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ABSTRACT
With the rapid development of quantum computers, researchers have shown quantum advantages in
physics-oriented problems. Quantum algorithms tackling computational biology problems are still lacking.
In this article, we demonstrate the quantum advantage in analyzing CITE-seq data. CITE-seq, a single-
cell technology, enables researchers to simultaneously measure expressions of RNA and surface protein
detected by antibody-derived tags (ADTs) in the same cells. CITE-seq data hold tremendous potential for
identifying ADTs associated with targeted genes and identifying cell types e!ectively. However, both tasks
are challenging since the best subset of ADTs needs to be identi"ed from enormous candidate subsets.
To surmount the challenge, we develop a quantum algorithm named bisection Grover’s search (BGS) for
the best subset selection of ADT markers in CITE-seq data. BGS takes advantage of quantum parallelism
by integrating binary search and Grover’s algorithm to enable fast computation. Theoretical results are
provided to show the privilege of BGS in the estimation error and computational complexity. The empirical
performance of the BGS algorithm is demonstrated on both the IBM quantum computer and simulator.
Supplementary materials for this article are available online, including a standardized description of the
materials available for reproducing the work.
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1. Introduction

Recent breakthroughs in quantum computers have shown quan-
tum advantage (aka quantum supremacy), that is, quantum
computers outperform the classical computers for solving spe-
ci!c problems (Shor 1999; Arute et al. 2019; Zhong et al. 2020;
Wu et al. 2021). More importantly, there are already general-
purpose programmable quantum computing devices available
to the public, for example, IBM Quantum Experience, Microso"
Quantum, and Amazon Braket. Such quantum devices are com-
monly known as noisy intermediate-scale quantum (NISQ)
devices (Preskill 2018). It is reported that NISQ with a thousand
qubits has been released (Castelvecchi 2023). Despite the success
of quantum computers, the investigated problems are highly
physics-oriented and may not necessarily appeal to researchers
in other !elds, for example, statistics and data science (Wang
2022). The key challenge in leveraging quantum advantages
in these !elds is identifying practical applications where the
integration of statistical analysis and quantum computing can
e#ectively overcome computational bottlenecks.

In this article, we develop a highly versatile quantum algo-
rithm named Bisection Grover’s search (BGS) for best model
selection, which exhibits excellent performance and computa-
tional e$ciency in its applications, speci!cally in the analysis
of CITE-seq data. BGS takes advantage of quantum parallelism
by integrating binary search and Grover’s algorithm to enable
fast computation. We show that the proposed BGS is consistent
as long as su$cient quantum bits are available. We also show
that the BGS algorithm is nearly quadratic speed-up of classical
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algorithms in terms of time complexity. In addition, we provide
the code that implements the proposed algorithm in the IBM
quantum computer and the IBM quantum simulator with prac-
tical guidance.

Brief context and background. The advantages of quantum
computing rely on the fact that quantum bits carry more infor-
mation than classical bits. Di#erent from classical computers
built on classical bits having a state of either 0 or 1, quantum
computers operate on quantum processing units, quantum bits
(or qubits), which can be in a state 0, 1, or both simultane-
ously due to the superposition property (Nielsen and Chuang
2010). The p qubits create 2p di#erent states for the system
that are superposed on each other. The superposition enables
researchers to perform computations using all of those 2p states
simultaneously, which is also called quantum parallelism. Quan-
tum parallelism circumvents the time/space tradeo# of classical
parallel computing through its ability to hold exponentially
many units of information in a linear amount of physical space.
In addition, a quantum computer has some logic gates, which
a classical computer does not have, enabling faster computation
than a classical computer (Nielsen and Chuang 2010).

Despite the impressive achievements made possible by quan-
tum computers, quantum algorithms for solving statistical or
data science problems are still lacking. This de!ciency primar-
ily stems from the fact that many classical optimal algorithms
are the culmination of intellectual e#orts by generations of
scientists. Developing a quantum algorithm that outperforms
the classical optimal algorithms is intellectually challenging. In
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particular, there are signi!cant technical obstacles in developing
such quantum algorithms. First, even though quantum com-
puting enjoys quantum parallelism, accessing the result is not
straightforward. Taking measurements of a quantum system
induces a superposition of quantum states collapsing into one
state in a certain probability and permanently changing the
state of the system. Second, many quantum algorithms o"en
depend on an oracle function to recognize if an outcome is a
solution or not. For example, Grover’s algorithm requires an
oracle function that can recognize solutions. However, such an
oracle function is usually not available in many statistics or data
science problems. Third, extensive e#orts have been devoted on
analyzing the algorithmic aspect of quantum algorithms. In spite
of these impressive algorithmic results, the theoretical analysis
that addresses statistical aspects of quantum algorithms is still
lacking. Without theoretical statistics insight, researchers may
not e#ectively develop new quantum algorithms to tackle data
science problems in a principal statistics framework.

To overcome these obstacles, we develop a BGS algorithm
for the analysis of CITE-seq data. CITE-seq (Cellular Indexing
of Transcriptomes and Epitopes by sequencing) is an inno-
vative technology for studying single-cell biology (Stoeckius
et al. 2017). Di#erent from single-cell RNA-seq measuring RNA
expression alone, CITE-seq enables researchers to simultane-
ously measure RNA and surface protein expression in the same
cells. In particular, in CITE-seq, surface proteins detected by
antibody-derived tags (ADTs) are transcriptomically pro!led
alongside RNA transcripts using single-cell RNA-seq. By using
CITE-seq data of cells, we can study the following two biological
problems: (a) identifying ADTs associated with the targeted
genes and (b) designing panels of markers for cell type iden-
ti!cations. Successfully tackling these two problems hinges on
the e#ective selection of the best subset of ADTs. The best
ADT subset selection problem is generically hard with classical
computing since it is computationally demanding and time-
consuming due to the need to evaluate an extensive number of
candidate subsets. Even for 30 ADTs, that is, p = 30, we have
more than one billion candidate subsets, which poses signi!cant
challenges for classical algorithms to select the best subset.

Identi!cation of ADTs associated with marker genes of interest.
Despite the fact that RNAs and proteins are produced from
the same genes, they provide some complementary information
on cell states due to post-transcriptional and post-translational
gene regulation. Since the CITE-seq data is o"en of high dimen-
sion and contains lots of redundant information across di#erent
RNAs and ADTs, selecting a parsimonious set of RNAs and
ADTs is crucial to leverage the information of the CITE-seq
data. We aim to develop a method to identify a set of ADTs that
best explains the variations of the expressions of an RNA in a
regression model.

Panel design for cell type identi!cation. E$ciently identifying
immune cell types is a key objective in immunological research
and clinical diagnostics. A recent study !nds that CITE-seq can
e#ectively identify compact sets of immunophenotypic markers
(ADTs) for characterizing di#erent cell types (Hao et al. 2021).
Such a set of markers is referred to as a panel. Including too many
markers in a panel can result in a decreased signal-to-noise ratio
and increased background noise in downstream experimental
validation, for example, the spillover-spreading error inherent

to the %uorescence in %ow cytometry (Ferrer-Font et al. 2021).
Here, we identify the best subset of ADTs for each cell type using
logistic regressions by setting the cell type of interest as one
and other cell types as zero. The resulting panel of ADTs can
improve accuracy in identifying immune cell populations while
optimizing resource allocation.

Statistically, our problem can be described as follows: CITE-
seq yields a sample with RNA expressions and p ADT expres-
sions xi,1, xi,2, . . . , xi,p in the ith cell, where i = 1, . . . , n and n
is the number of cells. In the problem of identifying the ADTs
associated with the targeted gene, we model the expressions of
RNA and ADTs through the linear regression model. Given a
speci!c gene of interest, we represent its expression as yi in
the ith cell, serving as the response variable in the regression
model. We assume that only a subset, denoted by A, of ADTs
co-express with the gene of interest and are used as the predictor
variables. In the panel design for the cell identi!cation problem,
we consider the logistic regression model. The cell type of the
ith cell is denoted by zi, which is either one if it is a cell of
interest, or zero otherwise. Once again, we assume that only
a subset, denoted by A, of ADTs is the marker for the cell
type of interest. The primary research interest is identifying the
subset A ⊆ {1, . . . , p} e#ectively and e$ciently. Here, we choose
the subset A using the Bayesian information criterion (BIC)
(Schwarz 1978), which is given by

BIC(A) = |A| log n − 2 log L(A), (1)

where |A| is the subset size, n is the number of cells in the
training dataset, L(A) is the maximized value of the likelihood
function of the !tted model for the corresponding subset.

In the literature, many quantum-based feature and model
selection methods have been explored. He et al. (2018) lever-
ages the searching abilities of Grover’s algorithm and proposes
the quantum versions of the forward selection and backward
elimination algorithm, achieving quadratic speedup for each
step of addition or deletion. Chakraborty et al. (2020) and Li
et al. (2022) explore the quantum bene!ts of graph theory to
solve the graph-theoretic feature selection problems. Recently,
the promise of high e$ciency for solving the quadratic uncon-
strained binary optimization (QUBO) with quantum optimizers
has sparked widespread interest in its study, leading to a surge in
research investigating quantum-based feature selection within
the QUBO model (Von Dollen et al. 2021; Turati, Dacrema, and
Cremonesi 2022; Mücke et al. 2023). Nonetheless, the quantum
algorithm speci!cally designed for the aforementioned global
optimization searching problems is still lacking. Furthermore,
most existing researches focus on conceptual and theoretical
exploration. The practical implications of leveraging quantum
computing to enhance our understanding of single-cell multi-
omics studies remain largely unexplored.

To overcome the aforementioned limitations, we propose
BGS to select the best subset. In this method, we randomly
choose a subset as our benchmark subset. This benchmark sub-
set bisects all subsets into two partitions, an oracle set consisting
of subsets having smaller BICs than that of the benchmark
subset, and a non-oracle set consisting of rest subsets. BGS starts
with an initial superposition where all candidate subsets are
encoded with equal weights. BGS then iteratively updates the
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superposition toward the oracle set and yields a new superpo-
sition. The new superposition is then measured and collapses
to a new subset. The BIC of the new subset is compared with
that of the benchmark set. If the new subset is better than the
benchmark set, the new one replaces the benchmark one. We
then repeat the above procedures until no more replacements
can be made. Di#erent from Grover’s algorithm, our BGS algo-
rithm does not require any oracle function to recognize the best
subset.

Our methodological contributions are as follows. First, we
take advantage of quantum parallelism by integrating binary
search and Grover’s algorithm to design a new iteration algo-
rithm and only access the outcome at the end of each iteration.
In this way, we can greatly harness the power of quantum
computing. Second, our proposed algorithm does not require
an oracle function to recognize the best subset. This relaxation
expands the scope of applications and overcomes the obstacle
of the impractical assumption that the best subset needs to
be known a priori in Grover’s algorithm. Third, we integrate
Grover’s algorithm with the quantum counting algorithm to get
a high probability of identifying the best subset.

Our theoretical contribution is that we derive the error bound
for the proposed BGS algorithm and show that the error can be
controlled to be arbitrarily small as long as we have a su$cient
number of qubits. It is the consequence of powerful quan-
tum parallelism and accurate quantum counting. Moreover, we
derive the time and space complexity of the proposed algorithm.

Our empirical contribution is that we conduct the empiri-
cal analysis in an IBM quantum computer and IBM quantum
simulator. Our empirical results are consistent with our theo-
retical analysis and demonstrate the quantum advantage of the
proposed algorithm over classical algorithms. Our exploration
facilitates future quantum algorithm developments targeting
other biological problems.

2. Methods

2.1. Overview

To select the best subset A that minimizes (1), one possible
quantum computing method we could use is Grover’s algo-
rithm (Grover 1996). Grover’s algorithm is a quantum search
algorithm. The intuition behind Grover’s algorithm lies in its
ability to leverage quantum superposition to enhance the search
process. Grover’s algorithm initializes the qubits in a superpo-
sition of all possible states, e#ectively exploring multiple search
paths simultaneously. Grover’s algorithm then employs a tech-
nique known as amplitude ampli!cation (Brassard et al. 2002)
to enhance the probability of !nding the desired solution. This
technique involves iteratively applying a sequence of quantum
operations to amplify the amplitude of the target state while
suppressing the amplitudes of other states. This approach leads
to a quadratic speedup compared to classical search algorithms,
making it highly e$cient for large-scale search problems. How-
ever, there are three key di$culties in applying Grover’s algo-
rithm to our problem. First, in our problem, we do not know the
oracle state priori. Consequently, it is not clear how to design
Grover’s operation. Second, even if we know the oracle state in
Grover’s algorithm, the number of Grover’s rotations needs to

be determined accurately. Otherwise, Grover’s algorithm may
not be as e#ective as what algorithmic analysis prescribes. Third,
theoretical analysis, including error quanti!cation and algorith-
mic complexity, for taking into account the above two di$culties
and uncertainties is still lacking. The details of Grover’s algo-
rithm are relegated to Section A.2 in the supplementary material.

We shall now develop a novel quantum search algorithm
named bisection Grover’s search (BGS) to address these di$cul-
ties. Recall that all subsets of {1, . . . , p} naturally correspond
to a state in the orthonormal basis B = {|b0〉 , . . . , |bD−1〉}
of a Hilbert space H. Notice that only p qubits are su$cient to
represent these states. We de!ne a state loss function g(·) : H →
R,

g
(
|bj〉

)
≡ BIC(Aj), (2)

where state |bj〉 ∈ B is a vector in H that corresponds to the
subset Aj. Hence, the best model corresponds to the state that
minimizes the state loss function. We assume there exists a sole
oracle state in B that minimizes g(·). Suppose the oracle state
denoted by |b!〉 is unique and satis!es

g(|b!〉) < g(|bj〉) for |bj〉 ∈ B and |bj〉 (= |b!〉 . (3)

The idea of the proposed BGS algorithm can be sketched as
follows. Since the oracle state is unknown, the BGS algorithm
randomly selects a state and regards all the states with smaller
BICs than that of the selected state as oracle states. In partic-
ular, BGS randomly selects a state in B and calculates its BIC.
We name this state the benchmark state. This benchmark state
bisects the set of all states into two subsets: a subset of oracle
states and a subset of non-oracle states. Oracle states are those
states having smaller BICs than the benchmark state, and non-
oracle states are all other states. BGS then rotates the uniform
superposition of all states via Grover’s operations toward the
superposition of the oracle states. Once taking the measurement,
the rotated superposition collapses to one of the oracle states. If
the collapsed state’s BIC is smaller than that of the benchmark
state, the benchmark state is replaced by it. BGS then iterates the
above steps. Otherwise, we output this collapsed state.

The quantum circuits for evaluation of the state loss function
g(·) in all D states are illustrated in Figure 1(a) and (b). The
operation SX encodes the ADTs Aj when the input state is
|bj〉. The operation Sy encodes the response y. The state |XAj〉
encodes the matrix XAj as suggested by Schuld, Sinayskiy, and
Petruccione (2016). The operation Ug computes the BIC value
g(|bj〉) with the input XAj and the encoding of the response |y〉.
The detailed description of these quantum circuits is relegated
to Section B in supplementary material.

Remark. Ug can be implemented with quantum speedup. Notice
that quantum computing methods for regression and classi!-
cation o#er exponential or polynomial speed-up compared to
their classical counterparts (Biamonte et al. 2017), for exam-
ple, O(log(n)) complexity for !tting linear regression models
compared to O(n) complexity in classical computing methods
(Schuld, Sinayskiy, and Petruccione 2016) for linear regression.

Remark. The inherent advantages of quantum parallelism
enable the e$cient evaluation of the state loss function g(·) in
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Figure 1. The quantum circuits for illustration. (a) The circuit encodes the ADT subset. (b) The circuit to calculate the state loss function g(·). (c) The circuit to !ip the sign
of oracle states. (d) The assembled circuit for the operation Fg

w . (e) The circuit for the operation Gw in the BGS algorithm.

all D states. That is, all D values can be computed simultane-
ously in a single operation by leveraging the power of quantum
computing.

We shall now present the proposed method in detail.

2.2. Bisection and Grover’s Operations

BGS randomly chooses an initial benchmark state |bw〉 from the
set B. Let us de!ne a local evaluation function Sg

w(|bj〉) as

Sg
w(|bj〉) =

{
1, if g(|bj〉) < g(|bw〉),
0, otherwise. (4)

Using this local evaluation function, |bw〉 bisects basis set
B into two subsets: the subset of oracle states: Bw = {|bj〉 :
Sg

w(|bj〉) = 1} and the subset of non-oracle states: Bc
w = {|bj〉 :

Sg
w(|bj〉) = 0}. If Bw is a null set, that is, |bw〉 happens to be

the unique oracle state |b!〉, BGS can output |bw〉 as the !nal
result. If Bw is not empty, BGS proceeds as follows. Let Dw be
the cardinality of Bw, that is, the number of states in Bw. BGS
initializes a uniform superposition as

|ψ0〉 = 1√
D

D−1∑

j=0
|bj〉 ≡

√
Dw
D |φw〉 +

√
D − Dw

D |ζw〉 , (5)

where |φw〉 = 1√
Dw

∑
j∈Bw

|bj〉 and |ζw〉 = 1√
D−Dw

∑

j∈Bcw

|bj〉.

Notice that |φw〉 is the linear combination of the oracle states,
whereas |ζw〉 is the linear combination of the non-oracle states.
De!ne as θw the angle between |ψ0〉 and |ζw〉. By the de!nition,
we have

sin (θw) =
√

Dw/D. (6)

Since |φw〉 and |ζw〉 are orthonormal, these two super-
positions form a two-dimensional Hilbert space. This two-
dimensional Hilbert space can be represented as the column
space of a 2p × 2 matrix !w, where the two columns are the
corresponding vector representations of |φw〉 and |ζw〉. The
initial state vector then can be written as |ψ0〉 = sin θw |φw〉 +
cos θw |ζw〉. We now rotate this state vector toward |φw〉. Analo-
gous to Grover’s algorithm, we de!ne a %ip operation Fg

w, where

Figure 2. Geometrical illustration of the two operations in the "rst rotation step of
the BGS algorithm. After taking the di#usion operation UD and the !ip operation Fg

w ,
the initial state vector |ψ0〉 moves to |ψ1〉, which is closer to the oracle states |φw〉.

Fg
w |bj〉 =

(
1 − 2Sg

w(|bj〉)
)

|bj〉. The implementation details of
the %ip operation are illustrated in Figure 1(c) and (d). The
operation |U|bw〉〉 %ips the sign of the input state |bj〉 if g(|bj〉) <

g(|bw〉), that is, Sg
w(|bj〉) = 1. Consequently, the %ip operation

can be constructed by assembling the operations for evaluation
of the state loss function g(·) and |U|bw〉〉. Notice that to avoid the
unnecessary entanglement created by qubits encoding |XAj〉s
and |g(|bj〉)〉, we use a standard approach by uncomputing the
evaluation of the state loss function with the conjugate transpose
of the operations SX and Ug , that is, S†

X and U†
g , respectively.

The di#usion operation UD remains the same as the one
de!ned in (A.8). We thus have Grover’s operation (with respect
to |φw〉) Gw = UDFg

w. Figure 2 provides a visualization of the
two operations in the !rst rotation of BGS. It is easy to derive
that Gw can be decomposed as follows,

Gw = !w

(
cos 2θw sin 2θw

− sin 2θw cos 2θw

)
!+

w + !̃w!̃
+
w , (7)

where !̃w is a 2p × (2p − 2) matrix of which columns are
orthonormal and orthogonal with !. The detailed derivation can
be found in sec. 6 of Nielsen and Chuang (2010).

A"er we apply Grover’s operation τw times to it, |ψ0〉 becomes

|ψτw〉 = sin
(
(2τw + 1)θw

)
|φw〉 + cos

(
(2τw + 1)θw

)
|ζw〉 . (8)

As long as (2τw + 1)θw ≤ π/2, BGS gradually ampli!es the
amplitudes of the oracle states and suppresses the amplitudes
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of non-oracle states. Notice that all the states’ amplitudes are
updated simultaneously in this procedure, resulting in highly
e$cient searching.

Once a measurement is taken, |ψτw〉 collapses to a state
|bwnew〉 ∈ Bw. The probability that |bwnew〉 = |bj〉 is

P(|bwnew〉 = |bj〉) =
{ sin2((2τw+1)θw)

Dw
, if Sg

w(|bj〉) = 1,
cos2((2τw+1)θw)

D−Dw
, otherwise.

(9)

Now the output is |bwnew〉 = |bj〉. If Sg
w(|bj〉) = 0, BGS does

not update benchmark state |bw〉. Otherwise, that is, Sg
w(|bj〉) =

1, BGS replaces benchmark state |bw〉 by |bwnew〉, that is, updates
|bw〉 to an oracle state.

The quantum circuit for implementing Grover’s operation
Gw is visualized in Figure 1(e).

2.3. Estimating the Number of Grover’s Operations

BGS only updates the benchmark state if the superposition
collapses to an oracle state. By (9), the probability that the
superposition collapses to an oracle state is the highest if (2τw +
1)θw = π/2. Thus, the e$ciency of BGS highly depends on the
choice of τw, the number of Grover’s operations. Since θw is also
unknown, a proper choice of τw relies on an accurate estimate
of θw. Note that we cannot estimate θw from (6) since Bw is also
unknown.

We propose to estimate θw using the quantum counting algo-
rithm (Brassard, Høyer, and Tapp 1998). Since the presentation
of the quantum counting algorithm is lengthy, we relegate the
details to Section A.3 in supplementary material. The key idea
of the quantum counting algorithm is sketched as follows. Since
0 ≤ θw < π , the T-digit binary approximation of θw is θw/π ≈
0.e1e2 · · · eT = ∑T

k=1 ek2−k, where ek is either 0 or 1. The quan-
tum counting algorithm employs a divide-and-conquer strategy
by dividing the problem of estimating θw into T sub-problems
of estimating each digit ek separately for k = 1, . . ., T with T
additional (auxiliary) qubits. The estimates of ek for k = 1, . . ., T
are then summed together yielding the estimate of θw. We refer
to the T auxiliary qubits as the rotation register. Technically, the
information of θw is !rst passed on to each auxiliary qubit in the
rotation register. The amplitude of the uniform superposition in
each auxiliary qubit is then varied with respect to θw so that the
probability of measuring the corresponding ek is ampli!ed.

Passing the information of θw to an auxiliary qubit in the
rotation register can be achieved via the controlled Grover opera-
tion. The controlled Grover operation acts on the joint system
of one auxiliary qubit in the rotation register and the BGS
register that consists of the qubits for running BGS. In partic-
ular, the auxiliary qubit in the rotation register is initialized
at the uniform superposition, that is, 1√

2 (|0〉 + |1〉). Applying
the controlled Grover operation is equivalent to applying the
Grover operation to the BGS register only if the auxiliary qubit
in the rotation register is at the state |1〉. In this way, a single
controlled Grover operation rotates the auxiliary qubit by angle
2θw (see Section A.1 in supplementary material for the technical
details). Repeatedly applying di#erent numbers of the controlled
Grover operations is needed to solve di#erent sub-problems. For
example, applying 2k−1 controlled Grover operations is needed

to estimate ek. The inverse quantum Fourier transform (QFT) is
then applied to each auxiliary qubit, the measurement of which
is the solution of the corresponding sub-problem with a high
probability. Finally, the measurement of the joint system of the
rotation register and the BGS register is used to estimate θw.

Using the quantum counting algorithm, we get the estimate
of θw, denoted by θ̂w. By (6), we estimate the number of oracle
states via D̂w = [D sin2(θ̂w)], where [·] denotes rounding to the
nearest integer. Hence, the estimate of the number of iterations
is

τ̂w =




π

4 arcsin(

√
D̂w/D)

− 1
2



 . (10)

The estimation error of the quantum counting algorithm is
established in the following lemma. The proof of this lemma is
relegated in Section A.3 in supplementary material.

Lemma 2.1. Let θ̂w be the estimate of the θw using the quan-
tum counting algorithm with T qubits in the rotation register.
Assuming that θw ∈

(
0, π

4
)
. For any ( ∈

(
0, 1

4
)
, we have

P
( 1

π

∣∣∣θ̂w − θw
∣∣∣ > ( + 1

2T

)
<

1
2T+1(

. (11)

The computational complexity of this quantum counting algo-
rithm is O

(
p2T)

.

Remark. The condition of θw ∈
(
0, π

4
)

implies that there are
less than half of the states have smaller BICs than the benchmark
state. To satisfy this condition, we can take a simple approach to
choose the benchmark state. Instead of randomly selecting one
state as the benchmark state, we randomly select several states
and choose the one with the smallest BIC as the benchmark
state. For example, if m states are randomly selected, then the
condition is satis!ed with the probability 1 − 1

2m , which is close
to 1 for a moderate m.

Notice that the computational complexity of the quantum
counting algorithm is of linear order in p and exponential order
in T. Moreover, we will show that the computational cost of the
quantum counting algorithm is of the lower order compared to
the overall computational cost of the BGS algorithm.

2.4. BGS Algorithm

The details of BGS are summarized in Algorithm 1.
Note that at the beginning of each iteration, that is, (b1)

in Algorithm 1, the quantum state is always initialized at the
uniform superposition of all states speci!ed in (5). This is due
to the no-cloning theorem (Wootters and Zurek 1982), which
states the impossibility of creating an independent and identical
copy of an arbitrary unknown quantum state. This feature dis-
tinguishes the iterative algorithms in quantum computers from
those on classical computers.

Furthermore, iterations in the BGS algorithm are termi-
nated if sin(θ̂w) is less than an error tolerance ). By (6), the
value of sin(θw) dictates the number of oracle states Dw. If
sin(θw) = 0, there is no oracle state, that is, Dw = 0. Hence,
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Algorithm 1 Bisection Grover’s search
Input: An orthonormal basis set B of size D = 2p, a state loss function g(·) that maps a state in B de!ned in (2), initial benchmark
state |bw〉, and error tolerance ).
Initialization: De!ne a local evaluation function Sg

w(·) such that Sg
w(|bj〉) = 1 if g(|bj〉) < g(|bw〉) and Sg

w(|bj〉) = 0 if g(|bj〉) ≥
g(|bw〉).
(a). Use the quantum counting algorithm to get the initial estimates θ̂w and τ̂w.
repeat

repeat
(b1). Repeatedly apply Grover’s operations de!ned in (7) for τ̂w times.
(b2). Measure the quantum register and denote the measurement result by |bwnew〉.

until Sg
w(|bwnew〉) = 1.

(c). Set |bw〉 = |bwnew〉 and update Sg
w(·) accordingly.

(d). Use the quantum counting algorithm to get the updated estimates θ̂w and τ̂w.
until sin(θ̂w) ≤ ).
Output: The !nal benchmark state |bw〉.

the benchmark state |bw〉 must be the solution state |b!〉 in
the BGS algorithm. If sin(θw) = √

1/D, there is one oracle
state, that is, Dw = 1. In that case, the BGS algorithm may
yield a state with the second-best BIC value. The larger value of
sin(θw) is, the higher probability that the BGS algorithm yields
an inaccurate estimate. However, smaller sin(θw) implies more
iteration steps and longer computation time. Thus, one may set
appropriate error tolerance ) in the iteration stopping rule to
strike a balance between estimation accuracy and computational
cost.

3. Theoretical Analysis

In this section, we present the theoretical analysis for the pro-
posed BGS method. Theoretical results are established for esti-
mation error and computational cost. The theorems also provide
guidance for selecting the parameters, that is, error tolerance )

and the rotation register’s number of qubits T in Algorithm 1.
All proofs for this section are relegated to Section C in supple-
mentary material.

The following theorem is on the estimation error of BGS.

Theorem 3.1 (Estimation error of BGS). Assume all the con-
ditions in Lemma 2.1 are satis!ed. If the error tolerance ) <

1/
√

D, and the rotation register’s number of qubits T =
*

(
log log D

(1/
√

D−))

)
, the !nal output state |bw〉 has the following

error bound,

P
(
|bw〉 (= |b!〉

)
! log D

2T
(

1/
√

D − )
) . (12)

Remark. If the error tolerance violates ) ≥ 1/
√

D, (12) no
longer holds, and the error probability P (|bw〉 (= |b!〉) is lower
bounded by a constant close to 1

2 (see Proposition C.5 in supple-
mentary material).

Under a slightly stronger condition on ), we can establish a
more explicit relationship between the error bound and D as well
as T.

Corollary 3.2. Suppose all the conditions in Theorem 3.1 are
satis!ed. If we further require

√
D) to be upper bounded away

from 1, that is, ) ≤ (1−c)/
√

D for some positive constant c < 1,
we have

P
(
|bw〉 (= |b!〉

)
!

√
D log D
c2T . (13)

Remark. Since D = 2p, we can rewrite (13) as P (|bw〉 (= |b!〉) !
p2

p
2 −T/c.

Note that the conditions T = *
(

log log D
(1/

√
D−))

)
and ) "

(1 − c)/
√

D together imply that T = *
(

log
(√

D log D
))

.
Thus, (13) indicates that we can control the error probability
P (|bw〉 (= |b!〉) to be arbitrarily small with a proper T of the
order +

(
log

(√
D log D

))
.

According to Theorem 3.1 and Corollary 3.2, we provide
guidance for selecting the error tolerance ) and the number
of qubits T in the rotation register. Note that the estimation
error (13) diverges if T is too small, while the computation is
too expensive if T is too large. Thus, we suggest setting T =[

log(
√

D log D) + 5
]

in practice. As for ), intuitively, small )

needs more iterations for the algorithm to converge. Hence, we
set ) = 1

2
√

D , which is bounded away from 1√
D but not too close

to zero.
We further establish the following theorem regarding the

computational cost of BGS.

Theorem 3.3 (Time and space complexity). Under all the condi-
tions of Lemma 2.1, if T = +

(
log

(√
D log D

))
and ) = 1

2
√

D ,
we have (1) the expected time complexity of Algorithm 1 is
O

(√
D

(
log D

)3
)

; (2) the space complexity of Algorithm 1 is

O
(

log(
√

D log D)
)

.

Remark. Given the stochastic nature of quantum measurement
outcomes and the heuristic-based iterative approach of BGS,
the time complexity is random. Therefore, we are reporting
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Figure 3. (a) The computation time of the BGS algorithm for the experiments conducted in the quantum computing environment. The boxplots of the actual computation
time of the replicated experiments are plotted for varying D. The dashed black line denotes the order of the computation time of the exhaustive search O(D). The dashed
blue line represents the order of the theoretical computation time upper-bound O(

√
D(log D)3). (b) The results of the experiments conducted in a quantum simulator. The

boxplots of the log-transformed number of rotations of the replicated experiments are plotted for varying D. The dashed black line denotes the order O(D). The dashed
blue line represents the order of the theoretical upper bound of the number of rotations O(

√
D(log D)2).

the upper bound of the expected time complexity. On a quan-
tum computer, the time complexity of one rotation operation
is O

(
log D

)
(Koike and Okudaira 2009). Our proposed BGS

algorithm needs O
(√

D(log D)2
)

rotations in expectation.

Note that search algorithms in classical computers usually
have a time complexity of O(D). Thus, our BGS method provides
a nearly quadratic speed-up. When D is large, this improvement
over classical algorithms is very signi!cant. Moreover, Grover’s
algorithm has a time complexity of O

(√
D log D

)
. The time

complexity of the BGS has a moderate increase over that of
Grover’s algorithm while without requiring the oracle state as
input.

4. Empirical Performance

We assess the empirical performance of the BGS algorithm
through simulation studies using IBM Quantum Experience.
Since IBM Quantum Experience only o#ers seven qubits for
public access, we evaluate the performance of BGS for vary-
ing the number of predictors up to the maximum in the real
quantum computing environment. In addition, IBM provides
a quantum simulator to mimic the real quantum computing
environment. We thus evaluate the performance of BGS for a
relatively large number of predictors using the simulator. We
implemented the proposed BGS algorithm using a Qiskit Python
development kit1 provided by IBM Quantum Experience. The
performance of the BGS algorithm is assessed in both linear
regression models and weighted logistic regression models. We
present the results of linear regression models here. The results
of weighted logistic regression models are relegated to Section D
in supplementary material.

For the linear regression model, replicated samples are gen-
erated according to

yi = x+
i β + εi, i = 1, . . . , n, (14)

where yi ∈ R, xi ∈ Rp, β = (β1, . . . , βp)+ ∈ Rp, and εi ∈
R. We set n = 1000, {xi}n

i=1
iid∼ Np(0, #), the (i, j)th entry of

# equals 0.7|i−j|. The !rst 0p/21 entries in β are set to 1, while

1https://qiskit.org/

the remaining entries are set to 0. We set . 2 = 1
3β+#β , and

{εi}n
i=1

iid∼ N(0, . 2). We generate 10 replicated samples for each
p ∈ {3, 4, 5, 6, 7} for real quantum computing, and 100 replicated
samples for each p = {6, 7, . . . , 15} for quantum simulating .

We apply our BGS algorithm to these samples and compared
its performance with the best subset selection (BSS) via an
exhaustive search.

4.1. Computational Complexity

Recall that Theorem 3.3 states the time complexity of our pro-
posed BGS algorithm is O(

√
D(log D)3). In particular, the time

complexity of Grover’s rotation is O(log D), and BGS needs
O(

√
D(log D)2) times of rotations.

In Figure 3(a), we plot the actual computation time of the
BGS algorithm for a limited range of D conducted in the quan-
tum computer. Next, we examine the empirical computational
complexity of the proposed BGS for a larger range of D in the
quantum simulator. Due to the fact that the quantum simu-
lator is realized by a classical computer, some quantum steps
are implemented through classical computational methods. For
example, Grover’s rotation is implemented via multiplying a
D × D rotation matrix with a D-dimensional vector, which
gives rise to the fact that the actual computational complexity
of one Grover’s rotation in the simulator is O(D2). Therefore,
the real computation time of the BGS algorithm in a simulator
does not faithfully represent its computation time in a quantum
computer. For a fair comparison, we plot the number of rotations
of the BGS algorithm as a surrogate of its computation time in
Figure 3(b).

Both the results in Figure 3(a) and (b) show that the com-
putational cost of our proposed BGS gradually increases as
D gets larger. However, we note that both the growth rate of
the computation time and the growth rate of the numbers of
rotations are indeed upper bounded as shown in our theoretical
analysis. In Figure 3(a), we notice that the computation time of
running BGS is large even when the number of predictor sets
D is small. This computational cost is primarily spent on the
quantum machine warm-up.

We also notice that the computational cost has a large vari-
ability, which is attributed to the fact that BGS is a stochastic

https://qiskit.org/
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Table 1. The percentage of the true subset being selected among 100 replicates by BSS and proposed BGS.

Method p = 6 p = 7 p = 8 p = 9 p = 10 p = 11 p = 12 p = 13 p = 14 p = 15

BSS 96% 100% 99% 98% 99% 99% 99% 99% 98% 99%
BGS 98% 99% 98% 98% 98% 98% 97% 99% 97% 98%

algorithm. Nevertheless, the advantage of the proposed BGS
over the classical algorithm becomes more signi!cant as D gets
larger.

4.2. Performance of Selection

To evaluate the subset selection accuracy of the BGS algorithm,
we compare it with the best subset selection (BSS) via emulation
in a classical computer. For the BSS, the subset with the smallest
BIC is selected. One hundred replicated samples of size 1000 are
generated according to model (14) for each p = {6, 7, . . . , 15}.
We report the frequency of the true subset being selected among
100 replicates in Table 1.

We observe that the frequencies in Table 1 are close or equal
to 100% for both BGS and BSS under all settings. The frequen-
cies of the true subset being selected by the BGS are almost as
good as those by the BSS.

5. Application

We evaluate the performance of the BGS algorithm in two CITE-
seq studies.

In each study, we randomly divide the whole dataset into
a training dataset, consisting of CITE-seq expressions of 75%
of the cells, and a testing dataset consisting of expressions of
25% of the cells. We apply BGS to the training dataset to !t
models and select the best subsets, and then conduct predictions
in the testing dataset. We repeat this experiment 100 times.
In each experiment, we also apply the di#erential expression
methods in the Seurat package V5 (Hao et al. 2023) with six
options: Wilcoxon Rank Sum test (Seurat-wilcox), Student’s t-
test (Seurat-t), likelihood-ratio test, (Seurat-bimod), ROC anal-
ysis (Seurat-roc), a logistic regression-based method (Seurat-
LR) and a hurdle model-based method (Seurat-MAST), and the
di#erential expression methods in the SCANPY package V1.9.2
(Wolf, Angerer, and Theis 2018) with three options: Wilcoxon
Rank Sum test (SCANPY-wilcox), Student’s t-test (SCANPY-t),
and a logistic regression-based method (SCANPY-LR). Further
details can be found in Sections E and F in supplementary
material.

5.1. Identi!cation of ADTs Associated with the Marker
Gene of Interest

In a study of the human cord blood mononuclear cells (CBMC),
Stoeckius et al. (2017) pro!led a total of 8617 cells, including
1727 CD14+ Monocytes cells, using CITE-seq. For each cell, 13
cell-surface protein markers are quanti!ed via sequencing their
corresponding antibody-derived tags (ADTs), and RNA expres-
sion levels are measured. Among the sequenced RNA, CD14
RNA is an important immune response gene and has a high
expression level in some monocytes (Rawat et al. 2021). We are

interested in the association between the expression level of the
CD14 RNA and these 13 ADTs in the CD14+ Monocytes cells.
We preprocess the expression data using the Seurat package V5
(details are provided in Section E in supplementary material).

We identify the ADTs associated with CD14 RNA through
a regression approach (Zhong et al. 2005; Zamdborg and Ma
2009; Liu et al. 2024). In particular, we regress the expression
level of CD14 RNA on the expression levels of 13 ADTs. We aim
to identify the best subset of ADTs for explaining the variation of
CD14 RNA. For each candidate subset of the 13 ADTs, we !t the
corresponding linear regression model to the training dataset
and calculate the BIC. We then apply the BGS algorithm to select
the best subsets.

We also select the subset of ADTs using the di#erential
expression methods of the Seurat and SCANPY packages. Using
the subset of ADTs, we !t a linear regression for CD14 RNA on
the training set, and we evaluate the methods by the mean square
error between the predicted and observed values of CD14 RNA
expression level on the testing dataset. For a fair comparison,
we ensure that all methods have the same number of selected
ADTs, ranging from 1 to 12. The natural logarithms of the
ratios of the mean squared errors (MSEs) and BIC of Seurat
and SCANPY relative to BGS are computed. The resulting log
MSE ratios and BIC ratios are presented in Figure 4(a) and (b)
through boxplots. Notably, for all numbers of selected ADTs,
most boxplots are situated above zero. This observation indicates
that BGS consistently outperforms the other two methods across
various scenarios.

We now examine the identi!ed ADTs associated with CD14
RNA by the BGS algorithm. The best subset of ADTs is selected
among 213 possible candidate subsets. We identify the two most
signi!cant ADTs associated with CD14 RNA. By !tting the
linear regression model using CD4 and CD14 as the predictors
on all CD14+ Monocytes cells, the coe$cient of CD4 is −0.1388,
and the coe$cient of CD14 is 0.1333. Notice that CD14 ADT is
positively associated with CD14 RNA, which is consistent with
the fact that CD14 RNA is the coding gene for the CD14 protein.
Additionally, we observe negative relationships between CD4
and CD14 RNA. This outcome is consistent with the existing
literature. A study on the clinical outcomes of dedi#erentiated
liposarcoma patients (Schroeder et al. 2021) has shown a nega-
tive relationship between CD4 and CD14.

5.2. Panel Design for Immune Cell Type Identi!cation

In a CITE-seq experiment, Hao et al. (2021) reported the mea-
surement of expression levels for 228 ADTs and 33,538 RNAs
in 161,764 peripheral blood mononuclear cells (PBMCs). These
cells encompassed 57 distinct cell types, which were identi-
!ed and annotated based on di#erentially expressed RNAs.
Additionally, 10 ADT markers were identi!ed for each cell
type.
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Figure 4. Comparison of the performance of BGS, Seurat, and SCANPY on the CD14+ Monocytes cells from CBMC data. The evaluation is based on the mean squared error
(MSE) and BIC between the predicted and observed values of CD14 RNA expression level across 100 testing datasets. (a) The x-axis represents the number of selected ADTs,
while the y-axis represents the log ratio of the MSE for each method compared to the MSE of the proposed BGS algorithm. The red dashed line indicates a ratio of zero. (b)
The x-axis represents the number of selected ADTs, while the y-axis represents the log ratio of the BIC for each method compared to the BIC of the proposed BGS algorithm.

Figure 5. The prediction performance of the 41 cell types is compared for the Seurat and SCANPY methods with respect to the BGS algorithm. The panel size is shown
on the X-axis, while the Y-axis represents the log ratio of the evaluation metric of each method compared to that of the proposed BGS algorithm. The evaluation metrics
reported are AUC in (a), speci"city in (b), and sensitivity in (c). The red dashed line in each plot indicates a ratio of zero, serving as a reference point for comparison.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 61

Figure 6. The best four-marker panels selected by the BGS algorithm. (a) Dot plots of the best panels are presented. Each cell type is represented by a column, with the cell
type name displayed in the bottom margin. Within each column, four dots are positioned to represent the best four markers, and their corresponding names are indicated
in the left margin. The dots are color-coded as red or blue, representing the positive or negative coe$cients of the markers in the corresponding logistic regression model.
The size of each dot re!ects the strength of the corresponding marker, determined by the absolute value of the coe$cient. (b) The best four-marker panel for CD8 naive
cells (CD8, CD45RA, CD49d, CD244) is shown. The marginal distributions of these markers’ expressions are displayed on the top and right margins. Each dot represents a
cell, and the color of the dot indicates the cell type. The upper sub"gure illustrates the scatterplot of CD8 and CD45RA for all PBMC cells, while the lower sub"gure shows
the scatterplot of CD49d and CD244 speci"cally for the screened CD8+CD45RA+ cells.

Our study aims to evaluate the performance of our proposed
BGS algorithm in identifying panels of ADT markers for clas-
sifying various cell types. To ensure a fair comparison with the
results reported in Hao et al. (2021), we restrict the panel size to
be smaller than 10. We focus on classifying cells for the major
cell types, speci!cally those with more than 500 sequenced cells,
resulting in 41 cell types of interest. For each cell type of interest,
we assign that particular cell type a label of one, while labeling
all other cell types as zero. Consequently, we encounter highly
unbalanced cell samples, with signi!cantly fewer cells labeled
as one compared to those labeled as zero. To mitigate potential
biases arising from unbalanced samples, we employ weighted
logistic regression models (King and Zeng 2001) on the training
dataset for each candidate panel, accounting for the sample
weights. We calculate the BIC and employ our BGS algorithm
to identify the best panel with the optimal BIC. For each of
the 41 cell types, we also use the Seurat and SCANPY methods
to identify the di#erentially expressed ADTs speci!c to that
cell type, using the training dataset. These selected ADTs are
then used to !t weighted logistic regression models. Finally, we
assess the performance of the !tted models on the testing dataset
by calculating metrics such as the area under the ROC curve
(AUC), sensitivity, and speci!city.

For each of the 41 cell types, we calculate the log ratios of
the evaluation metrics for the Seurat and SCANPY methods
compared to those of the proposed BGS algorithm. A log ratio
less than zero indicates that BGS outperforms the corresponding
method. The results are visualized through boxplots in Fig-
ure 5(a)–(c), for AUC, sensitivity, and speci!city, respectively. To
maintain a reasonable scale of the !gure, the outliers below the
lower bound of the Y-axis are omitted. Across all three metrics
and considering the four di#erent panel sizes, the majority of the
boxplots are positioned below zero. This observation indicates

that BGS consistently outperforms the other methods across a
wide range of scenarios.

Figure 6 (a) showcases dot plots depicting the best four-
marker panels selected by the BGS algorithm for 30 di#erent
cell types, which can be categorized into four coarse cell types:
B cells, CD4 T cells, CD8 T cells, and NK cells. Upon exam-
ining the panels within each coarse cell type, we observe that
several best panels share common markers. For instance, in the
case of CD4 T cells, all best panels include CD4.1 as a marker
with a large strength. However, when comparing panels across
di#erent coarse cell types, we !nd that the best panels exhibit
distinct marker compositions. In addition, the panels identi!ed
by our BGS algorithm are consistent with the literature. For
instance, CD19+IgD− are well-known markers for B memory
cells; IgD+ is a marker for B naive cells (Kaminski et al. 2012);
CD4+CD25+CD127− are markers for Treg cells (Liu et al.
2006), and CD3−CD122+ are markers for NK cells (Farag and
Caligiuri 2006).

Moreover, we make an intriguing discovery regarding the
combined use of CD49d and CD244 as highly informative mark-
ers, in addition to the typical markers CD8+CD45RA+ (Nguyen
et al. 2016), for identifying CD8 naive T cells. This novel !nding
has not been previously reported. Although previous studies
consistently demonstrate that CD8 naive cells typically exhibit
low expression levels of both CD49d and CD244, which may
increase upon activation, the speci!c roles and implications
of CD49d and CD244 in immune responses have not been
actively studied until very recently (White, Cross, and Kedl 2017;
Berard and Tough 2002; Agresta, Hoebe, and Janssen 2018). The
up-regulation of CD49d facilitates e$cient access to in%amed
peripheral tissues and enhances responsiveness to in%ammatory
signals, while up-regulated CD244 signaling activates CD8 naive
T cells. However, using CD244 or CD49d alone may not be
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su$cient as informative markers, as illustrated by the marginal
distributions of CD49d and CD244 for the CD8+CD45RA+

cell population in Figure 6(b). In contrast, our selected panel
(CD8+CD45RA+CD244−CD49d−) demonstrates high accu-
racy in screening CD8 naive cells, as evidenced by an average
AUC of 0.998 in the test datasets across 100 replications. Some
additional results for this study are reported in Section H in
supplementary material.

Note that the design of the experimental setup is constrained
by the hardware currently available. Consequently, the experi-
ments are conducted on relatively low-dimensional problems.
Nonetheless, we expect that our algorithm will scale e#ectively
and yield more signi!cant insights as quantum computing tech-
nology advances.

6. Conclusion

Given that many statistical problems involve computationally
intensive tasks, statisticians are particularly intrigued by the
potential of quantum computers (Wang and Song 2020; Wang
and Liu 2022). Consequently, a natural question is whether these
computers will bene!t the statisticians in solving some statistics
or data science problems. If the answer is a$rmative, what
kind of statistics problems should statisticians resort to quantum
computers? Unfortunately, the general answer to this question
remains elusive.

In this article, we answer this question by showing the ben-
e!t of quantum computing in single-cell biology problems that
statisticians have been working on extensively (Agarwal, Wang,
and Zhang 2020). In particular, we developed the bisection
Grover’s search algorithm for selecting the best subset and
demonstrated its advantages in identifying the ADTs associated
with targeted genes and designing panels for cell type identi!ca-
tions. We established the theoretical properties of our proposed
algorithm. We also demonstrated the empirical performance of
the proposed algorithm in a NISQ device and a simulator.

It is worth noting that the BGS algorithm is highly versatile
and %exible. It has the potential to be seamlessly integrated into
other machine learning methods, such as deep neural networks,
which are known for their remarkable !tting or expressive power
and predictive capabilities (Beer et al. 2020; Abbas et al. 2021).
This integration enables researchers to harness the expressive
power o#ered by machine learning models while capitalizing on
the computational e$ciencies provided by quantum computing
to tackle more complex problems.

One key feature that distinguishes quantum algorithms from
classical algorithms is quantum parallelism, which enables us to
develop a unique approach to addressing multi-modal biologi-
cal problems. The potential application of quantum algorithms
in the realm of biological problems extends far beyond the
scope presented here. For instance, quantum algorithms hold
promise for more e#ectively analyzing spatial transcriptomics
data, unlocking new insights and capabilities in the !eld.

Supplementary Materials

The supplementary materials contain technical preliminaries and details,
additional simulation and experiment results, theoretical results and the
corresponding proofs.
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