa et al. [25] used leximin fairness to allocate unused classrooms in public schools to
charter schools in California. The best part of the allocations determined in all these applications is that they yield

results that not only seem fair in most instances but also come with mathematical guarantees.

2 PRELIMINARIES AND BASIC TOOLS

An instance I of fair allocation problem is a triple ([3], M, V), where we have three agents 1, 2, and 3, a set M of m
indivisible goods, and a set of valuation functions V' = {v1, v, v3}, where each v;: 2M 5 Ry captures the utility agent

i has for all the different subsets of goods that can be allocated. We assume that the valuation functions are additive

2An allocation X = (X, ..., X, ) is Pareto-optimal if there is no allocation Y = (Yy,..., Y, ) where 0;(Y;) 2> 0;(X;) forall i € [n] and 0;(Y;) >
07 (X;) for some j.
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6 Chaudhury, Garg and Mehlhorn

(vi(S) = Xgesvi({g}) forall S € M) and normalized (v; (@) = 0). For ease of notation, we write v;(g) for v; ({g}). Further,
we write S ®; T for v;(S) ® v;(T) with ® € {<, >, <,>}. Given an allocation X = (X1, X2, ..., Xy) we say that i strongly
enviesabundle S C M if X; <; S\ g for some g € S, and we say that i weakly envies S if X; <; Sbut X; >; S\ g for all
g € S. From this perspective an allocation is an EFX allocation if and only if no agent strongly envies another agent.
From here on, whenever we refer to an allocation, we refer to a partial allocation, i.e., one where all goods may not

be allocated. We call an allocation X, a complete allocation, if all goods are allocated in X.

Non-degenerate instances: We call an instance I = ([3], M, V) non-degenerate if and only if no agent values two
different sets equally, i.e., for all i € [3] we have v;(S) # v;(T) for all S # T. We first show that it suffices to deal with
non-degenerate instances. Let M = {g1, g2, . . ., gm }. We perturb any instance I to I(¢) = ([3], M,V (¢)), where for every
v; € V we define v] € V(e), as

v}(g)) = vi(g;) +¢2/.
Lemma 1. Let § = min;e[3) ming 1. o,(5)20;(T) [0i(S) — 0i(T)| and let ¢ > 0 be such that ¢ - 2™+ < 5. Then
(1) For any agenti and S, T C M such that v;(S) > v;(T), we have v}(S) > v}(T).

(2) I(¢) is a non-degenerate instance. Furthermore, if X = (X1, X2, X3) is an EFX allocation for I(¢) then X is also an
EFX allocation for I.

Proor. For the first statement of the lemma, observe that
0}(S) = 0/(T) = 0:(S) — 0i(T) + & Z 2 — Z 2J)
g;€S\T g;€T\S
>6—¢ Z 2/
g;€T\S
>5—e- (2™ 1)

>0 .

For the second statement of the lemma, consider any two sets S,T € M such that S # T. Now, for any i € [3], if
0i(S) # 0i(T), we have 0](S) # v/(T) by the first statement of the lemma. If v;(S) = v;(T), we have v](S) - v;(T) =
E(ZgjeS\T 2/ — Zg_,-GT\S 27) # 0 (as S # T). Therefore, I(¢) is non-degenerate.

For the final claim, let us assume that X is an EFX allocation in I(¢) and not an EFX allocation in I. Then, there exist
i, j,and g € Xj such that 0;(X; \ g) > 0;(X;). In that case, we have 0}(X; \ g) > v](X;) by the first statement of the

lemma, implying that X is not an EFX allocation in I(¢) as well, which is a contradiction. O

Henceforth, we assume that the given instance is non-degenerate. Note that non-degeneracy implies that all goods have
positive value for all agents as otherwise if for agent i, we have v;({g}) = 0, then v;(T U {g}) = v;(T), for any T such that
geT.

Overall approach: An allocation X’ Pareto dominates an allocation X if v;(X;) < v;(X]) for all i with strict inequality
for at least one i. The existing algorithms for “EFX with charity” [15] or “approximate EFX allocations” [30] construct a
sequence of (partial) EFX allocations in which each allocation Pareto dominates its predecessor. However, we exhibit in
Section 5 an EFX allocation that is not Pareto dominated by any complete EFX allocation. Thus, we need a more flexible

approach in the search for a complete EFX allocation.
Manuscript submitted to ACM
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EFX Exists for Three Agents 7

We name the agents a, b, and ¢ arbitrarily and consider the lexicographic ordering of the triples

$(X) = (va(Xa), vp(Xp), vc (X)),

ie, P(X) <pex ¢(X) (X’ dominates X) if (i) v4(Xg) < va(X}) or (i) v4(Xg) = va(X}) and vy (Xp) < vp (Xll;) or (iii)
0a(Xq) = vq(X}) and vy (Xp) = vy (X};) and vc(X¢) < vc(X/). We construct a sequence of allocations in which each
allocation dominates its predecessor. Of course, if X’ Pareto dominates X, then it also dominates X, so we can use all
the update rules in [15].

Our goal then is to iteratively construct a sequence of EFX allocations such that each EFX allocation dominates its

predecessor.

Most envious agent. We use the notion of a most envious agent, introduced in [15]. Consider an allocation X, and a
set S C M that is envied by at least one agent. For an agent i such that S >; X;, we “measure the envy” that agent i
has for S by kx (i, S), where kx (i, S) is the size of a smallest subset of S that i still envies, i.e., kx (i,S) is the smallest
cardinality of a subset S” of S such that S’ >; X;. Thus, the smaller the value of kx (i, S), the greater the envy of agent i
for the set S. So let kx (S) = min;c[31kx (i, S). Naturally, we define the set of the most envious agents Ax (S) for a set S

as the set of agents with smallest values of kx (i, S), i.e.,
Ax(S)={i|S >; Xj and kx(i,S) = kx(S)}.
The following simple observation about the most envious agents of specific kinds of bundles will be useful.
OBSERVATION 2. Given any allocation X, and an unallocated good g, for any i € [3], Ax(X; U g) # 0.

Proor. It suffices to prove that there exists at least one agent i who strictly prefers X; U g over his own bundle in

allocation X. This is guaranteed since we are dealing with non-degenerate instances, in which X; U g >; X;. O

Champions and Champion Graph Mx. Let X be an EFX allocation at any stage in our algorithm, and let g be an
unallocated good. We say that i champions j (with respect to g) if i is a most envious agent for X Ug, i.e.,i € Ax(X;Ug).
We define the champion graph My, where each vertex corresponds to an agent and there is a directed edge (i, j) € Mx
if and only if i champions j (with respect to g). Note that strictly speaking, a champion graph is defined based on the
allocation X and the unallocated good g. However, in most of the discussion that follows, the unallocated good g is the
unallocated good with which we start an iteration of our algorithm. Thus, we keep the notation of the champion graph
(Mx) free from the unallocated good, and remind the reader that unless stated explicitly the champions and champion
graphs are defined with respect to the partial EFX allocation X and the unallocated good g with which every iteration
of the algorithm starts.

OBSERVATION 3. The champion graph My is cyclic.

Proor. By Observation 2, we have that the set of champions of any agent is never empty. Therefore, every vertex in

My has at least one incoming edge. Thus, My is cyclic. O

If i champions j, we define G;j as a largest cardinality subset of X; U g such that (X; U g) \ G;j >; X;. Since the
valuations are additive, note that such a subset can be identified efficiently as the set K of the k least valuable goods for

iin X; U g such that (X; U g) \ K >; X; and k is maximum. Now we make some small observations.

PROPOSITION 4. Assume i champions j.
Manuscript submitted to ACM
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8 Chaudhury, Garg and Mehlhorn

(1) We have ((Xj U g) \ Gij) \ h < X forallh € (X; U g) \ Gi; and all agents k including i.
(2) If agent k does not champion j, we have (Xj U g) \ Gij <p X.

Proor. Note that by definition, G;; is a largest cardinality subset of X; U g such that i values (X; U g) \ G;; more
than X;. This implies that (X U g) \ Gj; is a smallest cardinality subset of X; U g that i values more than X;. Thus,
[(Xj Ug)\Gijl = kx (i, Xj U g). Since i champions j, we have that i € Ax (X; Ug) and thus xx (i, X; U g) = kx (X; U g).
Now, no agent k values a subset of X; U g of size less than xx (k, X U g) more than Xj. Note that ((X; Ug) \ Gjj) \ h
has size kx (Xj U g) — 1 < kx (k,Xj U g), and thus ((Xj U g) \ Gij) \ h <g Xi.

Now if k did not champion j then kx (k, Xj U g) < kx(Xj U g). Thus, [(X; U g) \ Gij| = kx(Xj Ug) < kx(k,Xj Ug).
Since k values any subset of X; U g of size less than xx (k, X; U g) at most X, we have (X; U g) \ Gij <g X. O

We next mention two cases where it is known how to obtain a Pareto dominating EFX allocation from an existing
EFX allocation. For an allocation X, we define the envy graph Ex, whose vertices represent agents, and in which there

is a directed edge from i to j if i envies j, i.e,, Xj >; X;. We can assume without loss of generality that Ex is acyclic.

Fact 5 ([28]). Let X = (X1, X2, X3) be an EFX allocation. Then, there exists another EFX allocation Y = (Y1, Y2, Y3),
where for alli € [3], Y; = X for some j € [3], such that Ey is acyclic and ¢(Y) >o, $(X) (strict inequality holds if Ex is
cyclic).

PROPOSITION 6 ([15]). Consider an EFX allocation X. Let s be any agent and let g be an unallocated good. If i champions
s and i is reachable from s in Ex, then there is an EFX allocation Y Pareto dominating X. Additionally, agent s is strictly
better off in'Y, i.e., Ys >5 X;.

Proor. We have that i is reachable from s in Ex. Let t; — to — - -+ — 13 be the path from t; = s to #; = i in Ex.

We determine a new allocation Y as follows:
Ytj = th+1 fOI'j € [k - 1]
Y; = (X5 \ Gis) Ug
Y, =Xy for all other ¢ .

Note that every agent along the path has strictly improved his valuation: Agents #; to fx_; got bundles they envied
in Ex and agent i championed s and got (Xs \ Gjs U g), which is more valuable to i than X; (by definition of Gjs).
Also, every other agent retained their previous bundles and thus their valuations are not lower than before. Thus,
@(Y) >jex $(X) and also Y > X (s was an agent along the path). It only remains to argue that Y is EFX. To this end,

consider any two agents j and j’. We wish to show that j does not strongly envy j” in Y.

Case j’ # i: Note that Yj» = X, for some ¢ € [3] (j’ either received a bundle of another agent when we shifted
the bundles along the path or retained the previous bundle). Also, note that Y; >; X; (no agent is worse off in
Y). Therefore, Y; >j Xj >; Xp \ h =; Yj» \ hfor all h € Yj (j did not strongly envy ¢ in X as X was EFX).

Case j’ =it We have Yj» = (X \ Gis) U g. Since i championed s, by Proposition 4 (part 1) we have that ((Xs \
Gis) Ug) \ h <j Xj. Like earlier, Y; >; X (no agent is worse off in Y). Thus, j does not strongly envy i. O

Proposition 6 implies that if there is some unallocated good and (i) if the envy graph Ex has a single source® or (ii)
any agent champions himself then there is a strictly Pareto dominating EFX allocation.

3A source is a vertex in Ex with in-degree zero.
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EFX Exists for Three Agents 9

CoroLLARY 7. Let X be an EFX allocation, and g be an unallocated good. If Ex has a single source s, or Mx has a 1-cycle

involving agent s, then there is an EFX allocation Y that Pareto dominates X in which Ys >¢ X;.

Proor. If Ex has a single source s, the champion of s (which always exist, by Observation 2) is reachable from s in
Ex. If My has a 1-cycle involving agent s then again the champion of s (which is s itself) is reachable from s in Ex. In
both cases, since the champion of s is reachable from s in the envy graph Ex, there is a Pareto dominating allocation Y

such that Y >¢ X, by Proposition 6. ]

Hence, starting from Section 3, we only discuss the cases where the envy-graph has more than one source and there are

no self-champions. We start with some simple yet crucial observations.
OBSERVATION 8. Ifi champions j (with respect to g) and X; >; Xj, then g ¢ Gij, Gij C Xj, and Gij <; g.

Proor. We have i € Ax(X; Ug). Since g ¢ X, G;j € Xj U g, and valuations are additive, we have that v;((X; U g) \
Gij) = vi(Xj) +0;i(g) — vi(Gij). Again since i € Ax(X; U g), by the definition of G;j, (Xj U g) \ Gij >; X;, and hence,
0;(X;) < v;(Xj) +0i(g9) —vi(Gij). Now we have X; >; X;, implying that G;; <; g, and therefore, g ¢ G;;. O

Observation 8 tells us that if i champions j, and i does not envy j, then G;; C Xj. Therefore, we can split the bundle
of agent j into two parts G;j and X \ G;;j. We refer to G;; as the lower-half bundle of j, and to X \ G;; as the upper-half

bundle of j, and visualize the bundle of agent j as

Xj\ Gij

Xj = Gij if i champions j and i does not envy j. (1)
()

We collect some more facts about the values of lower and upper half bundles.

OBSERVATION 9. Ifi champions j and j does not champion himself (self-champion), then we have G;j # 0 and G;; > g.

Proor. Since j does not self-champion, by Proposition 4 (part 2), we have that (X; U g) \ G;j <j X;. Since g ¢ X;
and G;j € Xj U g we have 0j((Xj Ug) \ Gij) = vj(Xj) +vj(g9) —vj(Gij) < vj(X;), implying that G;; >; g. Since the

value of g for j is non-zero, G;; is non-empty. O

OBSERVATION 10. Let i champion j, and X; >; X;. Let i’ champion k and Xy >y Xj. If i does not champion k, then
Xj\ Gij >i Xi \ G-

ProoF. Since i € Ax(X; Ug) and X; >; Xj, by Observation 8, we have g ¢ G;;. Thus, G;; C X;. By the same
reasoning, g ¢ Gy and Gy C Xj. Therefore, (X;Ug)\ G;ij = (Xj\Gij)Ug, and (X Ug)\ Gyg = (Xi \ Gyrg) Ug. By the
definition of G;j, we have (X;\ G;j) Ug >; X;. Since i ¢ Ax (X Ug), wehave X; >; (X \ Gyx)Ug by Proposition 4 (part
2). Combining the two inequalities, we have (X; \ Gij) Ug >; (X \ Gyg) U g, which implies X; \ Gj; >; X \ Gy. O

In the upcoming sections, we show how to derive a dominating EFX allocation from an existing EFX allocation.
Corollary 7 already deals with the cases when either Ex has a single source or My has a 1-cycle (Recall that 1-cycles in
My imply the existence of self champions). We proceed under the following general assumptions: Ex is cycle-free and has
at least two sources and there is no 1-cycle in My . We distinguish the remaining cases by the number of sources in Ex. A
broad summary of the case analysis in the paper is outlined in Table 1
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10 Chaudhury, Garg and Mehlhorn

Table 1. A broad overview of the cases considered in this paper.

H Ex has 1 source Ex has 2 sources Ex has 3 sources H

My has 1 cycle Corollary 7 Corollary 7 Corollary 7
My has 2 cycle Corollary 7 Section 4 Section 3.1
My has 3 cycle Corollary 7 Section 4 Section 3.2

3 EXISTENCE OF EFX: THREE SOURCES IN Ex

If Ex has three sources, the allocation X is envy-free, i.e., X; >; X for all i and j. We make a case distinction by whether

or not My contains a 2-cycle. Let g denote an unallocated good.

3.1 2-cyclein My

Assume without loss of generality that agent 2 champions agent 1 and agent 1 champions agent 2. Since X; >; X
and Xy >3 X1, the bundles X; and X, decompose according to (1). Since neither 1 nor 2 self-champion (as My has no
1-cycle), by Observation 10, we have X3 \ G12 >1 X1 \ G21 and X1 \ Go21 >2 X7 \ G12. We swap the upper-halves of X1
and X, to obtain

X5\ Gz X1\ Gz
x' =| Gz G2 X3
(1) (2) (3)

Note that agent 3 has the same valuation as before, while 1 and 2 are strictly better off. If X’ is EFX we are done. So

assume otherwise. We first determine the potential strong envy edges.

e From I: We replaced the more valuable (according to 1) X3 \ Gz in Xy with the less valuable X7 \ Go1 and left X3
unchanged. Thus, 1 is strictly better off and according to him, the valuations of the bundles of 2 and 3 in X’ is at
most the valuation of their bundles in X. As 1 did not envy 2 and 3 before in X, 1 does not envy 2 and 3 in X’.

e From 2: A symmetrical argument shows that 2 does not envy 1 and 3.

e From 3: For agent 3, the sum of the valuations of agents 1 and 2 has not changed by the swap and 3 envied
neither 1 nor 2 before the swap. Thus, 3 envies at most one of the agents 1 and 2 after the swap. Assume without

loss of generality that he envies agent 2. We then replace the lower-half bundle of agent 2 (G12) with g to obtain

X3\ G2 X1\ G2
XI/ — GZl g X3
(1) (2) (3)

In X", agent 2 is still strictly better off than in X since by the definition of G2, we have (Xj \ G21) Ug >2 Xa.
Thus, X"’ Pareto dominates X. We still need to show that X”” is EFX. To this end, observe that as we have not
changed the bundles of agents 1 and 3, there is no strong envy between them. So we only need to exclude
strong envy edges to and from agent 2.
— Nobody strongly envies agent 2: Note that 2 championed 1. Thus, ((X; \ G21) Ug) \ h <1 X3 and ((X71 \
G21)Ug) \ h <3 X3 forall h € (X7 \ Ga21) U g by Proposition 4 (part 1). Since both 1 and 3 are not worse off
than before, they do not strongly envy 2.

Manuscript submitted to ACM



521

522

524
525

526

540

561

569

EFX Exists for Three Agents 11

Agent 1 X3\ G13 >1 max;(X; \ G21, X2 \ G32)
Agent 2 X1\ G21 >2 maxz(X \ G32,X3 \ G13)
Agent 3 Xz \ G32 >3 max3(X3 \ Gi3,X1 \ Ga1)

Table 2. No 2-cycle in Mx: Ordering for the upper half bundles.

Agent 1 Go1 >1 9 >1 Gi3
Agent 2 G3z >2 g >2 Gog
Agent 3 Gi3 >3 9 >3 G32

Table 3. No 2-cycle in Mx: Ordering for the lower half bundles. Furthermore, g ¢ G13, g ¢ Gz1, and g ¢ Gs;.

— Agent 2 does not envy anyone: We have that (X \ Ga1) U g >2 X. According to agent 2, the valuation of
the current bundles of 1 and 3 is at most their previous ones, and 2 did not envy them before (when he had

X>). Hence, 2 does not envy 1 and 3.

We have thus shown that X"’ is EFX and Pareto dominates X. Actually, the strategy described above handles a more
general situation. It yields a Pareto dominating EFX allocation as long as 3 envies neither 1 nor 2 initially, even if 1 and

2 envied (not strongly envied) 3 initially:

REMARK 11. Let X be an EFX allocation, and let g be an unallocated good. If Mx has a 2-cycle, say involving agents 1

and 2, and agent 3 envies neither 1 nor 2, then there exists an EFX allocation Y Pareto dominating X.

Remark 11 will be helpful when we deal with certain instances where Ex has two sources later in Section 4.

3.2 No 2-cycle in Mx

We now consider the case when My has no two cycle. Since My is cyclic and we neither have a 1-cycle nor a 2-cycle,
we must have a 3-cycle. Let us assume without loss of generality that agent i + 1 is the unique champion of agent i
(indices are modulo 3, so i + 1 corresponds to (i mod 3) + 1). Since, in addition, i + 1 does not envy i, all three bundles

decompose according to (1) and the current allocation can be written as

X1\ Gz1 X2\ Gsz X3\ Gi3
x=| Ga Gs2 Gi3
(1) (2) (3)

Let us collect what we know for agent 1’s valuation of the upper-half bundles: 1 uniquely champions 3, while 2 and
3 uniquely champion 1 and 2, respectively. Also, the current allocation is envy-free. Thus, X; > X; for all i, j € [3].
By Observation 10, we know that X3 \ G13 >1 maxj (X1 \ Ga1, X2 \ G32), where max; (X \ G21, X2 \ G32) indicates 1’s
favorite bundle out of X; \ G21 and X3 \ Gs2, i.e., X3 \ Gi3 is 1’s favorite upper-half bundle.

Now, let us collect what we know for agent 1’s valuation of the lower-half bundles: 1 champions 3 and does not envy
3’s bundle. Thus, by Observation 8, G13 <1 g and g ¢ G13. Also, 1 does not champion himself, and 3 champions 1. Thus,
by Observation 9, g <1 G21. We can make similar statements about agents 2 and 3. Since g ¢ G21, and our instance is
assumed to be non-degenerate, we even have g <y Gy1. Tables 2 and 3 summarize this information.

Manuscript submitted to ACM



573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

591

592

594
595

597
598

600
601
602
603
604
605
606
607
608
609
610
611
612
613

614

616
617
618
619
620
621
622
623

624

12 Chaudhury, Garg and Mehlhorn

We first move to an allocation where everyone gets their favorite upper-half bundle (we achieve this by performing

a cyclic shift of the upper-half bundles). Thus, the new allocation is:

X3\ G13 X1\ Ga X2\ Gz
x' =| Gu Gs2 Gis
(1) (2) (3)

Clearly, every agent is strictly better off, and thus, X’ Pareto dominates X. If X’ is EFX, we are done. So we assume
otherwise. What envy edges could exist? We first observe that no agent will envy the agent from whom it took its

upper-half during the cyclic shift.
OBSERVATION 12. In X', agent i + 1 does not envy agent i for all i € [3] (indices are modulo 3).

ProoF. We just show the proof for i = 1, and the other cases follow symmetrically. Note that 2 values its current
upper-half more than 1’s upper-half (it has its favorite upper-half): X1 \ Go1 >2 X3 \ Gi3. Similarly 2’s also values its
lower-half more than 1’s lower-half: G3a >3 g >2 G21. Therefore, 2 values his entire bundle more than 1’s bundle, and

hence does not envy 1. O

Therefore, the only envy edges (and hence strong envy edges) can be from agent i to agent i + 1 as shown in the

following figure.*

1 > 2 > 3

\/

We now distinguish two cases depending on the number of such strong envy edges.

Three strong envy edges: In this case, the envy-graph is a 3-cycle. We perform a cyclic shift of the bundles and obtain

an EFX allocation Pareto dominating the initial allocation X.

At most two strong envy edges: Note that in this case, there is a strong envy edge from at least one agent i € [3] to
i + 1 and there is no strong envy edge from at least one agent j € [3] to j + 1. Let us assume without loss of generality
that there is a strong envy edge from 1 to 2, there may or may not be a strong envy edge from 2 to 3, and there is no

strong envy edge from 3 to 1.

Note that 1 is strictly better off in X’ than in X. The existence of envy from 1 and 2, despite this improvement, allows

us to say more about the preference ordering of the upper-half and the lower-half bundles.

OBSERVATION 13. If I envies 2 in X', X1 \ G21 >1 X2 \ G32, and G3z >1 Goy.

“In the figures that follow, we use red edges to indicate strong envy, and blue edges to indicate weak envy.
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EFX Exists for Three Agents

PrRoOOF. We argue by contradiction. Therefore, assume that either X; \ G21 <1 X3 \ G32 or G33 <1 G21. If X1 \ G21

Xo \ Gsa, then

(X1\ G21) UG32 <1 (X2 \ G32) UG32

=Xy
<1 Xy (since 1 did not envy 2 before)
<1 (X3 \ G13) UGo (since 1 is better off than before)

implying that 1 does not envy 2, a contradiction. If G33 <1 Gz1, then
(X1\ G21) UGs2 <1 (X1 \ G21) U Gay
=X
<1 (X3 \ G13) U G2 (since 1 is better off than before)

again implying that 1 does not envy 2, a contradiction.

So we now have
X2\ G32 <1 X1\ G21 <1 X3\ G13 and Gi3 <19 <1 Ga1 <1 Gz .

We replace the lower-half bundle of 2 (Gsz) by g to obtain

X3\ G13 X1\ Ga1 X2\ G32
x"” =| G2 g Gi13
(1) (2) (3)

13

<1

@

Note that agents 1 and 3 are still strictly better off (as we have not changed their bundles after the cyclic shift of the

upper-half bundles) than in X. Agent 2 championed 1, thus, X \ G21 U g >2 X3, and agent 2 is also strictly better off.

Hence, X"’ Pareto dominates X. If there are no strong envy edges, then we are done. So assume otherwise. We first

note that the only possible strong envy edge is from 2 to 3:

e Agent 1 does not envy anyone: 1 did not envy 3 in X’ and the bundles of 1 and 3 are the same in X’ and X”’.

1 does not envy 2 anymore as he prefers his own upper-half bundle and lower-half bundle to 2’s upper-half
bundle and lower-half bundle respectively, i.e., X3 \ G13 >1 X \ G21 (from Table 2) and G2; > g (from Table 3).

o Agent 3 does not envy anyone: We use a similar argument. 3 did not envy 1 in X’ and the bundles of 1 and 3

are the same in X’ and X”’. 3 does not envy 2 as well as he prefers his own upper-half bundle and lower-half

bundle to 2’s upper-half bundle and lower-half bundle respectively, namely X5 \ G32 >3 X \ G2 (from Table 2)

and Gy3 >3 g (from Table 3).

o Agent 2 does not envy 1: Note that agent 2 has his favorite upper-half bundle and values it more than 1’s
upper-half bundle: X \ G21 >2 X3 \ G13 (from Table 2) and 2 also values his lower-half bundle more than 1’s

lower-half bundle: g >3 Gy; (from Table 3).
Therefore, the only possible strong envy edge is from 2 to 3 as shown below.

1 2 /1 3

Similar to Observation 13, we can now infer more about 2’s preference ordering for the bundles:
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14 Chaudhury, Garg and Mehlhorn

PROPOSITION 14. If 2 strongly envies 3 in X', we have Xo \ G32 >2 X3 \ G13 and G13 >2 Gsg.

PROOF. As in Observation 13, we argue by contradiction. Therefore, assume that either X5 \ G32 <2 X3 \ G13 or
G13 <2 G32. If X5 \ G2 <3 X3 \ G13, then

(X2 \ G32) UG13 <2 (X3 \ G13) UG13

=Xz
<2 Xy (since 2 did not envy 3 before)
<3 (X1\Ga1)Ug (as 2 is better off than before)

implying that 2 does not envy 3, a contradiction. If G13 <3 G32, then

(X2 \ G32) UG13 <3 (X2 \ G32) U G32

=X,
<1 (X1\G21)Ug (as 2 is better off than before)
again implying that 2 does not envy 3, a contradiction. m]
So we now have
X3\ G13 <2 X2\ G32 <2 X1\ Ga1 and Gz1 <29 <2 G32 < Gis . ®3)

We are ready to construct the final allocation. To this end, consider the bundle (X7 \ Gz1) U G13. Note that,

(X1 \ G21) UG13 >2 (X3 \ G21) UGsy (as G13 >2 G3p from Proposition 14)
>y (X1\Ga1)Ug (as G2 >3 g from Table 3)
>9 Xo (as 2 championed 1) .

Let Z be a smallest cardinality subset of (X; \ G21) U Gi3 such that Z >3 X5. Since g ¢ X; and g ¢ Gi3, g € Z. We now

give two allocations, depending on how much 3 values Z.

Case Z >3 X3: Consider

X3\ G3 X2\ G32
Z
X" = g G32
(1) (2) (3)

Since 1 was the champion of 3, we have (X3 \ G13) Ug >1 Xj. Thus, 1 and 3 are strictly better off, and 2 has the
same bundle as in X. Therefore, X’’’ Pareto dominates X. We still need to show that X’’” is EFX.

o Nobody strongly envies agent I: Since 1 is the champion of 3, we have that ((X3 \ G13) Ug) \ h <2 X2 and
((X3\G13) Ug) \ h <3 X3 for all h € (X3 \ Gy3) U g by Proposition 4 (part 1). As both 2 and 3 are not
worse off than in X, neither of them strongly envies (X3 \ G13) U g.

o Nobody envies agent 2: Both 1 and 3 are strictly better off than in X and they did not envy X3 in X. Thus,
they do not envy Xz now.

e Nobody strongly envies agent 3: We first show that 1 does not envy (X; \ G21) U Gi3. This follows from
the observation that 1 prefers his own upper-half bundle to X; \ G2; and lower-half bundle to Gj3:
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EFX Exists for Three Agents 15

X3\ G13 >1 X1 \ G21 (from Table 2) and g > Gi3 (from Table 3). Thus, (X3 \ G13) Ug >1 (X1 \ G21) U G13.
Therefore, 1 does not envy Z either, as Z C (X \ G21) U Gy3.
Agent 2 does not strongly envy Z since Z is a smallest cardinality subset of (X; \ G21) U G13 that 2 values
more than X,. Thus, Z \ h <3 X forallh € Z.

Case Z <3 X3: Consider

X3\ Gi3 X2\ G3;
V4
X" =| Gz g
(1) (2) (3)
We first show that 1 is strictly better off in X"’/ than in X. Observe that
(X3 \ G13) U Gsz >1 (X3 \ G13) U G21 (by Observation 13)
>1 (X3\Gi3)Ug (G21 =1 g from Table 3)
>1 X3 (as 1 championed 3) .

Agent 2 is better off as Z >3 X by definition of Z. Agent 3 is also better off than in X as it championed 2 and
thus X \ Gsz U g >3 X3. Thus, all agents are strictly better off, and hence X’”” Pareto dominates X. We next
show that X" is EFX.

o Nobody envies agent 1: Agent 2 does not envy 1 since

(X3 \ G13) UG3y <2 (X2 \ G32) U Gsz (by Proposition 14)
= XZ
<3 Z (by definition of Z) .

Agent 3 does not envy 1 either since he prefers his current upper-half bundle to and lower-half bundle to
1’s upper-half bundle and lower-half bundle, respectively, i.e., X2 \ G32 >3 X3 \ G13 (from Table 2) and
g >3 G3z (from Table 3).

o Nobody envies agent 2: Observe that 1 does not envy (Xj \ G21) U G153 since 1 is strictly better off, G21 =1
g >1 Gi3 from Table 3, and G3p >1 Ga1 by Observation 13. Thus, (X3 \ G13) U G32 >1 (X1 \ G21) U Ga21 >1
(X1 \ G21) U Gy3. Therefore, 1 does not envy Z either as Z C (X7 \ G21) U G13. Agent 3 does not envy 2
since (X3 \ G32) U g >3 X3 (see above) and X3 >3 Z.

e Nobody strongly envies agent 3: Since 3 is the champion of 2, we have ((Xz \ G32) Ug) \ h <2 X3 and
((X2\G32) Ug) \ h <1 Xq forall h € (X3 \ G32) U g by Proposition 4 (part 1). As both 1 and 2 are strictly
better off (in X’”’) than in X, neither of them strongly envies (X2 \ G32) U g.

We have thus shown that given an allocation X such that Ex has three sources and My has a 3-cycle, there exists an

EFX allocation Y Pareto dominating X. We summarize our main result for this section:

LEMMA 15. Let X be a an EFX allocation and g be an unallocated good. If Ex has three sources, then there is an EFX

allocation Y Pareto dominating X.

4 EXISTENCE OF EFX: TWO SOURCES IN Ex

Let us assume that agents 1 and 2 are the sources, and let (1,3) € Ex. We have two configurations for Ex now, depending

on whether or not (2,3) € Ex. If (2,3) € Ex, it is relatively straightforward to determine a new EFX allocation Pareto
Manuscript submitted to ACM
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16 Chaudhury, Garg and Mehlhorn

Fig. 1. Envy Graph for two sources when (2,3) ¢ Ex: Green nodes correspond to the agents. Blue edges are the edges in Ex.

dominating X. Agent 3 is reachable from both 1 and 2 in Ex, and hence, if 3 champions either 1 or 2, we have a Pareto
dominating EFX allocation by Proposition 6. If 3 champions neither 1 nor 2, 1 and 2 must be champions of each other
(Recall that no agent self-champions). Also note that 3 envies neither 1 nor 2. Therefore, by Remark 11, we have a
Pareto dominating EFX allocation. Henceforth, we assume that (2,3) ¢ Ex.

The envy graph of the scenario is now as shown in Figure 1. Next, we discuss the possible configurations of the
champion graph My. We show that most configurations are easily handled. If 3 champions 1, then by Proposition 6,
there is a Pareto dominating EFX allocation. If 3 does not champion 1, and since 1 does not self-champion, agent 2
champions 1. If now 1 champions 2, we have a 2-cycle in My involving 1 and 2, and 3 envies neither of them. Therefore
by Remark 11, there is a Pareto dominating EFX allocation. Thus, we may assume that 1 does not champion 2. Since 2
does not self-champion, agent 3 champions 2. There are only three possible configurations for Mx now, depending on who

champions 3 (only 1, only 2, both 1 and 2 as 3 does not self-champion) (see Figure 2).

Fig. 2. The possible states of Mx that require further discussion: Green nodes correspond to the agents. Blue edges are the edges in
Ex and green edges are the edges in Mx. There is a unique configuration of Ex and three different configurations of Mx.

We now show how to deal with these configurations of My. In Section 3, we showed how to move from the current
allocation X to an allocation that Pareto dominates X. In Section 5, we show that this is impossible in this particular
configuration of Ex and My. More specifically, we exhibit an EFX allocation X that is not Pareto dominated by any
complete EFX allocation. We also show that there is no complete EFX allocation with higher Nash welfare than X,
thereby falsifying a conjecture of Caragiannis et al. [11].

Recall that our potential is ¢(X) = (v4(Xq), vp (Xp), vc(Xc)). We move to an allocation in which agent a is strictly
better off. We distinguish the cases:a=1,a=2,and a = 3.

Also, recall that we are in the scenario where 2 champions 1 and 2 does not envy 1. Similarly 3 champions 2 and 3
does not envy 2. Therefore, by Observation 8, we have that g ¢ Go1 and g ¢ G332, and hence, the bundles X; and X3
decompose according to (1). Also, since 2 champions 1 and 1 does not self-champion, by Observation 9, we have that
Gz1 # 0, and a similar argument also shows that Gsz # 0.
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EFX Exists for Three Agents 17

4.1 Agentaisagent1or3

We start from the allocation

X1\ Ga1 X\ G3z
x=| Gan Gs2 X3
(1) (2) (3)

Our goal is to determine an EFX allocation in which 1 and 3 are strictly better off (2 may be worse off). To this end, we

consider

X1\ Gz X2\ Gz
x = G2 g
(1) (2) (3)

In X’, every agent is better off than in X: 1 is better off because X3 >1 X (1 envied 3 in Ex). We now show that
2 is better off: 2 championed 1 and 3 championed 2. Also, 2 did not self-champion, 2 did not envy 1 and 3 did not
envy 2 . Therefore, by Observation 10, (setting i = k = 2, j = 1, i’ = 3), we have that Xj \ G21 >2 X2 \ G32. Hence,
(X1 \ G21) UGsz >2 (X2 \ G32) UGsz = X». Thus, 2 is also better off. Agent 3 is better off as 3 championed 2, and by the
definition of G32, we have (X3 \ G32 U g) >3 X3. Thus, X’ Pareto dominates X. If X’ is EFX, we are done. So assume
otherwise. We show that the only possible strong envy edge will be from 1 to 2.

o Nobody envies I: Note that 1 has X3 and neither 2 nor 3 envied X3 earlier (3 had X3 and 2 did not envy 3). Since
both 2 and 3 are better off than before, they do not envy 1.

o Nobody strongly envies 3: We will show that 1 does not strongly envy 3 and 2 does not envy 3. Agent 3
championed 2 and 1 did not. Therefore, by Proposition 4 (part 1) we have ((X2 \ G32) U g) \ h <1 X for all
h € (X2 \ G32) U g. Since 1 is better off than in X, it does not strongly envy 3. Agent 2 does not envy 3 since he
prefers both of his parts over the corresponding parts of agent 3. This was argued above for the top part and
follows from Observation 9.

e 3 does not envy 2: 3 championed 2 and 3 did not envy 2 earlier. Therefore by Observation 8, we have that
G32 <3 g. Therefore (X1 \ G21) U G323 <3 (X3 \ G21) U g. Since 2 championed 1 and 3 did not, by Proposition 4
(part 2), we have ((X; \ G21) U g) <3 X3. Since 3 is better off than in X, 3 does not envy 2.

Thus, the only strong envy edge is from 1 to 2. The current state of the envy-graph is depicted below:

Let Z be a smallest cardinality subset of (X \ G21) U G3; that 2 values more than max,((X2 \ G32) U ¢, X3), where
max2((X2 \ G32) U ¢, X3) is defined as the more valuable bundle out of (X3 \ G32) U g and X3 according to 2. Note
that max((Xz \ Gs2) U g, X3) <2 (Xi \ G21) U G33 since 2 does not envy neither 1 nor 3 in X’. Since the instance is
non-degenerate, the inequality is strict, and hence Z exists. We now consider two allocations depending on 1’s value
for Z.
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18 Chaudhury, Garg and Mehlhorn

Case Z <1 X3: We replace 2’s current bundle with Z and obtain

X2\ G32
X3 z
X" = 9
(1) (2) (3)

Agents 1 and 3 have the same bundles as in X’ and hence are strictly better off than in X. Thus, X"’ dominates
X,asa=1ora=3and ais strictly improved. We next show that X’* is EFX. Since the only bundle we have
changed is that of 2, and there were no strong envy edges between 1 and 3 earlier, it suffices to show that there
are no strong envy edges to and from 2.
e Nobody envies 2: 3 did not envy the set (Xj \ G21) U G32. As Z C (X1 \ G21) U G32, agent 3 does not envy
Z either 1 does not envy Z because we are in the case where Z <1 X3.
e 2 does not envy anyone: This follows from the definition of Z itself since Z >3 maxz((Xz2 \ G32) U ¢, X3).

Case Z >1 X3: In this case, we consider

X - z maxz((Xz \ Gs2) U g, X3) minz ((Xz \ G32) U g,X3)

(1) (2) (3)
Agent 1 is still strictly better off than in X as we are in the case Z >; X3 >1 Xj, and agent 3 is not worse off
than before as both X3 and (X2 \ G32) U g are at least as valuable to him as his previous bundle X3. We first
show that X”” is EFX.
o 1 does not envy anyone: We are in the case where Z >1 X3 and 1 did not envy (X3 \ G32) U g when he had
X3 himself (and now 1 is better off than with X3). Thus, 1 does not envy anyone.
o 2does not strongly envy anyone: Since 2 chooses the better bundle out of X3 and (X2 \Gs32)Ug, 2 does not envy
3. Agent 2 does not strongly envy 1 since by the definition of Z, we have Z \ h <3 max2((X2 \ G32) Ug, X3)
for all h € Z. However, note that 2 envies 1. Thus, 2 does not envy 3 and does not strongly envy 1 (but
envies 1).
e 3 does not strongly envy anyone: 3 did not envy the set (X; \ Ga1) U Gz, ° and X3 < X' as we argued
above. Thus, 3 will not envy Z either as Z C (X7 \ Ga21) U G32. We next show that 3 does not strongly envy
2, observe that (X2 \ G32) U g >3 X3. Therefore, if miny ((X2 \ G32) U g, X3) = (X2 \ G32) U g, we are done.
So assume miny ((Xz \ G32) U g, X3) = X3. Since 3 championed 2 and from Proposition 4 (part 1), we have
that ((X2 \ G32) Ug) \ h <3 X3 for all h € (X2 \ G32) U g: Thus, 3 does not strongly envy 2.
Now if a = 1, we are done, as X"’ is EFX and agent 1 strictly improved. So assume a = 3. If mina ((X2 \ G32) U
9,X3) = (X2 \ G32) U g, then agent 3 is strictly better off and we are done. This leaves the case that agent 3 gets
X3, and hence

X2\ G3z
Z X3
X" = g
(1) (2) (3)

SWe repeat the argument made earlier: 3 championed 2 and 3 did not envy 2 earlier. Therefore, by Observation 8 we have that G3; <3 g. Hence,
(X1 \ G21) UGsz <3 (X1 \ G21) U g. Since 2 championed 1 and 3 did not, by Proposition 4 (part 2), we have ((X; \ Gz1) Ug) <3 X3.

Manuscript submitted to ACM



937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

955

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

988

EFX Exists for Three Agents 19

The envy graph Ex» with respect to allocation X"’ is a path (shown below): 1 does not envy anyone, 2 envies 1

(not strongly) and does not envy 3, and 3 envies 2.

1 2 3

Also, note that we have some unallocated goods, e.g., the goods in Go1. Recall that we argued Gz1 # 0 in the
paragraph just before Section 4.1. Consider any good g’ € Gy;. Since 3 is the only source in Ex~, by Corollary 7,
there is an EFX allocation X””’ Pareto dominating X"/, where X;” >3 X}’ = X3. Thus, we have an EFX allocation

X’" that dominates X (as agent 3 is strictly better off and a = 3).

4.2 Agentais agent2

Recall that we argued just before the beginning of Section 4.1 that g ¢ Gz21 and g ¢ G3z. The current EFX allocation X is

X1\ Ga1 X2\ Gz
x=| Gan Gs2 X3
(1) (2) (3)

Our aim is to determine an EFX allocation, in which agent 2 has a bundle more valuable than X;. First, observe that
(X1 \ G21) U g is such a bundle. As 2 championed 1, we have (Xj \ G21) U g >2 X3 by the definition of G2;. We also
observe that both agents 1 and 3 value X3 as least as much as Xy and (X \ G21) U g.

OBSERVATION 16. X3 >; max;(Xa, (X1 \ G21) U g) fori € {1,3}.

PrROOF. We argue >;; strict inequality then follows from non-degeneracy. Nobody envies 2 in X. Thus, X3 <3 X3,
and X, <1 X1 <1 X3 (the strict inequality holds as 1 envies 3 in X).

Agent 2 is the unique champion of 1 in X (both 1 and 3 do not champion 1). Therefore, by Proposition 4 (part 2), we
have (X3 \ G21) Ug <3 X3 and (X7 \ G21) U g <1 X7 <1 X3 (the strict inequality holds as 1 envies 3 in X). O

For i € {1,3}, let k; be the size of a smallest subset Z; of X3 such that Z; >; max; ((Xj \ G21) U g, X2). We use the
relative size of k1 and k3 to differentiate between agents 1 and 3. We use w (winner) to denote the agent with the smaller

value of k;, i.e., w = 1if k1 < k3 and w = 3 if k1 > k3. We use ¢ (loser) for the other agent. Consider

X3 max (X2, (X1 \ G21) U g) ming (X2, (X1 \ G21) U g)

X' =

(w) (0) (2)

In X’, the only possible strong envy edge is from ¢ to w. By Observation 16, w envies neither £ nor 2. Note that 2
championed 1 and therefore, (X; \ G21) U g >2 X>, but by Proposition 4 (part 1), we have ((X; \ G21) Ug) \ h <2 X»
for all h € (X3 \ G21) U g. Thus, 2 gets a bundle worth at least X5 and does not strongly envy ¢. Agent 2 also does not
envy w (as he did not envy X3 when he had X3). Agent ¢ does not envy 2 as he chooses the better bundle out of X, and
X1\ G21 U g. Thus, the only possible strong envy edge is from ¢ to w. How we proceed then depends on whether or not
¢ strongly envies w.
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20 Chaudhury, Garg and Mehlhorn

¢ does not strongly envy w: Then, X’ is EFX. If ming (X, (X1 \ G21) Ug) = (X1 \ G21) Ug, we are done as X’ dominates

X (2 is strictly better off and a = 2). So assume otherwise. Then,

X3 X1 \ Go1 U g Xs

X' =

(w) (0) (2)
By Observation 16, £ envies w. Since 2 only envies ¢, £ only envies w, and w does not envy anyone, the envy graph Ex-

is a path with source 2.

Also, note that there are unallocated goods, namely the goods in G2; (we argued just before the beginning of Section 4.1
that Ga; # 0). Therefore, by Corollary 7, there is an EFX allocation X"/, in which 2 is strictly better off. Thus, X"/

dominates X as 2 is strictly better off and a = 2.

¢ strongly envies w: We keep removing the least valuable good according to w from w’s bundle, until ¢ does not

strongly envy w anymore. Let Z be the bundle obtained in this way. Consider

z maxe(Xa, (X1 \ Ga21) U g) ming (Xa, (X1 \ Ga21) U g)

(w) (0) (2)

CrLamM 17. w does not envy 2 and ¢.

Proor. Recall that k., is the smallest cardinality of a subset of X3 that w still values more than max,, (X2, (Xj \
G21) U g); Kk was defined just after Observation 16. Such a set can be obtained by removing w’s |X3| — k4, least
valuable goods from X3. Observe that Z is obtained by removing |X3| — |Z| of w’s least valuable goods from X3. If
|Z| > Kk, w will envy neither 2 nor £. If |Z| < x,, < k¢ (recall that k,, < k¢), let h be the last good removed. Then,
¢ strongly envies Z U h (otherwise we would not have removed h), meaning that there exists K’ € Z U h such that
(ZUh)\ K >p max;(X2, (X1 \ G21) U g). Thus, there is a subset of X3 of size |(Z Uh) \ | < kg + 1 — 1 = Ky, that £

values more than max,(Xa, (Xi \ G21) U g), a contradiction to x,, < kp. O

The allocation X’ is EFX: w envies neither 2 nor ¢, £ does not strongly envy w, £ does not envy 2, and 2 envies neither
£ nor w. If ming(Xz, (Xj \ G21) U g) is X1 \ Ga1 U g, then we are done as X’ dominates X (2 is strictly better off and

a = 2). So assume otherwise. Then

VA X1\Ga1Ug Xz

X' =

(w) (0) (2)
In X’, w envies nobody (by Claim 17), 2 envies £, and £ may or may not envy w. We distinguish cases according to

whether or not £ envies w.
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1041 Case f envies w: Then, the current envy graph is a path with 2 as the source.

1042
2 > w

1043

1044

1045 Since there are unallocated goods, namely the goods in G2; (we argued just before the beginning of Section 4.1

1046 that Ga; # 0), by Corollary 7, there is an EFX allocation X’/ in which agent 2 is strictly better off. The allocation
1047 X’" dominates X (as 2 is strictly better off and a = 2).

10 Case ¢ does not envy w: Then, the current envy graph has two sources, namely w and 2, and one envy edge
12?3 from 2 to ?.

1051 2 > ¢t w

1052

1053 There are at least two unallocated goods, the goods in G2; (we argued just before the beginning of Section 4.1

1054 that Gp1 # 0) and the goods in X3 \ Z (note that this set is not empty; we definitely have removed at least one
1055
1056 good from X3 as ¢ strongly envied it in X”). Now consider the allocation X’ and some g’ € Gy;. If the champion

1057 of 2 is 2 itself or ¢ (definition of champion based on allocation X’ and the unallocated good g¢’), by Proposition 6

1058 there is an EFX allocation Y where the source, namely 2, is strictly better off and hence Y will dominate X.
109 So assume that the champion of 2 is w, i.e.,, w € Ax/(X; U ¢’). Let g € X3 \ Z be the last element that we
1060

oo removed from X3 when we constructed Z from X3. Then, ¢ strongly envies Z U g’ and, according to w, g"’ is

1062 the least valuable good in Z U g’’. We observe that ¢ is the unique champion of w (definition of champion based
1063 on allocation X’ and the unallocated good ¢g”’), i.e., Ax (X], U g"’) = {t}.

1064

1065 PROPOSITION 18. For any good g’ € X3 \ Z, we have Ax: (X}, U g"”") = {t}.

1066

1067 Proor. We have X, = Z. First we show that 2 ¢ Ax+(Z U g”’). Note that Z U g’ C X3. Since Xy >3 X3 (as 2

1068 did not envy 3 in X), 2 will not envy Z U ¢”’ either.
12;2 By the construction of Z, g’’ is w’s least valuable good in Z U g”’. Thus, the removal of any good from Z U g’ will

o1 result in a bundle whose value for w is no more than the value of Z for w. Therefore, xx' (w, ZU g"’) = |ZU g"|
1072 (Recall that kx (i, S) is the size of the smallest subset of S which is more valuable to i than X;). Note that ¢
1073 strongly envies Z U g”’. Hence, there exists h € ZUg"’ such that (ZUg"’) \ h >; X]. Therefore, kx (£, ZUg"") <

o [((ZUug”’)\h|=|ZUg"”|-1 < kx(w,ZUg"). Thus, w does not self-champion and hence Ax'(ZUg"’) = {¢}. O

1075

1076

Consider
1077
1078 ’ ’ ’ 12 ’
107 X,, _ (Xz Ug ) \Gwz (Xw Ug ) \Gé’w X(
1080
1081 (w) () (2)
1082 or equivalently
1083
- X, Ug')\G ZugH\G X; \ Gar) U
1085 o (X2Ug') \ Gz (ZUg")\ Gew X1\ Ga)Ug
1086
1087 (w) (?) (2)
1088
1080 Note that every agent is strictly better off than in X’. w championed 2, and by the definition of G,,2, we have
109 (X5Ug' )\ G2 >w X;,. Similarly, £ championed w, and by the definition of Gy, we have (X;,Ug"")\Gew >¢ X;.
1091 Agent 2 is better off as 2 envied £ in X’ i.e. X) <2 X;. Now we have an allocation X"’ in which agent 2 is strictly
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better off than it was in X. Thus, X”’ dominates X (as a = 2). It suffices to show that X"’ is EFX now. To this
end, observe that,

e Nobody strongly envies w: w championed 2. Thus, by Proposition 4 (part 1), we have that ((X; Ug’) \ Gw2) \
h <3 X; and (X3 U g') \ Gyw2) \ h <¢ X] forall h € ((X; U g’) \ Gwz2). Since both 2 and ¢ are better off
than before (in X”), they do not strongly envy w.

o Nobody strongly envies £: The argument is very similar to the previous case. £ championed 2. Thus, by
Proposition 4 (part 1), we have that (X}, U g") \ Gew) \ h <2 X7 and (X7, U g”) \ Gew) \ h <4y X, for
all h € ((X{,Ug"”) \ Ge). Since both 2 and w are better off than before (than they were in X”), they do
not strongly envy w.

e Nobody strongly envies 2: Both w and ¢ did not envy X; (£ had X; and w did not envy ¢) when they had X,
and X itself. Both w and ¢ are strictly better off than they were in X’. Therefore, they also do not envy 2.

We conclude that there is an EFX allocation dominating X in the case, a = 2 as well. This allows us to summarize our

main result for this section as follows,

LEMMA 19. Let X be an EFX allocation, and let g be an unallocated good, where the envy graph Ex has two sources.

Then, there is an EFX allocation Y dominating X.
Having covered all the cases, we arrive at our main result:
THEOREM 20. For any instance I = ([3], M, V') where all v; € V are additive, an EFX allocation always exists.

Proor. We start off with an empty allocation (X; = @ for all i € [3]), which is trivially EFX. As long as X is not a
complete EFX allocation, there is an allocation Y that dominates X: If Ex has a single source or Mx has a 1-cycle, there
is a dominating EFX allocation Y by Corollary 7. Lemmas 15 and 19 establish the existence of Y when Ex has multiple
sources and My does not have a 1-cycle. Since ¢ is bounded from above, the process must stop. When it stops, we have

arrived at a complete EFX allocation. O

5 BARRIERS IN CURRENT TECHNIQUES

In this section, we highlight some barriers to the current techniques for computing EFX allocations. We give an instance
with three agents and seven goods such that there is an EFX allocation for six of the goods that is not Pareto dominated
by any complete EFX allocation for the full set of goods. We also generalize this example and give an instance with an
EFX allocation which has a Nash welfare larger than the Nash welfare of any complete EFX allocation. These examples
make it unlikely that there is an iterative algorithm towards a complete EFX allocation that improves the current EFX
allocation in each iteration either in the sense of Pareto domination or in the sense of Nash welfare (like the algorithms
in [30] and [15]). The second example also falsifies the EFX monotonicity conjecture (see Conjecture 23) by Caragiannis
etal [11].

THEOREM 21. For the instance given in Table 4, the partial allocation X = (X1, X2, X3), where

X1 ={92.93. 94} X2 ={g1.95} X3 ={9ge},
is an EFX allocation of the first six goods. No complete EFX allocation Pareto dominates X.
PRroOF. Note that v1(X;1) = 16, v2(X2) = 15, and v3(X3) = 10. We will show that there is no complete EFX allocation

X’ with 01(X]) 2 16, 02(X;) 2 15 and v3(X3) > 10. To this end, we systematically consider potential bundles X that

can keep a;’s valuation at or above 16.
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| 91 92 95 94 95 95 g7

ag 8 2 12 2 0 17 1
ag 5 0 9 4 10 0 3
as 0 O O O 9 10 2

Table 4. An instance where no complete EFX allocation dominates the EFX allocation X for the first six goods defined in the text. The
valuations are assumed to be additive and the entry in row i and column j is the value of good j for agent i.

Let us first assume g € X7, and hence, v1(X]) 2 17. Now, to ensure v3(X;) > 10, we need to allocate g5 and g7 to as.
We are left with goods g1, g2, g3 and gs. In order to ensure v2(X;) > 15, we definitely need to allocate g1, g3 and g4 to
az. Now even if we allocate the remaining good gz to a1, we will have v1(X]) = v1({g2,g¢}) = 19 < 20 = 01({91,93}) <
01(Xj \ g4). Therefore, a; will strongly envy az. Thus, g¢ € X].

If g ¢ X{ and v1(X]) 2 16, X must contain g3 (the total valuation for a; of all the goods other than g3 and g is less
than 16). We need to consider several subcases.

Assume g; € X first. Since X7 already contains g; and g3, the goods that can be allocated to az and a3 are g2, g4, gs,
gs, and g7. In order to ensure v2(X;) > 15 we need to allocate g4, g5, and g7 to az. Even if we allocate all the remaining
goods (g2 and gs) to a3, we have v3(X3) = v3({93,96}) = 10 < 11 = v3({g5,97}) < v3(X; \ g4). Therefore, a3 will
strongly envy aj.

Thus, g1 ¢ X]. Since neither g; nor gs belongs to X7, the only way to ensure v1(X]) > 16 is to at least allocate g2, g3,
and g4 to aj(we can allocate more). Similarly, given that the goods not allocated yet are g1, gs, g¢, and g7, the only way
to ensure 01 (X7) > 15 is to allocate at least g1 and g5 to az. Similarly, the only way to ensure v3(X3) > 10 now is to
allocate at least g¢ to a3. We next show that adding g7 to any one of the existing bundles will cause a violation of the

EFX property.

e Adding g7 to X{: ay strongly envies ay as v2(X3) = 15 < 16 = v2({g3, 94, 97}) = v2(X] \ g2).
¢ Adding g7 to X;: a3 strongly envies az as 03(X3) = 10 < 11 = v3({gs,g7}) = v3(X; \ g1).
¢ Adding g7 to X;: a; strongly envies a3 as v1(X]) = 16 < 17 = v1(gs) = v1(X; \ g7)-

Thus, there exists no complete EFX allocations Pareto dominating X. O

We now move on to the second example. We will modify the example in Table 4 to highlight some barriers in the
existence of “efficient" EFX allocations. There has been quite a lot of recent work aiming to compute fair allocations
that are also efficient. The common measures of efficiency in economics are “Pareto optimality" (where we cannot
make any single agent strictly better off without harming another agent) and “Nash welfare" (the geometric mean of
the valuations of the agents). Quite recently, Caragiannis et al. [11] showed that there exist EFX allocations that are

efficient (with good guarantees on Nash welfare). In particular, they show,

THEOREM 22 ([11]). Let X* = (X{,X},...,X,) be an allocation that maximizes the Nash welfare. Then, there exists a
partial allocation Y = (Y1, Ya, ..., Yy) such that

e Foralli € N we haveY; C X/
e Y is EFX.
o 0;(Y) = 0i(X}).
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[ T 93 9 g 96 g |
ai S +6e 260 10— &3 e 10-283 10+3¢° &
ar £ 0 10— &2 +65 262 10 0 Py
a3 0 0 0 0 10-¢* 10 26

Table 5. An instance where no complete EFX allocation has larger Nash welfare than the EFX allocation X for the first six goods
defined in the text. The valuations are assumed to be additive and the entry in row i and column j is the value of good j for agent i; ¢
is positive, but infinitesimally small.

In the same paper, the authors mention that if the following conjecture is true, then there exist complete EFX

allocations that are efficient as well.®

CONJECTURE 23. Adding an item to an instance that admits an EFX allocation results in another instance that admits

an EFX allocation with Nash welfare at least as high as that of the partial allocation before.

We will now show that this conjecture is false, which suggests that EFX demands “too much fairness" and some
“trade-offs with efficiency” may be necessary. In particular, we construct an instance I’, such that there exists an EFX
allocation X with Nash welfare NW (X) strictly larger than the Nash welfare NW(X”) of any complete EFX allocation
X’. From the example in Table 4, it is clear that in any complete EFX allocation, we need to decrease the valuation of
one of the agents. The high level idea is to modify I to I’ such that the decrease in valuation of one of the agents is
significantly more than the increase in valuation of the other agents.

The goal of the rest of this section is to show the following theorem.

THEOREM 24. For the instance I’ with three agents and seven goods given in Table 5, the allocation X = (X1, X2, X3),

where
X1={92.9394}  Xe={g1.95} X3 =1{g¢},
is an EFX allocation of the first six goods whose Nash welfare is larger than the Nash welfare of any complete EFX allocation.

Observe that NW(X) = ((10 + 2¢°) - (10 +¢) - (10))1/3. Let X’ be a complete EFX allocation with maximum Nash

welfare.

LEMMA 25. X’ allocates the goods g3, g5 and ge to distinct agents. Additionally,

o X contains exactly one good from {g3,gs}.
e X contains exactly one good from {gs, g }.

Proor. Consider the following complete EFX allocation X = (X1, Xa, X3):

X1 = {96} Xz = {93.94.97} X3 ={g1,92,95} .

It is easy to verify that X is EFX and NW (X) = ((10+3¢%)(10+¢+£°) (10— 64))1/3. Since X’ is a complete EFX allocation
with maximum Nash welfare, we have NW(X’) > N W()Z ).If g3, g5, and g are not allocated to distinct agents, there is
an agent a; who does not get any of these goods. The valuation of this agent is at most 4¢ (since ¢ is the maximum
valuation of any agent for any good outside the set {g3, g5, g6 }). The valuation of the other two agents can be at most
3-(10+¢)+4e = 30+7¢ (since ¢ is the maximum valuation of any agent for any good outside the set {gs, g5, gs }, and 10+¢

®In their talk at ACM EC 2019 they explicitly mentioned this as the “Monotonicity Conjecture".
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upper bounds the maximum valuation of any good in {g3, g5, g¢ }). Thus, NW(X’) < ((4¢) - (30 + 75)2)1/3 < NW(X)
for sufficiently small €.

A similar argument shows that X; contains at least one good from {g3, g5} and X; contains at least one good from
{95, go} (since these are the only goods that the agents value close to 10). Since the goods g3, g5, and g are allocated to
distinct agents, az will get exactly one good from {gs, g5} and a3 will get exactly one good from {gs, gs }. O

Let us denote the set {gs, g¢, g7} as VALs, the goods valuable for agent as3. Note that v3 (X3’) =03 (Xé N VAL3). We will
now prove our claim by studying the cases that arise depending on X; N VAL3;. By Lemma 25, X; N VALj3 is non-empty
and contains exactly one of g5 and gs. Thus, X; N VAL3 can be {gs}, {gs}, {g5, 97}, or {gs, g7} only.

LemMa 26. IfX} N VAL = {gs}, then NW(X’) < NW(X).

ProoF. We have that v3(X}) = 03(X; N VAL3) = 10 — ¢*. Lemma 25 implies that X} contains g3 and X| contains ge.
Note that X] cannot contain any additional good other than g as this would lead to a3 strongly envying a; (note that
03(ge) = 10 > 10 — £* = 03 (X3)). Therefore v1 (X7) = 10 + 3¢°. Now we distinguish two cases depending on whether or

, .
not X, contains gi.

e g1 € X;: In this case, X; = {g1, g3}, as otherwise a; strongly envies az (note that v1 (X]) = 10+ 367 < 10 +66° =
01({91, 93}), and hence, v2(X}) = v2({g1,93}) = 10+ ¢ + €% — ¢2. Thus,
01(X7) & v2(X3) £% — ¢b u3(X3)
=1+ s =1- , an <1,
01(X1) 10 + 2¢3 02(X2) 10+¢ 03(X3)
and hence, NW (X’)/NW(X) < 1.
* g1 ¢ X;: Then, 02(X}) < vz(remaining goods) = v2({g2, 93, 94,97}) = 10 + &£ + €%, and hence,

NW(X') &5 &6 f s
oo - At s e 0 T <t g

LeMMA 27. If X} N VAL3 = {g5, g7}, then NW(X) < NW(X).

Proor. This proof follows the proof of Lemma 26 closely. We have v3(X;) = v3(X; N VAL3) = 10 + &*. Lemma 25

implies that X7 contains g3 and X| contains gs. We now distinguish two cases depending on whether or not {g1, g4} € X.

¢ {91,94} C X;: Then, a; strongly envies az as v1(X]) < vi(remaining goods) = v1({g2,g6}) = 10 + 569 <
10+ 66 = v1({g1,93}) < v1(X} \ ga).

e {91,94} € XJ. Then, v2(X;) < v2({91,92.93}) = 10 +¢& — €% + % (not giving the less valuable g4 and giving
everything else that remains). Also, v1(X7) < v1({91, 92,94, g6}) = 10 + 263 + 11¢°. Thus,

01(X7) . 263 + 9¢° 02(X3) e —¢b d u3(X3) et
= , =1- , an =1+,
01(X1) 10 + 265 02(X2) 10+ ¢ v3(X3) 10
and hence, NW(X’) < NW(X). O

LeMMA 28. If X} N VAL3 = {ge, g7}, then NW(X) < NW(X).
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Proor. We have v3 (Xg) =03 (Xé N VAL3) = 10 + 2¢*. By Lemma 25, one of g3 and g5 will be allocated to each of az
and a;. We argue that g € X{.If g1 ¢ X], then
01(X7) < max(v1(g3),v1(g5)) +01({g2,94})
=(10-&) +3+28°

<10 +3¢°

=01(gs)
=01(X3 \ 97),
and hence, a; strongly envies as.

Therefore g1 € X]. But we still have v1(X]) < max(v1(g3),v1(g5)) + v1({g1,92.g4}) = (10 - )+ (263 +8¢°) =
10 + €3 + 8°. However, since g; € X/, we have that v, (X3) < max(v2(g3),v2(gs)) +v2({g2,94}) = 10+ 2¢2. Thus,

01(X7) e +68° 02(X3) £ — 262 03(X3) 2¢*
=1+ s <l1-——an =1+ —,
v1(X1) 10 + 265 v2(X2) 10+¢ v3(X3) 10
and hence, NW(X’) < NW(X). O

LemMa 29. IfX; N VAL3 = {gs} and g3 € X3, then NW(X") < NW(X).

Proor. We have v3 (Xé) =u3 (Xé N VAL3) = 10. Since g3 and g5 are allocated to a; and ay, respectively, and g3 € X},

we have g5 € X] by Lemma 25. We now distinguish two cases depending, on whether or not g; € X;.

® g1 € X;: Then, X; cannot contain any other goods than g; and g3, else a; will strongly envy az: v1(X7) <
01 (remaining goods) < v1({g2,94,95.97}) = 10 — &3 + 36> < 10 + 66> = v1({g1,93}). Therefore v; (X3 =
02({g1,93}) = 10 + & — £ + £5. Also, note that v (X)) < v1({92, 94,95, 97}) = 10 - £3 4+ 3¢5, In that case, the
valuations of both a; and a; decrease, and that of a3 does not increase. Thus, NW(X’) < NW(X).

¢ g1 ¢ X;: Then, X] cannot contain both of g4 and g7, else a; will strongly envy az: 01 (X]) < v1(remaining goods) =
01({91.92.95}) = 10 — & +82° < 10 = v1({g3.94}) = v1(X} \ g7). Therefore, v2(X}) < max(vz(gs),02(g7)) +
vz (remaining goods) < max(vz(ga),v2(97))+v2({g2, g3}) = 10+£—-2¢*+¢% and 01 (X]) < v1({91, 92, 94,95, 97}) =
10 + 9¢°. Thus,

U1 (X{) 76 02 (Xé) 262 — 8 U3 (Xé)
=1+ , <1- , an =1
v1(X1) 10 + 2¢° 02(X2) 10+¢ v3(X3)
and hence, NW(X’) < NW(X). O

Lemma 30. IfX; N VAL3 = {gs} and g3 ¢ X;, then NW(X’) < NW(X).

ProoF. We have v3(X;) = v3(Xj N VAL3) = 10. Since g3 ¢ X;, we have g5 € X; and g3 € X] by Lemma 25. We now
distinguish two cases depending on whether or not g7 € X,
® g7 € X;: Then, X; cannot contain any other goods than g5 and g7, else a3 will strongly envy az: v3(X3) = 10 <
10 + £* = v3({gs,g7}). Therefore, vy (X3) = 02({g5.97}) = 10+ ¢ - % and vy (X]) < v1(remaining goods) =
01({g1,92. 93, ga}) = 10 + €3 + 8¢°. Thus,
01(X)) £ +66° 02(X3) £ u3(X3)
=1+ , <1- , an =
01(X1) 10 + 265 v2(X2) 10+¢ v3(X3)
and hence, NW(X’) < NW(X).
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1353 e g7 ¢ XZ': Then, XZ’ cannot contain both of g1 and g4 else a; will strongly envy ay: vq (X{) < vy (remaining goods) =

1354 01({g2,93.g7}) = 10—3 436> < 10-3+66> = v1({g1,95}) = 01 (X3 \ g4). Now we consider two cases depending

I:Z on whether or not g; € Xj.

1357 — g1 € XJ: Then, X; cannot have g4. Thus, v2(X;) < 02(g1) + v2(remaining goods) = v2(g1) +v2({g2,g5}) =
1358 10 +¢ = v2(X2). Note that X] cannot have all of the remaining goods g2, g3, g4, g7, else az will strongly envy
:jzz a1:09(X;) <10+ < 10+£+° = (10— 2 +£5) +(26%) + (e — %) = 02({93.94.97}) = v2({92. 93.94. 97} \ g2)-
61 Therefore, X] is a strict subset of {g2,93, g4, g7}, and it should contain g7 (as we are in the case where
1362 neither X7 nor X; can have g7). Since a;’s valuation for g is strictly less than his valuation for any of g, g3,
1363 and g4, we have that v; (Xl’) < v1({g2, 93, 94}) = v1(X1). Since we are in the case where v (XZ’) < v2(X2)
Z:: and v3(X}) = v3(X3), we have NW(X’) < NW(X).

1366 - g1 & XJ: Then, v2(X}) < vz(remaining goods) = v2({g2, 94, g5}) = 10+2¢? and 01(X{) < v1({91,92.93.94.97}) =
1367 10 + &3 + 9¢°. Thus,

1368 01 (Xl’) 34765 vy (Xé) £ — 262 U3 (X?:)
1369 =1+ > sl=———— an — V- 5L
o 01(X1) 10 + 2¢° v2(X2) 10+¢ 03(X3)
1871 and hence, NW(X’) < NW(X). O
1372
1373 Lemmas 29 and 30 immediately imply the following:
1374
1575 Lemma 31. IfX} N VALs = {ge}, then NW(X) < NW(X).
1376
1377 We are now ready to show the proof of Theorem 24.
1378
1379 ProoF. (of Theorem 24) Lemma 25 implies that a3 gets exactly one good from {gs, g¢}. Thus, X; N VAL3 # 0, and
1380 {gs, g6} € X3 N VAL3. So X; N VAL3 € {{g5},{9s}, {9597}, {96, 97} }. However, Lemmas 26, 27, 28, and 31 imply that
Y1 in all of these cases, NW(X’) < NW(X). O
1382
1383
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