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1 INTRODUCTION
Market equilibrium is a fundamental model in mathematical economics to describe the balance

between supply and demand. The study of market equilibria was pioneered by Walras [63] in 1874,

and was developed in the 1950s by Arrow and Debreu [4] and McKenzie [55]. In this paper, we

focus on the classical exchange market setting, where a set of agents 𝐴 arrives at the market with

initial endowments of infinitely divisible goods𝐺 . A market equilibrium comprises prices for the

goods and a fractional assignment between the goods and the agents. Prices and assignments form

a market equilibrium if (a) each agent receives a bundle of goods they prefer the most at the given

prices by spending their revenue from selling their initial endowment, and (b) the market clears:

the demand of each good meets its supply. A typical way to represent the preferences is by utility

functions 𝑢𝑖 : R
𝐺
+ → R+ for each agent 𝑖 ∈ 𝐴; the demand of agent 𝑖 at prices 𝑝 and revenue 𝑏𝑖 is

a bundle 𝑥𝑖 maximizing 𝑢𝑖 (𝑥𝑖 ) subject to ⟨𝑝, 𝑥𝑖⟩ ≤ 𝑏𝑖 . Classical works by Arrow and Debreu [4]
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and McKenzie [55, 56] showed the existence of market equilibrium under mild assumptions, using

Kakutani’s fixed point theorem.

Equilibrium constitutes the ideal limit behavior of markets; existence proofs based on fixed point

theorems do not explain how such a limit can be attained. Investigating market dynamics has been

an important topic since the early days: Walras [63] introduced the tâtonnement process, a natural
dynamics of supply and demand. This can be seen as a multi-round auction process, where an

auctioneer announces the current prices in each round. At these prices, each agent submits their

most preferred bundle of goods. Prices are adjusted in light of these bids: prices of overdemanded

goods are increased, and prices of underdemanded goods are decreased.

Samuelson [60] formulated a continuous version of tâtonnement as a dynamical system. Works

by Arrow and Hurwitz [6], Arrow, Block, and Hurwitz [3] introduced the weak gross substitutability
(WGS) property as a sufficient condition for convergence to an equilibrium. The agent’s demands

are said to be WGS if the demand for any good does not increase when its price increases while the

rest of the prices remain unchanged. Such a property gives a sound justification of the tâtonnement

price changes. However, it is a nontrivial requirement, and there are important examples of demands

that are not WGS. Scarf [61] showed that tâtonnement may not converge for non-WGS demands.

Classical market equilibrium models became the subject of renewed interest in the optimization

and theoretical computer science communities, starting from the 1991 paper by Megiddo and

Papadimitriou [57]. Formulating the existence of market equilibrium as a computational search

problem raises intriguing questions. Many of these works treat market equilibrium as a centrally

coordinated computational problem: can a central authority compute a market equilibrium given

perfect information on all agents’ utilities? Surprisingly, even in such a centrally coordinated

setting, and even for some of the simplest non-WGS demands, computing approximate equilibria

turn out to be complete problems for certain complexity classes. On the positive side, this line

of investigation led to remarkable algorithmic developments for various market models. See e.g.,

[12, 16, 22, 24, 29, 32, 39, 40, 48, 62, 65]. For WGS utilities, the first polynomial-time computability

of market equilibria was established by Codenotti, Pemmaraju, and Varadarajan [23]. A discrete

variant of the tâtonnement algorithm that converges to an approximate equilibrium (see also [59,

Section 6.3]) was given by Codenotti, McCune, and Varadarajan [21]. More recently, Bei, Garg, and

Hoefer [8] gave a simple ascending-price algorithm. We note that both the latter algorithms need

central coordination.

In most market settings, we cannot assume the level of central coordination needed for many

of the above algorithms. In such markets, one has to investigate distributed mechanisms in a

decentralized environment with limited coordination. This issue was addressed by a number of

papers providing tâtonnement algorithms for various classes of utility functions and restricted

models, some of them substantially weakening the need for central coordination among agents,

see e.g., [7, 17, 18, 26, 35].

Auction algorithms form an even simpler subclass of tâtonnement-type algorithms. These al-

gorithms are decentralized and require only local coordination between agents. Each agent may

take goods from others by outbidding them, i.e., offering slightly higher prices. While prices in

tâtonnement may increase as well as decrease, prices in auction algorithms may only go up. For

exchange market models, the first such algorithm was established for linear utilities—of the form

𝑢 (𝑥) = ∑
𝑗∈𝐺 𝑣 𝑗𝑥 𝑗—by Garg and Kapoor [41] (see also [59, Section 5.12]). The algorithm was later

improved [42] and generalized to separable concave gross substitute utility functions [44], to a

subclass of non-separable gross-substitutes called uniformly separable [43], and to a production

model with linear production constraints and linear utilities [49].
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Auction algorithms have been widely used beyond exchange markets and studied in different

contexts in optimization and economics. Bertsekas [9, 10] introduced auction algorithms for assign-

ment and transportation problems. Closely related algorithms were introduced for markets with

indivisible goods—further discussed in Section 1.2—by Kelso and Crawford [51], and Demange,

Gale, and Sotomayor [28].

1.1 Our contributions
We present a new auction algorithm that computes an approximate market equilibrium in exchange

markets for arbitrary WGS utilities, assuming a suitable oracle representation. This settles an open

question raised in [43]. The result affirms the natural intuition that the WGS property should suffice

for auction algorithms: A main invariant in auction algorithms is that at every price increase, the

agents will still hold on to the goods whose prices have not increased. This property is almost

identical to the definition of the WGS property; nevertheless, making an auction algorithm work

for general WGS utilities requires new technical ideas.

The previously mentioned auction algorithms operate with two prices for each good 𝑗 , a lower

price 𝑝 𝑗 and a higher price (1 + 𝜀)𝑝 𝑗 . This technique was used for linear [41], for separable [42],

and for uniformly separable utilities [44]. However, this simple approach does not seem to apply to

the general WGS case, and we need to use a more fine-grained pricing approach. In our algorithm,

each agent maintains individual prices for each good 𝑗 in the range [𝑝 𝑗 , (1 + 𝜀)𝑝 𝑗 ] for the ‘market

price’ 𝑝 𝑗 . The main invariant in our algorithm is that each agent maintains a subset of an optimal

bundle with respect to these individual prices.

Each agent updates their individual prices using a subroutine called FindNewPrices. The general
algorithm in Section 3 relies on this subroutine, and its running time for finding an 𝜀-approximate

equilibrium is 𝑂

(
𝑛𝑚𝑇𝐹
𝜀2
· log

(
𝑝max

𝑝min

))
, where 𝑇𝐹 denotes a running time bound on FindNewPrices

and 𝑝max and 𝑝min are lower and upper bounds on the prices in an approximate equilibrium

(Theorem 1).

Demand systems. Our algorithm uses only local coordination between agents. However, agents

should update their individual prices according to certain requirements. These are captured by

FindNewPrices; implementing this subroutine depends on the particular demand system.

First, one needs to clarify how the preferences are represented in the model. WGS utilities in the

literature are usually given in an explicit form such as CES (constant elasticity of substitution) or

Cobb-Douglas utilities, see Section 2.2. This is in contrast with the setting of markets with indivisible

goods, where the common model is via a value or demand oracle [52], since direct preference

elicitation, that is, the explicit description of the valuation function would be exponential. The class

of continuous WGS functions is also rich, and hence an oracle approach seems more appropriate to

devise algorithms for this class.

We model the agent preferences by demand oracles (Definition 5). A demand oracle may be

implemented by solving a utility-maximizing convex problem but may be of a different form. We

discuss this in Section 2.2, also exhibiting a class of WGS demand systems where our model is

applicable but do not appear to have a simple closed-form representation.

A natural parametrization of WGS demand systems is by price elasticity (Definition 6) that

bounds the change in the demands as a function of the price changes. In Section 4.1, we implement

FindNewPrices by a simple iterative application of the demand oracle for the case of bounded

price elasticities.

We present additional implementations for the case when the price elasticity can be unbounded.

Linear utilities constitute an important such class. Lemma 10 gives a direct, linear time implemen-

tation of FindNewPrices for linear utilities.
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In Section 4.3, we consider Gale demand systems introduced by Nesterov and Shikhman [58].

Such demand systems are given by a convex program. Accordingly, we use a convex programming

approach to implement FindNewPrices.

Spending restricted equilibrium and Nash social welfare. Our motivation for considering Gale

demand systems comes from an application to the Nash social welfare (NSW) problem. In this

problem, we need to allocate a set of indivisible goods to agents in order to maximize the geometric

mean of their valuations.

A useful relaxation of the NSW problem turns out to be a so-called spending-restricted (SR)
equilibrium under Gale demand systems. Spending-restricted equilibria were introduced by Cole

and Gkatzelis [27] as a key tool in finding the first constant-factor approximation algorithm for

this problem with additive valuations. The same equilibrium concept was used in several other

approximation algorithms for the NSW problem, see e.g., [1, 15, 25, 36].

The SR-equilibrium is a variant of the Fisher market model, a special case of the exchange market

model. In the Fisher model, the agents do not arrive with an initial endowment of goods but with a

fixed budget to spend on the available set of goods. The SR-equilibrium differs in that the available

amount of each good 𝑗 is influenced by the price 𝑝 𝑗 , namely, it is set as min{1, 1/𝑝 𝑗 }. In other

words, once the price of the good reaches 1, the seller will only sell an amount of total value 1.

Auction algorithms are well-suited for SR-equilibrium computation: once the price of a good goes

above one, we can naturally decrease the total available amount of these goods within the auction

framework.

In an extended version of this paper [38], we design a polynomial time constant-factor approxi-

mation algorithm for the NSW problem under capped separable piecewise linear concave valuations

by rounding an SR equilibrium under Gale demand systems to an approximately optimal solution.

The previous algorithm for this problem takes pseudopolynomial time [15]. A key for this result is

finding an approximate SR equilibrium in polynomial-time for which we use a modification of our

auction algorithm. Interestingly, the capped separable piecewise linear concave valuations satisfy

the WGS property under Gale demand systems but not in the “standard” demand system setting (1).

For details, we refer to [37, 38].

1.2 Further related work
Proportional response dynamics. Proportional response is a distributed market mechanism intro-

duced by Zhang [66] in the context of Fisher markets. In contrast with tâtonnement and auctions,

there is no direct price mechanism. In each round, agents bid on goods in proportion to the utility

they receive from them in the previous round; the goods are then allocated in proportion to the

agents’ bids. Proportional response is known to converge to a market equilibrium in a variety of

Fisher markets [11, 19, 20], and some special cases of exchange markets [13, 14, 64].

Markets with indivisible goods. Auction algorithms have been widely studied in the context of

markets with indivisible goods. There are significant differences between the settings with divisible

and indivisible goods. In the indivisible setting, equilibria are known to exist only in restricted

settings. Kelso and Crawford [51] introduced (discrete) gross substitute utilities as a class where

an equilibrium is guaranteed to exist, and a simple auction algorithm can be used to find an

approximate equilibrium. As shown by Gul and Stacchetti [46, 47], the discrete gross substitutes

property is, in essence, a necessary and sufficient condition for the existence of an equilibrium

and for an auction algorithm to work. We refer the reader to the survey by Paes Leme [52] on the

role of gross substitute utilities in markets with indivisible goods and their connections to discrete

convex analysis.
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Whereas the definitions of discrete gross substitutes and continuous WGS utilities are very

similar, there does not appear to be a direct connection between these notions. The main difference

is in the utility concepts: for indivisible markets, the standard model is to maximize the valuation

minus the price of the set at given prices, whereas standard divisible market models operate with

fiat money: the prices appear via the budget constraints but not in the utility value. Still, our result

can be interpreted as the continuous analogue of the strong link between auction algorithms and

the gross substitutes property for markets with indivisible goods: we show that auction algorithms

are applicable for the entire class of WGS utilities for markets with divisible goods. We suspect

that the converse may also be true, namely, that the applicability of auction algorithms should

be limited to WGS utilities. In contrast, tâtonnement algorithms have been successfully applied

beyond the WGS class, see e.g., [17, 18, 35].

Graphical exchange economies. Subsequently to the preliminary version of this work [37], An-

drade, Frongillo, Gorokhovsky, and Srinivasan [2] studied graphical exchange markets with resale.

Here, agents may only trade with their neighbors in a graph. They show the existence of such an

equilibrium and give an auction algorithm for finding an approximate market equilibrium in such

markets, assuming that agents have WGS demands.

The rest of the paper is structured as follows. Section 2 defines the exchange market model and

provides examples of WGS demand systems. Section 3 presents the auction algorithm for exchange

markets. Section 4 present different ways of implementing FindNewPrices—the key subroutine of

the algorithm. Section A compares the running time of our algorithm to previous work.

A preliminary version of this paper appeared in [37], and an extended version, also including

results on SR-equilibrium can be found in [38].

2 THE EXCHANGE MARKET AND DEMAND SYSTEMS
We use R+ for the nonnegative reals, and for a positive integer 𝑘 , let [𝑘] = {1, 2, . . . , 𝑘}. We consider

a market with a set of agents 𝐴 = [𝑛] and a set of divisible goods 𝐺 = [𝑚]. Each agent 𝑖 ∈ [𝑛]
arrives at the market with an initial endowment of goods 𝑒 (𝑖 ) ∈ R𝑚+ . We let 𝑒 =

∑𝑛
𝑖=1 𝑒

(𝑖 )
denote

the total amount of the goods. We assume 𝑒 𝑗 > 0 for each 𝑗 ∈ [𝑚]. A bundle 𝑥 is a non-negative

vector 𝑥 ∈ R𝑚+ . We say that a bundle of goods 𝑦 ∈ R𝑚+ dominates the bundle 𝑥 ∈ R𝑚+ if 𝑥 ≤ 𝑦.

Given a non-negative price vector 𝑝 ∈ R𝑚+ , the budget of agent 𝑖 at prices 𝑝 is defined as

𝑏𝑖 (𝑝) =
〈
𝑝, 𝑒 (𝑖 )

〉
; we simply write 𝑏𝑖 if the prices are clear from the context. It follows that ⟨𝑝, 𝑒⟩ =∑𝑛

𝑖=1

〈
𝑝, 𝑒 (𝑖 )

〉
=

∑𝑛
𝑖=1 𝑏𝑖 .

We specify the markets via demand systems. A demand system is a function 𝐷 : R𝑚+1+ → 2
R𝑚+ ;

𝐷 (𝑝, 𝑏) denotes the set of preferred bundles of an agent at prices 𝑝 that are affordable within budget

𝑏. Here 2R
𝑚
+ denotes the family of all subsets of R𝑚+ . Bundles in 𝐷 (𝑝,𝑏) are called optimal bundles

or demand bundles at prices 𝑝 and budget 𝑏. The demand system is simple if |𝐷 (𝑝, 𝑏) | = 1 for all

(𝑝,𝑏) ∈ R𝑚+1; for such demand systems, we will also use 𝐷 (𝑝, 𝑏) to denote this single bundle. We

make two assumptions on the demand systems.

Assumption 1 (Scale invariance). For every agent 𝑖 ∈ [𝑛], (𝑝, 𝑏) ∈ R𝑚+1+ , and 𝛼 > 0, 𝐷𝑖 (𝑝, 𝑏) =
𝐷𝑖 (𝛼𝑝, 𝛼𝑏).

That is, we require that the demand is homogeneous of degree 0; informally, the demand does not

depend on the currency. This is a standard assumption in microeconomics, see e.g., [5, 31, 33, 54].

Assumption 2 (Non-satiation). For every agent 𝑖 ∈ [𝑛], (𝑝,𝑏) ∈ R𝑚+1+ , and every 𝑥 ∈ 𝐷𝑖 (𝑝, 𝑏),
⟨𝑝, 𝑥⟩ = 𝑏.
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That is, in every optimal bundle the agents must fully spend their budgets. This is a standard

assumption for exchange markets as it is necessary for the fundamental theorems of welfare

economics (see e.g., [53, Chapter 16]).
1

A common way to define demand systems is by utility functions. By a utility function we

mean a function 𝑢 : R𝑚+ → R+ that is concave, continuous, non-decreasing with 𝑢 (0) = 0. The

corresponding demand system is

𝐷𝑢 (𝑝,𝑏) := arg max

𝑥∈R𝑚+
{𝑢 (𝑥) : ⟨𝑝, 𝑥⟩ ≤ 𝑏} .

(1)

An important example is the linear demand system defined by a linear utility function 𝑢 (𝑥) = ⟨𝑣, 𝑥⟩
for 𝑣 ∈ R𝑚+ . The corresponding demand system 𝐷𝑢 (𝑝,𝑏) is the set of all fractional assignments of

goods maximizing 𝑣 𝑗/𝑝 𝑗 (bang-per-buck) with a total cost of 𝑏. Thus, this demand system is not

simple.

For demand systems in the form (1), Assumption 1 is immediate, and Assumption 2 holds if 𝑢 (𝑥)
is strictly monotone increasing. The demand system is simple if 𝑢 (𝑥) is strictly convex.

2.1 Exact and approximate market equilibria
Definition 1 (Market equilibrium). Consider an exchange market with a set 𝐴 = [𝑛] of agents, a set
𝐺 = [𝑚] of goods, initial endowments 𝑒 (𝑖 ) ∈ R𝑚+ , and 𝑒 =

∑𝑛
𝑖=1 𝑒

(𝑖 ) . Let 𝐷𝑖 (𝑝, 𝑏) denote the demand
system of agent 𝑖 ∈ 𝐴. The prices 𝑝 ∈ R𝑚+ and bundles 𝑥 (𝑖 ) ∈ R𝑚+ form a market equilibrium if

(i) 𝑥 (𝑖 ) ∈ 𝐷𝑖 (𝑝,
〈
𝑝, 𝑒 (𝑖 )

〉
) for all 𝑖 ∈ 𝐴, and

(ii)
∑𝑛

𝑖=1 𝑥
(𝑖 )
𝑗
≤ 𝑒 𝑗 , with equality whenever 𝑝 𝑗 > 0, for all 𝑗 ∈ 𝐺 .

That is, 𝑝 and the optimal bundles 𝑥 (𝑖 ) form an equilibrium if no good is overdemanded and

goods at a positive price are fully sold. Note that this implies that every agent fully spends their

budget.

We relax this to the following notion of 𝜀-approximate equilibrium:

Definition 2 (Approximate market equilibrium). Consider the same setting as in Definition 1. For
𝜀 ≥ 0, the prices 𝑝 ∈ R𝑚+ and bundles 𝑥 (𝑖 ) ∈ R𝑚+ form an 𝜀-approximate market equilibrium if

(i) 𝑥 (𝑖 ) ≤ 𝑧 (𝑖 ) for some 𝑧 (𝑖 ) ∈ 𝐷𝑖 (𝑝 (𝑖 ) ,
〈
𝑝, 𝑒 (𝑖 )

〉
), where 𝑝 ≤ 𝑝 (𝑖 ) ≤ (1 + 𝜀)𝑝 ,

(ii)
∑𝑛

𝑖=1 𝑥
(𝑖 )
𝑗
≤ 𝑒 𝑗 , and

(iii)
〈
𝑝, 𝑒 −∑𝑛

𝑖=1 𝑥
(𝑖 ) 〉 ≤ 𝜀 ⟨𝑝, 𝑒⟩.

That is, every agent receives a subset of their optimal bundle at prices that arewithin a factor (1+𝜀)
from 𝑝 , and all goods are nearly sold: the value of the unsold goods is at most an 𝜀 fraction of the

total value of the goods. The total value of the goods “taken away” from the near-optimal bundles of

the agents is

∑𝑛
𝑖=1

〈
𝑝, 𝑧 (𝑖 ) − 𝑥 (𝑖 )

〉
. Parts (i) and (iii), together with the fact that

〈
𝑝 (𝑖 ) , 𝑧 (𝑖 )

〉
≤

〈
𝑝, 𝑒 (𝑖 )

〉
for all 𝑖 , imply that this amount is at most 𝜀 ⟨𝑝, 𝑒⟩. In particular, 𝜀 = 0 corresponds to an exact

market equilibrium as in Definition 1.

Condition (i) can be seen as a natural extension of the corresponding approximate optimality

conditions in previous auction algorithms [41, 43, 44]. For linear utilities, Garg and Kapoor [41]

require the approximate maximum bang-per-buck condition 𝑣𝑖 𝑗/𝑝 𝑗 ≤ (1 + 𝜀)𝑣𝑖𝑘/𝑝𝑘 for any agent 𝑖 ,

goods 𝑗 and 𝑘 such that 𝑥𝑖𝑘 > 0. In other words, the goods purchased by agent 𝑖 according to this

definition are maximum bang-per-buck with respect to some prices 𝑝 (𝑖 ) such that 𝑝 ≤ 𝑝 (𝑖 ) ≤ (1+𝜀)𝑝 .
Condition (iii) corresponds to the definition of approximate equilibrium in [30] and [45]. This

notion is weaker than the ones used in [41, 43, 44]. The most important difference is that the latter

1
We note that this assumption can be replaced by a weaker one in the case of Fisher markets, see [37, 38].
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papers guarantee that each agent recovers approximately their optimal utility. Such a property

could be achieved by strengthening the bound in (iii) from 𝜀 ⟨𝑝, 𝑒⟩ to 𝜀𝑝min𝑒min, where 𝑝min is the

minimum price and 𝑒min is the smallest total fractional amount in the initial endowment of any

agent. However, this would come at the expense of substantially worse running time guarantees in

our algorithmic framework.

An important special case of exchange markets are Fisher markets, where 𝑒 (𝑖 ) = 𝑏𝑖∑𝑛
𝑖=1 𝑏𝑖

𝑒 for each

𝑖 ∈ [𝑛], where 𝑏𝑖 > 0. That is, the initial endowments include every good in the same proportion.

By appropriately scaling the prices, we can interpret the 𝑏𝑖 ’s as fixed budgets, and an exchange

market equilibrium can be written as follows.

Definition 3 (Fisher market equilibrium). Consider a Fisher market with a set 𝐴 = [𝑛] of agents, a
set 𝐺 = [𝑚] of goods, and budgets 𝑏𝑖 > 0, 𝑖 ∈ [𝑛]. Let 𝐷𝑖 (𝑝, 𝑏) denote the demand system of agent
𝑖 ∈ 𝐴. The prices 𝑝 ∈ R𝑚+ and bundles 𝑥 (𝑖 ) ∈ R𝑚+ form a Fisher market equilibrium if

(i) 𝑥 (𝑖 ) ∈ 𝐷𝑖 (𝑝,𝑏𝑖 ) for all 𝑖 ∈ 𝐴, and
(ii)

∑𝑛
𝑖=1 𝑥

(𝑖 )
𝑗
≤ 𝑒 𝑗 , with equality whenever 𝑝 𝑗 > 0, for all 𝑗 ∈ 𝐺 .

2.2 The weak gross substitutes property
We next introduce the class of demand systems investigated in this paper.

Definition 4. The demand system 𝐷 (𝑝,𝑏) is a weak gross substitutes (WGS) demand system if for
any (𝑝, 𝑏) ∈ R𝑚+1+ , any 𝑥 ∈ 𝐷 (𝑝, 𝑏), and any 𝑝′ ≥ 𝑝 and 𝑏′ ≥ 𝑏, there exists 𝑦 ∈ 𝐷 (𝑝′, 𝑏′) such that
𝑦 𝑗 ≥ 𝑥 𝑗 whenever 𝑝′𝑗 = 𝑝 𝑗 .

Further, we say that the utility function𝑢 : R𝑚+ → R+ satisfies the WGS property if the corresponding
demand system 𝐷𝑢 (𝑝, 𝑏) as in (1) is a WGS demand system.

We use an oracle model to represent the demand systems. We require access to the allocations

guaranteed by Definition 4.

Definition 5 (Demand oracle). For a WGS demand system 𝐷 (𝑝, 𝑏), a WGS demand oracle requires
in the input two vectors (𝑝,𝑏), (𝑝′, 𝑏′) ∈ R𝑚+1+ such that (𝑝′, 𝑏′) ≥ (𝑝, 𝑏), and a vector 𝑥 ∈ 𝐷 (𝑝, 𝑏).
The oracle outputs a vector 𝑦 ∈ 𝐷 (𝑝′, 𝑏′) such that that 𝑦 𝑗 ≥ 𝑥 𝑗 whenever 𝑝′𝑗 = 𝑝 𝑗 .

The complex form of the definition is due to the possible non-uniqueness of demand bundles.

For simple demand systems, it suffices to specify (𝑝′, 𝑏′) ∈ R𝑚+1+ in the input; the output is the

unique vector 𝐷 (𝑝′, 𝑏′).
Consider a demand system 𝐷𝑢 (𝑝, 𝑏) as in (1) for a utility function 𝑢 : R𝑚+ → R+. If this is not a

simple demand system, we can implement the demand oracle by adding the constraints 𝑦𝑖 ≥ 𝑥𝑖 for

every 𝑖 with 𝑝′𝑖 = 𝑝𝑖 to the convex optimization problem in (1).

Examples of WGS utilities. Some classical examples in the literature are as follows.

• As previously mentioned, the linear utility function is given by 𝑢 (𝑥) = ⟨𝑣, 𝑥⟩ for 𝑣 ∈ R𝑚+ .
• The Cobb-Douglas utility function is specified by parameters 𝛼 ∈ R𝑚+ ,

∑𝑚
𝑗=1 𝛼 𝑗 = 1 as

𝑢 (𝑥) :=
𝑚∏
𝑗=1

𝑥
𝛼 𝑗

𝑗
.

This is a simple demand system with 𝑥 = 𝐷𝑢 (𝑝,𝑏) such that 𝑥 𝑗 = 𝑏𝛼 𝑗/𝑝 𝑗 for all 𝑗 ∈ [𝑚].
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• The constant elasticity of substitution (CES) utility function is specified by parameters 𝛽 ∈ R𝑚+
such that

∑𝑚
𝑗=1 𝛽 𝑗 = 1, and 𝜎 ∈ R+ as

𝑢 (𝑥) :=
(
𝑚∑︁
𝑗=1

𝛽
1

𝜎

𝑗
𝑥

𝜎−1
𝜎

𝑗

) 𝜎
𝜎−1

,

This is also a simple demand system with 𝑥 = 𝐷𝑢 (𝑝, 𝑏) such that 𝑥 𝑗 =
𝛽 𝑗𝑝
−𝜎
𝑗
𝑏∑𝑚

𝑘=1
𝛽𝑘𝑝

1−𝜎
𝑘

for all

𝑗 ∈ [𝑚]. The CES demand system satisfies the WGS property if and only if 𝜎 > 1.

• The nested CES utility function is defined recursively (see [48] for more details). Any CES

function is a nested CES function. If 𝑔, ℎ1, . . . , ℎ𝑡 are nested CES functions, then 𝑓 (𝑥) =
max𝑔(ℎ1 (𝑥1), . . . , ℎ𝑡 (𝑥𝑡 )) over all 𝑥1, . . . , 𝑥𝑡 such that

∑𝑡
𝑘=1

𝑥𝑘 = 𝑥 , is a nested CES function.

In a well-studied special case, each good 𝑗 can only be used in at most one of the ℎ𝑖 ’s; see

e.g., [50].

Convex combinations of demand systems. Given two WGS utility functions 𝑢 and 𝑢′, the demand

system corresponding to their sum 𝑢 +𝑢′ may not be WGS. In contrast, taking convex combinations

of simple WGS demand systems retains this property; the following proposition is easy to verify.

Proposition 1. Let 𝐷 (𝑝, 𝑏) and 𝐷 ′ (𝑝, 𝑏) be two simple WGS demand systems and 0 ≤ 𝜆 ≤ 1. Let us
define the demand system 𝐷 ′′ = 𝜆𝐷 + (1 − 𝜆)𝐷 ′ by

𝐷 ′′ (𝑝,𝑏) := 𝐷 (𝑝, 𝜆𝑏) + 𝐷 ′ (𝑝, (1 − 𝜆)𝑏) .

Then, 𝐷 ′′ is a simple WGS demand system.

This enables the construction of some interesting demand systems. For example, Matsuyama

and Ushchev [54] consider hybrids of CES and Cobb-Douglas demands, where the demand system

can be given as

𝑥 𝑗 =
𝑏

𝑝 𝑗

[
𝜆𝛼 𝑗 + (1 − 𝜆)

𝛽 𝑗𝑝
1−𝜎
𝑗∑

𝑘 𝛽𝑘𝑝
1−𝜎
𝑘

]
,

for 𝛽 ∈ R𝑚+ ,
∑𝑚

𝑗=1 𝛽 𝑗 = 1, 𝜎 > 1, 𝛼 ∈ R𝑚+ ,
∑𝑚

𝑗=1 𝛼 𝑗 = 1, and 0 ≤ 𝜆 ≤ 1.
2

Note that if 𝐷 = 𝐷𝑢
and 𝐷 ′ = 𝐷𝑢′

for some concave utility functions 𝑢 and 𝑢′, the demand

system 𝜆𝐷 + 𝜆′𝐷 ′ will in general not correspond to the utility function 𝜆𝑢 + 𝜆′𝑢′. It is not clear
whether one can explicitly write utility functions corresponding to such convex combinations.

Using a demand oracle model, our algorithm is applicable to a convex combination of simple

demand oracles.

Separable and uniformly separable WGS utility functions. The auction algorithm for linear utili-

ties [41] was later extended to separable WGS utility functions [44], that is, 𝑢 =
∑

𝑗∈𝐺 𝑢 𝑗 where

each 𝑢 𝑗 is a WGS utility function depending only on good 𝑗 . This model was further generalized

to uniformly separable WGS utility functions [43], that is,
𝜕𝑢 (𝑥 )
𝜕𝑥 𝑗

= 𝑓𝑗 (𝑥 𝑗 )𝑔(𝑥), where each 𝑓𝑗 is a

strictly decreasing function. This class already includes CES and Cobb-Douglas utilities; however,

it does not appear to extend to demand systems obtained as their convex combinations, where even

the explicit form of the utility function is unclear. Further, the running time bound stated in [43] is

unbounded for the CES and Cobb-Douglas cases; see Section A for further discussion.

2
We note that this demand function does not seem to correspond to a nested CES utility function.
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2.3 Price elasticity of demands
A commonly studied property of demand systems is price elasticity. For simple demand systems

that are differentiable, the usual definition of the price elasticity of good 𝑗 with respect to the price

of good 𝑘 is 𝑒 𝑗,𝑘 = 𝜕 log𝐷 𝑗 (𝑝,𝑏)/𝜕 log𝑝𝑘 , where 𝐷 𝑗 (𝑝,𝑏) is the unique demand for good 𝑗 at prices

𝑝 and budget 𝑏. The WGS property guarantees that 𝑒 𝑗,𝑘 ≥ 0 if 𝑗 ≠ 𝑘 , and consequently, 𝑒𝑘,𝑘 ≤ 0.

The following definition does not assume simplicity or differentiability of the demand system. It

corresponds to 𝑒𝑘,𝑘 ≥ −𝑓 for all 𝑘 ∈ [𝑚], in the above case.

Definition 6. Consider a WGS demand system 𝐷 (𝑝,𝑏). For some 𝑓 > 0, we say that the elasticity
of 𝐷 (𝑝, 𝑏) is at least −𝑓 if the following holds. For any (𝑝,𝑏) ∈ R𝑚+1+ and 𝑥 ∈ 𝐷 (𝑝, 𝑏), 𝑗 ∈ [𝑚] and
𝜇 ≥ 1, let us define

𝑝′
𝑘
=

{
𝜇𝑝𝑘 if 𝑘 = 𝑗 ,

𝑝𝑘 otherwise.
(2)

Then, there exists a bundle 𝑥 ′ ∈ 𝐷 (𝑝′, 𝑏) such that 𝑥 ′𝑗 ≥ 𝑥 𝑗/𝜇 𝑓 and 𝑥 ′𝑘 ≥ 𝑥𝑘 for every 𝑘 ≠ 𝑗 .

It is easy to check that the linear demand systems do not satisfy this property for any finite 𝑓 ,

as the demand for a good may drop to zero as a result of an arbitrarily small price increase. We

include the proof of the following well-known statement to illustrate this concept.

Lemma 1. The Cobb-Douglas demand system has elasticity at least −1, and the CES demand system
with parameter 𝜎 > 1 has elasticity at least −𝜎 .

Proof. The optimal bundle for a Cobb-Douglas utility function is 𝑥 = 𝐷 (𝑝,𝑏) with 𝑥ℓ = 𝑏𝛼ℓ/𝑝ℓ
for ℓ ∈ [𝑚]. Increasing the price of a good by a factor 𝜇 ≥ 1 corresponds to a decrease in the

demand by the same factor. Thus, the elasticity is at least −1.

The optimal bundle for CES utilities is 𝑥 = 𝐷 (𝑏, 𝑝) with 𝑥ℓ =
𝛽ℓ𝑝
−𝜎
ℓ

𝑏∑𝑚
𝑘=1

𝛽𝑘𝑝
1−𝜎
𝑘

for ℓ ∈ [𝑚]. Select

any good 𝑗 ∈ [𝑚] and 𝜇 ≥ 1, and let 𝑝′ be defined as in (2). Let 𝑥 ′ = 𝐷 (𝑝′, 𝑏) denote the optimal

bundle. Using 𝜎 > 1, we get

𝑥 ′𝑗 =
𝛽 𝑗 𝜇
−𝜎𝑝−𝜎

𝑗
𝑏∑

𝑘≠𝑗 𝛽𝑘𝑝
1−𝜎
𝑘
+ 𝛽 𝑗 𝜇1−𝜎𝑝1−𝜎𝑘

=
𝛽 𝑗𝑝
−𝜎
𝑗
𝑏∑

𝑘≠𝑗 𝛽𝑘𝜇
𝜎𝑝1−𝜎

𝑘
+ 𝛽 𝑗 𝜇𝑝1−𝜎𝑘

>
𝛽 𝑗𝑝
−𝜎
𝑗
𝑏

𝜇𝜎
∑

𝑘 𝛽𝑘𝑝
1−𝜎
𝑘

=
𝑥 𝑗

𝜇𝜎
,

verifying that the CES demand system has elasticity at least −𝜎 . □

Our next lemma allows us to derive price elasticity bounds for convex combinations of simple

demand systems.

Lemma 2. Let 𝐷 and 𝐷 ′ be simple demand systems with elasticity at least −𝑓 and −𝑓 ′, respectively.
Let 0 ≤ 𝜆 ≤ 1. Then the demand system 𝜆𝐷 + (1 − 𝜆)𝐷 ′ has elasticity at least min{−𝑓 ,−𝑓 ′}.

Proof. Let 𝐷 ′′ = 𝜆𝐷 + (1 − 𝜆)𝐷 ′ and 𝑓 ′′ = max{𝑓 , 𝑓 ′}. Let (𝑝, 𝑏) ∈ R𝑚+1+ , 𝑥 = 𝐷 (𝑝, 𝜆𝑏) and
𝑥 ′ = 𝐷 ′′ (𝑝, (1 − 𝜆)𝑏). Then, 𝑥 ′′ = 𝑥 + 𝑥 ′ = 𝐷 ′ (𝑝,𝑏).

Let 𝑗 ∈ [𝑚], 𝜇 ≥ 1 and define 𝑝′ as in (2). As the elasticity of 𝐷 is at least −𝑓 , for 𝑦 = 𝐷 (𝑝′, 𝜆𝑏)
we have 𝑦 𝑗 ≥ 𝑥 𝑗/𝜇 𝑓 ≥ 𝑥 𝑗/𝜇 𝑓

′′
. Analogously, for 𝑦′ = 𝐷 ′ (𝑝′, (1 − 𝜆)𝑏) we have 𝑦′𝑗 ≥ 𝑥 ′𝑗/𝜇 𝑓

′′
. Thus,

𝑦 𝑗 + 𝑦′𝑗 ≥ (𝑥 𝑗 + 𝑥 ′𝑗 )/𝜇 𝑓
′′
. Since 𝑦 + 𝑦′ = 𝐷 ′′ (𝑝,𝑏), we conclude that the elasticity of 𝐷 ′′ is at least

−𝑓 ′′. □
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2.4 Gale demand systems
Recall that for a utility function 𝑢 : R𝑚+ → R+, we can obtain demand systems from utilities using

the convex program (1) that maximizes the utility subject to the budget constraint.

Fisher market equilibria can be formulated by the well-known Eisenberg–Gale convex program

[34] for many important cases:

max

𝑛∑︁
𝑖=1

𝑏𝑖 log𝑢𝑖 (𝑥𝑖 ) s.t.

𝑛∑︁
𝑖=1

𝑥𝑖 ≤ 𝑒 . (3)

Eisenberg [33] showed that the optimal solutions to this program, together with the prices corre-

sponding to the optimal Lagrangian multipliers, form a Fisher market equilibrium if the utilities are

homogeneous of degree one—that is, 𝑢𝑖 (𝛼𝑥) = 𝛼𝑢𝑖 (𝑥) for every 𝑥 ∈ R𝑚 and 𝛼 > 0, 𝑖 ∈ [𝑛]. This
class includes many important examples such as linear, Cobb–Douglas, and CES utilities.

Nevertheless, solutions to (3) may not correspond to a Fisher market equilibrium in general.

Nesterov and Shikhman [58] showed, using Lagrangian duality, that the optimal solutions to (3)

always form a Fisher market equilibrium for Gale demand systems defined as:

𝐺𝑢 (𝑝, 𝑏) := argmax

𝑥∈R𝑚+
𝑏 log𝑢 (𝑥) − ⟨𝑝, 𝑥⟩ . (4)

The following connection explains why the Eisenberg–Gale program can be used for demand

systems of the form (1) for homogeneous degree one utilities. The proof follows easily from

Lagrangian duality and Euler’s homogeneous function theorem [59, Section 6.2].

Lemma 3. Let 𝑢 be a utility function that is homogeneous of degree one and differentiable. Then, for
any (𝑝,𝑏) ∈ R𝑚+1+ , the optimal solutions to the systems (1) and (4) coincide.

Nesterov and Shikhman [58] study Gale equilibria (equilibrium under Gale demand systems)

as well as the more general concept of Fisher-Gale equilibria; they also give a tâtonnement type

algorithm for finding such an equilibrium.

In the context of our work, in [38] we extend the auction algorithm for spending-restricted

equilibria to Gale demand systems. This can be applied to approximating the Nash social welfare,

as discussed in Introduction.

3 THE AUCTION ALGORITHM
Algorithm 1 describes the auction algorithm. It outputs a 4𝜀-approximate market equilibrium for

an accuracy parameter 0 < 𝜀 < 0.25 specified in the input. We use the notation 𝑒 , 𝑒 (𝑖 ) , 𝐷𝑖 as in

Definitions 1 and 2. We introduce some notation and formulate key invariants.

(a) We maintain a price vector 𝑝 called market prices, initialized as 𝑝 𝑗 = 1 for all 𝑗 ∈ [𝑚].3 Prices
may only increase, and remain integer powers of (1 + 𝜀).

(b) No good is oversold, i.e., at most 𝑒 𝑗 amount of each good is sold, for 𝑗 = 1, 2, . . . ,𝑚. Also, the

market price for each good 𝑗 that is not fully sold is 𝑝 𝑗 = 1.

(c) The budget of agent 𝑖 is 𝑏𝑖 =
〈
𝑝, 𝑒 (𝑖 )

〉
. Every agent 𝑖 ∈ [𝑛] maintains individual prices

𝑝 (𝑖 ) ∈ R𝑚+ satisfying 𝑝 ≤ 𝑝 (𝑖 ) ≤ (1 + 𝜀)𝑝 . We let

𝐿𝑖 := { 𝑗 ∈ [𝑚] : 𝑝 (𝑖 )𝑗 < (1 + 𝜀)𝑝 𝑗 } and 𝐻𝑖 := [𝑚] \ 𝐿𝑖 .

3
Recall from Assumption 1 that if there exist market clearing prices that are strictly positive, we can also assume that these

prices are at least 1. Even though there might be goods priced at 0 in an equilibrium, we can always find an 𝜀-approximate

market equilibrium where all prices are positive.
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(d) Every agent 𝑖 ∈ [𝑛] owns a bundle of goods 𝑐 (𝑖 ) ∈ R𝑚+ that is dominated by a bundle

𝑥 (𝑖 ) ∈ 𝐷𝑖 (𝑝 (𝑖 ) , 𝑏𝑖 ), i.e., an optimal bundle with respect to the individual prices 𝑝 (𝑖 ) and the

budget 𝑏𝑖 . We call 𝑥 (𝑖 ) the desired bundle.
(e) For the amount 𝑐

(𝑖 )
𝑗

of good 𝑗 , agent 𝑖 pays 𝑝 𝑗 if 𝑗 ∈ 𝐿𝑖 and (1 + 𝜀)𝑝 𝑗 if 𝑗 ∈ 𝐻𝑖 .
4
The surplus of

agent 𝑖 is

𝑠𝑖 := 𝑏𝑖 −
∑︁
𝑗∈𝐿𝑖

𝑐
(𝑖 )
𝑗
𝑝 𝑗 − (1 + 𝜀)

∑︁
𝑗∈𝐻𝑖

𝑐
(𝑖 )
𝑗
𝑝 𝑗 .

Before giving an overview of the algorithm, we formulate the termination condition.

Lemma 4. Assume that (a)–(e) hold as above. Then 𝑠𝑖 ≥ 0 for all 𝑖 ∈ [𝑛]. Moreover, if
𝑛∑︁
𝑖=1

𝑠𝑖 ≤ 3𝜀 ⟨𝑝, 𝑒⟩

for the input bundle 𝑒 ∈ R𝑚+ , then the market prices 𝑝 and allocations 𝑐 (𝑖 ) , 𝑖 = 1, 2, . . . , 𝑛 form a
4𝜀-approximate market equilibrium.

Proof. Let 𝑐 (𝑖 ) be the bundle of goods agent 𝑖 owns. By invariant (d), there exists a desired bundle
𝑥 (𝑖 ) dominating 𝑐 (𝑖 ) . The bundle 𝑥 (𝑖 ) is affordable for 𝑖 at prices 𝑝 (𝑖 ) , and thus by invariants (d)

and (e) the same bundle is affordable for 𝑖 at prices 𝑝 𝑗 for 𝑗 ∈ 𝐿𝑖 and (1 + 𝜀)𝑝 𝑗 for 𝑗 ∈ 𝐻𝑖 . It follows

that 𝑖 can afford 𝑐 (𝑖 ) at prices 𝑝 𝑗 for 𝑗 ∈ 𝐿𝑖 and (1 + 𝜀)𝑝 𝑗 for 𝑗 ∈ 𝐻𝑖 . Hence, 𝑠𝑖 ≥ 0.

Condition (i) in Definition 2 is immediate from invariants (c) and (d), and condition (ii) follows

from (b). It is left to verify condition (iii). We can write〈
𝑝, 𝑒 −

𝑛∑︁
𝑖=1

𝑐 (𝑖 )

〉
=

𝑛∑︁
𝑖=1

〈
𝑝, 𝑒 (𝑖 )

〉
−

𝑛∑︁
𝑖=1

〈
𝑝, 𝑐 (𝑖 )

〉
=

𝑛∑︁
𝑖=1

(
𝑏𝑖 −

〈
𝑝, 𝑐 (𝑖 )

〉)
=

𝑛∑︁
𝑖=1

(
𝑠𝑖 + 𝜀

∑︁
𝑗∈𝐻𝑖

𝑐
(𝑖 )
𝑗
𝑝 𝑗

)
≤

𝑛∑︁
𝑖=1

𝑠𝑖 + 𝜀 ⟨𝑝, 𝑒⟩ ≤ 4𝜀 ⟨𝑝, 𝑒⟩ .

□

We now give an overview of the algorithm. The individual prices 𝑝 (𝑖 ) are updated by the key

subroutine FindNewPrices that outputs prices and bundles as specified below. In Section 4, we

provide implementations for different classes of demand systems.

Subroutine FindNewPrices
Input: Agent 𝑖 ∈ [𝑛], market prices 𝑝 ∈ R𝑚+ , individual prices 𝑝 (𝑖 ) ∈ R𝑚+

such that 𝑝 ≤ 𝑝 (𝑖 ) ≤ (1 + 𝜀)𝑝 , budget 𝑏𝑖 ∈ R+, and bundle 𝑐 (𝑖 ) ∈ R𝑚+ .
Output: Prices 𝑝 ∈ R𝑚+ and bundle 𝑦 ∈ R𝑚+ such that

(A) 𝑦 ∈ 𝐷𝑖 (𝑝,𝑏𝑖 ) and 𝑦 ≥ 𝑐 (𝑖 ) , and
(B) 𝑝 (𝑖 ) ≤ 𝑝 ≤ (1 + 𝜀)𝑝 , and 𝑝 𝑗 = (1 + 𝜀)𝑝 𝑗 whenever 𝑦 𝑗 >

(1 + 𝜀) 𝑐 (𝑖 )
𝑗
.

The new individual prices will be set as 𝑝 and the new desired bundle as 𝑦. Property (B) requires

that if agent 𝑖 wants significantly more of good 𝑗 than the current amount 𝑐
(𝑖 )
𝑗
, then they are willing

to pay the higher price (1 + 𝜀)𝑝 𝑗 .

4
This is in contrast with [41] and the other previous auction algorithms where 𝑖 may pay 𝑝 𝑗 for some amount of good 𝑗 and

(1 + 𝜀 )𝑝 𝑗 for another amount.
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The auction algorithm (Algorithm 1) considers the agents one-by-one in steps. A step gives

an agent 𝑖 a chance to spend her surplus money 𝑠𝑖 to obtain more goods. If 𝑠𝑖 > 0, agent 𝑖 calls

FindNewPrices(𝑖, 𝑝 (𝑖 ) , 𝑝, 𝑏𝑖 , 𝑐 (𝑖 ) ) to obtain new individual prices 𝑝 and desired bundle 𝑦. At the end

of their step, they update 𝑝 (𝑖 ) = 𝑝 .

Given 𝑝 and 𝑦, agent 𝑖 considers all goods with 𝑝 𝑗 = (1 + 𝜀)𝑝 𝑗 one-by-one, and tries to purchase

𝑦 𝑗 − 𝑐 (𝑖 )𝑗 amount using the Outbid procedure. First, if

∑𝑛
𝑖=1 𝑐

(𝑖 )
𝑗

< 𝑒 𝑗 , i.e., if there is any unsold

amount of good 𝑗 , they purchase from such amounts. If they still want more, they will outbid other

agents who have been paying the lower price 𝑝 𝑗 for this good, by offering the higher price (1+ 𝜀)𝑝 𝑗 .

Goods with 𝑝 𝑗 < (1 + 𝜀)𝑝 𝑗 are ignored: no additional amount of these goods is purchased.

If after the calls to Outbid, a good 𝑗 is only being sold at the higher price (1 + 𝜀)𝑝 𝑗 , then we

call the RaisePrice procedure to increase the market price from 𝑝 𝑗 to (1 + 𝜀)𝑝 𝑗 , and update the

budgets and surpluses accordingly. The algorithm terminates once the total surplus of the agents is

at most 3𝜀 ⟨𝑝, 𝑒⟩; according to Lemma 4, the current prices and allocations form a 4𝜀-approximate

equilibrium.

We now formulate the main running time statement. This depends on the running time 𝑇𝐹 of

the subroutine FindNewPrices. We assume that 𝑇𝐹 = Ω(𝑚), since the output needs to return an

𝑚-dimensional vector of goods.

We also use an upper bound on 𝑝max/𝑝min—the ratio of the largest and smallest nonzero prices

at some 𝜀-equilibrium. An upper bound on 𝑝max/𝑝min may be obtained for the specific demand

systems, e.g., for demand systems arising from linear utilities [41]. Alternatively, one can follow

the approach of Codenotti, McCune, and Varadarajan [21, 23] by adding a dummy agent with a

Cobb–Douglas demand system and an initial endowment of a small fraction of all goods. In the

presence of such an agent, we can obtain a strong bound on 𝑝max/𝑝min, at the expense of obtaining

a slightly worse approximation guarantee. We describe the construction in Appendix B.

Note that it is the ratio 𝑝max/𝑝min rather than the actual values of 𝑝max and 𝑝min that matter: by

Assumption 1, for (approximate-)equilibrium prices 𝑝 , 𝛼𝑝 also gives (approximate-)equilibrium

prices with the same allocation, for any 𝛼 > 0. In our algorithm, the minimum price will remain 1

throughout, see Lemma 6.

Theorem 1. Assume all agents have WGS demand systems. Let 𝑇𝐹 be an upper bound on the
running time of the subroutine FindNewPrices and suppose that 𝑇𝐹 = Ω(𝑚). Algorithm 1 finds a
4𝜀-approximate market equilibrium in time 𝑂

(
𝑛𝑚𝑇𝐹
𝜀2
· log

(
𝑝max

𝑝min

))
.

One particular implementation of FindNewPrices in Section 4.1 is given for bounded elasticities;

see Lemma 9 for the running time-bound. Recall the elasticity bound 𝑓 from Definition 6.

Theorem 2. If all agents have WGS demand systems with elasticity at least −𝑓 for some 𝑓 > 0, then
an 𝜀-approximate equilibrium can be computed in time𝑂

(
𝑛𝑚2 𝑓 ·𝑇𝐷

𝜀2
· log

(
𝑝max

𝑝min

))
, where𝑇𝐷 is the time

needed for one call to the demand oracle.

We give an overview of the running times of the previous auction algorithms in Section A.

3.1 Description of the algorithm
We now give a more detailed overview of the algorithm. Recall the notation and invariants (a)–(e)

at the start of this section.

For each good 𝑗 = 1, 2, . . . ,𝑚, we partition the total amount as 𝑒 𝑗 = 𝑤 𝑗 + 𝑙 𝑗 + ℎ 𝑗 according to the

price it is sold at:

• amount𝑤 𝑗 is the unsold part of the good,
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Algorithm 1: Auction algorithm

Input: Demand systems 𝐷𝑖 , and the endowment vectors 𝑒 (𝑖 ) , and 𝜀 ∈ (0, 0.25).
Output: A 4𝜀-approximate market equilibrium.

1 Initialize
2 for 𝑗 ∈ [𝑚] do 𝑒 𝑗 ←

∑𝑛
𝑖=1 𝑒

(𝑖 )
𝑗

; 𝑝 𝑗 ← 1 ;𝑤 𝑗 ← 𝑒 𝑗 ; 𝑙 𝑗 ← 0

3 for 𝑖 ∈ [𝑛] do
4 𝑏𝑖 ←

∑𝑛
𝑗=1 𝑒

(𝑖 )
𝑗

; 𝑠𝑖 ← 𝑏𝑖

5 for 𝑗 ∈ [𝑚] do 𝑝
(𝑖 )
𝑗
← 1 ; 𝑐

(𝑖 )
𝑗
← 0

6 end
7 while

∑𝑛
𝑖=1 𝑠𝑖 > 3𝜀 ⟨𝑝, 𝑒⟩ do

8 Select next agent 𝑖 ∈ [𝑛] with 𝑠𝑖 > 0. // Step for agent 𝑖.

9 (𝑝,𝑦) ← FindNewPrices(𝑖, 𝑝, 𝑝 (𝑖 ) , 𝑏𝑖 , 𝑐 (𝑖 ) )

10 for 𝑗 = 1 to𝑚 do
11 if 𝑝

(𝑖 )
𝑗

< (1 + 𝜀)𝑝 𝑗 and 𝑝 𝑗 = (1 + 𝜀)𝑝 𝑗 then // Case 1

12 𝑠𝑖 ← 𝑠𝑖 − 𝑐 (𝑖 )𝑗 · 𝜀𝑝 𝑗 ; 𝑙 𝑗 ← 𝑙 𝑗 − 𝑐 (𝑖 )𝑗 // 𝑖 pays (1 + 𝜀)𝑝 𝑗 instead of 𝑝 𝑗.

13 Outbid(𝑖 , 𝑗 , 𝑦 𝑗 − 𝑐 (𝑖 )𝑗 )

14 else if 𝑝
(𝑖 )
𝑗

= (1 + 𝜀)𝑝 𝑗 and 𝑝 𝑗 = (1 + 𝜀)𝑝 𝑗 then // Case 2

15 Outbid(𝑖 , 𝑗 , 𝑦 𝑗 − 𝑐 (𝑖 )𝑗 )

16 end
// Skip the goods with 𝑝

(𝑖 )
𝑗

< (1 + 𝜀)𝑝 𝑗 and 𝑝 𝑗 < (1 + 𝜀)𝑝 𝑗. // Case 3

17 if 𝑤 𝑗 + 𝑙 𝑗 = 0 then RaisePrice( 𝑗 )

18 end
19 𝑝 (𝑖 ) ← 𝑝

20 end
21 return 𝑝 , {𝑝 (𝑖 ) }𝑖∈[𝑛] and {𝑐 (𝑖 ) }𝑖∈[𝑛]

• amount 𝑙 𝑗 is sold at the lower price 𝑝 𝑗 , and

• amount ℎ 𝑗 is sold at the higher price (1 + 𝜀)𝑝 𝑗 .

We only explicitly maintain𝑤 𝑗 and 𝑙 𝑗 in the algorithm. Recall from (b) that𝑤 𝑗 ≥ 0 and 𝑝 𝑗 = 1 as

long as𝑤 𝑗 > 0. We further maintain𝑤 𝑗 + 𝑙 𝑗 > 0 at the beginning of every step, i.e., there is always

a part of the good that is unsold or owned by an agent at the lower price.

The Outbid subroutine. Procedure Outbid(𝑖, 𝑗, 𝛾), controls how the ownership of goods may

change. This is called when agent 𝑖 would like to purchase an additional amount 𝛾 of good 𝑗 .

If𝑤 𝑗 > 0, there is some unsold amount of the good, then agent 𝑖 starts by purchasingmin{𝑤 𝑗 , 𝛾}
of this amount. Recall that 𝑝 𝑗 = 1 at this point is due to invariant (b).

If agent 𝑗 still requires more of good 𝑗 , we consider agents 𝑘 one-by-one who are paying the

lower price 𝑝 𝑗 for good 𝑗 , i.e., 𝑗 ∈ 𝐿𝑘 . Agent 𝑖 may take over some of this amount by offering a

higher price (1 + 𝜀)𝑝 𝑗 .

The RaisePrice subroutine. Procedure RaisePrice( 𝑗) is called when𝑤 𝑗 + 𝑙 𝑗 = 0 for a good 𝑗 , i.e.,

it is only sold at the higher price (1 + 𝜀)𝑝 𝑗 . In this case, we increase the market price to (1 + 𝜀)𝑝 𝑗 ,
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Procedure Outbid(𝑖 , 𝑗 , 𝛾 )
Input: Agent 𝑖 ∈ [𝑛], good 𝑗 ∈ [𝑚], amount 𝛾 > 0.

1 𝑧 ← 𝛾

2 if 𝑤 𝑗 > 0 then // a part of 𝑗 is unsold
3 𝜇 ← min{𝑤 𝑗 , 𝑧}
4 𝑤 𝑗 ← 𝑤 𝑗 − 𝜇
5 𝑐

(𝑖 )
𝑗
← 𝑐

(𝑖 )
𝑗
+ 𝜇

6 𝑠𝑖 ← 𝑠𝑖 − (1 + 𝜀)𝜇 // here 𝑝 𝑗 = 1

7 𝑧 ← 𝑧 − 𝜇
8 end
9 while 𝑧 > 0 and 𝑙 𝑗 > 0 do
10 Let 𝑘 ∈ [𝑛] be such that 𝑐

(𝑘 )
𝑗

> 0 and 𝑗 ∈ 𝐿𝑘
11 𝜇 ← min{𝑐 (𝑘 )

𝑗
, 𝑧}

12 𝑙 𝑗 ← 𝑙 𝑗 − 𝜇
13 𝑐

(𝑘 )
𝑗
← 𝑐

(𝑘 )
𝑗
− 𝜇; 𝑐 (𝑖 )

𝑗
← 𝑐

(𝑖 )
𝑗
+ 𝜇 // 𝑖 outbids 𝑘

14 𝑠𝑘 ← 𝑠𝑘 + 𝜇𝑝 𝑗 ; 𝑠𝑖 ← 𝑠𝑖 − (1 + 𝜀)𝜇𝑝 𝑗

15 𝑧 ← 𝑧 − 𝜇
16 end

Procedure RaisePrice( 𝑗 )
Input: Good 𝑗 ∈ [𝑚].

1 for 𝑘 ∈ [𝑛] do
2 𝑏𝑘 ← 𝑏𝑘 + 𝜀𝑝 𝑗𝑒

(𝑘 )
𝑗

3 𝑠𝑘 ← 𝑠𝑘 + 𝜀𝑝 𝑗𝑒
(𝑘 )
𝑗

4 𝑝
(𝑘 )
𝑗
← (1 + 𝜀)𝑝 𝑗

5 end
6 𝑝 𝑗 ← (1 + 𝜀)𝑝 𝑗 ; 𝑙 𝑗 ← 𝑒 𝑗

set all individual prices 𝑝
(𝑘 )
𝑗

to this value, and update the budgets and surpluses of all agents whose

initial endowment contains good 𝑗 . We also set 𝑙 𝑗 = 𝑒 𝑗 .

Steps. The algorithm terminates as soon as the total surplus is at most 3𝜀 ⟨𝑝, 𝑒⟩. We consider

agents 𝑖 with 𝑠𝑖 > 0 one-by-one. By invariant (d), the agent is buying a bundle 𝑐 (𝑖 ) ≤ 𝑥 (𝑖 ) for some

𝑥 (𝑖 ) ∈ 𝐷𝑖 (𝑝 (𝑖 ) , 𝑏𝑖 ). The subroutine FindNewPrices(𝑖, 𝑝 (𝑖 ) , 𝑝, 𝑏𝑖 , 𝑐 (𝑖 ) ) delivers new prices 𝑝 and a

bundle 𝑦 satisfying Conditions (A) and (B) described above.

Conditions (A) asserts that the current bundle 𝑐 (𝑖 ) of agent 𝑖 is still dominated by a desired bundle

𝑦 at the increased prices 𝑝 . Condition (B) guarantees that 𝑝 ≥ 𝑝 (𝑖 ) , and whenever an agent wants

to buy more of some good than they already own at least by a factor (1 + 𝜀), then they are willing

to pay the higher price (1 + 𝜀)𝑝 𝑗 for it. (They might already be paying the increased price to start

with if 𝑝
(𝑖 )
𝑗

= (1 + 𝜀)𝑝 𝑗 . In this case 𝑝 𝑗 = (1 + 𝜀)𝑝 𝑗 = 𝑝
(𝑖 )
𝑗
.)

The above properties suggest the following update rules for each good 𝑗 ∈ [𝑚].
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Case 1. 𝑝 (𝑖 )
𝑗

< (1 + 𝜀)𝑝 𝑗 and 𝑝 𝑗 = (1 + 𝜀)𝑝 𝑗 . The good 𝑗 was in 𝐿𝑖 and needs to be moved to 𝐻𝑖 , i.e.,

agent 𝑖 used to pay 𝑝 𝑗 but now is willing to pay the higher price for 𝑗 . We charge agent 𝑖 the price

(1 + 𝜀)𝑝 𝑗 for the amount 𝑐
(𝑖 )
𝑗

they already own instead of 𝑝 𝑗 . Additionally, agent 𝑖 outbids on good

𝑗 the amount min{𝑦 𝑗 − 𝑐 (𝑖 )𝑗 ,𝑤 𝑗 + 𝑙 𝑗 }.

Case 2. 𝑝 (𝑖 )
𝑗

= (1 + 𝜀)𝑝 𝑗 and 𝑝 𝑗 = (1 + 𝜀)𝑝 𝑗 . The good 𝑗 was in 𝐻𝑖 and stays in 𝐻𝑖 , i.e., agent 𝑖

continues to pay the higher price. The agent 𝑖 keeps the amount 𝑐
(𝑖 )
𝑗

of good 𝑗 that they already had

and outbids for as much as they can from the other agents, i.e., the amount min{𝑦 𝑗 − 𝑐 (𝑖 )𝑗 ,𝑤 𝑗 + 𝑙 𝑗 }.

Case 3. 𝑝 (𝑖 )
𝑗

< (1 + 𝜀)𝑝 𝑗 and 𝑝 𝑗 < (1 + 𝜀)𝑝 𝑗 . The good 𝑗 remains in 𝐿𝑖 , i.e., agent 𝑖 continues to pay

the lower price. By (B), we must have 𝑐
(𝑖 )
𝑗
≤ 𝑦 𝑗 ≤ (1 + 𝜀)𝑐 (𝑖 )𝑗 ; the agent will not seek to buy more of

these goods.

If the above updates result in𝑤 𝑗 + 𝑙 𝑗 = 0 for good 𝑗 , then we call RaisePrice( 𝑗) to increase the

market price. Once all of the goods have been considered we set 𝑝 (𝑖 ) = 𝑝 and update 𝑐 (𝑖 ) as the
current allocation.

Rounds. In the analysis, it will be useful to organize the steps into rounds as in [41]. A round
consists of all agents making a step once (or being skipped if 𝑠𝑖 = 0).

3.2 Analysis
We start with a high-level overview of the analysis. Lemma 5 verifies that all invariants (a)–(e) are

maintained. Lemma 6 shows that the minimum price remains 𝑝 𝑗 = 1 throughout. Note that—in

accordance with invariant (b)—it suffices to show that𝑤 𝑗 > 0 for some good 𝑗 holds at any point.

In other words, the algorithm terminates if all goods are fully sold.

Lemma 7 is the key argument in the running time bound: it shows that the number of rounds

between two calls to RaisePrice is bounded by 2/𝜀. The idea is that as long as the market prices

do not increase, the total budget (∑𝑛
𝑖=1 𝑏𝑖 ) remains the same, while the total money spent on the

goods is increasing due to outbidding. In every outbid, an agent pays more by a factor (1 + 𝜀) for
the goods they purchase. Thus, in 𝑛 consecutive steps the total surplus decreases by approximately

a factor (1 + 𝜀). This either leads to a market price increase or reaches an approximate equilibrium.

Lemma 5. If all agents have WGS demand systems, then the invariants (a)-(e) hold after every step.

Proof. (a) This is immediate.

(b) The algorithm maintains 𝑒 𝑗 = 𝑤 𝑗 + 𝑙 𝑗 + ℎ 𝑗 for all goods 𝑗 = 1, 2, . . . ,𝑚. Further, 𝑤 𝑗 , 𝑙 𝑗 , ℎ 𝑗 ≥ 0.

The amount sold is 𝑙 𝑗 + ℎ 𝑗 ≤ 𝑒 𝑗 , hence, no good is oversold. The amount 𝑤 𝑗 is monotone

decreasing throughout. This is guaranteed by Property (A) of the procedure FindNewPrices,

and the fact that 𝑐
(𝑖 )
𝑗

may only decrease if another 𝑐
(𝑘 )
𝑗

increases by the same amount. Thus,

if𝑤 𝑗 = 0 at any point of the algorithm, good 𝑗 remains fully sold in all remaining steps. Note

that the market price 𝑝 𝑗 is first increased from the initial value 𝑝 𝑗 = 1 when𝑤 𝑗 = 𝑙 𝑗 = 0.

(c) The budgets are updated in RaisePrice, adding 𝜀𝑝 𝑗𝑒
(𝑖 )
𝑗

to 𝑏𝑖 when the price 𝑝 𝑗 increases to

(1 + 𝜀)𝑝 𝑗 . Thus, we maintain 𝑏𝑖 =
〈
𝑝, 𝑒 (𝑖 )

〉
. The bounds 𝑝 ≤ 𝑝 (𝑖 ) ≤ (1 + 𝜀)𝑝 are immediate

from condition (B) in FindNewPrices and in the procedure RaisePrice.
(d) Suppose these properties hold for every agent before a step of agent 𝑖 . The requirements (A)

and (B) guarantee that 𝑐 (𝑖 ) is dominated by a bundle 𝑥 (𝑖 ) ∈ 𝐷𝑖 (𝑝 (𝑖 ) , 𝑏𝑖 ) and prices satisfy

𝑝 ≤ 𝑝 (𝑖 ) ≤ (1 + 𝜀)𝑝 , for each agent 𝑖 . Moreover, if the budget 𝑏𝑖 is increased in line 2, the

invariant remains true by the WGS property.
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Now, consider an agent 𝑘 different from 𝑖 . In the step, 𝑘 could lose a part of a good only

through the outbid and hence 𝑐 (𝑘 ) does not increase. As long as the prices 𝑝 (𝑘 ) do not change,
(d) holds trivially. The only time 𝑝 (𝑘 ) can change is the price increase step in line 4, namely, if

𝑝 𝑗 increases to (1 + 𝜀)𝑝 𝑗 , it forces 𝑝
(𝑘 )
𝑗

= (1 + 𝜀)𝑝 𝑗 . Note that the price increase only happens

once 𝑙 𝑗 = 0. Assume we had 𝑝
(𝑘 )
𝑗

< (1 + 𝜀)𝑝 𝑗 before the price increase, that is, agent 𝑘 was

buying good 𝑗 at the lower price 𝑝 𝑗 . By 𝑙 𝑗 = 0 and invariant (e), it follows that 𝑐
(𝑘 )
𝑗

= 0 at

this point. As the budgets may only increase, the WGS property implies that after increasing

𝑝
(𝑘 )
𝑗

, the bundle 𝑐 (𝑘 ) will still be dominated by an optimal bundle.

(e) It is straightforward to check that the form of the surplus is maintained.

□

Lemma 6. At the beginning of every step, min{𝑝 𝑗 : 𝑗 ∈ 𝐺} = 1.

Proof. We show that a good 𝑗 with𝑤 𝑗 > 0 exists in every step. The statement then follows by

(b). For a contradiction, suppose we reach a point where𝑤 𝑗 = 0 for all 𝑗 = 1, 2, . . . ,𝑚, and consider

the first time this happens. At this point all of the goods are fully sold, i.e.,

∑𝑛
𝑖=1 𝑐

(𝑖 ) = 𝑒 . Consider

the total surplus at this point. We have

𝑛∑︁
𝑖=1

𝑠𝑖 =

𝑛∑︁
𝑖=1

(
𝑏𝑖 −

∑︁
𝑗∈𝐿𝑖

𝑝 𝑗𝑐
(𝑖 )
𝑗
−

∑︁
𝑗∈𝐻𝑖

(1 + 𝜀)𝑝 𝑗𝑐
(𝑖 )
𝑗

)
≤

𝑛∑︁
𝑖=1

(
𝑏𝑖 −

〈
𝑝, 𝑐 (𝑖 )

〉)
=

𝑛∑︁
𝑖=1

𝑏𝑖 −
〈
𝑝,

𝑛∑︁
𝑖=1

𝑐 (𝑖 )

〉
=

𝑛∑︁
𝑖=1

𝑏𝑖 − ⟨𝑝, 𝑒⟩ = 0 .

This contradicts the assumption

∑𝑛
𝑖=1 𝑠𝑖 > 3𝜀 ⟨𝑝, 𝑒⟩ at the beginning of every step. □

Lemma 7. The number of rounds between any two consecutive calls to RaisePrice is at most 2/𝜀.

Proof. Let 𝑝 be the market prices after a call to RaisePrice, and consider a sequence of steps

with the same market prices; consequently, the budget of every agent remains the same. Consider

a step of an agent 𝑖 during this sequence. If 𝑖 buys𝑤 𝑗 + 𝑙 𝑗 of a good 𝑗 , then RaisePrice is called,
and the sequence finishes. Thus, we can assume that during this sequence, every agent 𝑖 gets the

amount of each good they desire.

Let 𝜑 denote the total amount of money spent at a certain point of this sequence of steps that is

spent by the agents on higher price goods. That is,

𝜑 = (1 + 𝜀)
𝑛∑︁
𝑖=1

∑︁
𝑗∈𝐻𝑖

𝑐
(𝑖 )
𝑗
𝑝 𝑗 .

Claim 1. Let 𝑠𝑖 denote the surplus of agent 𝑖 at the beginning of their step. Then the value of 𝜑
increases at least by (1 + 𝜀)2𝑠𝑖 − 2.25𝜀𝑏𝑖 during agent 𝑖’s step.

Proof: Recall Cases 1-3 in the description of the step. Let 𝑇𝑘 be the set of goods that fall into case 𝑘 ,

that is, 𝑇1 ∪𝑇2 ∪𝑇3 = [𝑚].
• If 𝑗 ∈ 𝑇1, then (1 + 𝜀)𝑝 𝑗𝑦 𝑗 will be added to 𝜑 in the Outbid subroutine: In this case, the agent

also outbids itself, moving good 𝑗 from 𝐿𝑖 to 𝐻𝑖 .

• If 𝑗 ∈ 𝑇2, then (1 + 𝜀)𝑝 𝑗 (𝑦 𝑗 − 𝑐 (𝑖 )𝑗 ) will be added to 𝜑 in the Outbid subroutine.
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• If 𝑗 ∈ 𝑇3, then we do not increase 𝜑 . Nevertheless, (B) guarantees that 𝑝 𝑗 (𝑦 𝑗 − 𝑐 (𝑖 )𝑗 ) ≤ 𝜀𝑝 𝑗𝑐
(𝑖 )
𝑗
.

Consequently, ∑︁
𝑗∈𝑇3

𝑝 𝑗 (𝑦 𝑗 − 𝑐 (𝑖 )𝑗 ) ≤ 𝜀

〈
𝑝, 𝑐 (𝑖 )

〉
. (5)

Also note that 𝑝 𝑗 = (1+𝜀)𝑝 𝑗 if 𝑗 ∈ 𝑇1∪𝑇2. Assumption 2 on non-satiation guarantees that ⟨𝑝,𝑦⟩ = 𝑏𝑖 .

Let Δ𝜑 denote the increment in 𝜑 ; this can be lower bounded as

Δ𝜑 =
∑︁
𝑗∈𝑇1

𝑝 𝑗𝑦 𝑗 +
∑︁
𝑗∈𝑇2

𝑝 𝑗 (𝑦 𝑗 − 𝑐 (𝑖 )𝑗 )

= ⟨𝑝,𝑦⟩ −
∑︁
𝑗∈𝑇3

𝑝 𝑗𝑦 𝑗 −
∑︁
𝑗∈𝑇2

𝑝 𝑗𝑐
(𝑖 )
𝑗

≥ 𝑏𝑖 −
∑︁
𝑗∈𝑇3

𝑝 𝑗 (𝑦 𝑗 − 𝑐 (𝑖 )𝑗 ) −
〈
𝑝, 𝑐 (𝑖 )

〉
≥ 𝑏𝑖 − (1 + 𝜀)

〈
𝑝, 𝑐 (𝑖 )

〉
,

using (5). The money spent by the agent at the beginning of the step is 𝑏𝑖 − 𝑠𝑖 . Good 𝑗 is purchased

at price at least 𝑝 𝑗 according to (e), and 𝑝 𝑗 ≤ (1 + 𝜀)𝑝 𝑗 . Consequently,

〈
𝑝, 𝑐 (𝑖 )

〉
≤ (1 + 𝜀) (𝑏𝑖 − 𝑠𝑖 ).

With the above inequality, we obtain

Δ𝜑 ≥ 𝑏𝑖 − (1 + 𝜀)2 (𝑏𝑖 − 𝑠𝑖 ) ≥ (1 + 𝜀)2𝑠𝑖 − (2𝜀 + 𝜀2)𝑏𝑖 ≥ (1 + 𝜀)2𝑠𝑖 − 2.25𝜀𝑏𝑖 ,
as 𝜀 < 0.25. This completes the proof. ■
As long as

∑𝑛
𝑖=1 𝑠𝑖 > 3𝜀 ⟨𝑝, 𝑒⟩, the claim guarantees that 𝜑 increases in every round by at least

3(1 + 𝜀)2𝜀 ⟨𝑝, 𝑒⟩ − 2.25𝜀
𝑛∑︁
𝑖=1

𝑏𝑖 = 0.75𝜀 ⟨𝑝, 𝑒⟩ .

Since 𝜑 ≤ (1 + 𝜀) ⟨𝑝, 𝑒⟩, the number of rounds until the next call the RaisePrice is bounded by

2/𝜀. □

We need one more lemma to bound the total running time of Outbid.

Lemma 8. Between two calls to RaisePrice, for every agent 𝑘 ∈ [𝑛] and good 𝑗 ∈ [𝑛], there can
be only one occasion that during a call to Outbid(𝑖, 𝑗, 𝛾 ) for some 𝑖 ∈ [𝑛] and 𝛾 > 0, 𝑐 (𝑘 )

𝑗
is set to 0 in

line 13.

Proof. Assume 𝑐
(𝑘 )
𝑗

was set to 0 in a certain call to Outbid. Before it can be set to 0 again, agent

𝑘 must have obtained a positive amount of good 𝑗 . This could only happen in a call to Outbid(𝑘, 𝑗, 𝛾 )
for some 𝛾 > 0. However, until the next call to RaisePrice, agent 𝑘 may only buy good 𝑗 at the

higher price (1 + 𝜀)𝑝 𝑗 , and henceforth 𝑗 ∈ 𝐻𝑘 . Thus, agent 𝑘 cannot be selected again in line 10 at a

call to Outbid(𝑖, 𝑗, 𝛾 ). □

Proof of Theorem 1. Lemma 4 shows that at termination, the algorithm returns a 4𝜀-market

equilibrium.

We first bound the total running time between two calls to RaisePrice. By Lemma 7, there are

at most 2/𝜀 rounds. Every round comprises 𝑛 steps, and every step calls the procedure FindNew-
Prices exactly once. Therefore, the time taken by FindNewPrices during this sequence of steps is

𝑂 (𝑛𝑇𝐹 /𝜀).
The total number of calls to Outbid is𝑚 in each step, totaling to𝑂 (𝑛𝑚/𝜀). We bound the number

of repeats in the ‘while’ loop (lines 9–14) in all calls to Outbid between two calls to RaisePrice.

In a call to Outbid(𝑖, 𝑗, 𝛾 ), in all but the final call to the ‘while’ loop, we set 𝑐
(𝑘 )
𝑗

= 0 for some agent
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𝑘 . By Lemma 8, the total number of these events is at most𝑂 (𝑛𝑚). Hence, the number of repeats in

the ‘while’ loop between two calls to RaisePrice is 𝑂 (𝑛𝑚/𝜀 + 𝑛𝑚) = 𝑂 (𝑛𝑚/𝜀). Each repeat takes

𝑂 (1) time.

From the above, the total time of the Outbid calls is 𝑂 (𝑛𝑚/𝜀) between two calls to RaisePrice.
A call to RaisePrice takes𝑂 (𝑛𝑚) time. Consequently, the total time of such a sequence of steps is

𝑂 (𝑛𝑇𝐹 /𝜀 + 𝑛𝑚/𝜀) = 𝑂 (𝑛𝑇𝐹 /𝜀), using the assumption that 𝑇𝐹 = Ω(𝑚).
By Lemma 6, the minimum price remains at most 1 throughout and therefore 𝑝max is at most

𝑝max/𝑝min. Consequently, RaisePrice can be called at most 𝑂 (𝑚 log
1+𝜀 (

𝑝max

𝑝min

)) = 𝑂 (𝑚
𝜀
log( 𝑝max

𝑝min

))
times. The claimed running time bound follows. □

4 IMPLEMENTING THE PRICE UPDATE SUBROUTINE
In this section, we present different approaches to implement FindNewPrices(𝑖, 𝑝, 𝑝 (𝑖 ) , 𝑏𝑖 , 𝑐 (𝑖 ) ).
Recall that the output prices 𝑝 ∈ R𝑚+ and allocations 𝑦 ∈ R𝑚+ must satisfy the following two

requirements:

(A) 𝑦 ∈ 𝐷𝑖 (𝑝,𝑏𝑖 ) and 𝑦 ≥ 𝑐 (𝑖 ) , and

(B) 𝑝 (𝑖 ) ≤ 𝑝 ≤ (1 + 𝜀)𝑝 , and 𝑝 𝑗 = (1 + 𝜀)𝑝 𝑗 whenever 𝑦 𝑗 > (1 + 𝜀) 𝑐 (𝑖 )𝑗 .

First, in Section 4.1 we consider the setting of bounded elasticities. Recall from Lemma 1 that

this includes Cobb–Douglas utilities and CES utilities with parameter 𝜎 > 1. Further, according to

Lemma 2, we can use it for convex combinations of demand systems with bounded elasticities, even

if they are not given in the explicit form (1). The algorithm is a simple price increment procedure,

making repeated calls to the demand oracle. As linear utilities do not have bounded elasticities, in

Section 4.2, we give a simple direct algorithm for linear demand systems. Finally, in Section 4.3,

we implement FindNewPrices for Gale demand systems. We obtain the new prices as the optimal

Lagrangian multipliers of a convex program.

Note that for many utility functions, such as Cobb–Douglas or CES, we can use either of the

methods in Section 4.1 or Section 4.3. The running time in Section 4.1 depends linearly on the

elasticity parameter 𝑓 and makes several calls to the demand oracle. Still, it could be faster than

solving a convex program, e.g., if the demand oracle is given by an explicit formula.

It is possible to find further direct approaches for particular demand systems, similar to the

approach in Section 4.2 for linear demand systems. For example, it is easy to devise an 𝑂 (𝑚) time

procedure for Cobb–Douglas demand systems, exploiting the fact that the optimal bundle allocates

𝛼
(𝑖 )
𝑗
𝑏𝑖 money for good 𝑗 . Consequently, each price can be set independently of the others.

We note that even though the above cases cover all standard examples of WGS systems, we do

not have a general implementation for demand systems in the form (1).

4.1 Demand systems with bounded elasticities
Let us assume that the demand system𝐷𝑖 has elasticity of at least −𝑓 for some 𝑓 > 0. The subroutine

BE-FindNewPrices𝑓 (𝑖, 𝑝, 𝑝
(𝑖 ) , 𝑏𝑖 , 𝑐 (𝑖 ) ) (Algorithm 2) is a simple price increment procedure. First,

we obtain 𝑦 ∈ 𝐷𝑖 (𝑝 (𝑖 ) , 𝑏𝑖 ) from the demand oracle with 𝑦 ≥ 𝑐 (𝑖 ) . This is possible due to invariant

(d), which guarantees that 𝑐 (𝑖 ) ≤ 𝑥 (𝑖 ) for some 𝑥 (𝑖 ) ≤ 𝐷𝑖 (𝑝 (𝑖 ) , 𝑏𝑖 ). Thus, 𝑦 = 𝑥 (𝑖 ) is itself a suitable
choice. Then, we iterate the following step. As long as (B) is violated for a good 𝑗 , we increase its

price by a factor (1 + 𝜀)1/𝑓 until it reaches the upper bound (1 + 𝜀)𝑝 𝑗 .

Lemma 9. Assume the demand system 𝐷𝑖 has elasticity of at least −𝑓 for some 𝑓 > 0. Algorithm 2
terminates with 𝑝 and 𝑦 satisfying (A) and (B) in time 𝑂 (𝑚𝑓 ·𝑇𝐷 ), where 𝑇𝐷 is the time for a call to
the demand oracle.

We assume that 𝑇𝐷 = Ω(𝑚), since the demand oracle needs to output an𝑚-dimensional vector.
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Algorithm 2: BE-FindNewPrices𝑓 (𝑖, 𝑝, 𝑝 (𝑖 ) , 𝑏𝑖 , 𝑐 (𝑖 ) )

Input: Agent 𝑖 ∈ [𝑛], market prices 𝑝 ∈ R𝑚+ , individual prices 𝑝 (𝑖 ) ∈ R𝑚+ such that

𝑝 ≤ 𝑝 (𝑖 ) ≤ (1 + 𝜀)𝑝 , budget 𝑏𝑖 ∈ R+, and bundle 𝑐 (𝑖 ) ∈ R𝑚+ .
Output: Prices 𝑝 and bundle 𝑦.

1 Initialization: 𝑝 ← 𝑝 (𝑖 )

2 Obtain 𝑦 ∈ 𝐷𝑖 (𝑝,𝑏𝑖 ) from the demand oracle such that 𝑦 ≥ 𝑐 (𝑖 )

3 while ∃ 𝑗 : 𝑝 𝑗 < (1 + 𝜀)𝑝 𝑗 and 𝑦 𝑗 > (1 + 𝜀)𝑐 (𝑖 )𝑗 do
4 𝑝 𝑗 ← min{(1 + 𝜀)1/𝑓 𝑝 𝑗 , (1 + 𝜀)𝑝 𝑗 }
5 Obtain 𝑦′ ∈ 𝐷𝑖 (𝑝,𝑏𝑖 ) from the demand oracle such that 𝑦′

𝑘
≥ 𝑦𝑘 for 𝑘 ≠ 𝑗

6 𝑦 ← 𝑦′

7 end
8 return (𝑝,𝑦)

Proof. The bound on the number of iterations is clear: since we have 𝑝 ≤ 𝑝 ≤ (1+𝜀)𝑝 throughout,
the price of every good can increase at most 𝑓 times. Condition (A) is satisfied due to the WGS

property and the bound on the demand elasticity: when increasing 𝑝 𝑗 , the demand 𝑦𝑘 for 𝑘 ≠ 𝑗

is non-decreasing as guaranteed by the demand oracle. Further, 𝑦 𝑗 may decrease only by a factor

(1 + 𝜀), and since we had 𝑦 𝑗 > (1 + 𝜀)𝑐 (𝑖 )𝑗 before the price update, we still have 𝑦 𝑗 > 𝑐
(𝑖 )
𝑗

after the

price update. Condition (B) is satisfied at termination since the while loop keeps running as long as

it is violated. Checking the while condition each time requires 𝑂 (𝑚) time; however, this will be

dominated by the time 𝑇𝐷 according to the comment on 𝑇𝐷 = Ω(𝑚) above. □

4.2 Linear demand systems
We now give a simple direct implementation of FindNewPrices for linear demand systems.

Lemma 10. FindNewPrices can be implemented in𝑂 (𝑚) for a linear demand system corresponding
to the utility function 𝑢 (𝑥) = ⟨𝑣, 𝑥⟩.

Proof. Recall that for linear utilities 𝑦 ∈ 𝐷𝑖 (𝑝,𝑏), 𝑦 𝑗 > 0 if and only if 𝑗 ∈ argmax𝑘 𝑣𝑘/𝑝𝑘 , called
maximum bang-per-buck goods (MBB). We initialize 𝑝 = 𝑝 (𝑖 ) , and let 𝑆 ⊆ [𝑚] denote the set of MBB

goods. Thus, 𝑦 𝑗 = 0 for all 𝑗 ∉ 𝑆 . We start increasing the prices of all goods 𝑗 ∈ 𝑆 at the same rate 𝛼 .

Once a good outside 𝑆 becomes MBB, we include it in the set 𝑆 and also start raising its price. We

terminate when the budget is exhausted or when the price 𝑝𝑘 for a good 𝑘 ∈ 𝑆 reaches the upper

bound (1 + 𝜀)𝑝𝑘 . In the former case, we return the bundle 𝑦 𝑗 = 𝑐
(𝑖 )
𝑗
,∀𝑗 . In the latter case, we return

the bundle 𝑦 𝑗 = 𝑐
(𝑖 )
𝑗

if 𝑗 ≠ 𝑘 , and set 𝑦𝑘 = (𝑏𝑖 −
∑

𝑗∈𝑆 ;𝑗≠𝑘 𝑝 𝑗𝑐
(𝑖 )
𝑗
)/𝑝𝑘 ; clearly, 𝑦𝑘 ≥ 𝑐

(𝑖 )
𝑘

. These prices

and allocations satisfy (A) and (B); in fact, we obtain (B) in the stronger form that 𝑝 𝑗 = (1 + 𝜀)𝑝 𝑗

whenever 𝑦 𝑗 > 𝑐
(𝑖 )
𝑗
. We need to add a good to 𝑆 at most𝑚 times, and thus we can implement the

procedure in 𝑂 (𝑚) time. □

4.3 Gale demand systems
We now show that the subroutine FindNewPrices can be implemented for Gale demand systems

via convex programming. According to Lemma 3, this result is also applicable to demand systems

given in the form (1) for utility functions that are homogeneous of degree one, in which case the

optimal solutions to (1) and (4) coincide.

Suppose the utility function 𝑢 : R𝑚+ → R+ is strictly concave and differentiable. Strict concavity

implies that the demand system is simple: |𝐺𝑢 (𝑝,𝑏) | = 1 for all (𝑝,𝑏) ∈ R𝑚+ .
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We implement a stronger and more general form of FindNewPrices, with an arbitrary vector

𝑞 ∈ R𝑚+ , 𝑞 ≥ 𝑝 in place of (1 + 𝜀)𝑝 .
Assume we are given 𝑏 ∈ R+, 𝑝, 𝑞, 𝑐 ∈ R𝑚+ such that 𝑝 ≤ 𝑞, and moreover assume that 𝑐 ≤ 𝑥 for

some 𝑥 ∈ 𝐺𝑢 (𝑝, 𝑏). The goal is to find 𝑝 and 𝑦 such that

(A’) 𝑦 ≥ 𝑐 where 𝑦 ∈ 𝐺𝑢 (𝑝,𝑏), and
(B’) 𝑝 ≤ 𝑝 ≤ 𝑞 and 𝑝 𝑗 = 𝑞 𝑗 whenever 𝑦 𝑗 > 𝑐 𝑗 .

In the following convex program, the agent is allowed to buy a good 𝑗 at two prices: amount 𝑦′𝑗
at price 𝑝 𝑗 and amount 𝑦′′𝑗 at price 𝑞 𝑗 ; the amount at the lower price 𝑝 𝑗 is capped at 𝑐 𝑗 .

max 𝑏 ln𝑢 (𝑦) − ⟨𝑝,𝑦′⟩ − ⟨𝑞,𝑦′′⟩
𝑦 = 𝑦′ + 𝑦′′

𝑦′ ≤ 𝑐

𝑦′, 𝑦′′ ≥ 0 .

(6)

We show that the optimal solution to this program, along with the prices obtained from the KKT

conditions satisfy (A’) and (B’).

Since all constraints are linear, strong duality holds. Let 𝑦∗ = 𝑦′ + 𝑦′′ be an optimal solution

of (6). By the KKT conditions, there exists 𝛼 ∈ R𝑚+ such that for any 𝑗 ∈ [𝑚],
(i) 𝑏 · 𝜕𝑗𝑢 (𝑦

∗ )
𝑢 (𝑦∗ ) ≤ min{𝛼 𝑗 + 𝑝 𝑗 , 𝑞 𝑗 },

(ii) 𝑏 · 𝜕𝑗𝑢 (𝑦
∗ )

𝑢 (𝑦∗ ) = 𝛼 𝑗 + 𝑝 𝑗 whenever 𝑦
′
𝑗 > 0,

(iii) 𝑏 · 𝜕𝑗𝑢 (𝑦
∗ )

𝑢 (𝑦∗ ) = 𝑞 𝑗 whenever 𝑦
′′
𝑗 > 0, and

(iv) 𝑦′𝑗 = 𝑐 𝑗 whenever 𝛼 𝑗 > 0.

Note that in an optimal solution, we must have 𝑦′𝑗 > 0 whenever 𝑐 𝑗 > 0 and 𝑦∗𝑗 > 0. We define the

prices 𝑝 𝑗 as

𝑝 𝑗 :=

{
𝑞 𝑗 if 𝑐 𝑗 = 0 and 𝑦∗𝑗 > 0 ,

𝛼 𝑗 + 𝑝 𝑗 otherwise .

Lemma 11. The allocations 𝑦∗ and prices 𝑝 satisfy (A’) and (B’).

Proof. Since all constraints are linear, strong duality holds for (4) as well as for (6). We start

with (B’). Let 𝑗 ∈ [𝑚]. If 𝑐 𝑗 = 0 and 𝑦∗𝑗 > 0, then 𝑝 𝑗 = 𝑞 𝑗 and thus (B’) holds by definition.

Suppose 𝑐 𝑗 > 0. In case 𝑦′′𝑗 > 0, (ii) and (iii) imply that 𝑝 𝑗 = 𝛼 𝑗 + 𝑝 𝑗 = 𝑞 𝑗 . This holds whenever

𝑦∗𝑗 > 𝑐 𝑗 . It is left to show that 𝑝 𝑗 ≤ 𝑝 𝑗 ≤ 𝑞 𝑗 when 𝑦
∗
𝑗 ≤ 𝑐 𝑗 . If 𝑦

∗
𝑗 > 0, this follows from (i) and (ii). If

𝑦∗𝑗 = 𝑦′𝑗 = 0, by 𝑐 𝑗 > 0 and (iv) we have 𝛼 𝑗 = 0 and thus 𝑝 𝑗 = 𝑝 𝑗 .

For (A’), we first show 𝑦∗ ∈ 𝐺𝑢 (𝑝, 𝑏). By the KKT conditions for (4), we have 𝑦∗ ∈ 𝐺𝑢 (𝑝,𝑏) if and
only if for all 𝑗 ∈ [𝑚]:
(G1)

𝑏𝜕𝑗𝑢 (𝑦∗ )
𝑢 (𝑦∗ ) ≤ 𝑝 𝑗 , and

(G2)
𝑏𝜕𝑗𝑢 (𝑦∗ )
𝑢 (𝑦∗ ) = 𝑝 𝑗 whenever 𝑦

∗
𝑗 > 0.

Let 𝑗 ∈ [𝑚]. The condition
𝑏𝜕𝑗𝑢 (𝑦∗ )
𝑢 (𝑦∗ ) ≤ 𝑝 𝑗 follows by the definition of 𝑝 and by (i). Suppose

𝑦∗𝑗 = 𝑦′𝑗 + 𝑦′′𝑗 > 0. If 𝑐 𝑗 = 0, then 𝑦′′𝑗 > 0 and 𝑝 𝑗 = 𝑞 𝑗 ; (G2) follows by (iii). If 𝑐 𝑗 > 0, then we must

have 𝑦′𝑗 > 0 and 𝑝 𝑗 = 𝑝 𝑗 + 𝛼 𝑗 . Thus, (G2) follows from (ii).

It remains to show that 𝑦∗ ≥ 𝑐 . We prove by contradiction: assume that 𝑦∗𝑗 < 𝑐 𝑗 for some good

𝑗 , which implies 𝑐 𝑗 > 0. This implies 𝛼 𝑗 = 0 by (iv), yielding 𝑝 𝑗 = 𝑝 𝑗 . By the strict concavity

assumption, 𝑦∗ is the unique optimal bundle in 𝐺𝑢 (𝑝, 𝑏). Using the WGS property for (𝑝,𝑏) and
(𝑝,𝑏) we have 𝑦∗𝑗 ≥ 𝑥 𝑗 since 𝑝 𝑗 = 𝑝 𝑗 . We obtain a contradiction to 𝑦∗𝑗 < 𝑐 𝑗 ≤ 𝑥 𝑗 . □
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A RUNNING TIMES OF PREVIOUS AUCTION ALGORITHMS
We review the running time bounds given in previous auction algorithms and compare them to our

bounds. We let 1 denote the 𝑛 dimensional vector with all entries 1.

Linear utility functions, Garg and Kapoor [41]. The paper includes two algorithms. The running

times are 𝑂

(
𝑛𝑚
𝜀2
· log

(
𝑝max ·⟨1,𝑒 ⟩
𝜀 ·𝑝min ·𝑒min

)
· log

(
𝑝max

𝑝min

) )
and 𝑂

(
𝑛𝑚
𝜀
(𝑛 +𝑚) log

(
𝑝max

𝑝min

))
, respectively. The run-

ning time in Theorem 1, with the bound 𝑇𝐹 = 𝑂 (𝑚) for linear utilities from Lemma 10, gives an

additional factor 𝑚 when compared to the first bound, while removing the first log term. The

additional factor is due to our global update step: due to the more general, nonseparable nature of

our framework, we consider all goods when updating an agent, while the paper [41] considers only

one good for an update. We note that we are using a weaker notion of equilibrium in our result.

Separable WGS utilities, Garg, Kapoor, and Vazirani [44]. The running time bound is presented

only for the Fisher market case, given as 𝑂

(
𝑛𝑚
𝜀
log

1

𝜀
log

𝑣max ·⟨1,𝑏 ⟩
𝑏min𝑣min

log𝑚

)
. Here, 𝑣max := max𝑖 𝑣𝑖 max

and 𝑣min := min𝑖 𝑣𝑖 min are upper and lower bounds on the slopes of the utility functions, 𝑏min is

the smallest budget and 𝑣 is the total utility an agent would get from owning the full amount

of all goods. An issue with such a bound is that the value
𝑣max

𝑣min

is not scale invariant. Namely,

the equilibrium in a Fisher market remains the same even if each agent 𝑖 multiplies their utility

function by a positive constant 𝛼𝑖 ; but this changes the value
𝑣max

𝑣min

arbitrarily. It is mentioned that

the result could be extended to exchange markets, similarly as in [41], but no details or running

time estimation are provided.

Uniformly separable WGS utilities, Garg and Kapoor [43]. The paper gives essentially the same

bound as in the case of separable WGS; the analysis is limited and mainly refers to the analysis

of the auction algorithm for separable WGS utilities [44]. A problematic issue is that the main

motivation for the paper is to give bounds for CES and Cobb-Douglas utilities, but 𝑣max = ∞ for

these particular utilities.

B ADDING A DUMMY AGENT TO BOUND THE PRICES
Using the construction in the papers [21, 23], we present a general technique for modifying markets

in order to bound 𝑝max/𝑝min in Theorem 1. Given an exchange market𝑀 with agents 𝐴 = [𝑛] and
goods𝐺 = [𝑚], we transform it to another market 𝑀̂ with 𝑛 + 1 agents as follows. Assume 𝜀 > 0

is chosen such that 𝜀 (1 + 𝜀)𝑚 <
𝜂

1+𝜂 ≤ 1/2 for some 𝜂 ≤ 1. For 𝑖 ∈ 𝐴 we keep the same demand

systems 𝐷𝑖 and the same initial endowments 𝑒 (𝑖 ) . The market 𝑀̂ has an extra agent 𝑛 + 1 with
initial endowment 𝑒 (𝑛+1) = 𝜂𝑒 (recall 𝑒 =

∑
𝑖∈𝐴 𝑒

(𝑖 )
) and whose demand bundle is given via the

Cobb-Douglas utility function

(∏
𝑗 𝑥
(𝑛+1)
𝑗

)
1/𝑚

. Agent 𝑛 + 1 spends exactly 1

𝑚
of its budget on each

good 𝑗 since its unique demand bundle 𝑥 (𝑛+1) is given by 𝑥
(𝑛+1)
𝑗

=
𝜂⟨𝑝,𝑒 ⟩
𝑚𝑝 𝑗

.

The lemma below shows that adding such an agent can be used to bound
𝑝max

𝑝min

, at the expense of

working on a modified market.

Lemma 12. (i) For an 𝜀-equilibrium of 𝑀̂ formed by prices 𝑝 and bundles 𝑥 (𝑖 ) ,

𝑝max

𝑝min

≤ (1 + 𝜀)𝑚
𝜂 − 𝜀 (1 + 𝜀) (1 + 𝜂)𝑚 ·

𝑒max

𝑒min

,

where 𝑒max = max𝑗 𝑒 𝑗 and 𝑒min = min𝑗 𝑒 𝑗 .
(ii) An 𝜀-equilibrium in 𝑀̂ gives an 𝜀 (1 + 𝜂)-equilibrium in𝑀 .
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Proof. Consider an 𝜀-equilibrium in 𝑀̂ formed by prices 𝑝 and bundles 𝑥 (𝑖 ) , 𝑖 = 1, 2, . . . , 𝑛 + 1.
By definition, there exist prices 𝑝 ≤ 𝑝 (𝑛+1) ≤ (1 + 𝜀)𝑝 and bundle 𝑧 (𝑛+1) ∈ 𝐷𝑛+1

(
𝑝 (𝑛+1) , 𝜂 ⟨𝑝, 𝑒⟩

)
such that 𝑥 (𝑛+1) ≤ 𝑧 (𝑛+1) . We have 𝑧

(𝑛+1)
𝑗

=
𝜂⟨𝑝,𝑒 ⟩
𝑚𝑝
(𝑛+1)
𝑗

, and therefore, 𝑝 𝑗𝑧
(𝑛+1)
𝑗

≥ 𝜂

(1+𝜀 )𝑚 ⟨𝑝, 𝑒⟩. On the

other hand, from the third condition of the definition of 𝜀-equilibrium it follows that 𝑝 𝑗 (𝑧 (𝑛+1)𝑗
−

𝑥
(𝑛+1)
𝑗
) ≤ 𝜀 (1 + 𝜂) ⟨𝑝, 𝑒⟩. Hence, 𝑝 𝑗𝑥

(𝑛+1)
𝑗

≥
(

𝜂

(1+𝜀 )𝑚 − 𝜀 (1 + 𝜂)
)
· ⟨𝑝, 𝑒⟩ for all 𝑗 . In particular,

𝑥
(𝑛+1)
𝑗

≥
(

𝜂

(1+𝜀 )𝑚 − 𝜀 (1 + 𝜂)
)
𝑝max𝑒min

𝑝 𝑗
for all 𝑗 . Since 𝑥

(𝑛+1)
𝑗

≤ 𝑒 𝑗 ≤ 𝑒max in an 𝜀-equilibrium, we have

𝑝max

𝑝min

≤
(

𝜂

(1 + 𝜀)𝑚 − 𝜀 (1 + 𝜂)
)−1

𝑒max

𝑒min

.

The second part of the lemma follows easily from the definition of an approximate equilibrium. □
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