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Abstract

We study the fundamental problem of fairly allocating a set of indivisible goods among n agents with
additive valuations using the desirable fairness notion of maximin share (MMS). MMS is the most popular
share-based notion, in which an agent finds an allocation fair to her if she receives goods worth at least her
MMS value. An allocation is called MMS if all agents receive at least their MMS value. However, since MMS
allocations need not exist when n > 2, a series of works showed the existence of approximate MMS allocations
with the current best factor of 3

4
+ O( 1

n
). The recent work [3] showed the limitations of existing approaches

and proved that they cannot improve this factor to 3/4+Ω(1). In this paper, we bypass these barriers to show
the existence of ( 3

4
+ 3

3836
)-MMS allocations by developing new reduction rules and analysis techniques.

1 Introduction

Fair allocation of resources (goods) is a fundamental problem in the intersection of computer science, economics,
and social choice theory. This age-old problem arises naturally in a wide range of real-life settings, which was
formally introduced in the seminal work of Steinhaus in the 1940s [44]. Depending on what properties the goods
have and what notion of fairness is considered, one can address a wide range of problems. Extensive work has
been done for the case of divisible goods, where goods can be fractionally allocated, e.g., [47, 30, 10, 11].

More recently, fair division of indivisible goods has received significant attention due to their applications
in various multi-agent settings. Formally, an instance of fair division of indivisible goods consists of a set
N = {1, 2, . . . , n} of agents, a set M of m indivisible goods, and valuation vector V = (v1, . . . , vn) where
vi : 2M → R≥0 is the valuation function of agent i. The goal is to find an allocation A = ⟨A1, A2, . . . , An⟩,
in which agent i gets Ai, and A satisfies some fairness criteria.

Two main categories of fairness are envy-based notions and share-based notions. Roughly speaking, in envy-
based notions, an agent finds an allocation fair by comparing her bundle with other agents’ bundles. Under
allocation A, if certain conditions are met for all agents (e.g., vi(Ai) ≥ vi(Aj) for all i, j ∈ N in the case of
envy-freeness), then A is fair. Popular examples of envy-based notions are envy-freeness (EF) and its relaxations
envy-freeness up to any good (EFX) [24], and envy-freeness up to one good (EF1) [42].

In share-based notions, an agent finds an allocation fair only through the value she obtains from her bundle
(irrespective of what others receive). For each agent i, if the value i receives is at least some threshold ti, then
the allocation is said to be fair. An example of a share-based notion is proportionality. An allocation A is
proportional if all agents receive their proportional share, i.e., vi(Ai) ≥ vi(M)/n for all agents i ∈ N . It is easy to
see that proportionality is too strong to be satisfied in the discrete setting. As a counter-example, consider two
agents and one good with a positive utility to both of the agents. Note that no matter how we allocate this good,
one agent receives 0 utility, which rules out the existence of proportional allocations and any approximation of
proportionality. This necessitates studying relaxed fairness notions when goods are indivisible.

In this paper, we consider a natural relaxation of proportionality called maximin share (MMS), introduced
by Budish [23]. It is also preferred by participating agents over other notions, as shown in real-life experiments
by [33]. Maximin share of an agent is the maximum value she can guarantee to obtain if she divides the goods
into n bundles (one for each agent) and receives a bundle with the minimum value. Basically, for an agent i,
assuming that all agents have i’s valuation function, the maximum value one can guarantee for all the agents is
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Existence Non-existence

n = 3 11/12 [28] > 39/40 [29]
n = 4 4/5 [34] > 1− 4−4 [29]

n > 4

2/3 [43, 8, 40, 31]
2/3(1 + 1/(3n− 1)) [19] > 1−O( 1

2n ) [43]
3/4 [34]
3/4 + 1/(12n) [32] > 1− 1

n4 [29]
3/4 + min(1/36, 3/(16n− 4)) [3]
3/4 + 3/3836 (Theorem 6.1)

Table 1: Summary of the approximate MMS results when agents have additive valuations

the i’s maximin share, denoted by MMSi. Formally, for a set S of goods and any positive integer d, let Πd(S)
denote the set of all partitions of S into d bundles. Then,

MMSdi (S) := max
P∈Πd(S)

d
min
j=1

vi(Pj).

For all agents i, MMSi = MMSni (M). An allocation is MMS if all agents value their bundles at least as much as
their MMS values. Formally, allocation A is MMS if vi(Ai) ≥ MMSi for all agents i ∈ N .

Since MMS allocations do not always exist when there are three or more agents with additive valuations
[43, 29], the focus shifted to study approximations of MMS. An allocation A is α-MMS if vi(Ai) ≥ α · MMSi
for all agents i ∈ N . We note that the MMS notion is closely related to the popular max-min objective or
the classic Santa Claus problem (maxA mini vi(Ai)) [16]. Unlike the max-min objective, the (α-)MMS objective
satisfies the desirable scale-invariance property. In the case of agents with identical valuations, an exact MMS
allocation exists, and in this case, finding α-MMS allocation is equivalent to α-approximation of the Santa Claus
problem. The best approximation factor known for the max-min objective under additive valuations is Õ(mε) for
any ε > 0 [25].

For the MMS problem, Procaccia and Wang [43] showed the existence of 2/3-MMS allocations. Many
follow-up works have improved the approximation factor [19, 34, 31, 8, 40, 32] with the current best result of
α = 3

4 +min( 1
36 ,

3
16n−4 ) [3]. However, since the work of Ghodsi et al. [34], the best known constant approximation

factor for MMS has remained 3/4 for large n. In this work, we break this 3/4 wall by proving the existence of
( 34 + 3

3836 )-MMS allocations.
After Ghodsi et al. [34] proved the existence of 3/4-MMS allocations and gave a PTAS to compute one,

Garg and Taki [32] gave a simple algorithm with complicated analysis proving the existence of ( 34 + 1
12n )-MMS

allocations and also computing a 3/4-MMS allocation in polynomial time. Very recently, Akrami et al. [3]
simplified the analysis of (a slight modification of) the Garg-Taki algorithm significantly and proved the existence
of ( 34 + min( 1

36 ,
3

16n−4 ))-MMS allocations. Moreover, they gave a tight example for this algorithm showing that
no constant factor better than 3/4 can be obtained for approximate MMS using this approach. In Section 3, we
discuss the known techniques’ barriers in more detail and how our algorithm overcomes these barriers.

The complementary problem is to find upper bounds on the largest α for which α-MMS allocations exist.
Feige et al. [29] constructed an example with three agents and nine goods for which no allocation is better than
39/40-MMS. For n ≥ 4, their construction gives an example for which no allocation is better than (1−n−4)-MMS.
Table 1 summarizes all these results. We note that most of these existence results can be easily converted into
PTAS for finding such an allocation using the PTAS for finding the MMS values [48].

1.1 Further related work Special cases. There has been a line of work on the instances with a limited
number of agents or goods. When m ≤ n + 3, an MMS allocation always exists [8]. Feige et al. [29] improved
this bound to m ≤ n + 5. For n = 2, MMS allocations always exist [22]. For n = 3, the MMS approximation
was improved from 3/4 [43] to 7/8 [8] to 8/9 [35], and then to 11/12 [28]. For n = 4, Ghodsi et al. [34] showed
the existence of 4/5-MMS. For n ≥ 5, the best known factor is the general ( 34 +min( 1

36 ,
3

16n−4 )) bound given by
Akrami et al. [3].

Ordinal approximation. An alternative way of relaxing MMS is guaranteeing 1-out-of-d maximin share (MMS)
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for d > n, which is the maximum value that an agent can ensure by partitioning the goods into d bundles and
choosing the least preferred bundle. This notion only depends on the bundles’ ordinal ranking and is not affected
by a small perturbation in the value of every single good (as long as the ordinal ranking of the bundles does
not change). A series of works studied this notion [1, 36, 37] with the state-of-the-art being the existence of
1-out-of-⌈ 4n3 ⌉ MMS allocations for goods [4].

Chores. MMS can be analogously defined for fair division of chores. MMS allocations do not always exist for
chores [12], which motivated the study of approximate MMS [12, 19], with the current best approximation ratio
being very recently improved from 11/9 [38] to 13/11 [39]. In the case of n = 3, 19/18-MMS allocations exist [28].

MMS in the chores setting is closely related to the well-studied variants of bin-packing and job scheduling
problems. In particular, the recent paper [39] utilizes the Multifit algorithm for makespan minimization to obtain
the best approximation factor. Therefore, many ideas which are already developed are proven to be useful when
dealing with chores. On the other hand, when dealing with goods, the related variants of bin packing and
scheduling problems do not make much sense where the objective becomes to maximize the number/capacity of
bins or maximize the minimum processing time of a machine while allocating all the items. Therefore, new ideas
specific to this problem are required. Furthermore, although the explicit study of MMS for goods started much
before chores, the advancement in approximate MMS for chores has been faster. Also, the current best factor
(13/11) is much better than the analogous factor for goods (3/4 + 3/3836), despite the extensive work by many
researchers on the goods problem. For ordinal approximation, the best-known factor for existence is 1-out-of-⌊ 3n4 ⌋
MMS allocations for chores.

Other settings. The MMS notion has also been studied when agents have more general valuations than additive,
e.g., [19, 34, 41, 46, 5]. Generalizations have also been studied where restrictions are imposed on the set of feasible
allocations, such as matroid constraints [35], cardinality constraints [21], and graph connectivity constraints
[20, 45, 49]. Strategyproof versions of fair division have also been studied [18, 7, 6, 9]. MMS has also inspired
other notions of fairness, like weighted MMS [27], AnyPrice Share (APS) [13], pairwise MMS [24], groupwise MMS
[17, 26], 1-out-of-d share [36], and self-maximizing shares [15]. MMS has also been studied in best-of-both-worlds
settings, where both ex-ante and ex-post guarantees are sought [14, 5].

2 Preliminaries

For all n ∈ N, let [n] = {1, 2, . . . , n}. A fair division instance I = (N,M,V) consists of a set of agents N = [n], a set
of goods M = [m] and a vector of valuation functions V = (v1, v2, . . . , vn) such that for all i ∈ [n], vi : 2

M → R≥0

indicates how much agent i likes each subset of the goods. In this paper, we assume the valuation functions are
additive, i.e., for all i ∈ [n] and S ⊆ M , vi(S) =

∑
g∈S vi({g}). For ease of notation, for all g ∈ M , we use vi(g)

or vi,g instead of vi({g}).
For a set S of goods and any positive integers d, let Πd(S) denote the set of all partitions of S into d bundles.

Then for any valuation function v,

MMSdv(S) := max
P∈Πd(S)

d
min
j=1

v(Pj).(2.1)

When the instance I = (N,M,V) is clear from the context, we denote MMSn
vi

by MMSi(I) or MMSi for all
i ∈ [n]. For each agent i, let P i = (P i

1, P
i
2, . . . , P

i
n) be a partition of M into n bundles admitting the MMS

value of agent i. Formally, MMSi = minj∈[n] vi(P
i
j ). We call such a partition, an MMS partition of agent i. An

allocation X is MMS if for all agents i ∈ N , vi(Xi) ≥ MMSi. Similarly, for any 0 < α ≤ 1, an allocation X is
α-MMS if vi(Xi) ≥ α ·MMSi for all agents i ∈ N .

Definition 2.1. (Ordered instance) An instance I = (N,M,V) is ordered if there exists an ordering of the
goods (g1, g2, . . . , gm) such that for all agents i ∈ N , vi(g1) ≥ vi(g2) ≥ . . . ≥ vi(gm).

It is known that the hardest instances of approximating MMS are the ordered instances [19]. We use the notations
used in [3].

Definition 2.2. ([3]) For the fair division instance I = ([n], [m],V), order(I) is defined as the instance
([n], [m],V ′), where for each i ∈ [n] and j ∈ [m], v′i(j) is the jth largest number in the multiset {vi(g) | g ∈ [m]}.
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Algorithm 1 normalize(N,M,V)
1: for i ∈ N do
2: Compute agent i’s MMS partition P i.
3: ∀j ∈ N , ∀g ∈ P i

j , let v
′
i,g ← vi,g/vi(P

i
j ).

4: end for
5: return (N,M,V ′).

The transformation order is α-MMS-preserving, i.e., for a fair division instance I, given an α-MMS allocation
of order(I), one can compute an α-MMS allocation of I in polynomial time [19]. Given any ordered instance
I = ([n], [m],V), without loss of generality, we assume vi(1) ≥ vi(2) ≥ . . . ≥ vi(m) for all i ∈ [n].

Lemma 2.1. ([19]) Given an instance I and an α-MMS allocation of order(I), one can compute an α-MMS
allocation of I in polynomial time.

Definition 2.3. (Normalized instance) An instance I = (N,M,V) is normalized, if for all i, j ∈ [n],
vi(P

i
j ) = 1.

Note that since vi is additive, if I is normalized, then for all MMS partitions of i like Q = (Q1, . . . , Qn) and for
all j ∈ [n] we have vi(Qj) = 1. [3] shows that given any instance I = (N,M,V), one can compute a normalized
instance I ′ = (N,M,V ′) such that any α-MMS allocation for I ′ is an α-MMS allocation for I. Their algorithm
converting an instance to a normalized instance is shown in Algorithm 1. We note that since finding an agent’s
MMS value is NP-hard, this is not a polynomial-time algorithm, but a PTAS exists.

Lemma 2.2. ([3]) Let I ′ = (N,M,V ′) = normalize(I = (N,M,V)). Then for any allocation A, vi(Ai) ≥
v′i(Ai)MMSi(I) for all i ∈ N .

Lemma 2.2 implies that normalize is α-MMS-preserving, since if A is an α-MMS allocation for the normalized
instance (N,M,V ′), then A is also an α-MMS allocation for the original instance (N,M,V). [3] give some
structural property of ordered normalized instances which we repeat here in Lemma 2.3.

Lemma 2.3. [3] Let ([n], [m],V) be an ordered and normalized fair division instance. For all k ∈ [n] and agent
i ∈ [n], if vi(k) + vi(2n− k + 1) > 1, then vi(2n− k + 1) ≤ 1/3 and vi(k) > 2/3.

2.1 Reduction rules Given any instance I, a reduction rule R(I) is a procedure that allocates a subset S ⊆M
of goods to an agent i and outputs the instance I ′ = (N \ {i},M \ S,V).

Definition 2.4. (Valid reductions) Let R be a reduction rule and R(I) = (N ′,M ′,V) such that {i} = N \N ′

and S = M \M ′. Then R is a “valid α-reduction” if

1. vi(S) ≥ α ·MMS|N |
vi

(M), and

2. for all j ∈ N ′, MMS|N |−1
vj

(M ′) ≥ MMS|N |
vj

(M).

Furthermore, a reduction rule R is a “valid reduction for agent j ∈ N ′”, if MMS|N |−1
vj

(M ′) ≥ MMS|N |
vj

(M)
where N ′ and M ′ are the set of remaining agents and remaining goods respectively after the reduction.

Note that if R is a valid α-reduction and an α-MMS allocation A exists for R(I), then an α-MMS allocation
exists for I. Such an allocation can be obtained by allocating S to i and allocating the rest of the goods as they
are allocated under A.

Lemma 2.4. Given an instance I = (N,M,V), let S ⊆ M be such that vi(S) ≤ MMSi and |S| ≤ 2. Then
allocating S to an arbitrary agent j ̸= i, is a valid reduction for agent i.

Now we define four reduction rules that we use in our algorithm.

Definition 2.5. For an ordered instance I = (N,M,V) and α > 0, reduction rules Rα
1 , R

α
2 , R

α
3 and Rα

4 are
defined as follows.
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• Rα
1 (I) : If vi(1) ≥ α for some i ∈ N , allocate {1} to agent i and remove i from N .

• Rα
2 (I) : If vi({2n− 1, 2n, 2n+ 1}) ≥ α for some i ∈ N , allocate {2n− 1, 2n, 2n+ 1} to agent i and remove

i from N .

• Rα
3 (I) : If vi({3n− 2, 3n− 1, 3n, 3n+1}) ≥ α for some i ∈ N , allocate {3n− 2, 3n− 1, 3n, 3n+1} to agent

i and remove i from N .

• Rα
4 (I) : If vi({1, 2n+ 1}) ≥ α for some i ∈ N , allocate {1, 2n+ 1} to agent i and remove i from N .

We note that Rα
1 , R

α
2 , R

α
4 in addition to one more rule of allocating {n, n+ 1} to an agent is used in [32, 3].

Our algorithm does not use the rule of allocating {n, n+1}. Moreover, Rα
3 (allocating {3n−2, 3n−1, 3n, 3n+1})

is used in our work and not elsewhere.

Lemma 2.5. Given any α > 0 and an ordered instance I, Rα
1 , Rα

2 , and Rα
3 are valid reductions for all the

remaining agents.

Proposition 2.1. If I is ordered and for a given α ≥ 0, none of the rules Rα
1 , R

α
2 or Rα

3 is applicable, then

1. for all k ≥ 1, vi(k) < α, and

2. for all k > 2n, vi(k) < α/3, and

3. for all k > 3n, vi(k) < α/4.

Proof. We prove each case separately.

1. Since Rα
1 is not applicable, vi(k) ≤ vi(1) < α for all agents i and all k ≥ 1.

2. Since Rα
2 is not applicable, 3vi(k) ≤ 3vi(2n+ 1) ≤ vi(2n− 1) + vi(2n) + vi(2n+ 1) < α for all agents i and

all k > 2n. Therefore, vi(k) < α/3.

3. Similar to the former case, since Rα
3 is not applicable, 4vi(k) ≤ 4vi(3n + 1) ≤ vi(3n − 2) + vi(3n − 1) +

vi(3n) + vi(3n+ 1) < α for all agents i and all k > 3n. Therefore, vi(k) < α/4.

Definition 2.6. (α-irreducible and δ-ONI) We call an instance I α-irreducible if none of the rules Rα
1 , R

α
2 ,

Rα
3 or Rα

4 is applicable. Moreover, we call an instance δ-ONI if it is ordered, normalized, and (3/4+δ)-irreducible.

3 Technical overview

Most algorithms for approximating MMS, especially those with a factor of at least 3/4 [34, 32, 3], utilize two
simple tools: valid reductions and bag filling. Although these tools are easy to use in a candidate algorithm,
the novelty of these works is in the analysis, which is challenging. Like previous works, the analysis is the most
difficult part of our algorithm based on these tools. Unlike previous works, we also need to use a new reduction
rule and initialize bags differently, which are counterintuitive.

First, we discuss the algorithm given by [3], which is a slight modification of the algorithm in [32]. For
α ≤ 3/4, [3] showed how to obtain an ordered normalized α-irreducible instance from any arbitrary instance such
that the transformation is α-MMS preserving.∗ That is, given an α-MMS allocation for the resulting ordered
normalized irreducible instance, one can obtain an α-MMS allocation for the original instance. In the first phase
of their algorithm, they obtain an ordered normalized α-irreducible instance Î and in the second phase, they
compute an α-MMS allocation for Î. Let Î = ([n], [m],V). Without loss of generality, we can assume that
m ≥ 2n (Observation 5.1).

In the second phase, they initialize n bags with the first 2n goods as follows.

(3.2) Bk := {k, 2n− k + 1} for k ∈ [n]
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2n

1

B1

2n−k+1

k

Bk

n+1

n

Bn

Figure 1: Configuration of Bags B1, B2, . . . , Bn

Algorithm 2 bagFill(I, α)
Input: Ordered normalized α-irreducible instance I = ([n], [m],V) and approximation factor α
Output: (Partial) allocation A = ⟨A1, . . . , An⟩.
1: for k ∈ [n] do
2: Bk = {k, 2n+ 1− k}.
3: end for
4: UG = [m] \ [2n] ▷ unassigned goods
5: UA = [n] ▷ unsatisfied agents
6: UB = [n] ▷ unassigned bags
7: while UA ̸= ∅ do
8: if ∃i ∈ UA, ∃k ∈ UB , such that vi(Bk) ≥ α then
9: Ai = Bk

10: UA = UA \ {i}
11: UB = UB \ {k}
12: else
13: g = arbitrary good in UG

14: k = arbitrary bag in UB

15: Bk = Bk ∪ {g}.
16: UG = UG \ {g}
17: end if
18: end while
19: return ⟨A1, . . . , An⟩

See Figure 1 for a better intuition. As long as an agent i values a bag Bk at least α, allocate Bk to i and remove
Bk and i. Then, as long as an unallocated bag exists (and thus a remaining agent), pick an arbitrary remaining
bag Bk and add unassigned goods g > 2n until some remaining agent i values it at least α. Then, allocate Bk

to i and continue. The second phase is called the bag-filling phase. Algorithm 2 shows the pseudocode of the
bag-filling phase of [3].

To prove that the algorithm’s output is α-MMS, it suffices to prove that we never run out of goods
in the bag-filling phase or, equivalently, all agents receive a bag at some point during the algorithm. To
prove this, they categorize agents into two groups. Let N1 = {i ∈ N | ∀k ∈ [n] : vi(Bk) ≤ 1} and
N2 = N \ N1 = {i ∈ N | ∃k ∈ [n] : vi(Bk) > 1}. We note that the sets N1 and N2 are defined based on
the instance Î at the beginning of phase 2, and they do not change throughout the algorithm.

Agents in N1 Proving that all agents in N1 receive a bag is easy. Using the fact that at the beginning
of Phase 2, the instance is ordered, normalized, and α-irreducible, they prove vi(g) < 1/4 for all i ∈ N and all
g ∈M \ [2n]. This helps to prove that any bag which is not assigned to an agent i ∈ N1 while i was available has
a value at most 1 to i. Therefore, since vi(M) = n, running out of goods is impossible before agent i receives a
bag.

∗[3] uses Rα
1 , R

α
2 , R

α
4 and one more rule as reduction rules. However, all that matters in their proof is that the applied reduction

rules are valid α-reduction rules.
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Agents in N2 The main bulk and difficulty of the analysis of [32] is to prove that all agents in N2 receive
a bag. By normalizing the instance, [3] managed to simplify this argument significantly. [3] prove vi(g) < 1/12
for all i ∈ N2 and all g ∈ M \ [2n]. This helps to bound the value of the bags that receive some goods in the
bag-filling phase by 5/6 for all available i ∈ N2. Again, if the number of such bags is high enough, it is easy to
prove that the algorithm does not run out of goods in the bag-filling phase. The difficult case is when the total
value of the bags which are of value more than 1 to some agent i ∈ N2 is large. Roughly speaking, in this case,
it seems that the bags which receive goods in the bag-filling phase and their values are bounded by 5/6 cannot
compensate for the large value of the bags that do not require any goods in the bag-filling phase. This is where
the normalized property of Î simplifies the matter significantly. Intuitively, there are many goods with a high
value that happened to be paired in the same bag in the bag initialization phase. Since the instance is normalized,
we know that in the MMS partition of i, these goods cannot be in the same bag. This implies that many bags in
the MMS partition of i have at most 1 good in common with the goods in [2n]. This means that the value of the
remaining goods (the goods in M \ [2n]) must be large since they fill the bags in the MMS partition such that
the value of each bag equals 1. Hence, enough goods remain in M \ [2n] to fill the bags.

There are two main obstacles to generalizing this algorithm to obtain α-MMS allocations when α > 3/4. The
first obstacle lies in the first phase of the algorithm. Rα

4 is a valid α-reduction when α ≤ 3/4 and Rα
1 and Rα

2

are not applicable. This no longer holds when α > 3/4. In this case, the MMS value of the agents can indeed
decrease after applying Rα

4 . When α = 3/4 +O(1/n), [32] and [3] managed to resolve this issue by adding some
dummy goods after each iteration of Rα

4 and proving that the total value of these dummy goods is negligible.
Essentially, since we only need to guarantee the last agent a value of α, the idea is to divide the excess 1 − α
among all agents and improve the factor. However, this can only improve the factor by at most O(1/n). If
α > 3/4 + ϵ for a constant ϵ > 0, the same technique does not work since the value of dummy goods cannot be
reasonably bounded. We resolve this issue in Section 4. Unlike the previous works, we allow the MMS values of
the remaining agents to drop. Although the MMS values of the agents can drop, we show that they do not drop

by more than a multiplicative factor of (1 − 4ϵ) after an arbitrary number of applications of R
3/4+ϵ
k for k ∈ [4].

Basically, while for α ≤ 3/4, one can get α-irreduciblity for free (i.e., without losing any approximation factor on
MMS), for α = 3/4 + ϵ and ϵ > 0, we lose an approximation factor of (1 − 4ϵ).

The second obstacle is that for goods in M \ [2n], we do not get the neat bound of vi(g) < 1/4 for i ∈ N .
Instead, we get this bound with an additive factor of O(ϵ). This even complicates the analysis for agents in
N1, which was trivial in [3]. Furthermore, [3] give a tight example where their algorithm cannot do better than
3/4 + O(1/n) and all the agents are in N1 in this example. To overcome this hurdle, we further categorize the
agents in N1. One group consists of the agents with a reasonable bound on the value of good 2n + 1, and the
other agents, the problematic ones, do not.

We break the problem into two cases depending on the number of these problematic agents. In Section 5.1,
we consider the case when the number of problematic agents is not too large. In this case, we work with a
slight modification of the algorithm in [3], and using an involved analysis, we show that it gives a (3/4+ ϵ)-MMS
allocation. Otherwise, we introduce a new reduction rule for the first time that allocates the two most valuable
goods to an agent. Although allocating these goods seem counterintuitive, surprisingly, that seems to be the only
way to obtain a (3/4 + ϵ)-MMS allocation for the tight example in [3]. In Section 5.2, we give another algorithm
to handle the case where the number of problematic agents is too large. In this case, we first apply the reduction
rules (including the new one), and then initialize the bags with three goods, unlike the previous works. Precisely,
we set Ck := {k, 2n− k + 1, 2n+ k} and then do bag-filling.

To summarize, the structure of the rest of the paper is as follows. In Section 4, given any instance
I = (N,M,V) and ϵ > 0, for δ ≥ 4ϵ/(1 − 4ϵ) we obtain an ordered normalized (3/4 + δ)-irreducible (δ-ONI)
instance I ′ = (N ′,M ′,V ′) such that N ′ ⊆ N , M ′ ⊆ M and all agents in N \ N ′ receive a bag of value at
least (3/4 + ϵ)MMSi(I). Moreover, we prove from any (3/4 + δ)-MMS allocation for I ′, one can obtain a
min (3/4 + ϵ, (3/4 + δ)(1− 4ϵ))-MMS allocation for I.

In Section 5, we prove a (3/4 + δ)-MMS allocation exists for all δ-ONI instances for any δ ≤ 3/956. The
main results of Sections 4 and 5 imply that for 4ϵ/(1− 4ϵ) ≤ δ ≤ 3/956, a min (3/4 + ϵ, (3/4 + δ)(1− 4ϵ))-MMS
exists for all instances. Setting δ = 3/956 and ϵ = δ/(4(δ + 1)) = 3/3836, there always exists a (3/4 + 3/3836)-
MMS allocation. We give the formal proof in Section 6. All the missing proofs are available in the full version of
the paper [2].
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Algorithm 3 reduce((N,M,V), ϵ)
1: I ← order(N,M,V)
2: for i ∈ N do
3: vi,g ← vi,g/MMSi, ∀g ∈ [m]
4: end for
5: while R

(3/4+ϵ)
1 or R

(3/4+ϵ)
2 or R

(3/4+ϵ)
3 or R

(3/4+ϵ)
4 is applicable do

6: I ← R
(3/4+ϵ)
k (I) for smallest possible k

7: end while
8: return I.

4 Reduction to δ-ONI instances

In this section, for any ϵ > 0 and δ ≥ 4ϵ/(1− 4ϵ) we show how to obtain a δ-ONI instance I ′ from any arbitrary
instance I, such that from any α-MMS allocation for I ′, one can obtain a min (3/4 + ϵ, (1− 4ϵ)α)-MMS allocation
for I. To obtain such an allocation, first, we obtain a (3/4 + ϵ)-irreducible instance, and we prove that the MMS
value of no remaining agent drops by more than a multiplicative factor of (1− 4ϵ). Then, we normalize and order
the resulting instance, giving us a δ-ONI instance (for δ ≥ 4ϵ/(1−4ϵ)). In the rest of this section, by Rk we mean

R
(3/4+ϵ)
k for k ∈ [4].

We start with transforming the instance into an ordered one using the order algorithm. Then we scale the
valuations such that for all i ∈ N , MMSi = 1. Then, as long as one of the reduction rules R1, R2, R3, or R4 is
applicable, we apply Rk for the smallest possible k. Algorithm 3 shows the pseudocode of this procedure.

In this section, we prove the following two theorems.

Theorem 4.1. Given an instance I = (N,M,V) and ϵ ≥ 0, let I ′ = (N ′,M ′,V ′) = reduce(I, ϵ). For all agents
i ∈ N ′, MMSi(I ′) ≥ 1− 4ϵ.

Theorem 4.2. Given an instance I and ϵ ≥ 0, let Î = order(normalize(reduce(I, ϵ))). Then Î is ordered,
normalized and ( 34 +

4ϵ
1−4ϵ )-irreducible ( 4ϵ

1−4ϵ -ONI). Furthermore, from any α-MMS allocation of Î one can obtain
a min(3/4 + ϵ, (1− 4ϵ)α)-MMS allocation of I.

Note that once R1 is not applicable, we have vi(1) < 3/4 + ϵ for all remaining agents i. Since we never
increase the values, R1 can no longer apply. So reduce(I, ϵ) first applies R1 as long as it is applicable and
then applies the rest of the reduction rules. Since R1 is a valid reduction rule for all the remaining agents i by
Lemma 2.5, MMSi ≥ 1 after applications of R1. So to prove Theorem 4.1 without loss of generality, we assume
R1 is not applicable on I = ([n],M,V). Let I ′ = (N ′,M ′,V) = reduce(I, ϵ). For the rest of this section, we
fix agent i ∈ N ′. Let P = (P1, P2, . . . , Pn) be the initial MMS partition of i (in I). We construct a partition
Q = (Q1, Q2, . . . , Q|N ′|) of M

′ such that vi(Qj) ≥ 1− 4ϵ for all j ∈ [|N ′|].
Let G2, G3, and G4 be the set of goods removed by applications of R2, R3, and R4, respectively. Also, let

r2 = |G2|/3, r3 = |G3|/4, and r4 = |G4|/2 be the number of times each rule is applied, respectively. Note that in
the end, all that matters is that we construct a partition Q of M \ (G2 ∪G3 ∪G4) into n− (r2 + r3 + r4) bundles
of value at least 1− 4ϵ for i. For this sake, it does not matter in which order the goods are removed. Therefore,
without loss of generality, we assume all the goods in G4 are removed first, and then the goods in G2 and G3 are
removed in their original order. Note that we are not applying the reduction rules in a different order. We are
removing the same goods that would be removed by applying the reduction rules in their original order. Only for
the sake of our analysis, we remove these goods in a different order. For better intuition, consider the following
example. Assume reduce(I, ϵ) first applies R2 removing {a1, a2, a3}, then R4 removing {b1, b2}, then another R2

removing {c1, c2, c3} and then R3 removing {d1, d2, d3, d4}. Without loss of generality we can assume that first
{b1, b2} is removed, then {a1, a2, a3}, then {c1, c2, c3} and then {d1, d2, d3, d4}.

We know that when there are n agents, removing {2n− 1, 2n, 2n+1} (or {3n− 2, 3n− 1, 3n, 3n+1}) and an
agent is a valid reduction for i by Lemma 2.5. With the same argument, it is not difficult to see that removing
{g1, g2, g3} where g1 ≥ 2n−1, g2 ≥ 2n and g3 ≥ 2n+1 (or {g1, g2, g3, g4} where g1 ≥ 3n−2, g2 ≥ 3n−1, g3 ≥ 3n
and g4 ≥ 3n+ 1) and an agent is also a valid reduction for i.

Lemma 4.1. Let I = (N,M,V) be an ordered instance and i ∈ N .
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1. Let g1 ≥ 2n− 1, g2 ≥ 2n and g3 ≥ 2n+ 1. Then MMSn−1
vi

(M \ {g1, g2, g3}) ≥ MMSn
vi
(M).

2. Let g1 ≥ 3n− 2, g2 ≥ 3n− 1, g3 ≥ 3n and g4 ≥ 3n+ 1. Then MMSn−1
vi

(M \ {g1, g2, g3, g4}) ≥ MMSn
vi
(M).

Observation 4.1. Given an ordered instance I = (N,M,V), let vi(g1) ≥ . . . ≥ vi(gm), ∀i ∈ N . Let
I ′ = (N ′,M ′,V) be the instance after removing an agent i and a set of goods {a, b} from I. Let g ∈ M ′ be

the jth most valuable good in M and the j′
th

most valuable good in M ′. Then j′ ≥ j − 2.

Corollary 4.1. (of Observation 4.1) Given an ordered instance I = (N,M,V), let I ′ = (N ′,M ′,V) be the
instance after removing an agent i and a set of goods {a, b} from I. Let n = |N | and n′ = |N ′| = n − 1. Let

g ∈M ′ be the jth most valuable good in M and the j′
th

most valuable good in M ′. Then,

• for any k, in particular, k ∈ {−1, 0, 1}, if j ≥ 2n+ k, then j′ ≥ 2n′ + k, and

• for any k, in particular, k ∈ {−2,−1, 0, 1}, if j ≥ 3n+ k, then j′ ≥ 3n′ + k.

Next, assume at a step where the number of agents is n, {g2n−1, g2n, g2n+1} (or {g3n−2, g3n−1, g3n, g3n+1})
is removed with an application of R2 (or R3). Corollary 4.1 together with Lemma 4.1 imply that removing
{g2n−1, g2n, g2n+1} (or {g3n−2, g3n−1, g3n, g3n+1}) at a later step where the number of agents is n′ ≤ n is also
valid for agent i. Therefore, all that remains is to prove that after removing the goods in G4 and r4 agents, the
MMS value of i remains at least 1− 4ϵ. That is, MMSn−r4

i (M \G4) ≥ 1− 4ϵ.

Lemma 4.2. Let (N ′,M ′,V) = reduce(([n],M,V), ϵ). Let r4 be the number of times R4 is applied during
reduce(I, ϵ) and let G4 be the set of removed goods by applications of R4. Then for all agents i ∈ N ′,
MMSn−r4

vi
(M \G4) ≥ 1− 4ϵ.

We are ready to prove Theorem 4.1 and 4.2.

Theorem 4.1. Given an instance I = (N,M,V) and ϵ ≥ 0, let I ′ = (N ′,M ′,V ′) = reduce(I, ϵ). For all agents
i ∈ N ′, MMSi(I ′) ≥ 1− 4ϵ.

Proof. Fix an agent i ∈ N ′. Let I1 be the instance after all applications of R1 and before any further reduction.
By Lemma 2.5, MMSi(I1) ≥ 1. So without loss of generality, let us assume I = I1. Let G2, G3, and G4 be the
set of goods removed by applications of R2, R3, and R4, respectively. Also, let r2 = |G2|/3, r3 = |G3|/4, and
r4 = |G4|/2 be the number of times each rule is applied, respectively. By Lemma 4.2, MMSn−r4

vi
(M \G4) ≥ 1−4ϵ.

For an application of R2 (or R3) at step t, let {a1, a2, a3} (or {b1, b2, b3, b4}) be the set of goods that are removed.
By Lemma 4.1, removing this set at a step t′ ≥ t is still a valid reduction for i. Therefore, removing G2 and G3

and r2 + r3 agents does not decrease the MMS value of i. Thus, MMSi(I ′) ≥ 1− 4ϵ.

Theorem 4.2. Given an instance I and ϵ ≥ 0, let Î = order(normalize(reduce(I, ϵ))). Then Î is ordered,
normalized and ( 34 +

4ϵ
1−4ϵ )-irreducible ( 4ϵ

1−4ϵ -ONI). Furthermore, from any α-MMS allocation of Î one can obtain
a min(3/4 + ϵ, (1− 4ϵ)α)-MMS allocation of I.

Proof. In reduce, as long as R
(3/4+ϵ)
1 is applicable, we apply it. Once it is not applicable anymore, for all

remaining agents i, vi(1) < 3/4+ ϵ. In the rest of the procedure reduce, we do not increase the value of any good

for any agent. Therefore, R
(3/4+ϵ)
1 remains inapplicable. As long as one of the rules R

(3/4+ϵ)
k is applicable for

k ∈ {2, 3, 4}, we apply it. Therefore, reduce(I, ϵ) is (3/4 + ϵ)-irreducible. Let I ′ = (N ′,M ′,V ′) = reduce(I, ϵ).
Since MMSi(I ′) ≥ 1 − 4ϵ (by Theorem 4.1), normalize can increase the value of each good by a multiplicative
factor of at most 1/(1 − 4ϵ). Therefore, after ordering the instance, none of the rules Rα

k for k ∈ [4] would be

applicable for α ≥ 3/4+ϵ
1−4ϵ = 3

4+
4ϵ

1−4ϵ . Hence, Î = order(normalize(reduce(I, ϵ))) is α-irreducible for α ≥ 3
4+

4ϵ
1−4ϵ

and it is of course ordered. Since order does not change the multiset of the values of the goods for each agent,
the instance remains normalized.

Now let us assume A is an α-MMS allocation for Î = order(normalize(reduce(I, ϵ))). By Lemma 2.1, we
can obtain an allocation B which is α-MMS for normalize(reduce(I, ϵ)). Theorem 2.2 implies that B is α-MMS
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for I ′ = (N ′,M ′,V ′) = reduce(I, ϵ). For all agents i ∈ N \N ′, v′i(Bi) = vi(Bi)/MMSi(I). Therefore,

vi(Bi) = v′i(Bi)MMSi(I)
≥ αMMSi(I ′)MMSi(I) (B is α-MMS for I ′)
≥ α(1− 4ϵ)MMSnvi

(M). (MMSnv′
i
(M) ≥ 1− 4ϵ by Theorem 4.1)

Thus, B gives all the agents in N ′, α(1−4ϵ) fraction of their MMS. All agents in N \N ′ receive (3/4+ ϵ) fraction
of their MMS value. Therefore, the final allocation is a min(3/4 + ϵ, (1− 4ϵ)α)-MMS allocation of I.

5 (3/4 + δ)-MMS allocation for δ-ONI instances

In this section, we prove that for δ ≤ 3/956 there exists a (3/4 + δ)-MMS allocation if the input is a δ-ONI
instance. First we prove that in any δ-ONI instance I = ([n], [m],V), m ≥ 2n.

Observation 5.1. For any δ ≤ 1/4, if I = ([n], [m],V) is δ-ONI, then m ≥ 2n.

We initialize n bags {B1, . . . , Bn} with the first 2n goods as follows:

(5.3) Bk := {k, 2n− k + 1} for k ∈ [n].

See Figure 1 for a better intuition. Note that by Observation 5.1, m ≥ 2n and such bag-initialization is possible.
Given an instance I = ([n], [m],V) (with m ≥ 2n), let N1(I) = {i ∈ [n] | ∀k ∈ [n] : vi(Bk) ≤ 1} and

N2(I) = {i ∈ [n] | ∃k ∈ [n] : vi(Bk) > 1}.

Observation 5.2. For δ ≤ 1/4 and instance I, if I is δ-ONI, then for all agents i ∈ N2(I), vi(2n+1) < 1/12+δ.

We refer to N1(I) and N2(I) by N1 and N2 respectively when I is the initial δ-ONI instance. Recall that N1 and
N2 do not change over the course of our algorithm. Let N1

1 = {i ∈ N1 | vi(2n+1) ≥ 1/4−5δ} and N1
2 = N1 \N1

1 .
Depending on the number of agents in N1

1 , we run one of the approxMMS1(I, δ) or approxMMS2(I, δ) shown in
Algorithms 4 or 5 respectively. Roughly speaking, if the size of N1

1 is not too large, we run Algorithm 4 and
prioritize agents in N1

1 . Otherwise, we run Algorithm 5 giving priority to agents in N1
2 ∪N2. Giving priority to

agents in a certain set S means that when the algorithm is about to allocate a bag B to an agent, if there is an
agent in S who gets satisfied upon receiving B (i.e., vi(B) ≥ 3/4 + δ for some i ∈ S), then the algorithms give B
to such an agent and not to someone outside S.

5.1 Case 1: |N1
1 | ≤ n(1

4
− δ)/(1

4
+ δ

3
) In this case we run Algorithm 4. For k ∈ [n], let Bk and B̂k ⊇ Bk

be the kth bag at the beginning and end of Algorithm 4, respectively.

Lemma 5.1. Let i be any agent who did not receive any bag by the end of Algorithm 4. For all k ∈ [n] such that
vi(Bk) ≤ 1, we have vi(B̂k) < 1 + 4δ/3.

Lemma 5.2. For δ ≤ 1
4 , given a δ-ONI instance with |N1

1 | ≤ n( 14 − δ)/( 14 + δ
3 ), all agents i ∈ N1

1 receive a bag of
value at least (3/4 + δ) ·MMSi at the end of Algorithm 4.

Proof. It suffices to prove that all agents i ∈ N1
1 receive a bag at the end of Algorithm 4. Towards a contradiction,

assume that i ∈ N1
1 does not receive any bag.

Claim 1. For all bags B not allocated to an agent in N1
1 , vi(B) < 3/4 + δ.

Claim 1 holds since the priority is with agents in N1
1 . Let S be the set of bags allocated to agents in N1

1 and S̄
be the set of the remaining bags. We have

vi(M) =
∑
k∈[n]

vi(B̂k) =
∑
B∈S

vi(B) +
∑
B∈S̄

vi(B)

< |N1
1 |

(
1 +

4δ

3

)
+
(
n− |N1

1 |
)(3

4
+ δ

)
(Lemma 5.1 and Claim 1)

≤ n, (|N1
1 | ≤ n( 14 − δ)/( 14 + δ

3 ))

which is a contradiction since vi(M) = n. Thus, all agents i ∈ N1
1 receive a bag at the end of Algorithm 4.
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Algorithm 4 approxMMS1(I, δ)
Input: δ-ONI I = (N,M,V) and factor δ
Output: Allocation A = ⟨A1, . . . , An⟩

Bi ← {i, 2n− i+ 1}i∈[n]

B = ∪i∈[n]{Bi}
α = 3/4 + δ
while ∃i ∈ N,B ∈ B s.t. vi(B) ≥ α do

i← an arbitrary agent s.t. vi(B) ≥ α, priority with agents in N1
1

Ai ← B
B ← B \ {B}
N ← N \ {i}
M ←M \B

end while
J ← ∪B∈BB
for B ∈ B do

while ∄i ∈ N s.t. vi(B) ≥ α do
g ← an arbitrary good in M \ J
B ← B ∪ {g}
M ←M \ {g}

end while
i← an arbitrary agent s.t. vi(B) ≥ α, priority with agents in N1

1

Ai ← B
N ← N \ {i}
M ←M \B

end for
return ⟨A1, . . . , An⟩

Remark 1. The last inequality in the proof of Lemma 5.2 is tight for |N1
1 | = n( 14 − δ)/( 14 + δ

3 ).

Lemma 5.3. For δ ≤ 1
4 , given a δ-ONI instance with |N1

1 | ≤ n( 14 − δ)/( 14 + δ
3 ), all agents i ∈ N1

2 receive a bag of
value at least (3/4 + δ) ·MMSi at the end of Algorithm 4.

Proof. It suffices to prove that all agents i ∈ N1
2 receive a bag at the end of Algorithm 4. Towards a contradiction,

assume that i ∈ N1
2 does not receive any bag.

Claim 2. For all k ∈ [n], vi(B̂k) ≤ 1.

Proof. The claim trivially holds if B̂k = Bk. Now assume Bk ⊊ B̂k. Let g be the last good added to B̂k.
We have vi(B̂k \ g) < 3/4 + δ, otherwise g would not be added to B̂k. Also note that g ≥ 2n + 1 and hence
vi(g) ≤ vi(2n+ 1) < 1/4− 5δ by the definition of N1

2 . Therefore, we have

vi(B̂k) = vi(B̂k \ g) + vi(g)

< (
3

4
+ δ) + (

1

4
− 5δ) < 1.

Thus, the claim holds. ■

Since agent i did not receive a bag, there exists an unallocated bag with value less than 1 for agent i. Therefore,
vi(M) =

∑
k∈[n] vi(B̂k) < n which is a contradiction. Thus, all agents i ∈ N1

2 receive a bag at the end of Algorithm
4.

5.1.1 Agents in N2 In this section, we prove that all agents in N2 also receive a bag at the end of Algorithm
4. For the sake of contradiction, assume that agent i ∈ N2 does not receive a bag at the end of Algorithm 4. Let
A+ := {k ∈ [n] | vi(Bk) > 1} and A− := {k ∈ [n] | vi(Bk) < 3/4 + δ} be the indices of the bags satisfying the
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1

2n

2

2n− 1

· · ·

· · ·

k − ℓ

2n+ 1− k + ℓ

· · ·

· · ·

k

2n+ 1− k

· · ·

· · ·

n− 1

n+ 2

n

n+ 1

+

≤ 1

Figure 2: The items [2n] are arranged in a table, where the kth column is Bk = {k, 2n+ 1− k}. ℓ is the smallest
shift such that vi(k) + vi(2n+ 1− k + ℓ) ≤ 1 for all k.

respective constraint. Also, let ℓ be the smallest such that for all k ∈ [ℓ+1, n], vi(k)+ vi(2n− k+1+ ℓ) < 1. See
Figure 2 taken from [3]. [3] proved

∑
k∈A+ vi(B̂k) < |A+|+ ℓ( 1

12 + δ).

Lemma 5.4. [3]
∑

k∈A+ vi(B̂k) < |A+|+ ℓ( 1
12 + δ).

Observation 5.3. For all k ∈ A−, vi(B̂k) <
5
6 + 2δ.

Observation 5.4. For all k ∈ [n], vi(Bk) >
1
2 − 2δ.

Observation 5.5. vi(M \ [2n]) > ℓ( 14 − δ).

We are now ready to prove Lemma 5.5.

Lemma 5.5. For δ ≤ 0.011, given a δ-ONI instance with |N1
1 | ≤ n( 14 − δ)/( 14 + δ

3 ), all agents i ∈ N2 receive a
bag of value at least ( 34 + δ) at the end of Algorithm 4.

Proof. It suffices to prove that all agents i ∈ N2 receive a bag at the end of Algorithm 4. Towards a contradiction,
assume that i ∈ N2 does not receive any bag. For all k ∈ N \ (A− ∪ A+), since vi(Bk) ≥ 3/4 + δ and i has not
received a bag, B̂k = Bk. Thus, for all k ∈ N \ (A− ∪A+)

vi(B̂k) = vi(Bk) ≤ 1.(5.4)

We have

n = vi(M) =
∑

k∈A−

vi(B̂k) +
∑

k∈A+

vi(B̂k) +
∑

k∈N\(A−∪A+)

vi(B̂k)

<

(
|A−|(5

6
+ 2δ)

)
+

(
|A+|+ ℓ(

1

12
+ δ)

)
+

(
n− |A−| − |A+|

)(Observation 5.3, Lemma 5.4 and Inequality (5.4))

= n− |A−|(1
6
− 2δ) + ℓ(

1

12
+ δ).

Therefore, we have

|A−|
ℓ

<
1/12 + δ

1/6− 2δ
.(5.5)

Next, we bound the value of the goods in M \ [2n] and contradict Inequality (5.5). We have,

ℓ(
1

4
− δ) ≤ vi(M \ [2n]) (Observation 5.5)

=
∑

k∈A−

(
vi(B̂k)− vi(Bk)

)
(M \ [2n] =

⋃
k∈A−(B̂k \Bk))

< |A−|
(
(
5

6
+ δ)− (

1

2
− 2δ)

)
(Observation 5.3 and Observation 5.4)

= |A−| · (1
3
+ 3δ).
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2n+1

2n

1

C1

2n+k

2n−k+1

k

Ck

3n

n+1

n

Cn

Figure 3: Configuration of Bags C1, C2, . . . , Cn

Thus,

|A−|
ℓ

>
1/4− δ

1/3 + 3δ
(5.6)

Inequalities (5.5) and (5.6) imply that 1/12+δ
1/6−2δ > 1/4−δ

1/3+3δ , which is a contradiction with δ ≤ 0.011. Thus, all agents

i ∈ N2 receive a bag at the end of Algorithm 4.

Theorem 5.1. Given any δ ≤ 0.011, for all δ-ONI instances where |N1
1 | ≤ n( 14 −δ)/( 14 +

δ
3 ), Algorithm 4 returns

a ( 34 + δ)-MMS allocation.

Proof. Since N = N1
1 ∪N1

2 ∪N2, by Lemmas 5.2, 5.3 and 5.5 all agents receive a bag of value at least ( 34+δ)·MMSi
in Algorithm 4.

5.2 Case 2: |N1
1 | > n(1

4
−δ)/(1

4
+ δ

3
) In this case, we run Algorithm 5. Starting from an ordered normalized

(3/4 + δ)-irreducible instance, as long as there is a bag Bk with value at least 3/4 + δ for some agent, we give
Bk to such an agent. The priority is with agents who initially belonged to N1

2 ∪N2. Therefore, in the remaining
instance, all bags are of value less than 3/4 + δ for all the remaining agents. We introduce one more reduction
rule in this section.

• Rα
5 : If vi(1) + vi(2) ≥ α for some i ∈ N , allocate {1, 2} to agent i and remove i from N . The priority is

with agents in N1
2 ∪N2.

Starting from an ordered normalized (3/4 + δ)-irreducible instance, after allocating bags of value at least 3/4 + δ

to some agents, we run R
3/4+δ
5 as long as it is applicable. For ease of notation, we write Rj instead of R

3/4+δ
j

for j ∈ [5]. Then, we run R2 and R3 as long as they are applicable. Afterwards, for all k ∈ [n], we initialize
Ck = {k, 2n− k + 1, 2n+ k}.† See Figure 3 for better intuition. Then, we do bag-filling. Let Ĉk be the result of
bag-filling on bag Ck. The pseudocode of this algorithm is shown in Algorithm 5.

Lemma 5.6. For all agents i ∈ N1
2 ∪N2 and bags B which is allocated to an agent in N1

2 ∪N2 during Algorithm
5, vi(B) < 3/2 + 2δ.

Lemma 5.7. For δ ≤ 1/20, given a δ-ONI instance with |N1
1 | > n( 14 − δ)/( 14 + δ

3 ), all agents in N1
2 ∪N2 receive

a bag of value at least 3/4 + δ at the end of Algorithm 5.

Proof. It suffices to prove that all agents i ∈ N1
2 ∪ N2 receive a bag at the end of Algorithm 5. Towards a

contradiction, assume that i ∈ N1
2 ∪N2 does not receive any bag.

†Note that it is without loss of generality to assume m ≥ 3n. If m < 3n, add dummy goods of value 0 to everyone. The MMS

value of the agents remains the same, and any α-MMS allocation in the final instance is an α-MMS allocation in the original instance
after removing the dummy goods.
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Algorithm 5 approxMMS2(I, δ)
Input: δ-ONI instance I = (N,M,V) and factor δ
Output: Allocation A = ⟨A1, . . . , An⟩
Bi ← {i, 2n− i+ 1}i∈[n]

B = ∪i∈[n]{Bi}
α = 3/4 + δ
while ∃i ∈ N,B ∈ B s.t. vi(B) ≥ α do

i← an arbitrary agent s.t. vi(B) ≥ α, priority with agents in N1
2 ∪N2

Ai ← B
B ← B \ {B}
N ← N \ {i}
M ←M \B

end while
while Rα

5 (α) is applicable do
apply Rα

5 (α)
end while
while Rα

2 or Rα
3 is applicable do

apply Rα
k for smallest k ∈ {2, 3} s.t. Rα

k is applicable
end while
n← |N |
Ci ← {i, 2n− i+ 1, 2n+ i}i∈[n]

for k ← 1 to n do
while ∄i ∈ N s.t. vi(Ck) ≥ α do

g ← an arbitrary good in M \ [3n]
Ck ← Ck ∪ {g}
M ←M \ {g}

end while
i← an arbitrary agent s.t vi(Ck) ≥ α, priority with agents in N1

2 ∪N2

Ai ← Ck

N ← N \ {i}
M ←M \ Ck

end for
return ⟨A1, . . . , An⟩

Claim 3. For all bags B which is either unallocated or is allocated to an agent in N1
1 , vi(B) < 3/4 + δ.

The claim holds since the priority is with agents in N1
2 ∪ N2 and also that we allocate all the bags of value at

least 3/4 + δ for some remaining agent.
Let S be the set of bags allocated to agents in N1

2 ∪N2 and S̄ be the set of the remaining bags. We have

n = vi(M) =
∑
B∈S

vi(B) +
∑
B∈S̄

vi(B)

≤ (n− |N1
1 |)

(
3

2
+ 2δ

)
+ |N1

1 |
(
3

4
+ δ

)
(Lemma 5.6 and Claim 3)

=

(
3

4
+ δ

)
(2n− |N1

1 |)

< n(
3

4
+ δ)(2−

1
4 − δ
1
4 + δ

3

).(|N1
1 | > n( 14 − δ)/( 14 + δ

3 ))

= 3n(
5δ

3
+

1

4
)

This implies that 5δ
3 + 1

4 > 1
3 . which is a contradiction with δ ≤ 1/20. Therefore, all agents i ∈ N1

2 ∪N2 receive
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a bag at the end of Algorithm 5.

5.2.1 Agents in N1
1 In this section, we prove that all agents in N1

1 also receive a bag at the end of Algorithm
5. First, we prove a general lemma that lower bounds the MMS value of an agent after allocating 2k goods to
k other agents. This way, we can lower bound the MMS value of agents in N1

1 after the sequence of R5 rules is
applied.

Lemma 5.8. Let i ∈ N1
1 be a remaining agent after no more R5 is applicable. Then, before applying more

reduction rules, MMSi ≥ 1− 12δ.

For the sake of contradiction, assume that agent i ∈ N1
1 does not receive a bag at the end of Algorithm 5. By

Lemma 5.8, MMSi ≥ 1− 12δ after applying the sequence of R5’s. By Lemma 2.5, R2 and R3 are valid reductions
for i and, therefore, MMSi ≥ 1 − 12δ at the beginning of the bag-filling phase. Let us abuse the notation and
assume the instance at this step is ([n], [m],V).

Lemma 5.9. If δ ≤ 1/212, there exists k ∈ [n] such that vi(Ck) > 1− 12δ.

Let t be largest s.t. vi(Ct) > 1− 12δ and ℓ be largest such that vi(2n+ ℓ) ≥ δ(26 + 2/3).

Observation 5.6. If δ ≤ 3/476, then ℓ ≥ t.

Lemma 5.10. If δ ≤ 3/956, for all k ≤ min(ℓ, n), vi(Ck) ≥ 3/4 + δ.

Note that since i does not receive a bag by the end of Algorithm 5, there must be a remaining bag Ck such that
vi(Ck) < 3/4 + δ. Thus, Lemma 5.10 implies that ℓ < n when δ ≤ 3/956.

Corollary 5.1. (of Lemma 5.10) If δ ≤ 3/956, for all k ≤ ℓ, Ĉk = Ck.

Observation 5.7. vi(M \ {1, 2, . . . , 2n+ ℓ}) ≥ (n− ℓ)(1/4− 13δ).

Lemma 5.11. If δ ≤ 3/796, for all k > ℓ, vi(Ĉk \ {k, 2n− k + 1}) < 1/4− 13δ.

We are ready to prove Lemma 5.12.

Lemma 5.12. For δ ≤ 3/956, given a δ-ONI instance with |N1
1 | > n( 14 − δ)/( 14 + δ

3 ), all agents in N1
1 receive a

bag of value at least 3/4 + δ at the end of Algorithm 5.

Proof. It suffices to prove that all agents i ∈ N1
1 receive a bag at the end of Algorithm 5. Towards a contradiction,

assume that i ∈ N1
1 does not receive any bag. By Lemma 5.9, there exists a k ∈ [n] such that vi(Ck) > 1− 12δ.

Recall that ℓ is largest such that vi(2n+ ℓ) ≥ δ(26 + 2/3). We have

(n− ℓ)(
1

4
− 13δ) ≤ vi(M \ {1, 2, . . . , 2n+ ℓ}) (Observation 5.7)

=
∑
k>ℓ

vi(Ĉk \ {k, 2n− k + 1}) (Ĉk = Ck for k ∈ [ℓ] by Corollary 5.1)

< (n− ℓ)(
1

4
− 13δ), (Lemma 5.11)

which is a contradiction.

Theorem 5.2. Given any δ ≤ 3/956, for all δ-ONI instances where |N1
1 | > n( 14−δ)/( 14 +

δ
3 ), Algorithm 5 returns

a ( 34 + δ)-MMS allocation.

Proof. For all other agents i, if i ∈ N1
2 ∪N2, by Lemma 5.7, i receives a bag of value at least 3

4 + δ and if i ∈ N1
1 ,

by Lemma 5.12 i receives such a bag. Since N = N1
1 ∪N1

2 ∪N2, the theorem follows.
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Algorithm 6 mainApproxMMS(I, α)
Input: Instance I = (N,M,V) and approximation factor α > 3/4
Output: Allocation A = ⟨A1, . . . , An⟩

ϵ = α− 3/4
δ = 3/956
I = order(normalize(reduce(I, ϵ)))
N1

1 = {i ∈ [n] | ∀j ∈ [n] : vi(Bj) ≤ 1 and vi(2n+ 1) ≥ 1/4− 5δ}
if |N1

1 | ≤ n( 14 − δ)/( 14 + δ
3 ) then

return aprroxMMS1(I, δ) ▷ Algorithm 4 in Section 5.1
else

return aprroxMMS2(I, δ) ▷ Algorithm 5 in Section 5.2
end if
return ⟨A1, . . . , An⟩

6 (3/4 + ϵ)-MMS allocations

In this section, we give the complete algorithm mainApproxMMS(I, α) that achieves an α-MMS allocation for
any instance I with additive valuations and any α = 3/4 + ϵ for ϵ ≤ 3/3836. To this end, first we obtain a
δ-ONI instance for δ = 4ϵ/(1 − 4ϵ) by running order(normalize(reduce(I, ϵ))). Then depending on whether
|N1

1 | ≤ n( 14 − δ)/( 14 +
δ
3 ) or |N

1
1 | > n( 14 − δ)/( 14 +

δ
3 ), we run approxMMS1 or approxMMS2. The pseudocode of our

algorithm mainApproxMMS(I, α) is shown in Algorithm 6.

Theorem 6.1. Given any instance I = (N,M,V) where agents have additive valuations and any α ≤ 3
4 + 3

3836 ,
mainApproxMMS(I, α) returns an α-MMS allocation for I.

Proof. Let ϵ = α−3/4 and Î = order(normalize(reduce(I, ϵ))). Then by Theorem 4.2, Î is ordered, normalized
and ( 34 +

4ϵ
1−4ϵ )-irreducible (

4ϵ
1−4ϵ -ONI). Since ϵ ≤ 3

3836 ,
4ϵ

1−4ϵ ≤
3

956 = δ. Thus, Î is δ-ONI. Furthermore, from any

β-MMS allocation of Î one can obtain a min( 34 + ϵ, (1− 4ϵ)β)-MMS allocation of I.
By Theorem 5.1, given any δ ≤ 3/956, for all δ-ONI instances where |N1

1 | ≤ n( 14 − δ)/( 14 + δ
3 ), approxMMS1

returns a ( 34 + δ)-MMS allocation. Also, by Theorem 5.2, for all δ-ONI instances where |N1
1 | > n( 14 − δ)/( 14 +

δ
3 ),

approxMMS2 returns a ( 34+δ)-MMS allocation. Therefore, mainApproxMMS(I, α) returns a min( 34+ϵ, (1−4ϵ)( 34+δ))-
MMS allocation of I. We have

(1− 4ϵ)(
3

4
+ δ) ≥ (1− 3

959
)(
3

4
+

3

956
)

=
3

4
+

3

3836

≥ 3

4
+ ϵ = α.

Thus, mainApproxMMS(I, α) returns an α-MMS allocation of I.
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