An Auction Algorithm for Market Equilibrium with Weak
Gross Substitute Demands

JUGAL GARG, University of Illinois at Urbana-Champaign, USA
EDIN H USIC, IDSIA, USI-SUPSI, Switzerland
LASZLO A. VEGH, London School of Economics and Political Science, UK

We consider the Arrow-Debreu exchange market model under the assumption that the agents’ demands
satisfy the weak gross substitutes (WGS) property. We present a simple auction algorithm that obtains an
approximate market equilibrium for WGS demands assuming the availability of a price update oracle. We
exhibit specific implementations of such an oracle for WGS demands with bounded price elasticities and for
Gale demand systems.

CCS Concepts: » Theory of computation — Market equilibria.

Additional Key Words and Phrases: Auction algorithm, Weak gross substitutes, Fisher equilibrium, Gale
equilibrium

ACM Reference Format:
Jugal Garg, Edin Husi¢, and Laszlé6 A. Végh. 2025. An Auction Algorithm for Market Equilibrium with
Weak Gross Substitute Demands. ACM Trans. Econ. Comput. 0, 0, Article 0 (May 2025), 24 pages. https:
//doi.org/0000001.0000001

1 INTRODUCTION

Market equilibrium is a fundamental model in mathematical economics to describe the balance
between supply and demand. The study of market equilibria was pioneered by Walras [63] in 1874,
and was developed in the 1950s by Arrow and Debreu [4] and McKenzie [55]. In this paper, we
focus on the classical exchange market setting, where a set of agents A arrives at the market with
initial endowments of infinitely divisible goods G. A market equilibrium comprises prices for the
goods and a fractional assignment between the goods and the agents. Prices and assignments form
a market equilibrium if (a) each agent receives a bundle of goods they prefer the most at the given
prices by spending their revenue from selling their initial endowment, and (b) the market clears:
the demand of each good meets its supply. A typical way to represent the preferences is by utility
functions u; : RY — R, for each agent i € A; the demand of agent i at prices p and revenue b; is
a bundle x; maximizing u;(x;) subject to (p,x;) < b;. Classical works by Arrow and Debreu [4]

A preliminary version of this paper appeared in the Proceedings of the 38th Symposium on Theoretical Aspects of Computer
Science (STACS 2021) [37].

JG was supported by an NSF Grant CCF-1942321. EH was supported by SNSF Grant 200021 200731/1. LV received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement no. ScaleOpt-757481).

Authors’ addresses: Jugal Garg, University of Illinois at Urbana-Champaign, Urbana, USA, jugal@illinois.edu; Edin Husic¢,
IDSIA, USI-SUPSI, Switzerland, edin.husic@idsia.ch; Laszlé A. Végh, London School of Economics and Political Science,
London, UK, Lvegh@lse.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2167-8375/2025/5-ART0 $15.00

https://doi.org/0000001.0000001

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

HTTPS://ORCID.ORG/0000-0001-6439-7308
HTTPS://ORCID.ORG/0000-0002-6708-5112
HTTPS://ORCID.ORG/0000-0003-1152-200X
https://doi.org/0000001.0000001
https://doi.org/0000001.0000001
https://orcid.org/0000-0001-6439-7308
https://orcid.org/0000-0002-6708-5112
https://orcid.org/0000-0003-1152-200X
https://doi.org/0000001.0000001

0:2 Jugal Garg, Edin Husi¢, and Laszlé A. Végh

and McKenzie [55, 56] showed the existence of market equilibrium under mild assumptions, using
Kakutani’s fixed point theorem.

Equilibrium constitutes the ideal limit behavior of markets; existence proofs based on fixed point
theorems do not explain how such a limit can be attained. Investigating market dynamics has been
an important topic since the early days: Walras [63] introduced the tatonnement process, a natural
dynamics of supply and demand. This can be seen as a multi-round auction process, where an
auctioneer announces the current prices in each round. At these prices, each agent submits their
most preferred bundle of goods. Prices are adjusted in light of these bids: prices of overdemanded
goods are increased, and prices of underdemanded goods are decreased.

Samuelson [60] formulated a continuous version of tAitonnement as a dynamical system. Works
by Arrow and Hurwitz [6], Arrow, Block, and Hurwitz [3] introduced the weak gross substitutability
(WGS) property as a sufficient condition for convergence to an equilibrium. The agent’s demands
are said to be WGS if the demand for any good does not increase when its price increases while the
rest of the prices remain unchanged. Such a property gives a sound justification of the titonnement
price changes. However, it is a nontrivial requirement, and there are important examples of demands
that are not WGS. Scarf [61] showed that tAtonnement may not converge for non-WGS demands.

Classical market equilibrium models became the subject of renewed interest in the optimization
and theoretical computer science communities, starting from the 1991 paper by Megiddo and
Papadimitriou [57]. Formulating the existence of market equilibrium as a computational search
problem raises intriguing questions. Many of these works treat market equilibrium as a centrally
coordinated computational problem: can a central authority compute a market equilibrium given
perfect information on all agents’ utilities? Surprisingly, even in such a centrally coordinated
setting, and even for some of the simplest non-WGS demands, computing approximate equilibria
turn out to be complete problems for certain complexity classes. On the positive side, this line
of investigation led to remarkable algorithmic developments for various market models. See e.g.,
[12, 16, 22, 24, 29, 32, 39, 40, 48, 62, 65]. For WGS utilities, the first polynomial-time computability
of market equilibria was established by Codenotti, Pemmaraju, and Varadarajan [23]. A discrete
variant of the tAitonnement algorithm that converges to an approximate equilibrium (see also [59,
Section 6.3]) was given by Codenotti, McCune, and Varadarajan [21]. More recently, Bei, Garg, and
Hoefer [8] gave a simple ascending-price algorithm. We note that both the latter algorithms need
central coordination.

In most market settings, we cannot assume the level of central coordination needed for many
of the above algorithms. In such markets, one has to investigate distributed mechanisms in a
decentralized environment with limited coordination. This issue was addressed by a number of
papers providing titonnement algorithms for various classes of utility functions and restricted
models, some of them substantially weakening the need for central coordination among agents,
see e.g., [7, 17, 18, 26, 35].

Auction algorithms form an even simpler subclass of titonnement-type algorithms. These al-
gorithms are decentralized and require only local coordination between agents. Each agent may
take goods from others by outbidding them, i.e., offering slightly higher prices. While prices in
tatonnement may increase as well as decrease, prices in auction algorithms may only go up. For
exchange market models, the first such algorithm was established for linear utilities—of the form
u(x) = X jeq vjx;—by Garg and Kapoor [41] (see also [59, Section 5.12]). The algorithm was later
improved [42] and generalized to separable concave gross substitute utility functions [44], to a
subclass of non-separable gross-substitutes called uniformly separable [43], and to a production
model with linear production constraints and linear utilities [49].

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

An Auction Algorithm for Market Equilibrium with Weak Gross Substitute Demands 0:3

Auction algorithms have been widely used beyond exchange markets and studied in different
contexts in optimization and economics. Bertsekas [9, 10] introduced auction algorithms for assign-
ment and transportation problems. Closely related algorithms were introduced for markets with
indivisible goods—further discussed in Section 1.2—by Kelso and Crawford [51], and Demange,
Gale, and Sotomayor [28].

1.1 Our contributions

We present a new auction algorithm that computes an approximate market equilibrium in exchange
markets for arbitrary WGS utilities, assuming a suitable oracle representation. This settles an open
question raised in [43]. The result affirms the natural intuition that the WGS property should suffice
for auction algorithms: A main invariant in auction algorithms is that at every price increase, the
agents will still hold on to the goods whose prices have not increased. This property is almost
identical to the definition of the WGS property; nevertheless, making an auction algorithm work
for general WGS utilities requires new technical ideas.

The previously mentioned auction algorithms operate with two prices for each good j, a lower
price p; and a higher price (1 + ¢)p;. This technique was used for linear [41], for separable [42],
and for uniformly separable utilities [44]. However, this simple approach does not seem to apply to
the general WGS case, and we need to use a more fine-grained pricing approach. In our algorithm,
each agent maintains individual prices for each good j in the range [p;, (1 + ¢)p;] for the ‘market
price’ p;. The main invariant in our algorithm is that each agent maintains a subset of an optimal
bundle with respect to these individual prices.

Each agent updates their individual prices using a subroutine called FindNewPrices. The general
algorithm in Section 3 relies on this subroutine, and its running time for finding an e-approximate
"'Z# -log (%)) where Tr denotes a running time bound on FindNewPrices
and pmax and pumin are lower and upper bounds on the prices in an approximate equilibrium
(Theorem 1).

equilibrium is O (

Demand systems. Our algorithm uses only local coordination between agents. However, agents
should update their individual prices according to certain requirements. These are captured by
FindNewPrices; implementing this subroutine depends on the particular demand system.

First, one needs to clarify how the preferences are represented in the model. WGS utilities in the
literature are usually given in an explicit form such as CES (constant elasticity of substitution) or
Cobb-Douglas utilities, see Section 2.2. This is in contrast with the setting of markets with indivisible
goods, where the common model is via a value or demand oracle [52], since direct preference
elicitation, that is, the explicit description of the valuation function would be exponential. The class
of continuous WGS functions is also rich, and hence an oracle approach seems more appropriate to
devise algorithms for this class.

We model the agent preferences by demand oracles (Definition 5). A demand oracle may be
implemented by solving a utility-maximizing convex problem but may be of a different form. We
discuss this in Section 2.2, also exhibiting a class of WGS demand systems where our model is
applicable but do not appear to have a simple closed-form representation.

A natural parametrization of WGS demand systems is by price elasticity (Definition 6) that
bounds the change in the demands as a function of the price changes. In Section 4.1, we implement
FindNewPrices by a simple iterative application of the demand oracle for the case of bounded
price elasticities.

We present additional implementations for the case when the price elasticity can be unbounded.
Linear utilities constitute an important such class. Lemma 10 gives a direct, linear time implemen-
tation of FindNewPrices for linear utilities.

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

0:4 Jugal Garg, Edin Husi¢, and Laszlé A. Végh

In Section 4.3, we consider Gale demand systems introduced by Nesterov and Shikhman [58].
Such demand systems are given by a convex program. Accordingly, we use a convex programming
approach to implement FindNewPrices.

Spending restricted equilibrium and Nash social welfare. Our motivation for considering Gale
demand systems comes from an application to the Nash social welfare (NSW) problem. In this
problem, we need to allocate a set of indivisible goods to agents in order to maximize the geometric
mean of their valuations.

A useful relaxation of the NSW problem turns out to be a so-called spending-restricted (SR)
equilibrium under Gale demand systems. Spending-restricted equilibria were introduced by Cole
and Gkatzelis [27] as a key tool in finding the first constant-factor approximation algorithm for
this problem with additive valuations. The same equilibrium concept was used in several other
approximation algorithms for the NSW problem, see e.g., [1, 15, 25, 36].

The SR-equilibrium is a variant of the Fisher market model, a special case of the exchange market
model. In the Fisher model, the agents do not arrive with an initial endowment of goods but with a
fixed budget to spend on the available set of goods. The SR-equilibrium differs in that the available
amount of each good j is influenced by the price p;, namely, it is set as min{1,1/p;}. In other
words, once the price of the good reaches 1, the seller will only sell an amount of total value 1.
Auction algorithms are well-suited for SR-equilibrium computation: once the price of a good goes
above one, we can naturally decrease the total available amount of these goods within the auction
framework.

In an extended version of this paper [38], we design a polynomial time constant-factor approxi-
mation algorithm for the NSW problem under capped separable piecewise linear concave valuations
by rounding an SR equilibrium under Gale demand systems to an approximately optimal solution.
The previous algorithm for this problem takes pseudopolynomial time [15]. A key for this result is
finding an approximate SR equilibrium in polynomial-time for which we use a modification of our
auction algorithm. Interestingly, the capped separable piecewise linear concave valuations satisfy
the WGS property under Gale demand systems but not in the “standard” demand system setting (1).
For details, we refer to [37, 38].

1.2 Further related work

Proportional response dynamics. Proportional response is a distributed market mechanism intro-
duced by Zhang [66] in the context of Fisher markets. In contrast with titonnement and auctions,
there is no direct price mechanism. In each round, agents bid on goods in proportion to the utility
they receive from them in the previous round; the goods are then allocated in proportion to the
agents’ bids. Proportional response is known to converge to a market equilibrium in a variety of
Fisher markets [11, 19, 20], and some special cases of exchange markets [13, 14, 64].

Markets with indivisible goods. Auction algorithms have been widely studied in the context of
markets with indivisible goods. There are significant differences between the settings with divisible
and indivisible goods. In the indivisible setting, equilibria are known to exist only in restricted
settings. Kelso and Crawford [51] introduced (discrete) gross substitute utilities as a class where
an equilibrium is guaranteed to exist, and a simple auction algorithm can be used to find an
approximate equilibrium. As shown by Gul and Stacchetti [46, 47], the discrete gross substitutes
property is, in essence, a necessary and sufficient condition for the existence of an equilibrium
and for an auction algorithm to work. We refer the reader to the survey by Paes Leme [52] on the
role of gross substitute utilities in markets with indivisible goods and their connections to discrete
convex analysis.

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

An Auction Algorithm for Market Equilibrium with Weak Gross Substitute Demands 0:5

Whereas the definitions of discrete gross substitutes and continuous WGS utilities are very
similar, there does not appear to be a direct connection between these notions. The main difference
is in the utility concepts: for indivisible markets, the standard model is to maximize the valuation
minus the price of the set at given prices, whereas standard divisible market models operate with
fiat money: the prices appear via the budget constraints but not in the utility value. Still, our result
can be interpreted as the continuous analogue of the strong link between auction algorithms and
the gross substitutes property for markets with indivisible goods: we show that auction algorithms
are applicable for the entire class of WGS utilities for markets with divisible goods. We suspect
that the converse may also be true, namely, that the applicability of auction algorithms should
be limited to WGS utilities. In contrast, tatonnement algorithms have been successfully applied
beyond the WGS class, see e.g., [17, 18, 35].

Graphical exchange economies. Subsequently to the preliminary version of this work [37], An-
drade, Frongillo, Gorokhovsky, and Srinivasan [2] studied graphical exchange markets with resale.
Here, agents may only trade with their neighbors in a graph. They show the existence of such an
equilibrium and give an auction algorithm for finding an approximate market equilibrium in such
markets, assuming that agents have WGS demands.

The rest of the paper is structured as follows. Section 2 defines the exchange market model and
provides examples of WGS demand systems. Section 3 presents the auction algorithm for exchange
markets. Section 4 present different ways of implementing FindNewPrices—the key subroutine of
the algorithm. Section A compares the running time of our algorithm to previous work.

A preliminary version of this paper appeared in [37], and an extended version, also including
results on SR-equilibrium can be found in [38].

2 THE EXCHANGE MARKET AND DEMAND SYSTEMS

We use R, for the nonnegative reals, and for a positive integer k, let [k] = {1,2,...,k}. We consider
a market with a set of agents A = [n] and a set of divisible goods G = [m]. Each agent i € [n]
arrives at the market with an initial endowment of goods e'?) € R™. We lete = 3", ¢(!) denote
the total amount of the goods. We assume e; > 0 for each j € [m]. A bundle x is a non-negative
vector x € R*. We say that a bundle of goods y € RT* dominates the bundle x € R if x < y.

Given a non-negative price vector p € R, the budget of agent i at prices p is defined as
bi(p) = <p, e > ; we simply write b; if the prices are clear from the context. It follows that (p, e) =
st <P’e(i)> =2 bi.

We specify the markets via demand systems. A demand system is a function D : R™! — 28V,
D(p, b) denotes the set of preferred bundles of an agent at prices p that are affordable within budget
b. Here 2™ denotes the family of all subsets of R””. Bundles in D(p, b) are called optimal bundles
or demand bundles at prices p and budget b. The demand system is simple if |D(p, b)| = 1 for all
(p, b) € R™1; for such demand systems, we will also use D(p, b) to denote this single bundle. We
make two assumptions on the demand systems.

Assumption 1 (Scale invariance). For every agenti € [n], (p,b) € R"", and a > 0, D;(p,b) =
D;(ap, ab).

That is, we require that the demand is homogeneous of degree 0; informally, the demand does not
depend on the currency. This is a standard assumption in microeconomics, see e.g., [5, 31, 33, 54].

Assumption 2 (Non-satiation). For every agenti € [n], (p,b) € R™, and every x € D;(p,b),
(p,x) =b.

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

0:6 Jugal Garg, Edin Husi¢, and Laszlé A. Végh

That is, in every optimal bundle the agents must fully spend their budgets. This is a standard
assumption for exchange markets as it is necessary for the fundamental theorems of welfare
economics (see e.g., [53, Chapter 16]).

A common way to define demand systems is by utility functions. By a utility function we
mean a function u : R}* — R that is concave, continuous, non-decreasing with u(0) = 0. The
corresponding demand system is

D*(p,b) = arg;ré]%ing {u(x) : (p,x) < b} . 1)

An important example is the linear demand system defined by a linear utility function u(x) = (o, x)
for v € R}*. The corresponding demand system D¥(p, b) is the set of all fractional assignments of
goods maximizing v;/p; (bang-per-buck) with a total cost of b. Thus, this demand system is not
simple.

For demand systems in the form (1), Assumption 1 is immediate, and Assumption 2 holds if u(x)
is strictly monotone increasing. The demand system is simple if u(x) is strictly convex.

2.1 Exact and approximate market equilibria

Definition 1 (Market equilibrium). Consider an exchange market with a set A = [n] of agents, a set
G = [m] of goods, initial endowments e'’) € R?, ande =1, e, Let D;(p,b) denote the demand
system of agent i € A. The prices p € R™ and bundles x) € R™ form a market equilibrium if

(i) xV € Di(p, (p.e'?)) foralli € A, and

(i) X1, xj(.i) < ej, with equality whenever p; > 0, for all j € G.

That is, p and the optimal bundles x?) form an equilibrium if no good is overdemanded and
goods at a positive price are fully sold. Note that this implies that every agent fully spends their
budget.

We relax this to the following notion of e-approximate equilibrium:

Definition 2 (Approximate market equilibrium). Consider the same setting as in Definition 1. For
€ > 0, the prices p € R and bundles x) € R form an e-approximate market equilibrium if

(i) xD <z for some z) € D;(p?, <p,e(i)>), where p < p) < (1+¢)p,
(ii) Z?le](.i) < ej,Aand
(iii) (p.e — X, xD) < e (p,e).

That is, every agent receives a subset of their optimal bundle at prices that are within a factor (1+¢)
from p, and all goods are nearly sold: the value of the unsold goods is at most an ¢ fraction of the
total value of the goods. The total value of the goods “taken away” from the near-optimal bundles of
the agentsis ¥/, (p, z'Y) — x(V). Parts (i) and (iii), together with the fact that (p(?, z()) < (p,e(?)
for all i, imply that this amount is at most ¢ (p,). In particular, ¢ = 0 corresponds to an exact
market equilibrium as in Definition 1.

Condition (i) can be seen as a natural extension of the corresponding approximate optimality
conditions in previous auction algorithms [41, 43, 44]. For linear utilities, Garg and Kapoor [41]
require the approximate maximum bang-per-buck condition v;;/p; < (1 + €)v;x/px for any agent i,
goods j and k such that x;; > 0. In other words, the goods purchased by agent i according to this
definition are maximum bang-per-buck with respect to some prices p(*) such thatp < p() < (1+¢)p.

Condition (iii) corresponds to the definition of approximate equilibrium in [30] and [45]. This
notion is weaker than the ones used in [41, 43, 44]. The most important difference is that the latter

IWe note that this assumption can be replaced by a weaker one in the case of Fisher markets, see [37, 38].

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

An Auction Algorithm for Market Equilibrium with Weak Gross Substitute Demands 0:7

papers guarantee that each agent recovers approximately their optimal utility. Such a property
could be achieved by strengthening the bound in (iii) from ¢ (p, €) to €pPmin€min, Where pmin is the
minimum price and ey, is the smallest total fractional amount in the initial endowment of any
agent. However, this would come at the expense of substantially worse running time guarantees in
our algorithmic framework.

An important special case of exchange markets are Fisher markets, where e!) = an" 5. e for each
i=1"1

i € [n], where b; > 0. That is, the initial endowments include every good in the same proportion.

By appropriately scaling the prices, we can interpret the b;’s as fixed budgets, and an exchange

market equilibrium can be written as follows.

Definition 3 (Fisher market equilibrium). Consider a Fisher market with a set A = [n] of agents, a
set G = [m] of goods, and budgets b; > 0, i € [n]. Let D;(p, b) denote the demand system of agent
i € A. The prices p € R™ and bundles x'") € R™ form a Fisher market equilibrium if

(i) x € D;(p, b;) foralli € A, and
(ii) Y, x](.l) < ej, with equality whenever p; > 0, for all j € G.

2.2 The weak gross substitutes property

We next introduce the class of demand systems investigated in this paper.

Definition 4. The demand system D(p, b) is a weak gross substitutes (WGS) demand system if for
any (p,b) € R™' anyx € D(p,b), and any p’ > p and b’ > b, there existsy € D(p’,b’) such that
yj = x; whenever p; = p;.

Further, we say that the utility functionu : RT* — R, satisfies the WGS property if the corresponding
demand system D*(p, b) as in (1) is a WGS demand system.

We use an oracle model to represent the demand systems. We require access to the allocations
guaranteed by Definition 4.

Definition 5 (Demand oracle). For a WGS demand system D(p, b), a WGS demand oracle requires
in the input two vectors (p,b), (p’,b’) € R™1 such that (p’,b’) > (p,b), and a vector x € D(p,b).
The oracle outputs a vectory € D(p’, b’) such that that y; > x; whenever p’; = p;.

The complex form of the definition is due to the possible non-uniqueness of demand bundles.
For simple demand systems, it suffices to specify (p’,b’) € R™*! in the input; the output is the
unique vector D(p’, b’).

Consider a demand system D*(p, b) as in (1) for a utility function u : RP* — R,. If this isnot a
simple demand system, we can implement the demand oracle by adding the constraints y; > x; for
every i with p] = p; to the convex optimization problem in (1).

Examples of WGS utilities. Some classical examples in the literature are as follows.

o As previously mentioned, the linear utility function is given by u(x) = (v, x) for v € R}".
e The Cobb-Douglas utility function is specified by parameters & € RY", 3", a; = 1 as

m
u(x) = nx?i)
J=1

This is a simple demand system with x = D“(p, b) such that x; = ba;/p; for all j € [m].

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

0:8 Jugal Garg, Edin Husi¢, and Laszlé A. Végh

o The constant elasticity of substitution (CES) utility function is specified by parameters f € R}
such that Z}":l fi=1and o € R, as

u(x) := (Zﬁj‘l’x;"l) 7 ,
=1

)
f]p;l_a for all
Z k=1 ﬂkpk

j € [m]. The CES demand system satisfies the WGS property if and only if o > 1.
e The nested CES utility function is defined recursively (see [48] for more details). Any CES
function is a nested CES function. If ¢, hy, ..., h; are nested CES functions, then f(x) =

This is also a simple demand system with x = D*(p, b) such that x; =

max g(hy(x!),..., h:(x%)) over all x!, ..., x* such that 22:1 x* = x, is a nested CES function.
In a well-studied special case, each good j can only be used in at most one of the h;’s; see
e.g., [50].

Convex combinations of demand systems. Given two WGS utility functions v and u’, the demand
system corresponding to their sum u +u’ may not be WGS. In contrast, taking convex combinations
of simple WGS demand systems retains this property; the following proposition is easy to verify.

Proposition 1. Let D(p,b) and D’ (p, b) be two simple WGS demand systems and 0 < A < 1. Let us
define the demand system D" = AD + (1 — A)D’ by

D" (p,b) := D(p, \b) + D" (p, (1 = 1)b) .
Then, D" is a simple WGS demand system.

This enables the construction of some interesting demand systems. For example, Matsuyama
and Ushchev [54] consider hybrids of CES and Cobb-Douglas demands, where the demand system
can be given as

1-o
Xj = ﬂ)Laj+(1—/1)ﬁjp—]_
pj 2k ﬁkP;lc ?
for pe R, YL fi=10>1LaeR], ¥ a;j=1,and0 <A < 1.2
Note that if D = D* and D’ = D¥ for some concave utility functions u and u’, the demand
system AD + A’D’ will in general not correspond to the utility function Au + A’u’. It is not clear
whether one can explicitly write utility functions corresponding to such convex combinations.
Using a demand oracle model, our algorithm is applicable to a convex combination of simple
demand oracles.

5

Separable and uniformly separable WGS utility functions. The auction algorithm for linear utili-
ties [41] was later extended to separable WGS utility functions [44], that is, u = 3} ;¢ u; where
each u; is a WGS utility function depending only on good j. This model was further generalized
to uniformly separable WGS utility functions [43], that is, ag)(cj) = fj(x;)g(x), where each f; is a
strictly decreasing function. This class already includes CES and Cobb-Douglas utilities; however,
it does not appear to extend to demand systems obtained as their convex combinations, where even
the explicit form of the utility function is unclear. Further, the running time bound stated in [43] is

unbounded for the CES and Cobb-Douglas cases; see Section A for further discussion.

2We note that this demand function does not seem to correspond to a nested CES utility function.

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

An Auction Algorithm for Market Equilibrium with Weak Gross Substitute Demands 0:9

2.3 Price elasticity of demands

A commonly studied property of demand systems is price elasticity. For simple demand systems
that are differentiable, the usual definition of the price elasticity of good j with respect to the price
of good k is e = dlog D;(p, b)/dlog px, where D;(p, b) is the unique demand for good j at prices
p and budget b. The WGS property guarantees that e > 0 if j # k, and consequently, e x < 0.

The following definition does not assume simplicity or differentiability of the demand system. It
corresponds to ex . > —f for all k € [m], in the above case.

Definition 6. Consider a WGS demand system D(p, b). For some f > 0, we say that the elasticity
of D(p, b) is at least —f if the following holds. For any (p,b) € R™! and x € D(p,b), j € [m] and
p > 1, let us define

@)

pr otherwise.

, ifk = j,
pk:{ﬂpk if

Then, there exists a bundle x’ € D(p’, b) such that x;. > xj/pf and x;. > xy for everyk # j.

It is easy to check that the linear demand systems do not satisfy this property for any finite f,
as the demand for a good may drop to zero as a result of an arbitrarily small price increase. We
include the proof of the following well-known statement to illustrate this concept.

LEMMA 1. The Cobb-Douglas demand system has elasticity at least —1, and the CES demand system
with parameter o > 1 has elasticity at least —o.

Proor. The optimal bundle for a Cobb-Douglas utility function is x = D(p, b) with x, = ba,/p,
for ¢ € [m]. Increasing the price of a good by a factor 1 > 1 corresponds to a decrease in the
demand by the same factor. Thus, the elasticity is at least —1.

Pep, b
ZZL:] ﬁkpjlc_o.
any good j € [m] and u > 1, and let p’ be defined as in (2). Let x” = D(p’, b) denote the optimal
bundle. Using o > 1, we get
Pin~p;°b Pip; b Bip;’b x;

The optimal bundle for CES utilities is x = D(b, p) with x, = for ¢ € [m]. Select

7’

X; = = >
D Dk B T B oD Dk Prrop T+ Bippy uo X by K

s

verifying that the CES demand system has elasticity at least —o. O

Our next lemma allows us to derive price elasticity bounds for convex combinations of simple
demand systems.

LEmMMA 2. Let D and D’ be simple demand systems with elasticity at least —f and —f', respectively.
Let 0 < A < 1. Then the demand system AD + (1 — A)D’ has elasticity at least min{—f, —f"}.

PrOOF. Let D” = AD + (1 — A)D’ and f” = max{f, f’}. Let (p,b) € R™!, x = D(p,Ab) and
x"=D"(p, (1= A)b). Then, x”" = x+x’ = D' (p, b).

Let j € [m], p = 1 and define p’ as in (2). As the elasticity of D is at least —f, for y = D(p’, Ab)
we have y; > x;/pf > x;/pf”. Analogously, for y’ = D’(p’, (1 — A)b) we have Y= x;./,uf//. Thus,
yi+y; > (x;+ x;.)/pf". Since y +y’ = D" (p, b), we conclude that the elasticity of D" is at least

1. O

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

0:10 Jugal Garg, Edin Husi¢, and Laszlé A. Végh

2.4 Gale demand systems

Recall that for a utility function u : R]* — R,, we can obtain demand systems from utilities using
the convex program (1) that maximizes the utility subject to the budget constraint.

Fisher market equilibria can be formulated by the well-known Eisenberg—Gale convex program
[34] for many important cases:

maxz bilogu;(x;) s.t. in <e. 3)
i=1

i=1

Eisenberg [33] showed that the optimal solutions to this program, together with the prices corre-
sponding to the optimal Lagrangian multipliers, form a Fisher market equilibrium if the utilities are
homogeneous of degree one—that is, u;(ax) = au;(x) for every x € R™ and a > 0, i € [n]. This
class includes many important examples such as linear, Cobb—Douglas, and CES utilities.

Nevertheless, solutions to (3) may not correspond to a Fisher market equilibrium in general.
Nesterov and Shikhman [58] showed, using Lagrangian duality, that the optimal solutions to (3)
always form a Fisher market equilibrium for Gale demand systems defined as:

G*(p, b) := argmax blogu(x) — (p,x) . 4)
xeR}P
The following connection explains why the Eisenberg—Gale program can be used for demand
systems of the form (1) for homogeneous degree one utilities. The proof follows easily from
Lagrangian duality and Euler’s homogeneous function theorem [59, Section 6.2].

LEMMA 3. Let u be a utility function that is homogeneous of degree one and differentiable. Then, for
any (p,b) € R™ 1, the optimal solutions to the systems (1) and (4) coincide.

Nesterov and Shikhman [58] study Gale equilibria (equilibrium under Gale demand systems)
as well as the more general concept of Fisher-Gale equilibria; they also give a titonnement type
algorithm for finding such an equilibrium.

In the context of our work, in [38] we extend the auction algorithm for spending-restricted
equilibria to Gale demand systems. This can be applied to approximating the Nash social welfare,
as discussed in Introduction.

3 THE AUCTION ALGORITHM

Algorithm 1 describes the auction algorithm. It outputs a 4e-approximate market equilibrium for
an accuracy parameter 0 < ¢ < 0.25 specified in the input. We use the notation e, e, D; as in
Definitions 1 and 2. We introduce some notation and formulate key invariants.

(a) We maintain a price vector p called market prices, initialized as p; = 1 for all j € [m].? Prices
may only increase, and remain integer powers of (1 + ¢).

(b) No good is oversold, i.e., at most e; amount of each good is sold, for j = 1,2,..., m. Also, the
market price for each good j that is not fully sold is p; = 1.

(c) The budget of agent i is b; = <p,e(i)>. Every agent i € [n] maintains individual prices
p e R satisfying p < p@ < (1+¢)p. We let

Li={je[m:pl" <(1+e)p;} and H;:=[m]\L.

3Recall from Assumption 1 that if there exist market clearing prices that are strictly positive, we can also assume that these
prices are at least 1. Even though there might be goods priced at 0 in an equilibrium, we can always find an e-approximate
market equilibrium where all prices are positive.

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

An Auction Algorithm for Market Equilibrium with Weak Gross Substitute Demands 0:11

(d) Every agent i € [n] owns a bundle of goods ¢! € R™ that is dominated by a bundle
x € Di(p™, b;), i.e., an optimal bundle with respect to the individual prices p{*) and the
budget b;. We call x¥) the desired bundle.

(e) For the amount c;.i) of good j, agent i pays p; if j € L; and (1+¢)p; if j € H;.* The surplus of

agent i is
Si == bi - Z CJ(.l)pj - (1 +8) Z CJ(-l)pj .
JeL; J€H;

Before giving an overview of the algorithm, we formulate the termination condition.

LEMMA 4. Assume that (a)—(e) hold as above. Then s; > 0 for all i € [n]. Moreover, if

n

Zsi < 3e{p,e)

i=1

for the input bundle e € R™, then the market prices p and allocations ¢V, i = 1,2,...,n form a
4e-approximate market equilibrium.

Proor. Let ¢! be the bundle of goods agent i owns. By invariant (d), there exists a desired bundle
x) dominating ¢). The bundle x(* is affordable for i at prices p*), and thus by invariants (d)
and (e) the same bundle is affordable for i at prices p; for j € L; and (1 + ¢)p; for j € H;. It follows
that i can afford ¢ at prices pjfor j € Lyand (1+¢)p; for j € H;. Hence, s; > 0.

Condition (i) in Definition 2 is immediate from invariants (c) and (d), and condition (ii) follows
from (b). It is left to verify condition (iii). We can write

o) S0 S pe0) 50 o)

i=1 i=1 i=1
n . n
= Z (si+€ Z Cj(-l)pj) < Zsi+£(p,e) < 4e(p,e) .
i=1 j i=1
[m]
We now give an overview of the algorithm. The individual prices p(?) are updated by the key

subroutine FindNewPrices that outputs prices and bundles as specified below. In Section 4, we
provide implementations for different classes of demand systems.

Subroutine FindNewPrices
Input: Agent i € [n], market prices p € R™, individual prices p() € R™
such that p < p¥ < (1+ ¢)p, budget b; € R,, and bundle ¢! € R™.
Output: Prices p € R and bundle y € R such that
(A) y € Di(p,b;) andy > ¢V, and
B) p') < p < (1+¢e)p, and p; = (1 + &)p; whenever y; >
(1+¢) c](.i).

The new individual prices will be set as p and the new desired bundle as y. Property (B) requires
that if agent i wants significantly more of good j than the current amount cJ(.'), then they are willing
to pay the higher price (1 + ¢)p;.

“This is in contrast with [41] and the other previous auction algorithms where i may pay p; for some amount of good j and
(1+ ¢)p;j for another amount.

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

0:12 Jugal Garg, Edin Husi¢, and Laszlé A. Végh

The auction algorithm (Algorithm 1) considers the agents one-by-one in steps. A step gives

an agent i a chance to spend her surplus money s; to obtain more goods. If s; > 0, agent i calls
FindNewPrices(i, p'?, p, b;, ¢?)) to obtain new individual prices p and desired bundle y. At the end
of their step, they update p¥ = p.
Given p and y, agent i considers all goods with p; = (1 + €)p; one-by-one, and tries to purchase
y; — ¢\ amount using the Outbid procedure. First, if >}, cj(.i) < ej, i.e., if there is any unsold
amount of good j, they purchase from such amounts. If they still want more, they will outbid other
agents who have been paying the lower price p; for this good, by offering the higher price (1+¢)p;.
Goods with p; < (1 + ¢)p; are ignored: no additional amount of these goods is purchased.

If after the calls to OQutbid, a good j is only being sold at the higher price (1 + ¢)p;, then we
call the RaisePrice procedure to increase the market price from p; to (1 + ¢)p;, and update the
budgets and surpluses accordingly. The algorithm terminates once the total surplus of the agents is
at most 3¢ (p, e); according to Lemma 4, the current prices and allocations form a 4¢-approximate
equilibrium.

We now formulate the main running time statement. This depends on the running time Tr of
the subroutine FindNewPrices. We assume that Tr = Q(m), since the output needs to return an
m-dimensional vector of goods.

We also use an upper bound on ppax/pmin—the ratio of the largest and smallest nonzero prices
at some ¢-equilibrium. An upper bound on ppmax/pPmin may be obtained for the specific demand
systems, e.g., for demand systems arising from linear utilities [41]. Alternatively, one can follow
the approach of Codenotti, McCune, and Varadarajan [21, 23] by adding a dummy agent with a
Cobb-Douglas demand system and an initial endowment of a small fraction of all goods. In the
presence of such an agent, we can obtain a strong bound on ppax/Pmin, at the expense of obtaining
a slightly worse approximation guarantee. We describe the construction in Appendix B.

Note that it is the ratio pmax/pPmin rather than the actual values of pyay and pp;, that matter: by
Assumption 1, for (approximate-)equilibrium prices p, ap also gives (approximate-)equilibrium
prices with the same allocation, for any @ > 0. In our algorithm, the minimum price will remain 1
throughout, see Lemma 6.

Theorem 1. Assume all agents have WGS demand systems. Let Tr be an upper bound on the
running time of the subroutine FindNewPrices and suppose that Tr = Q(m). Algorithm 1 finds a

. o1 . . . nmT; Pmax
4e-approximate market equilibrium in time O (E—ZF -log (m

One particular implementation of FindNewPrices in Section 4.1 is given for bounded elasticities;
see Lemma 9 for the running time-bound. Recall the elasticity bound f from Definition 6.
Theorem 2. If all agents have WGS demand systems with elasticity at least —f for some f > 0, then

2f.
an e-approximate equilibrium can be computed in time O (nmgﬁ -log (i@ , where Tp is the time

needed for one call to the demand oracle.

We give an overview of the running times of the previous auction algorithms in Section A.

3.1 Description of the algorithm

We now give a more detailed overview of the algorithm. Recall the notation and invariants (a)—(e)
at the start of this section.

For each good j = 1,2,..., m, we partition the total amount as e; = w; +[; + h; according to the
price it is sold at:

e amount w; is the unsold part of the good,

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

An Auction Algorithm for Market Equilibrium with Weak Gross Substitute Demands 0:13

Algorithm 1: Auction algorithm

Input: Demand systems D;, and the endowment vectors e ande € (0,0.25).
Output: A 4¢-approximate market equilibrium.

1 Initialize

2 for j e [m]doe; « X7 e?)

iz1€; spj e 1iwjeislj 0
3 for i € [n] do

4 b; «— Z;’zl ej(.i) 1s; — b;

5 for j € [m] dopj(.i)<—1;cj(.i)<—0

6 end

7 while Y., s; > 3¢ (p, e) do

8 Select next agent i € [n] withs; > 0. // Step for agent i.

9 | (py) < FindNewPrices(i, p, p"), b, c?)

10 for j=1tomdo
11 if p;i) <(1+¢)pjandp; = (1+¢)p; then // Case 1
12 Si — Sj — c](.i) cepjsly 1 —cj(.i) // i pays (1+¢)p; instead of p;.
13 Outbid(i, j, y; —ct”)
14 else if p}m =(1+e¢)pjandp; = (1+¢)p; then // Case 2
15 ‘ Outbid(i, j, yj — cj(.i>)
16 end
// Skip the goods with p‘/.” <(1+e)p; and p; < (1+e)p;. // Case 3
17 if w; +[; = 0 then RaisePrice(j)
18 end
v | pWe—p
20 end

21 return p, {p}ic[y) and {¢D}ic[n)

e amount [; is sold at the lower price p;, and
e amount A; is sold at the higher price (1 +¢)p;.

We only explicitly maintain w; and [; in the algorithm. Recall from (b) that w; > 0 and p; = 1 as
long as w; > 0. We further maintain w; +[; > 0 at the beginning of every step, i.e., there is always
a part of the good that is unsold or owned by an agent at the lower price.

The Outbid subroutine. Procedure Outbid(i, j, y), controls how the ownership of goods may
change. This is called when agent i would like to purchase an additional amount y of good j.

If wj > 0, there is some unsold amount of the good, then agent i starts by purchasing min{w;, y}
of this amount. Recall that p; = 1 at this point is due to invariant (b).

If agent j still requires more of good j, we consider agents k one-by-one who are paying the
lower price p; for good j, i.e.,, j € Lr. Agent i may take over some of this amount by offering a
higher price (1+ ¢)p;.

The RaisePrice subroutine. Procedure RaisePrice(}) is called when w; +[; = 0 for a good j, i.e.,
it is only sold at the higher price (1 + €)p;. In this case, we increase the market price to (1 + ¢)p;,

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

0:14 Jugal Garg, Edin Husi¢, and Laszlé A. Végh

Procedure Outbid(i, j, y)
Input: Agenti € [n], good j € [m], amount y > 0.

12y
2 if w; > 0 then // a part of j is unsold
3 p — min{wj, z}

4 Wj—wj—pl

5 cj(.i)<—cj(.i)+p

6 sie—si—(1+e)p// here p;=1

7 Ze—z—p

8 end

9 while z > 0 and[; > 0 do

10 Let k € [n] be such that cJ(.k) >0and j € Lg
1]
U mm{cj ,Z}
12 lj — lj —H
13 cj(.k) — c;k) - I c](.i) — c](.i) +p// i outbids k
14 Sk < S+ ppj; si «— si— (1+e)up;
15 Ze—z—p

16 end

Procedure RaisePrice(})

Input: Good j € [m].
1 for k € [n] do

2 bk — bk + Epjej(.k)

3 Sk <— Sk + Epjej(.k)
k

1| p = (1o

5 end

6 pj — (L+e)pj; lj — e

set all individual prices p](.k) to this value, and update the budgets and surpluses of all agents whose
initial endowment contains good j. We also set [; = e;.

Steps. The algorithm terminates as soon as the total surplus is at most 3¢ (p, e). We consider
agents i with s; > 0 one-by-one. By invariant (d), the agent is buying a bundle ¢(Y < x for some
x@ e Di(p(i), b;). The subroutine FindNewPrices(i,p(i),p, bi,c(i)) delivers new prices p and a
bundle y satisfying Conditions (A) and (B) described above.

Conditions (A) asserts that the current bundle ¢*) of agent i is still dominated by a desired bundle
y at the increased prices p. Condition (B) guarantees that > p), and whenever an agent wants
to buy more of some good than they already own at least by a factor (1 + ¢), then they are willing
to pay the higher price (1 + ¢)p; for it. (They might already be paying the increased price to start
with ifp](.i) = (1+¢)p;. Inthiscase p; = (1+¢)p; = p}(.i).)

The above properties suggest the following update rules for each good j € [m].

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

An Auction Algorithm for Market Equilibrium with Weak Gross Substitute Demands 0:15

Case 1. p;i) < (1+¢)pjandp; = (1+¢)p;. The good j was in L; and needs to be moved to H;, i.e.,
agent i used to pay p; but now is willing to pay the higher price for j. We charge agent i the price
(1+ ¢)p; for the amount cj(.l) they already own instead of p;. Additionally, agent i outbids on good

Jj the amount min{y; — cj(.i), w;+ 1}

Case 2. pj(.i) = (1+¢)p;j and p; = (1 + ¢)p;. The good j was in H; and stays in H;, i.e., agent i
continues to pay the higher price. The agent i keeps the amount cj(.i) of good j that they already had

and outbids for as much as they can from the other agents, i.e., the amount min{y; — cﬁi), wj+ 1}

Case 3. p](.i) < (1+¢)pjandp; < (1+¢)pj. The good j remains in L;, i.e., agent i continues to pay

the lower price. By (B), we must have cj(.i) <y; < (1+ £)c;i) ; the agent will not seek to buy more of
these goods.

If the above updates result in w; + [; = 0 for good j, then we call RaisePrice(j) to increase the
market price. Once all of the goods have been considered we set p(*) = and update c?) as the
current allocation.

Rounds. In the analysis, it will be useful to organize the steps into rounds as in [41]. A round
consists of all agents making a step once (or being skipped if s; = 0).

3.2 Analysis

We start with a high-level overview of the analysis. Lemma 5 verifies that all invariants (a)-(e) are
maintained. Lemma 6 shows that the minimum price remains p; = 1 throughout. Note that—in
accordance with invariant (b)—it suffices to show that w; > 0 for some good j holds at any point.
In other words, the algorithm terminates if all goods are fully sold.

Lemma 7 is the key argument in the running time bound: it shows that the number of rounds
between two calls to RaisePrice is bounded by 2/e. The idea is that as long as the market prices
do not increase, the total budget (3,1, b;) remains the same, while the total money spent on the
goods is increasing due to outbidding. In every outbid, an agent pays more by a factor (1 + ¢) for
the goods they purchase. Thus, in n consecutive steps the total surplus decreases by approximately
a factor (1 + ¢). This either leads to a market price increase or reaches an approximate equilibrium.

LEmMA 5. If all agents have WGS demand systems, then the invariants (a)-(e) hold after every step.

Proor. (a) This is immediate.

(b) The algorithm maintains e; = w; + [; + h; for all goods j = 1,2,...,m. Further, w;,[;, h; > 0.
The amount sold is I; + h; < e;, hence, no good is oversold. The amount w; is monotone
decreasing throughout. This is guaranteed by Property (A) of the procedure FindNewPrices,
and the fact that cj(.i) may only decrease if another ') increases by the same amount. Thus,
if w; = 0 at any point of the algorithm, good j remains fully sold in all remaining steps. Note
that the market price p; is first increased from the initial value p; = 1 when w; = [; = 0.

(c) The budgets are updated in RaisePrice, adding epjej(.i) to b; when the price p; increases to
(1+ ¢)p;. Thus, we maintain b; = <p, e(i)>. The bounds p < p? < (1 +¢)p are immediate
from condition (B) in FindNewPrices and in the procedure RaisePrice.

(d) Suppose these properties hold for every agent before a step of agent i. The requirements (A)
and (B) guarantee that ¢! is dominated by a bundle x(*) € D;(p"), b;) and prices satisfy
p < p'Y < (1+¢)p, for each agent i. Moreover, if the budget b; is increased in line 2, the
invariant remains true by the WGS property.

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

0:16 Jugal Garg, Edin Husi¢, and Laszlé A. Végh

Now, consider an agent k different from i. In the step, k could lose a part of a good only

through the outbid and hence ¢'*) does not increase. As long as the prices p¥) do not change,

(d) holds trivially. The only time p¥) can change is the price increase step in line 4, namely, if

pj increases to (1 + ¢)pj, it forces p](.k) = (1+¢)p;. Note that the price increase only happens
buying good j at the lower price p;. By I; = 0 and invariant (e), it follows that c;k) =0at
this point. As the budgets may only increase, the WGS property implies that after increasing
pj(.k), the bundle ¢¥) will still be dominated by an optimal bundle.

(e) It is straightforward to check that the form of the surplus is maintained.

once [; = 0. Assume we had p;"’ < (1 + ¢)p; before the price increase, that is, agent k was

LEMMA 6. At the beginning of every step, min{p; : j € G} = 1.

Proor. We show that a good j with w; > 0 exists in every step. The statement then follows by
(b). For a contradiction, suppose we reach a point where w; = 0 forall j = 1,2,...,m, and consider
the first time this happens. At this point all of the goods are fully sold, i.e., >, ¢/} = e. Consider
the total surplus at this point. We have

$-5i (e S -) 3o)
i=1 i=1

JjeL; jeH; i=1
n n n
:Zbi_ <P,Zc<l)> =Zbi—<P,€> =0.
i=1 i=1 i=1
This contradicts the assumption)., s; > 3¢ (p, e) at the beginning of every step. O

LEMMA 7. The number of rounds between any two consecutive calls to RaisePrice is at most 2/e.

ProoF. Let p be the market prices after a call to RaisePrice, and consider a sequence of steps
with the same market prices; consequently, the budget of every agent remains the same. Consider
a step of an agent i during this sequence. If i buys w; + [; of a good j, then RaisePrice is called,
and the sequence finishes. Thus, we can assume that during this sequence, every agent i gets the
amount of each good they desire.

Let ¢ denote the total amount of money spent at a certain point of this sequence of steps that is
spent by the agents on higher price goods. That is,

p=(1 +£)i Z cj(.i)pj.

i=1 jeH;

Claim 1. Lets; denote the surplus of agent i at the beginning of their step. Then the value of ¢
increases at least by (1 + €)%s; — 2.25¢b; during agent i’s step.

Proof: Recall Cases 1-3 in the description of the step. Let Ty be the set of goods that fall into case k,
that iS, Tl U Tz U T3 = [m]

o If j € Ty, then (1 + ¢)p;y; will be added to ¢ in the Outbid subroutine: In this case, the agent
also outbids itself, moving good j from L; to H;.

o If j € Ty, then (1+¢)p;(y; — c](.i)) will be added to ¢ in the Outbid subroutine.

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

An Auction Algorithm for Market Equilibrium with Weak Gross Substitute Demands 0:17

e If j € T;, then we do not increase ¢. Nevertheless, (B) guarantees that p;(y; — c;i)) < gﬁjc;i).
Consequently,
ohity ey <e(pe?) .)
JET3
Also note that p; = (1+¢)p; if j € T UT,. Assumption 2 on non-satiation guarantees that (p, y) = b;.
Let A¢ denote the increment in ¢; this can be lower bounded as

Ap = piyi+), piyi—c))

JeT JET:
=Gy - D - . el
JjeTs JeTr
2 b D By =) = (p.e)
JjeTs

>b;—(1+¢) <ﬁ,c(i)> ,

using (5). The money spent by the agent at the beginning of the step is b; — s;. Good j is purchased
at price at least p; according to (e), and p; < (1 + ¢)p;. Consequently, <13 c(i)> < (1+¢)(bi —si).
With the above inequality, we obtain

Ap = b; — (1+)%(b; —s;) = (1+)%s; — (26 + €2)b; > (1 +£)%s; — 2.25¢b;,

as ¢ < 0.25. This completes the proof. |
Aslong as)}, s; > 3¢ (p, e), the claim guarantees that ¢ increases in every round by at least

n
3(1+¢)% (p, e) — 2.25¢ Z bi = 0.75¢ (p, e) .
i=1
Since ¢ < (1 + ¢) (p, e), the number of rounds until the next call the RaisePrice is bounded by
2/e. O

We need one more lemma to bound the total running time of Outbid.

LEMMA 8. Between two calls to RaisePrice, for every agent k € [n] and good j € [n], there can
(k)

be only one occasion that during a call to Outbid(i, j, y) for somei € [n] andy > 0,c;"" is set to 0 in

line 13.

PrOOF. Assume c;.k) was set to 0 in a certain call to Outbid. Before it can be set to 0 again, agent

k must have obtained a positive amount of good j. This could only happen in a call to Outbid(k, j, y)
for some y > 0. However, until the next call to RaisePrice, agent k may only buy good j at the
higher price (1 + ¢)p;, and henceforth j € Hg. Thus, agent k cannot be selected again in line 10 at a
call to Outbid(i, j,y). O

Proor oF THEOREM 1. Lemma 4 shows that at termination, the algorithm returns a 4e-market
equilibrium.

We first bound the total running time between two calls to RaisePrice. By Lemma 7, there are
at most 2/¢ rounds. Every round comprises n steps, and every step calls the procedure FindNew-
Prices exactly once. Therefore, the time taken by FindNewPrices during this sequence of steps is
O(nTg/e).

The total number of calls to Outbid is m in each step, totaling to O(nm/¢). We bound the number

of repeats in the ‘while’ loop (lines 9-14) in all calls to Outbid between two calls to RaisePrice.
In a call to Outbid(i, j, y), in all but the final call to the ‘while’ loop, we set c;k) = 0 for some agent

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

0:18 Jugal Garg, Edin Husi¢, and Laszlé A. Végh

k. By Lemma 8, the total number of these events is at most O(nm). Hence, the number of repeats in
the ‘while’ loop between two calls to RaisePrice is O(nm/e + nm) = O(nm/¢). Each repeat takes
O(1) time.

From the above, the total time of the Outbid calls is O(nm/¢) between two calls to RaisePrice.
A call to RaisePrice takes O(nm) time. Consequently, the total time of such a sequence of steps is
O(nTp/e + nm/e) = O(nTg/¢), using the assumption that Tr = Q(m).

By Lemma 6, the minimum price remains at most 1 throughout and therefore pp,ax is at most
Pmax/Pmin- Consequently, RaisePrice can be called at most O(mlog1+g(§$‘:) =0(% log(%))
times. The claimed running time bound follows. O

4 IMPLEMENTING THE PRICE UPDATE SUBROUTINE

In this section, we present different approaches to implement FindNewPrices(i, p, p‘, b;, ¢(¥).
Recall that the output prices p € R} and allocations y € R7* must satisfy the following two
requirements:

(A) y € D;(p.b;) and y > ¢V, and
B) p' <p < (1+e)p, and p; = (1+¢)p; whenever y; > (1+¢) cj(.').

First, in Section 4.1 we consider the setting of bounded elasticities. Recall from Lemma 1 that
this includes Cobb—Douglas utilities and CES utilities with parameter o > 1. Further, according to
Lemma 2, we can use it for convex combinations of demand systems with bounded elasticities, even
if they are not given in the explicit form (1). The algorithm is a simple price increment procedure,
making repeated calls to the demand oracle. As linear utilities do not have bounded elasticities, in
Section 4.2, we give a simple direct algorithm for linear demand systems. Finally, in Section 4.3,
we implement FindNewPrices for Gale demand systems. We obtain the new prices as the optimal
Lagrangian multipliers of a convex program.

Note that for many utility functions, such as Cobb-Douglas or CES, we can use either of the
methods in Section 4.1 or Section 4.3. The running time in Section 4.1 depends linearly on the
elasticity parameter f and makes several calls to the demand oracle. Still, it could be faster than
solving a convex program, e.g., if the demand oracle is given by an explicit formula.

It is possible to find further direct approaches for particular demand systems, similar to the
approach in Section 4.2 for linear demand systems. For example, it is easy to devise an O(m) time
procedure for Cobb-Douglas demand systems, exploiting the fact that the optimal bundle allocates
(x](.i>bi money for good j. Consequently, each price can be set independently of the others.

We note that even though the above cases cover all standard examples of WGS systems, we do
not have a general implementation for demand systems in the form (1).

4.1 Demand systems with bounded elasticities

Let us assume that the demand system D; has elasticity of at least — f for some f > 0. The subroutine
BE-FindNewPrices((i, p, p'), b;, c(!) (Algorithm 2) is a simple price increment procedure. First,
we obtain y € D;(p¥), b;) from the demand oracle with y > ¢, This is possible due to invariant
(d), which guarantees that ¢() < x® for some x(?) < D; (pD, b;). Thus, y = x(is itself a suitable
choice. Then, we iterate the following step. As long as (B) is violated for a good j, we increase its
price by a factor (1+ ¢)// until it reaches the upper bound (1 + ¢)p;.

LEMMA 9. Assume the demand system D; has elasticity of at least —f for some f > 0. Algorithm 2
terminates with p and y satisfying (A) and (B) in time O(mf - Tp), where Tp is the time for a call to
the demand oracle.

We assume that Tp = Q(m), since the demand oracle needs to output an m-dimensional vector.

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

An Auction Algorithm for Market Equilibrium with Weak Gross Substitute Demands 0:19

Algorithm 2: BE-FindNewPrices (i, p, p¥), b;, ¢()

Input: Agent i € [n], market prices p € R, individual prices p'? € R” such that
p < pY < (1+¢)p, budget b; € R,, and bundle ¢} € R
Output: Prices p and bundle y.
1 Initialization: p « p¥)
2 Obtain y € D;(p, b;) from the demand oracle such that y > ¢(?)
3 while 3j: p; < (1+¢)p;j andy; > (1 +£)c](.i) do
4 | p; e min{(1+e)p;, (1+e)p;}
5 Obtain y’ € D;(p, b;) from the demand oracle such that y; > yi for k # j
s | yey
7 end
8 return (p,y)

Proor. The bound on the number of iterations is clear: since we have p < p < (1+¢)p throughout,
the price of every good can increase at most f times. Condition (A) is satisfied due to the WGS
property and the bound on the demand elasticity: when increasing p;, the demand yy for k # j
is non-decreasing as guaranteed by the demand oracle. Further, y; may decrease only by a factor

(1+¢), and since we had y; > (1+ e)cj(.i) before the price update, we still have y; > cj.i) after the
price update. Condition (B) is satisfied at termination since the while loop keeps running as long as
it is violated. Checking the while condition each time requires O(m) time; however, this will be
dominated by the time Tp according to the comment on Tp = Q(m) above. O

4.2 Linear demand systems

We now give a simple direct implementation of FindNewPrices for linear demand systems.

LEMMA 10. FindNewPrices can be implemented in O(m) for a linear demand system corresponding
to the utility function u(x) = (v, x).

Proor. Recall that for linear utilities y € D;(p, b), y; > 0if and only if j € arg maxy vi /px, called
maximum bang-per-buck goods (MBB). We initialize p = p?), and let S C [m] denote the set of MBB
goods. Thus, y; = 0 for all j ¢ S. We start increasing the prices of all goods j € S at the same rate a.
Once a good outside S becomes MBB, we include it in the set S and also start raising its price. We
terminate when the budget is exhausted or when the price py for a good k € S reaches the upper
bound (1 + ¢)pi. In the former case, we return the bundle y; = cj(.i), Vj. In the latter case, we return
the bundle y; = cj(.i) if j # k, and set yx = (b; — X jes,jzk ﬁjcj(.i))/ﬁk; clearly, yx > c](ci). These prices
and allocations satisfy (A) and (B); in fact, we obtain (B) in the stronger form that p; = (1+¢)p;
whenever y; > c](.i) . We need to add a good to S at most m times, and thus we can implement the

procedure in O(m) time. O

4.3 Gale demand systems

We now show that the subroutine FindNewPrices can be implemented for Gale demand systems
via convex programming. According to Lemma 3, this result is also applicable to demand systems
given in the form (1) for utility functions that are homogeneous of degree one, in which case the
optimal solutions to (1) and (4) coincide.

Suppose the utility function u : RT" — R, is strictly concave and differentiable. Strict concavity
implies that the demand system is simple: |G*(p, b)| = 1 for all (p, b) € RT".

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

0:20 Jugal Garg, Edin Husi¢, and Laszlé A. Végh

We implement a stronger and more general form of FindNewPrices, with an arbitrary vector
q € R, g > p in place of (1+¢)p.
Assume we are given b € Ry, p, q,c € R such that p < g, and moreover assume that ¢ < x for
some x € G¥(p, b). The goal is to find p and y such that
(A’) y > ¢ where y € G*(p, b), and
(B’) p < p < gand p; = q; whenever y; > c;.
In the following convex program, the agent is allowed to buy a good j at two prices: amount y’;
at price p; and amount y/ at price g;; the amount at the lower price p; is capped at c;.

max blnu(y) — (p.y") — {(q.y")
y — y/ + y//
y' <c

(6)

y/,yu >0.

We show that the optimal solution to this program, along with the prices obtained from the KKT
conditions satisfy (A’) and (B’).

Since all constraints are linear, strong duality holds. Let y* = y’ + y”’ be an optimal solution
of (6). By the KKT conditions, there exists @ € R such that for any j € [m],

. oju(y* .
G) b- lfl’z;f')) < min{a; + pj, q;},

(ii) b - a;zz(yy)) = a; + p; whenever y’ > 0,
aju(y®)

(iii) b - = lzyg) = gj whenever y;/ > 0, and
(iv) y} = ¢j whenever a; > 0.

Note that in an optimal solution, we must have y; > 0 whenever ¢; > 0 and y; > 0. We define the
prices p; as

-] g if¢; =0andy; >0,

pj= { aj+p; otherwise.

LEMMA 11. The allocations y* and prices p satisfy (A’) and (B’).

Proor. Since all constraints are linear, strong duality holds for (4) as well as for (6). We start
with (B’). Let j € [m].If ¢; = 0 and y; > 0, then pj = g, and thus (B’) holds by definition.
Suppose ¢;j > 0.In case y' > 0, (11) and (iii) imply that p; = a; + p; = q;. This holds whenever
y; > cj. Itis left to show that p; < p; < q; when y} < ¢;. If y; > 0, this follows from (i) and (ii). If
y; = y;. =0, by ¢; > 0 and (iv) we have a; = 0 and thus p; = p;.
For (A’), we first show y* € G*(p, b). By the KKT conditions for (4), we have y* € G*(p, b) if and
only if for all j € [m]:
bou(y’) _ -
(G1) f(—yy) < pj, and
(G2) % = pj whenever y; > 0.

Let j € [m]. The condition bijf;*y;) < pj follows by the definition of p and by (i). Suppose

yj. = y;. + y;.’ > 0.If ¢; =0, then y}’ > 0 and p; = q;; (G2) follows by (iii). If ¢; > 0, then we must
have y;. > 0and p; = p; + ;. Thus, (G2) follows from (ii).
It remains to show that y* > c. We prove by contradiction: assume that y; < ¢; for some good

Jj, which implies ¢; > 0. This implies a; = 0 by (iv), yielding p; = p;. By the strict concavity
assumption, y* is the unique optimal bundle in G*(p, b). Using the WGS property for (p, b) and
(p,b) we have Yy; = xj since pj = pj. We obtain a contradiction to y; <c¢j <x;. O

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

An Auction Algorithm for Market Equilibrium with Weak Gross Substitute Demands 0:21

A RUNNING TIMES OF PREVIOUS AUCTION ALGORITHMS

We review the running time bounds given in previous auction algorithms and compare them to our
bounds. We let 1 denote the n dimensional vector with all entries 1.

Linear utility functions, Garg and Kapoor [41]. The paper includes two algorithms. The running
times are O(';—’Z” log (M) log (p“‘“)) and O (%(n + m) log (;@)) respectively. The run-

€ Pmin *€min
ning time in Theorem 1, with the bound Tr = O(m) for linear utilities from Lemma 10, gives an
additional factor m when compared to the first bound, while removing the first log term. The
additional factor is due to our global update step: due to the more general, nonseparable nature of
our framework, we consider all goods when updating an agent, while the paper [41] considers only

one good for an update. We note that we are using a weaker notion of equilibrium in our result.

Separable WGS utilities, Garg, Kapoor, and Vazirani [44]. The running time bound is presented
Umax(1,b)

binin Umin

only for the Fisher market case, given as O % log % log log m). Here, 0oy := max; 0; max
and vy = min; v; min are upper and lower bounds on the slopes of the utility functions, by is
the smallest budget and v is the total utility an agent would get from owning the full amount
of all goods. An issue with such a bound is that the value ZU":‘X is not scale invariant. Namely,
the equilibrium in a Fisher market remains the same even if each agent i multiplies their utility
function by a positive constant a;; but this changes the value 22 * arbitrarily. It is mentioned that
the result could be extended to exchange markets, similarly as in [41], but no details or running
time estimation are provided.

Uniformly separable WGS utilities, Garg and Kapoor [43]. The paper gives essentially the same
bound as in the case of separable WGS; the analysis is limited and mainly refers to the analysis
of the auction algorithm for separable WGS utilities [44]. A problematic issue is that the main
motivation for the paper is to give bounds for CES and Cobb-Douglas utilities, but vy, = oo for
these particular utilities.

B ADDING A DUMMY AGENT TO BOUND THE PRICES

Using the construction in the papers [21, 23], we present a general technique for modifying markets

in order to bound pmax/Pmin in Theorem 1. Given an exchange market M with agents A = [n] and

goods G = [m], we transform it to another market M with n + 1 agents as follows. Assume ¢ > 0
n

is chosen such that ¢(1 + &)m < Ty S 1/2 for some 5 < 1. For i € A we keep the same demand

systems D; and the same initial endowments e?). The market M has an extra agent n + 1 with
initial endowment e™*!) = pe (recall e = ¥;c4 ¢”) and whose demand bundle is given via the

1/m
Cobb-Douglas utility function (]_[; ("H)) . Agent n + 1 spends exactly % of its budget on each

(n+1) _ nipe)
mp; *
The lemma below shows that adding such an agent can be used to bound f)m“:, at the expense of

good j since its unique demand bundle x("*) is given by X;

working on a modified market.
LEMMA 12. (i) For an e-equilibrium of M formed by prices p and bundles x'1),

Pmax < (]+g)m _emax
Ppmin ~ p—e(1+e)(1+nm emin

where eqax = max; ej and emin = min; e;.
(ii) An e-equilibrium in M gives an e(1 + n)-equilibrium in M.

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

0:22 Jugal Garg, Edin Husi¢, and Laszlé A. Végh

Proor. Consider an ¢-equilibrium in M formed by prices p and bundles @D i=1,2...,n+1
By definition, there exist prices p < p(™*!) < (1+ ¢)p and bundle 2™V € Dpyy (™, 5 (p, €))
such that x(™*1) < z("*1) We have zj(."ﬂ) = "'Z:';e) and therefore, szj(.nﬂ) > o (p-€). On the

(n+1) 2
J
other hand, from the third condition of the definition of e-equilibrium it follows that p; (zj(."ﬂ) -

(n+1) (n+1) n
X;) < (1 + n){p,e). Hence, pix; > ((1+£)m

(n+1) 5 (n

—e(1+ 17)) - (p,e) for all j. In particular,

X (1+e)m

; —e(1+ ry)) ’% for all j. Since x;"+1) < ej < emax in an e-equilibrium, we have
J

-1
Pmax n €max
< —&(1+ —_—
Pmin B ((1 + E)m 6(’7)) min

The second part of the lemma follows easily from the definition of an approximate equilibrium. O

ACKNOWLEDGMENTS.

The authors are grateful to the anonymous referees for numerous valuable suggestions that have
helped to improve the presentation of the paper.

REFERENCES

[1] Nima Anari, Tung Mai, Shayan Oveis Gharan, and Vijay V Vazirani. 2018. Nash social welfare for indivisible items
under separable, piecewise-linear concave utilities. In Proceedings of the 29th annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2274-2290.

[2] Gabriel Andrade, Rafael Frongillo, Sharadha Srinivasan, and Elliot Gorokhovsky. 2021. Graphical Economies with
Resale. In Proceedings of the 2021 ACM Conference on Economics and Computation (EC). 71-90.

[3] Kenneth J Arrow, Henry D Block, and Leonid Hurwicz. 1959. On the stability of the competitive equilibrium, IIL
Econometrica: Journal of the Econometric Society (1959), 82-109.

[4] Kenneth J Arrow and Gerard Debreu. 1954. Existence of an equilibrium for a competitive economy. Econometrica:
Journal of the Econometric Society (1954), 265-290.

[5] Kenneth J Arrow and Leonid Hurwicz. 1958. On the stability of the competitive equilibrium, I. Econometrica: Journal
of the Econometric Society (1958), 522-552.

[6] Kenneth J Arrow and Leonid Hurwicz. 1960. Competitive stability under weak gross substitutability: The “Euclidean
distance” approach. International Economic Review 1, 1 (1960), 38—49.

[7] Noa Avigdor-Elgrabli, Yuval Rabani, and Gala Yadgar. 2014. Convergence of Tatonnement in Fisher Markets. arXiv
preprint arXiv:1401.6637 (2014).

[8] Xiaohui Bei, Jugal Garg, and Martin Hoefer. 2019. Ascending-Price Algorithms for Unknown Markets. ACM Transactions
on Algorithms (TALG) 15, 3 (2019), 37:1-37:33.

[9] Dimitri P Bertsekas. 1981. A new algorithm for the assignment problem. Mathematical Programming 21, 1 (1981),
152-171.

[10] Dimitri P Bertsekas. 1990. The auction algorithm for assignment and other network flow problems: A tutorial. Interfaces
20, 4 (1990), 133-149.

[11] Benjamin Birnbaum, Nikhil Devanur, and Lin Xiao. 2011. Distributed algorithms via gradient descent for Fisher
markets. In Proceedings of the 12th Conference on Electronic Commerce (EC). 127-136.

[12] William C Brainard and Herbert E Scarf. 2005. How to compute equilibrium prices in 1891. American Journal of
Economics and Sociology 64, 1 (2005), 57-83.

[13] Simina Bréanzei, Nikhil R. Devanur, and Yuval Rabani. 2021. Proportional Dynamics in Exchange Economies. In
Proceedings of the 22nd ACM Conference on Economics and Computation. 180-201.

[14] Simina Bréanzei, Ruta Mehta, and Noam Nisan. 2018. Universal Growth in Production Economies. In Advances in Neural
Information Processing Systems 31 (NeurIPS). 1975.

[15] Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and Kurt Mehlhorn. 2018. On
Fair Division for Indivisible Items. In Proceedings of the 38th IARCS annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS). Springer, 25:1-25:17.

[16] Xi Chen, Decheng Dai, Ye Du, and Shang-Hua Teng. 2009. Settling the complexity of Arrow-Debreu equilibria in
markets with additively separable utilities. In Proceedings of the 50th Symposium Foundations of Computer Science
(FOCS). IEEE, 273-282.

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

An Auction Algorithm for Market Equilibrium with Weak Gross Substitute Demands 0:23

[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]
[27]
[28]
[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Yun Kuen Cheung, Richard Cole, and Nikhil R Devanur. 2019. Tatonnement beyond gross substitutes? Gradient descent
to the rescue. Games and Economic Behavior 123 (2019), 295-326.

Yun Kuen Cheung, Richard Cole, and Ashish Rastogi. 2012. Tatonnement in ongoing markets of complementary goods.
In Proceedings of the 2012 ACM Conference on Electronic Commerce (EC). 337-354.

Yun Kuen Cheung, Richard Cole, and Yixin Tao. 2018. Dynamics of Distributed Updating in Fisher Markets. In
Proceedings of the 19th ACM Conference on Economics and Computation. 351-368.

Yun Kuen Cheung, Martin Hoefer, and Paresh Nakhe. 2019. Tracing Equilibrium in Dynamic Markets via Distributed
Adaptation. In Proceedings of the 18th Conf. Auton. Agents and Multi-Agent Systems (AAMAS). 1225-1233.

Bruno Codenotti, Benton McCune, and Kasturi Varadarajan. 2005. Market equilibrium via the excess demand function.
In Proceedings of the 37th ACM Symposium on Theory of Computing (STOC). ACM, 74-83.

Bruno Codenotti, Sriram Pemmaraju, and Kasturi Varadarajan. 2004. The computation of market equilibria. ACM
SIGACT News 35, 4 (2004), 23-37.

Bruno Codenotti, Sriram Pemmaraju, and Kasturi Varadarajan. 2005. On the polynomial time computation of equilibria
for certain exchange economies. In Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM, 72-81.

Bruno Codenotti, Amin Saberi, Kasturi R. Varadarajan, and Yinyu Ye. 2006. Leontief economies encode nonzero sum
two-player games. In Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithmss. 659-667.

Richard Cole, Nikhil Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V Vazirani, and Sadra Yazdanbod. 2017.
Convex Program Duality, Fisher Markets, and Nash Social Welfare. In Proceedings of the 2017 ACM Conference on
Economics and Computation (EC). ACM, 459-460.

Richard Cole and Lisa Fleischer. 2008. Fast-converging tatonnement algorithms for one-time and ongoing market
problems. In Proceedings of the 40th ACM Symposium on Theory of Computing (STOC). ACM, 315-324.

Richard Cole and Vasilis Gkatzelis. 2018. Approximating the Nash Social Welfare with Indivisible Items. SIAM j.
Comput. 47, 3 (2018), 1211-1236.

Gabrielle Demange, David Gale, and Marilda Sotomayor. 1986. Multi-item auctions. Journal of Political Economy 94, 4
(1986), 863-872.

Nikhil Devanur, Christos Papadimitriou, Amin Saberi, and Vijay Vazirani. 2008. Market equilibrium via a primal-dual
algorithm for a convex program. jounal of the ACM 55, 5 (2008).

Nikhil R Devanur and Vijay V Vazirani. 2003. An improved approximation scheme for computing Arrow-Debreu
prices for the linear case. In Proceedings of the 23rd IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS). Springer, 149-155.

Nikhil R Devanur and Vijay V Vazirani. 2004. The spending constraint model for market equilibrium: Algorithmic,
existence and uniqueness results. In Proceedings of the 36th ACM Symposium on Theory of Computing (STOC), Vol. 36.
ACM, 519-528.

Ran Duan and Kurt Mehlhorn. 2015. A Combinatorial Polynomial Algorithm for the Linear Arrow-Debreu Market.
Information and Computation 243 (2015), 112-132.

Edmund Eisenberg. 1961. Aggregation of utility functions. Management Science 7, 4 (1961), 337-350.

Edmund Eisenberg and David Gale. 1959. Consensus of subjective probabilities: The pari-mutuel method. The Annals
of Mathematical Statistics 30, 1 (1959), 165-168.

Lisa Fleischer, Rahul Garg, Sanjiv Kapoor, Rohit Khandekar, and Amin Saberi. 2008. A fast and simple algorithm
for computing market equilibria. In Proceedings of the 4th International Workshop on Internet and Network Economics
(WINE). Springer, 19-30.

Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. 2018. Approximating the Nash social welfare with budget-additive
valuations. In Proceedings of the 29th annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2326-2340.
Jugal Garg, Edin Husi¢, and Laszl6 Végh. 2021. Auction Algorithms for Market Equilibrium with Weak Gross Substitute
Demands and their Applications. In Proceedings of the 38th Symposium on Theoretical Aspects of Computer Science
(STACS).

Jugal Garg, Edin Husi¢, and Laszl6 A Végh. 2019. Auction algorithms for market equilibrium with weak gross substitute
demands and their applications. arXiv preprint arXiv:1908.07948 (2019).

Jugal Garg, Ruta Mehta, Vijay V Vazirani, and Sadra Yazdanbod. 2017. Settling the complexity of Leontief and PLC
exchange markets under exact and approximate equilibria. In Proceedings of the 49th ACM Symposium on Theory of
Computing (STOC). ACM, 890-901.

Jugal Garg and Laszl6 A Végh. 2022. A Strongly Polynomial Algorithm for Linear Exchange Markets. Operations
Research (2022).

Rahul Garg and Sanjiv Kapoor. 2006. Auction Algorithms for Market Equilibrium. Mathematics of Operations Research
31, 4 (2006), 714-729.

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

0:24

[42]

[43]

[44]

[45]
[46]
[47]

[48]

[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]

[60]
[61]

[62]

[63]
[64]

[65]

[66]

Jugal Garg, Edin Husi¢, and Laszlé A. Végh

Rahul Garg and Sanjiv Kapoor. 2006. Price roll-backs and path auctions: An approximation scheme for computing
the market equilibrium. In Proceedings of the 2nd International Workshop on Internet and Network Economics (WINE).
Springer, 225-238.

Rahul Garg and Sanjiv Kapoor. 2007. Market equilibrium using auctions for a class of gross-substitute utilities. In
Proceedings of the 3rd International Workshop on Web and Internet Economics (WINE). Springer, 356-361.

Rahul Garg, Sanjiv Kapoor, and Vijay Vazirani. 2004. An auction-based market equilibrium algorithm for the separa-
ble gross substitutability case. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques. Springer, 128-138.

Mehdi Ghiyasvand and James B Orlin. 2012. A simple approximation algorithm for computing Arrow-Debreu prices.
Operations Research 60, 5 (2012), 1245-1248.

Faruk Gul and Ennio Stacchetti. 1999. Walrasian equilibrium with gross substitutes. Journal of Economic Theory 87, 1
(1999), 95-124.

Faruk Gul and Ennio Stacchetti. 2000. The English auction with differentiated commodities. Journal of Economic
Theory 92, 1 (2000), 66-95.

K. Jain and K. Varadarajan. 2006. Equilibria for economies with production: Constant-returns technologies and
production planning constraints. In Proceedings of the 17th annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM, 688-697.

Sanjiv Kapoor, Aranyak Mehta, and Vijay Vazirani. 2007. An auction-based market equilibrium algorithm for a
production model. Theoretical Computer Science 378, 2 (2007), 153—-164.

Wouter J. Keller. 1976. A nested CES-type utility function and its demand and price-index functions. European Economic
Review 7 (1976), 175-186.

Alexander S Kelso Jr and Vincent P Crawford. 1982. Job matching, coalition formation, and gross substitutes. Econo-
metrica: Journal of the Econometric Society (1982), 1483-1504.

Renato Paes Leme. 2017. Gross substitutability: An algorithmic survey. Games and Economic Behavior 106 (2017),
294-316.

Andreu Mas-Colell, Michael Dennis Whinston, Jerry R Green, et al. 1995. Microeconomic theory. Vol. 1. Oxford
university press New York.

Kiminori Matsuyama and Philip Ushchev. 2017. Beyond CES: three alternative classes of flexible homothetic demand
systems. Global Poverty Research Lab Working Paper 17-109 (2017).

Lionel McKenzie. 1954. On equilibrium in Graham’s model of world trade and other competitive systems. Econometrica:
Journal of the Econometric Society (1954), 147-161.

Lionel W McKenzie. 1959. On the existence of general equilibrium for a competitive market. Econometrica: Journal of
the Econometric Society (1959), 54-71.

Nimrod Megiddo and Christos H Papadimitriou. 1991. On total functions, existence theorems and computational
complexity. Theoretical Computer Science 81, 2 (1991), 317-324.

Yurii Nesterov and Vladimir Shikhman. 2018. Computation of Fisher—Gale Equilibrium by Auction. Journal of the
Operations Research Society of China 6, 3 (2018), 349-389.

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. 2007. Algorithmic game theory. Cambridge
University Press.

Paul A. Samuelson. 1947. Foundations of Economic Analysis. Harvard University Press.

Herbert Scarf. 1960. Some examples of global instability of the competitive equilibrium. International Economic Review
1,3 (1960), 157-172.

Vijay Vazirani and Mihalis Yannakakis. 2011. Market equilibrium under separable, piecewise-linear, concave utilities.
Jounal of the ACM 58, 3 (2011), 10.

Léon Walras. 1896. Eléments d’économie politique pure, ou, Théorie de la richesse sociale. F. Rouge.

Fang Wu and Li Zhang. 2007. Proportional response dynamics leads to market equilibrium. In Proceedings of the 39th
Symposiumn on Theory of Computing (STOC). 354-363.

Yinyu Ye. 2008. A path to the Arrow-Debreu competitive market equilibrium. Mathematical Programming 111, 1-2
(2008), 315-343.

Li Zhang. 2011. Proportional response dynamics in the Fisher market. Theoretical Computer Science 412, 24 (2011),
2691-2698.

Received April 2023; accepted August 2023

ACM Trans. Econ. Comput., Vol. 0, No. 0, Article 0. Publication date: May 2025.

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Further related work

	2 The exchange market and demand systems
	2.1 Exact and approximate market equilibria
	2.2 The weak gross substitutes property
	2.3 Price elasticity of demands
	2.4 Gale demand systems

	3 The auction algorithm
	3.1 Description of the algorithm
	3.2 Analysis

	4 Implementing the price update subroutine
	4.1 Demand systems with bounded elasticities
	4.2 Linear demand systems
	4.3 Gale demand systems

	A Running times of previous auction algorithms
	B Adding a dummy agent to bound the prices
	References

