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Abstract

We provide a general method to convert a “primal” black-box algorithm for solving regularized
convex-concave minimax optimization problems into an algorithm for solving the associated dual
maximin optimization problem. Our method adds recursive regularization over a logarithmic number
of rounds where each round consists of an approximate regularized primal optimization followed
by the computation of a dual best response. We apply this result to obtain new state-of-the-art
runtimes for solving matrix games in specific parameter regimes, obtain improved query complexity
for solving the dual of the CVaR distributionally robust optimization (DRO) problem, and recover
the optimal query complexity for finding a stationary point of a convex function.
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1 Introduction

We consider the foundational problem of e�ciently solving convex-concave games. For
nonempty, closed, convex constraint sets X ™ Rd and Y ™ Rn and di�erentiable convex-
concave objective function Â : Rd ◊ Rn æ R (namely, Â(·, y) is convex for any fixed y and
Â(x, ·) is concave for any fixed x), we consider the following primal, minimax optimization
problem (P) and its associated dual, maximin optimization problem (D):

minimize
xœX

f(x) for f(x) := max
yœY

Â(x, y), and (P)

maximize
yœY

„(y) for „(y) := min
xœX

Â(x, y). (D)

If additionally X and Y are bounded (which we assume for simplicity in the introduction
but generalize later), every pair of primal and dual optimizers x

ı œ argminxœX f(x) and
y

ı œ argmaxyœY „(y) satisfies the minimax principle: f(xı) = „(yı) = Â(xı
, y

ı).
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29:2 Extracting Dual Solutions via Primal Optimizers

Convex-concave games are pervasive in algorithm design, machine learning, data analysis,
and optimization. For example, the games induced by bilinear objectives, i.e., Â(x, y) =
x

€
Ay+b

€
x+c

€
y, where X and Y are either the simplex, �k := {x œ Rk

Ø0
: ÎxÎ1 = 1}, or the

Euclidean ball, B
k := {x œ Rk : ÎxÎ2 Æ 1}, encompass zero-sum games, linear programming,

hard-margin support vector machines (SVMs), and minimum enclosing/maximum inscribed
ball [14, 2, 31, 10]. Additionally, the case when Â(x, y) =

qn
i=1

yifi(x) for some functions
fi : Rd æ R and Y is a subset of the simplex encompasses a variety of distributionally
robust optimization (DRO) problems [29, 5] and (for Y = �n) the problem of minimizing
the maximum loss [6, 8, 4].

In this paper, we study the following question:

Given only a black-box oracle which solves (regularized versions of) (P) to ‘ ac-
curacy, and a black-box oracle for computing an exact dual best response yx :=
argmaxyœY Â(x, y) to any primal point x œ X , can we extract an ‘-optimal solution
to (D)?

We develop a general dual-extraction framework which answers this question in the a�rmative.
We show that as long as these oracles can be implemented as cheaply as obtaining an ‘-optimal
point of (P), then our framework can obtain an ‘-optimal point of (D) at the same cost as
that of obtaining an ‘-optimal point of (P), up to logarithmic factors. We then instantiate
our framework to obtain new state-of-the-art results in the settings of bilinear matrix games
and DRO. Finally, as evidence of its broader applicability, we show that our framework can
be used to recover the optimal complexity for computing a stationary point of a smooth
convex function.

In the remainder of the introduction we describe our results in greater detail (Section 1.1),
give an overview of the dual extraction framework and its analysis (Section 1.2), discuss
related work (Section 1.3), and provide a roadmap for the remainder of the paper (Section 1.4).

1.1 Our results

From primal algorithms to dual optimization

We give a general framework which obtains an ‘-optimal solution to (D) via a sequence of
calls to two black-box oracles: (i) an oracle for obtaining an ‘-optimal point of a regularized
version of (P), and (ii) an oracle for obtaining a dual best response yx := argmaxyœY Â(x, y)
for a given x œ X . In particular, we show it is always possible to obtain an ‘-optimal
point to (D) with at most a logarithmic number of calls to each of these oracles, where the
regularized primal optimization oracle is always called to an accuracy of ‘ over a logarithmic
factor. We also provide an alternate scheme (or more specifically choice of parameters)
for applications where the cost of obtaining an ‘-optimal point of the regularized primal
problem decreases su�ciently as the regularization level increases. In such cases, e.g., in
our stationary point application, it is possible to avoid even logarithmic factor increases
in computational complexity for approximately solving (D) relative to the complexity of
approximately solving (P).

Application 1: Bilinear matrix games

In this application, Â(x, y) := x
€

Ay for a matrix A œ Rd◊n, Y is the simplex �n, and X is
either the simplex �d or the unit Euclidean ball B

d. Recently, [8] gave a new state-of-the-art
runtime in certain parameter regimes of ÂO(nd + n(d/‘)2/3 + d‘

≠2) for obtaining an expected
‘-optimal point for the primal problem (P) for this setup. However, unlike previous algorithms
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for bilinear matrix games (see Section 1.3 for details), their algorithm does not return an
‘-optimal solution for the dual (D), and their runtime is not symmetric in the dimensions n

and d. As a result, it was unclear whether the same runtime is achievable for obtaining an ‘-
optimal solution of the dual (D). We resolve this question by applying our general framework
to achieve an expected ‘-optimal point of (D) with runtime ÂO(nd + n(d/‘)2/3 + d‘

≠2). We
then observe (see Corollary 22) that in the setting where X = �d, our result can equivalently
be viewed as a new state-of-the-art runtime of ÂO(nd + d(n/‘)2/3 + n‘

≠2) for obtaining an
‘-optimal point of the primal (P) due to the symmetry of Â and the constraint sets.

Application 2: CVaR at level – DRO

In this application, Â(x, y) :=
qn

i=1
yifi(x) for convex, bounded, and Lipschitz loss functions

fi : Rd æ R, X is a convex, compact set, and Y :=
)

y œ �n : ÎyÎŒ Æ 1

–n

*
is the CVaR at

level – uncertainty set for – œ [1/n, 1]. The primal (P) is a canonical and well-studied DRO
problem, and corresponds to the average of the top – fraction of the losses. We consider
this problem given access to a first-order oracle that, when queried at x œ Rd and i œ [n],
outputs (fi(x), Òfi(x)). Ignoring dependencies other than –, the target accuracy ‘ > 0,
and the number of losses n for brevity, [29] gave a matching upper and lower bound (up
to logarithmic factors) of ÂO(–≠1

‘
≠2) queries to obtain an expected ‘-optimal point of the

primal (P). However, the best known query complexity for obtaining an expected ‘-optimal
point of the dual (D) was ÂO(n‘

≠2) prior to this paper (see Section 1.3 for details). Applying
our general framework to this setting, we obtain an algorithm with a new state-of-the-art
query complexity of ÂO(–≠1

‘
≠2 + n) for obtaining an expected ‘-optimal point of the dual

(D). In particular, note that this complexity is nearly linear in n when ‘ Ø (–n)≠2.

Application 3: Obtaining stationary points of convex functions

In this application, we show that our framework yields an alternative optimal approach
for computing an approximate critical point of a smooth convex function given a gradient
oracle. Specifically, for “ > 0 and convex and —-smooth h : Rn æ R, in Section 5, we give
an algorithm which computes x œ Rn such that ÎÒh(x)Î2 Æ “ using O

1
—�/“

2
gradient

queries, where � := h(x0) ≠ infxœRn h(x) is the initial suboptimalityf. While this optimal
complexity has been achieved before [24, 37, 15, 28, 27], that we achieve it is a consequence
of our general framework illustrates its broad applicability.

For this application, we instantiate our framework with Â(x, y) := Èx, yÍ ≠ h
ú(y), where

h
ú : Rn æ R denotes the convex conjugate of h. (For reasons discussed in Section 5, we

actually first substitute h for an appropriately regularized version of h, call it f , before
applying the framework, but the following discussion still holds with respect to f .) This
objective function Â is known as the Fenchel game and has been used in the past to recover
classic convex optimization algorithms (e.g., the Frank-Wolfe algorithm and Nesterov’s
accelerated methods) via a minimax framework [1, 43, 12, 23]. In the Fenchel game, a dual
best response corresponds to a gradient evaluation:

argmax
yœRn

{Èx, yÍ ≠ h
ú(y)} = Òh(x),

and we show that approximately optimal points for the dual objective (D) must have small
norm. As a result, obtaining an approximately optimal dual point y as a best response
to a primal point x yields a bound on the norm of y = Òf(x). Furthermore, we note
that in this setting, adding regularization to Â with respect to an appropriate choice of

ITCS 2025



29:4 Extracting Dual Solutions via Primal Optimizers

distance-generating function (namely h
ú) is equivalent to rescaling and recentering the primal

function f , as well as the point at which a gradient is taken in the dual best response
computation (cf. Lemma 14 in the full version). Thus, the properties of the Fenchel game
extend naturally to appropriately regularized versions of Â.

1.2 Overview of the framework and analysis

We now give an overview of the dual-extraction framework. Our framework applies generally
to a set of assumptions given in Section 3.1 (cf. Definition 9), but for now we specialize to the
assumptions given above, namely: (i) the constraint sets X and Y are nonempty, compact,
and convex; and (ii) Â is di�erentiable and convex-concave. Throughout this section, let Î·Î
denote any norm on Rn and assume that the dual function, „, is L-Lipschitz with respect to
Î·Î.1 Let r : Rn æ R denote a di�erentiable distance-generating function (dgf) which is µr-
strongly convex with respect to Î·Î for µr > 0,2 and let Vu (v) := r(v) ≠ r(u) ≠ ÈÒr(u), v ≠ uÍ
denote the associated Bregman divergence. For the sake of illustration, it may be helpful
to consider the choices Î·Î := Î·Î2, r(u) := 1

2
ÎuÎ2

2
, µr = 1, and Vu (v) = 1

2
Îu ≠ vÎ2

2
in the

following, in which case relative strong convexity with respect to r is equivalent to the
standard notion of strong convexity with respect to Î·Î2.

How should we obtain an ‘-optimal point for (D) using the two oracles discussed previously,
namely: (i) an oracle for approximately solving a regularized primal objective, and (ii) an
oracle for computing a dual best response? We call (i) a dual-regularized primal optimization
(DRPO) oracle and (ii) a dual-regularized best response (DRBR) oracle; their formal
definitions are given in Section 3.1. Note that to solve (D), one cannot simply solve
the primal problem (P) to high accuracy and then compute a dual best response. Consider
Â(x, y) = xy with X = Y = [≠1, 1]; clearly x

ı = y
ı = 0, but for any x arbitrarily close to x

ı,
the dual best response is either ≠1 or 1.

The key observation underlying our framework is that if Â(x, ·) is strongly concave
for a given x œ X , it is possible to upper bound the distance between the best response
yx := argmaxyœY Â(x, y) and the dual optimum y

ı in terms of the primal suboptimality of x.
Figure 1 illustrates why this should be the case when subtracting a quadratic regularizer
in y (so that Â(x, ·) is strongly concave) to the preceding example of Â(x, y) = xy. We
generalize this intuition in the following lemma (replacing strong concavity with relative
strong concavity and a distance bound with a divergence bound), which is itself generalized
further and proven in Section 3:

I Lemma 1 (Lemma 3 from the full version specialized). For a given x œ X , suppose ≠Â(x, ·)
is µ-strongly convex relative to the dgf r for some µ > 0. Then yx := argmaxyœY Â(x, y)
satisfies

Vyx
(yı) Æ f(x) ≠ f(xı)

µ
.

1 This is a weak assumption since we ensure at most a logarithmic dependence on L; see Remark 5.
2 Section 2 gives the general setup for a distance-generating function which also covers the case where

dom r ”= Rn.
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(a) (b)

Figure 1 An example to give intuition behind Lemma 1. Here, Â(x, y) = xy ≠ 0.8y
2, (xı

, y
ı) =

(0, 0), x = 0.8, and yx = 0.5. To see why it is possible to bound |yı ≠ yx| in terms of the primal
suboptimality f(x) ≠ f(xı), note that by the strong concavity of Â(x, ·) and the fact that yx is the
maximizer of Â(x, ·) over Y, we can upper bound |yı ≠yx| in terms of Â(x, yx)≠Â(x, y

ı) (the vertical
drop over the green line) via a standard strong-concavity inequality. In turn, Â(x, yx) ≠ Â(x, y

ı) can
be upper bounded by Â(x, yx) ≠ Â(xı

, y
ı) = f(x) ≠ f(xı) (the vertical drop over the green line plus

the vertical drop over the red line) due to the fact that Â(xı
, y

ı) Æ Â(x, y
ı) by the optimality of x

ı.

A first try

In particular, Lemma 1 suggests the following approach: Define “dual-regularized” versions
of Â, „, f as follows for ⁄ > 0 and y0 œ Y:

Â1(x, y) := Â(x, y) ≠ ⁄Vy0(y),
f1(x) := max

yœY
Â1(x, y),

„1(y) := min
xœX

Â1(x, y) .

(Here, the subscript 1 denotes one level of regularization and will be extended later.) For
any x œ X , note that ≠Â1(x, ·) is ⁄-strongly convex relative to r, in which case Lemma 1
applied to Â1 yields

Vyx
(yı

1
) Æ f1(x) ≠ f1(xı

1
)

⁄
, (1)

for y
ı
1

:= argmaxyœY „1(y), x
ı
1

œ argminxœX f1(x), and yx := argmaxyœY Â1(x, y). Then note

„(yı
1
) Ø „1(yı

1
) Ø „1(yı) = min

xœX

)
Â(x, y

ı) ≠ ⁄Vy0 (yı)
*

= „(yı) ≠ ⁄Vy0 (yı) , (2)

where the first inequality follows since „ Ø „1 pointwise. Then by the L-Lipschitzness of „

and µr-strong convexity of r, it is straightforward to bound the suboptimality of yx as

„(yı) ≠ „(yx) Æ ⁄Vy0 (yı) + L

Û
2(f1(x) ≠ f1(xı

1
))

µr⁄
. (3)

Consequently, an ‘-optimal point for (D) can be obtained via our oracles as follows: Set
⁄ Ω ‘

2Vy0 (yı)
, and use the DRPO oracle on the regularized primal problem to obtain x œ X

such that

f1(x) ≠ f1(xı
1
) Æ ‘

3
µr

16L2 · Vy0 (yı) . (4)

ITCS 2025



29:6 Extracting Dual Solutions via Primal Optimizers

Then the best response to x with respect to Â1, namely yx := argmaxyœY Â1(x, y), is ‘-optimal
by (3). However, a typical setting in our applications is Vy0 (yı) = �(1), µr = 1, and L Ø 1,
in which case ensuring (4) requires solving the regularized primal problem to O(‘3) error.

Recursive regularization and the dual-extraction framework

To lower the accuracy requirements, we apply dual regularization recursively. A key issue
with the preceding argument is that it required a nontrivial bound on Vy0 (yı). However, it
provided us with a nontrivial bound (1) on Vyx

(yı
1
), the “level-one equivalent” of Vy0 (yı).

This suggests solving f1 to lower accuracy while still obtaining a bound on Vyx
(yı

1
) due

to (1), and then adding regularization centered at yx with a larger value of ⁄. Indeed, our
framework recursively repeats this process until the total regularization is large enough so
that (a term similar to) the right-hand side of (3) can be bounded by ‘, despite never needing
to solve a regularized primal problem to high accuracy.

To more precisely describe our approach, let Â0 := Â, f0 := f, „0 := „. Over iterations
k = 1, 2, . . . , K, our framework implicitly constructs a sequence of convex-concave games
Âk : Rd ◊ Rn æ R, along with corresponding primal and dual functions fk : X æ R and
„k : Y æ R respectively, as follows:

Âk(x, y) := Âk≠1(x, y) ≠ ⁄k≠1Vyk≠1 (y) ,

fk(x) := max
yœY

Âk(x, y),

„k(y) := min
xœX

Âk(x, y). (5)

Here, (⁄k œ R>0)K≠1

k=0
is a dual-regularization schedule given as input to the framework, and

(yk œ Y)K
i=0

is a sequence of dual-regularization “centers” generated by the algorithm, with
y0 given as input. For k œ {0} fi [K], it will be useful to let y

ı
k denote a maximizer of „k

over Y and x
ı
k denote a minimizer of fk over X , with y

ı
0

:= y
ı and x

ı
0

:= x
ı in particular.

Over the K rounds of recursive dual regularization, we aim to balance two goals:

On the one hand, we want ⁄k to increase quickly so that ≠Âk(x, ·) is very strongly
convex relative to r, thereby allowing us to apply Lemma 1 with a larger strong convexity
constant.

On the other hand, we want to maintain the invariant that, roughly speaking, y
ı
k is always

‘/2-optimal for the original dual „. Indeed, we were constrained in choosing ⁄ in (2) to
be on the order of ‘/Vy0 (yı) to ensure y

ı
1

is ‘/2-optimal for „. A similar “constraint”
on the dual-regularization schedule (⁄k)K≠1

k=0
appears when (2) is extended to additional

levels of regularization. This prevents us from increasing ⁄k too quickly.
In all the applications in this paper we choose ⁄k ¥ 2⁄k≠1. ⁄0 typically must remain on the
order of ‘/Vy0 (yı) due to the second point.

Pseudocode of the framework is given in Algorithm 1. Each successive dual-regularization
center yk is computed via the DRBR oracle (Line 5) as a best response to a primal point
xk obtained via the DRPO oracle (Line 4). In Section 3, we generalize Algorithm 1 (cf.
Algorithm 2) in several ways: (i) we allow for stochasticity in the DRPO oracle; (ii) we
allow for distance-generating functions r such that dom r ”= Rn; (iii) we give di�erent but
equivalent characterizations of xk and yk which facilitate the derivation of explicit expressions
for the DRPO and DRBR oracles in applications.
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Algorithm 1 Dual-extraction framework (Algorithm 2 specialized).

Input: Initial dual-regularization center y0 œ Y, iteration count K œ N,
dual-regularization schedule (⁄k œ R>0)K≠1

k=0
, primal-accuracy schedule

(‘k œ R>0)K
k=1

, DRPO and DRBR oracles
1 Â0 := Â, f0 := f , and „0 := „

2 for k = 1, 2, . . . , K do
3 Define Âk, fk, and „k as in (5)
4 Let xk œ X be such that fk(xk) ≠ fk(xı

k) Æ ‘k // Computed via the DRPO oracle
5 yk = argmaxyœY Âk(xk, y) // Computed via the DRBR oracle

6 return yK

Analysis of Algorithm 1

Theorem 2 is our main result for Algorithm 1. We then instantiate Theorem 2 with two
illustrative choices of parameters in Corollaries 5 and 7, and defer the proofs of the latter to
their general versions in Section 3. All of the remarks below (Remarks 3, 5, 7) are stated
with reference to the specialized results in this section (Theorem 2 and Corollaries 4, 6 resp.),
but extend immediately to the corresponding general versions (Theorem 15 and Corollaries
16, 17 resp.).

I Theorem 2 (Theorem 15 specialized). Algorithm 1 returns yK satisfying

VyK
(u) Æ ‘K

�K
where �k :=

k≠1ÿ

j=0

⁄j for k œ [K] (6)

and u œ Y is a point with dual suboptimality bounded as

„(yı) ≠ „(u) Æ ⁄0Vy0 (yı) +
K≠1ÿ

k=1

⁄k

�k
‘k. (7)

If we additionally assume that „ is L-Lipschitz with respect to Î·Î, we can directly bound the
suboptimality of yK as

„(yı) ≠ „(yK) Æ ⁄0Vy0 (yı) +
K≠1ÿ

k=1

⁄k

�k
‘k + L

Ú
2
µr

‘K

�K
. (8)

Proof. We claim the first half of Theorem 2 holds with u Ω y
ı
K . To see this, note that we

can bound the suboptimality of y
ı
K as

„(yı
K)

(i)
Ø „K(yı

K) Ø „K(yı
K≠1

) = max
xœX

Ó
ÂK≠1(x, y

ı
K≠1

) ≠ ⁄K≠1VyK≠1

!
y

ı
K≠1

"Ô

= „K≠1(yı
K≠1

) ≠ ⁄K≠1VyK≠1

!
y

ı
K≠1

"

(ii)
Ø „0(yı

0
) ≠ ⁄0Vy0 (yı

0
) ≠

K≠1ÿ

k=1

⁄kVyk
(yı

k)

(iii)
Ø „(yı) ≠ ⁄0Vy0 (yı) ≠

K≠1ÿ

k=1

⁄k

�k
‘k,

ITCS 2025



29:8 Extracting Dual Solutions via Primal Optimizers

where (i) follows since „ Ø „K pointwise, (ii) follows from repeating the argument in the
previous lines recursively (starting by lower bounding „K≠1(yı

K≠1
), etc.), and (iii) uses

Lemma 1 applied to Âk, which yields by Lines 4 and 5 in Algorithm 1:

Vyk
(yı

k) Æ fk(xk) ≠ fk(xı
k)

�k
Æ ‘k

�k
,

since Âk(x, ·) = Â(x, ·) +
qk≠1

j=0
⁄jVyj

(·) is �k-strongly concave relative to ≠r. Thus, we have
proven Equation 7, and Equation 6 follows again from Lemma 1 applied to ÂK . Equation 8
then follows since the fact that r is µr-strongly convex with respect to Î·Î and Equation 6
imply

ÎyK ≠ y
ı
KÎ Æ

Ú
2
µr

VyK
(yı

K) Æ
Ú

2
µr

‘K

�K
. J

We give a remark regarding how to pick the parameters (⁄k)K≠1

k=0
and (‘k)K

k=1
when

applying Theorem 2:
I Remark 3 (Picking the parameters for Theorem 2). Equation 8 can be interpreted as follows:
To ensure yK is ‘-optimal for „, it su�ces to choose the sequences (⁄k)K≠1

k=0
and (‘k)K

k=1
so

that the right side of (8) is at most ‘. Then the first term, ⁄0Vy0 (yı), constrains ⁄0 to be on
the order of ‘/Vy0 (yı). Skipping ahead, the third term, L

Ò
2

µr

‘K
�K

, is the reason we always
choose ⁄k ¥ 2⁄k≠1 in our applications, as this ensures �K is large enough to handle this
term with K only needing to be logarithmic in the problem parameters. Then the second
term,

qK≠1

k=1

⁄k
�k

‘k, e�ectively constrains roughly
qK≠1

k=1
‘k Æ ‘, as ⁄k/�k ¥ 1.

I Corollary 4 (Corollary 16 specialized). Suppose „ is L-Lipschitz with respect to Î·Î, and let
B > 0 be such that Vy0 (yı) Æ B. Then for any ‘ > 0, and K Ø max

Ó
log2

L2B
µr‘2 , 1

Ô
+ 10, the

output of Algorithm 1 with dual-regularization and primal-accuracy schedules of

⁄k = 2k ‘

4B
for k œ {0} fi [K ≠ 1] and ‘k = ‘

4K
for k œ [K]

satisfies „(yı) ≠ „(yK) Æ ‘.

I Remark 5. Corollary 4 achieves the stated goal of obtaining an ‘-optimal point for (D) by
running for a number of iterations which depends logarithmically on the problem parameters,
and solving each dual-regularized primal subproblem to an accuracy of ‘ divided by a
logarithmic factor. Note in particular the logarithmic dependence on the dual divergence
bound B and dual Lipschitz constant L, meaning these are weak assumptions. Furthermore,
it is clear from the proof of Theorem 2 that „ only need be L-Lipschitz on a set containing
yK and y

ı
K .

I Corollary 6 (Corollary 17 specialized). Let B > 0 be such that Vy0 (yı) Æ B. Then for any
‘ > 0 and K œ N, the output of Algorithm 1 with dual-regularization and primal-accuracy
schedules of

⁄k = 2k ‘

4B
for k œ {0} fi [K ≠ 1] and ‘k = ‘

8 · 1.5k
for k œ [K]

satisfies

ÎyK ≠ uÎ Æ 1
1.5K

Û
2B

µr
,

where u œ Y is a point whose suboptimality is at most ‘, i.e., „(yı) ≠ „(u) Æ ‘.
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I Remark 7. Later calls to the DRPO oracle during the run of Algorithm 1 may be
cheaper since there will be a significant amount of dual regularization at that point (namely,
�k =

qk≠1

j=0
⁄j is large). One can sometimes take advantage of this (in particular, if the cost

of a DRPO oracle call scales inverse polynomially with the regularization) to design schedules
that avoid even the typically additional multiplicative logarithmic cost of Corollary 4 over
the cost of a single DRPO oracle call. In such cases, a choice of schedules similar to those
of Corollary 6 is often appropriate. With this choice of schedules, later rounds require
very high accuracy. However, if one can argue that the increasing dual regularization �k

makes the DRPO oracle call cheaper at a faster rate than the decreasing error ‘k makes
it more expensive (as we do in Section 5), the total cost of applying the framework may
collapse geometrically to the cost of a single DRPO oracle call made with target error
approximately ‘.

We purposely state Corollary 6 without the assumption that „ is Lipschitz because that
is the form we will use in Section 5. However, it is straightforward to reformulate a version of
Corollary 6 with the Lipschitz assumption. Here the focus was to illustrate di�erent possible
choices of schedules.

1.3 Related work

Black-box reductions

Our main contribution can be viewed as a black-box reduction from (regularized) primal
optimization to dual optimization. Similar black-box reductions exist in the optimization
literature. For example, [3] develops reductions between various fundamental classes of
optimization problems, e.g., strongly convex optimization and smooth optimization. In a
similar vein, the line of work [30, 18, 7] reduces convex optimization to approximate proximal
point computation (i.e., regularized minimization).

Bilinear matrix games

Consider the bilinear objective Â(x, y) = x
€

Ay where X and Y are either the simplex,
�k := {x œ Rk

Ø0
: ÎxÎ1 = 1}, or the Euclidean ball, B

k := {x œ Rk : ÎxÎ2 Æ 1}. State-of-the-
art methods in regard to runtime for obtaining an approximately optimal primal and/or
dual solution can be divided into second-order interior point methods [11, 42] and stochastic
first-order methods [22, 10, 9, 8]; see Table 2 in [8] for a summary of the best known runtimes
as well as other references. Of importance to this paper, all state-of-the-art algorithms other
than that of [8] are either (i) primal-dual algorithms which return both an ‘-optimal primal
and dual solution simultaneously, and/or (ii) achieve runtimes which are symmetric in the
primal dimension d and dual dimension n, meaning the cost of obtaining an ‘-optimal dual
solution is the same as that of obtaining an ‘-optimal primal solution. The algorithm of [8],
on the other hand, only returns an ‘-optimal primal point and further has a runtime which
is not symmetric in n and d (see the footnote on the first page of that paper). As a result,
solving the dual by simply swapping the roles of the primal and dual variables may be more
expensive than solving the primal. (In fact, swapping the variables in this way may not even
always be possible without further modifications due to restrictions on the constraint sets.)

CVaR at level – distributionally robust optimization (DRO)

The DRO objectives we study are of the form Â(x, y) =
qn

i=1
yifi(x), where the functions

fi : Rd æ R are convex, bounded, and Lipschitz, and Y, known as the uncertainty set, is a
subset of the simplex. This objective corresponds to a robust version of the empirical risk
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29:10 Extracting Dual Solutions via Primal Optimizers

minimization (ERM) objective where instead of taking an average over the losses (namely,
yi is fixed at 1/n), larger losses may be given more weight. In particular, in this paper
we focus on a canonical DRO setting, CVaR at level –, where the uncertainty set is given
by Y :=

)
y œ �n : ÎyÎŒ Æ 1

–n

*
for a choice of – œ [1/n, 1]. CVaR DRO, along with its

generalization f -divergence DRO, has been of significant interest over the past decade; see
[29, 5, 13, 32, 16] and the references therein. [29] is the most relevant to this paper – omitting
parameters other than –, the number of losses n, and the target accuracy ‘ > 0, they give a
matching upper and lower bound (up to logarithmic factors) of ÂO(–≠1

‘
≠2) first-order queries

of the form (Òfi(x), fi(x)) to obtain an expected ‘-optimal point of the primal objective.
Their upper bound is achieved by a stochastic gradient method where the gradient estimator
is based on a multilevel Monte Carlo (MLMC) scheme [19, 20]. However, the best known
complexity for obtaining an expected ‘-optimal point of the dual of CVaR at level – is
O(n‘

≠2) via a primal-dual method based on [33]; see also [13, 32] as well as [5, Appendix A.1],
the last of which obtains complexity ÂO(n‘

≠2) in the more general setting of the uncertainty
set being an f -divergence ball.

Stationary point computation

For “ > 0, convex and —-smooth h : Rn æ R with global minimum z
ı, and initialization

point z0, consider the problem of computing a point z such that ÎÒh(z)Î2 Æ “. Two
worst-case optimal gradient query complexities for this problem exist in the literature:
O

1
—(h(z0) ≠ h(zı))/“

2
and O

1
—Îz0 ≠ zıÎ2/“

2
. An algorithm (the OGM-G method)

which achieves the former complexity was given in [24], and [37] pointed out that any
algorithm which achieves the former complexity can achieve the latter complexity. This
is obtainable by running N iterations of any optimal gradient method for reducing the
function value, followed by N iterations of a method which achieves the former complexity
for reducing the gradient magnitude. In what may be of independent interest, we observe
in Section 5.1 that a reduction in the opposite direction is also possible. More broadly,
algorithms and frameworks for reducing the gradient magnitude of convex functions have
been of much recent interest, and further algorithms and related work for this problem
include [25, 27, 26, 28, 15, 37, 21], with lower bounds given in [34, 35].

1.4 Paper organization

In Section 2, we go over notation and conventions for the rest of the paper. We give our
general dual-extraction framework and its guarantees in Section 3. In Section 4, we apply
our framework to bilinear matrix games and the CVaR at level – DRO problem. Finally,
in Section 5 we give an optimal algorithm (in terms of query complexity) for computing an
approximate stationary point of a convex and —-smooth function.

2 Notation and conventions

We defer standard notation and conventions to the full version, and only include paper-specific
notation here.

For Â : Rd ◊ Rn æ R, we use the notation Â(·, y) : Rd æ R for a fixed y œ Rn to
denote the map x ‘æ Â(x, y) (and define Â(x, ·) analogously). When we say Â(·, y) satisfies a
property, we mean it satisfies that property for any fixed y œ Rn (and analogously for Â(x, ·)).
We let [K] := {1, 2, . . . , K}, �n :=

)
x œ Rn

Ø0
: ÎxÎ1 = 1

*
, and B

n
r (x) := {x œ Rn : ÎxÎ2 Æ r}.

In the latter two definitions, we may drop the superscript n if it is clear from context, the
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argument x if it is 0, and the subscript r if it is 1. For y œ Rn, we may use either the
notation yi or [y]i to denote its i-th entry. 1 denotes the all-ones vector. For a function
f which depends on some inputs x1, . . . , xk œ R, we write f Æ poly(x1, . . . , xk) to denote
the fact that f is uniformly bounded above by a polynomial in x1, . . . , xk as x1, . . . , xk vary.
We use the notation f

ú for the convex or Fenchel conjugate of f . For S ™ Rn, we let IS

denote the infinite indicator of S, namely IS(x) = 0 if x œ S and IS(x) = Œ if x /œ S. For
a function f : S æ [≠Œ, Œ] initially defined on a strict subset S µ Rn, we may implicitly
extend the domain of f to all of Rn via its indicator as f + IS without additional comment.
For a function f : U æ [≠Œ, Œ] with S ™ U ™ Rn, we let fS := f + IS denote the restriction
of f to S. We note that f

ú
S denotes the convex conjugate of fS (and not f

ú restricted to S).
Following [38, Sec. 6.4], we encapsulate the setup for a dgf as follows. See the full version

for additional discussion of this definition.

I Definition 8 (dgf setup). We say (U , P, Î·Î, r) is a dgf setup over Rn for closed and convex
sets U ™ P ™ Rn with U fl int P ”= ÿ if: (i) the distance-generating function (dgf) r : P æ R is
convex and continuous over P, di�erentiable on int P, and µr-strongly convex with respect to
the chosen norm Î·Î on U fl int P for some µr > 0; and (ii) either limuæbd PÎÒr(u)Î2 = Œ
or U ™ int P.

For a given dgf setup, we define its induced Bregman divergence V
r

u (v) := r(v) ≠ r(u) ≠
ÈÒr(u), v ≠ uÍ for u œ int P, v œ P, and drop the superscript r when it is clear from context.

3 Dual-extraction framework

In this section, we provide our general dual-extraction framework and its guarantees. In
Section 3.1, we give the general setup, oracle definitions, and assumptions with which we
apply and analyze the framework. Section 3.2 contains the statement and guarantees of the
framework and Section 3.3 in the full version contains the associated proofs.

3.1 Preliminaries

We bundle all of the inputs to our framework into what we call a dual-extraction setup,
defined below. Recall that when we say Â(x, ·) satisfies a property, we mean it satisfies that
property for any fixed x œ Rd (and analogously for Â(·, y)).

I Definition 9 (Dual-extraction setup). A dual-extraction setup is a tuple (Â, X , Y, U , P, Î·Î, r)
where:
1. Â(x, ·) is di�erentiable;
2. Â(·, y) and Â(x, ·) are convex and concave respectively;
3. (U , P, Î·Î, r) is a dgf setup over Rn per Definition 8;
4. the constraint sets X ™ Rd and Y ™ Rn are nonempty, closed, and convex with Y ™ U

and Y fl int P ”= ÿ;
5. X is bounded or Â(·, y) is strongly convex;
6. Y is bounded or Â(x, ·) is strongly concave;
7. over all p œ U fl int P and w œ ˆIU (p), the map y ‘æ Èw, yÍ is constant over Y.3

3 In all of our applications, this map will in fact be constant over U .
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29:12 Extracting Dual Solutions via Primal Optimizers

Assumption 1 is only used in the proofs of Lemma 3 in the full version (the general
version of Lemma 1 from Section 1.2) and Corollary 13 in the full version (used to show
the framework is well-defined when dom r ”= Rn). Assumptions 2, 5, and 6 ensure that
the minimax optimization problem with objective Â and constraint sets X and Y satisfies
the minimax principle; see below. Regarding Assumptions 3, 4, and 7, the fact that Y is
potentially a strict subset of U as well as the necessity of the technical assumption 7 is
discussed in Remark 4 in the full version. In particular, Assumption 7 is only used to derive
an equivalent formulation of the framework to Algorithm 1 which often allows for easier
instantiations in applications, but is not strictly necessary to obtain our guarantees.

While our main results are stated in the full generality of Definition 9, in our applications
we only particularize to Definition 10 and Definition 11 introduced below.

I Definition 10 (Unbounded setup). A (Â, X , Y, r)-unbounded setup is a
(Â, X , Y,Rn

,Rn
, Î·Î2, r)-dual-extraction setup.

In other words, in an unbounded setup we choose U = P = Rn and the Euclidean norm,
in which case the dgf r can be any di�erentiable and strongly convex function with respect
to Î·Î2. Note that Assumption 7 is trivial as ˆIU (p) = {0} for all p œ Rn.

I Definition 11 (Simplex setup). A (Â, X , Y)-simplex setup is a (Â, X , Y, �n
,Rn

Ø0
, Î·Î1, r)-

dual-extraction setup where r(u) :=
qn

i=1
ui ln ui (with 0 ln 0 := 0).

In other words, in a simplex setup we choose U = �n, P = Rn
Ø0

, we are using the
¸1-norm, and the dgf is negative entropy when restricted to the simplex. It is a standard
result known as Pinsker’s inequality that r is 1-strongly convex over �n

>0
with respect to Î·Î1,

and the associated Bregman divergence is given by the Kullback-Leibler (KL) divergence
Vu (w) =

qn
i=1

wi ln wi
ui

for u œ �n
>0

and w œ �n. We verify that Assumption 7 holds in
Appendix A.1 in the full version.

Notation associated with a setup

Whenever we instantiate a dual-extraction setup (Definition 9), we use the following notation
and oracles associated with that setup without additional comment. We define the associated
primal f : X æ R and dual „ : Y æ R functions, along with their corresponding primal
and dual optimization problems, as they were introduced above in (P) and (D). We let
x

ı œ argminxœX f(x) and y
ı œ argmaxyœY „(y) denote arbitrary primal and dual optima.

To facilitate the discussion of dual-regularized problems, we define f⁄,q(x) : X æ R as follows

f⁄,q(x) := max
yœY

{Â(x, y) ≠ ⁄Vq(y)} for ⁄ > 0 and q œ U fl int P .

The minimax principle

Assumptions 2, 5, and 6 in Definition 9 guarantee f(xı) = Â(xı
, y

ı) = „(yı), which we refer
to as the minimax principle. See, e.g., [39, 41] as well as Propositions 1.2 and 2.4 in [17,
Ch. VI].

Oracle definitions

Our framework assumes black-box access to Â, X , and Y via a dual-regularized primal
optimization (DRPO) oracle and a dual-regularized dual best response (DRBR) oracle
defined below. Note that we generalize the setting of Section 1.2 by allowing the DRPO

oracle to return an expected ‘-optimal point; this is used in our applications in Section 4.
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I Definition 12 (DRPO oracle). A (q œ U fl int P, ⁄ > 0, ‘p > 0)-dual-regularized primal
optimization oracle, DRPO(q, ⁄, ‘p), returns an expected ‘p-minimizer of f⁄,q, i.e., a point
x œ X such that Ef⁄,q(x) Æ infxÕœX f⁄,q(xÕ) + ‘p, where the expectation is over the internal
randomness of the oracle.

I Definition 13 (DRBR oracle). A (q œ U fl int P, ⁄ > 0, x œ X )-dual-regularized best
response oracle, DRBR(q, ⁄, x), returns argmaxyœY

)
Â(x, y) ≠ ⁄Vq (y)

*
.

We also define a version of the DRPO oracle, called the DRPOSP oracle, which allows
for a failure probability. We include this definition here due to its generality and broad
applicability, but it is only used in Section 4.1 since the external result we cite to obtain an
expected ‘p-minimizer of f⁄,q in that application has a failure probability. We also show in
Appendix A.4 in the full version how to boost the success probability of a DRPOSP oracle.

I Definition 14 (DRPOSP oracle). A (q œ U fl int P, ⁄ > 0, ‘p > 0, ” œ [0, 1))-dual-
regularized primal optimization oracle with success probability, DRPOSP(q, ⁄, ‘p, ”), returns
an expected ‘p-minimizer of f⁄,q with success probability at least 1 ≠ ”, where the expectation
and success probability are over the internal randomness of the oracle.

3.2 The framework and its guarantees

Algorithm 2 Dual-extraction framework.

Input: (Â, X , Y, U , P, Î·Î, r)-dual extraction setup (Definition 9), initial
dual-regularization center y0 œ Y fl int P, iteration count K œ N,
dual-regularization schedule (⁄k œ R>0)K≠1

k=0
, primal-accuracy schedule

(‘k œ R>0)K
k=1

, DRPO and DRBR oracles (Definitions 12 and 13)
1 for k = 1, 2, . . . , K do
2 �k =

qk≠1

j=0
⁄j

3 qk = argminqœU
1

�k

qk≠1

j=0
⁄jVyj

(q) // Or, qk = Òr
ú
U

1
1

�k

qk≠1
j=0 ⁄jÒr(yj)

2
; see

Appendix A.2 in the full version
4 xk = DRPO(qk, �k, ‘k) // E[f�k,qk

(xk) | xk≠1] Æ infxœX f�k,qk
(x) + ‘k

5 yk = DRBR(qk, �k, xk) // yk = argmax
yœY

)
Â(xk, y) ≠ �kVqk

(y)
*

6 return yK

We now state the general dual-extraction framework, Algorithm 2, and its guarantees,
with proofs in the next section. As mentioned in Section 1.2, Algorithm 2 generalizes
Algorithm 1 in three major ways: (i) we allow for stochasticity in the DRPO oracle; (ii) we
allow for distance-generating functions r where dom r ”= Rn; and (iii) we give di�erent but
equivalent characterizations of xk and yk which often allow for easier instantiations of the
framework.

Regarding (iii), consider the case where the DRPO oracle is deterministic and dom r = Rn

for the sake of discussion. Note that in this case, the definitions of xk and yk in Lines 4 and 5
of Algorithm 2 may seem di�erent than those in Lines 4 and 5 of Algorithm 1 at first glance. In
particular, xk in Line 4 of Algorithm 2 is an ‘k-minimizer of x ‘æ maxyœY{Â(x, y)≠�kVqk

(y)}
over X , whereas xk in Line 4 of Algorithm 1 is an ‘k-minimizer of x ‘æ maxyœY{Â(x, y) ≠qk≠1

j=0
⁄jVyj

(y)} over X . Similarly, yk = argmaxyœY{Â(xk, y) ≠ �kVqk
(y)} in Line 5 of

Algorithm 2, whereas yk = argmaxyœY{Â(x, y) ≠
qk≠1

j=0
⁄jVyj

(y)} in Line 5 of Algorithm 1.
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In fact, we show in Section 3.3 in the full version that these are equivalent; see Lemma 2
and Remark 4 in the full version. The potential advantage of the expressions in Algorithm 2
compared to those in Algorithm 1 is that they involve only a single regularization term.

Note also that Line 3 of Algorithm 2 gives two equivalent expressions for the iterate
qk; their equivalence is proven in Appendix A.2 in the full version. Also, note that Line 4
is the only potential source of randomness in Algorithm 2; in particular, yk and qk+1 are
deterministic upon conditioning on xk. Finally, we show that Algorithm 2 is well-defined in
Appendix A.3 in the full version; in particular, whenever a Bregman divergence Vu (w) is
written in Algorithm 2, it is the case that u œ U fl int P. For example, in the context of a
simplex setup per Definition 11, this corresponds to u œ �n

>0
.

We now give the main guarantee for Algorithm 2. See Remark 3 for additional explanation.

I Theorem 15 (Algorithm 2 guarantee). With K calls to a DRPO oracle and K calls to a
DRBR oracle, Algorithm 2 returns yK satisfying

EVyK
(u) Æ ‘K

�K
,

where u œ Y is a point with expected suboptimality bounded as

„(yı) ≠ E„(u) Æ ⁄0Vy0 (yı) +
K≠1ÿ

k=1

⁄k

�k
‘k.

If we additionally assume that „ is L-Lipschitz with respect to Î·Î, the expected suboptimality
of yK can be directly bounded as

„(yı) ≠ E„(yK) Æ ⁄0Vy0 (yı) +
K≠1ÿ

k=1

⁄k

�k
‘k + L

Ú
2
µr

‘K

�K
. (9)

We now particularize Theorem 15 using two exemplary choices of the dual-regularization
and primal-accuracy schedules. See Remarks 5 and 7 for additional comments.

I Corollary 16. Suppose „ is L-Lipschitz with respect to Î·Î, and let B > 0 be such that
Vy0 (yı) Æ B. Then for any ‘ > 0, and K Ø max

Ó
log2

L2B
µr‘2 , 1

Ô
+ 10, the output of

Algorithm 2 with dual-regularization and primal-accuracy schedules given by

⁄k = 2k ‘

4B
for k œ {0} fi [K ≠ 1] and ‘k = ‘

4K
for k œ [K]

satisfies „(yı) ≠ E„(yK) Æ ‘.

I Corollary 17. Let B > 0 be such that Vy0 (yı) Æ B. Then for any ‘ > 0 and K œ N, the
output of Algorithm 2 with dual-regularization and primal-accuracy schedules given by

⁄k = 2k ‘

4B
for k œ {0} fi [K ≠ 1] and ‘k = ‘

8 · 1.5k
for k œ [K] (10)

satisfies

EÎyK ≠ uÎ Æ 1
1.5K

Û
2B

µr
,

where u œ Y is a point whose expected suboptimality is at most ‘, i.e., „(yı) ≠ E„(u) Æ ‘.
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4 E�cient maximin algorithms

In this section, we obtain new state-of-the-art runtimes for solving bilinear matrix games in
certain parameter regimes (Section 4.1), as well as an improved query complexity for solving
the dual of the CVaR at level – distributionally robust optimization (DRO) problem (Section
4.2). In each application, we apply Corollary 16 to compute an ‘-optimal point for the dual
problem at approximately the same cost as computing an ‘-optimal point for the primal
problem (up to logarithmic factors and the cost of representing a dual vector when it comes
to CVaR at level –).

4.1 Bilinear matrix games

In this section, we instantiate Â(x, y) := x
€

Ay for a matrix A œ Rd◊n. Given p, q Ø 1, we
write ÎAÎpæq := maxvœRd,v ”=0

ÎAvÎq

ÎvÎp
, and use the notation Aij , Ai:, and A:j for the (i, j)

entry, i-th row as a row vector, and j-th column as a column vector. We consider two setups:

I Definition 18 (Matrix games ball setup). In the matrix games ball setup, we set X := B
d

(the unit Euclidean ball in Rd), Y := �n, and fix a (Â, X , Y)-simplex setup (Definition 11).
We assume ÎA

€Î2æŒ = maxiœ[n]ÎA:iÎ2 Æ 1.

I Definition 19 (Matrix games simplex setup). In the matrix games simplex setup, we
set X := �d, Y := �n, and fix a (Â, X , Y)-simplex setup (Definition 11). We assume
ÎA

€Î1æŒ = maxi,j |Aij | Æ 1.

Throughout Section 4.1, any theorem, statement, or equation which does not make
reference to a specific choice of Definition 18 or 19 applies to both setups. Specializing the
primal (P) and dual (D) to this application gives

minimize
xœX

f(x) for f(x) := max
yœ�n

x
€

Ay, and (P-MG)

maximize
yœ�n

„(y) for „(y) := min
xœX

x
€

Ay. (D-MG)

Regarding the assumptions on the norm of the matrix A in Definitions 18 and 19, note
that we can equivalently write f(x) = maxyœ�n

qn
i=1

yifi(x) with fi(x) := [A€
x]i. Then the

assumptions on the norm of A correspond to ensuring fi is 1-Lipschitz with respect to the
¸2-norm in Definition 18 and ¸1-norm in Definition 19 (which in turn implies f is 1-Lipschitz
in the respective norms). This normalization is performed to simplify expressions as in [8].
(In particular, [8] also considers the more general problem where each fi can be any smooth,
Lipschitz, convex function.)

Recently, [8, Cor. 8.2] achieved a state-of-the-art runtime in certain parameter regimes
of ÂO(nd + n(d/‘)2/3 + d‘

≠2) for obtaining an ‘-optimal point for (P-MG). However, unlike
previous algorithms for (P-MG) (see Section 1.3 for an extended discussion), their algorithm
does not yield an ‘-optimal point for (D-MG) with the same runtime.

Our instantiation of the dual-extraction framework in Algorithm 3 and the accompanying
guarantee Theorem 21 resolves this asymmetry between the complexity of obtaining a primal
versus dual ‘-optimal point by obtaining an ‘-optimal point of (D-MG) with the same runtime
of ÂO(nd + n(d/‘)2/3 + d‘

≠2). At the end of Section 4.1, we observe that Theorem 21 also
yields a new state-of-the-art runtime for the primal (P-MG) in the setting of Definition 19
due to the symmetry of the constraint sets and Â.
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Algorithm 3 Dual extraction for matrix games.

Input: (Â, X , �n)-simplex setup (Definition 11), iteration count K œ N,
dual-regularization schedule (⁄k œ R>0)K≠1

k=0
, primal-accuracy schedule

(‘k œ R>0)K
k=1

, DRPOSP oracle (Definition 14)
1 y0 := 1

n 1
2 for k = 1, 2, . . . , K do
3 �k =

qk≠1

j=0
⁄j

4 [qk]i Ã
rk≠1

j=0
[yj ]⁄j/�k

i , ’i œ [n] // Note: qk œ �n

5 xk = DRPOSP(qk, �k, ‘k,
1

10K )
6 [yk]i Ã [qk]i · exp(�≠1

k · [A€
xk]i), ’i œ [n] // yk = argmax

yœ�n

)
x

€
k Ay ≠ �kVqk

(y)
*

7 return yK

Before giving the guarantee Theorem 21 for Algorithm 3, the following lemma provides a
runtime bound for the DRPOSP oracle when the success probability is 9/10 (see Appendix
B.1 in the full version for the proof). In particular, Lemma 20 shows that adding dual
regularization to (P-MG) does not increase the complexity of obtaining an ‘-optimal point
over the guarantee of [8, Cor. 8.2] discussed above.

I Lemma 20 (DRPOSP oracle for matrix games). In the settings of Definitions 18 and
19, for any q œ �n

>0
, ‘p > 0, and ⁄ > 0, with success probability at least 9/10, there

exists an algorithm which returns an expected ‘p-optimal point of f⁄,q with runtime ÂO(nd +
n(d/‘p)2/3 + d‘

≠2
p

). (Equivalently, per Definition 14, we have that DRPOSP(q, ⁄, ‘p, 1/10)
can be implemented with this runtime.)

Now for the main guarantee (we defer the proof to the full version):

I Theorem 21 (Guarantee for Algorithm 3). In the settings of Definitions 18 and 19, given tar-
get error ‘ > 0 and with success probability at least 9/10, Algorithm 3 with dual-regularization
and primal-accuracy schedules given by

⁄k = 2k ‘

4 ln n
for k œ {0} fi [K ≠ 1] and ‘k = ‘

4K
for k œ [K]

for K =
'
max

)
log2

ln n
‘2 , 1

*(
+ 10 returns an expected ‘-optimal point for (D-MG), and can

be implemented with runtime ÂO(nd + n(d/‘)2/3 + d‘
≠2).

The primal perspective

As alluded to above, the guarantee of Theorem 21 also implies a new state-of-the-art runtime
for the primal (P-MG) in the setting of Definition 19. This follows because in the matrix
games simplex setup, (P-MG) and (D-MG) are symmetric in terms of their constraint sets,
so we can obtain an expected ‘-optimal point for (P-MG) via Theorem 21 by negating and
treating (P-MG) as if it were the dual problem. Formally (we defer the proof to the full
version):

I Corollary 22 (Guarantee for (P-MG) in the matrix games simplex setup). In the setting of
Definition 19, there exists an algorithm which, given target error ‘ > 0 and with success
probability at least 9/10, returns an expected ‘-optimal point for (P-MG) with runtime
ÂO(nd + d(n/‘)2/3 + n‘

≠2).
See the full version for a discussion of how this runtime compares to the prior art.
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4.2 CVaR at level – DRO

In this section, we instantiate Â(x, y) :=
qn

i=1
yifi(x) for convex, bounded, and G-Lipschitz

(with respect to the Euclidean norm) functions fi : Rd æ R.4 Given a compact, convex set
X and – œ [1/n, 1], the primal and dual problem for CVaR at level – are as follows (we
explain the reason for the notation f̄ as opposed to f in the full version; in short, we apply
the framework to a proxy objective):

minimize
xœX

f̄(x) for f̄(x) := max
yœ�n,ÎyÎŒÆ 1

–n

nÿ

i=1

yifi(x), and (P-CVaR)

maximize
yœ�n,ÎyÎŒÆ 1

–n

„(y) for „(y) := min
xœX

nÿ

i=1

yifi(x). (D-CVaR)

Our complexity model in this section is the number of computations of the form (fi(x), Òfi(x))
for x œ X and i œ [n]. We refer to the evaluation of (fi(x), Òfi(x)) for a given x œ X and
i œ [n] as a single first-order query. Omitting the Lipschitz constant G and bounds on the
range of the fi’s and size of X for clarity, [29, Sec. 4] gave an algorithm which returns an
expected5

‘-optimal point of (P-CVaR) with ÂO(–≠1
‘

≠2) first-order queries, and also proved a
matching lower bound up to logarithmic factors when n is su�ciently large. However, to the
best of our knowledge, the best known complexity for obtaining an expected ‘-optimal point
of (D-CVaR) is ÂO(n‘

≠2) via a primal-dual method based on [33]; see also [13, 32, 5]. In our
main guarantee for this section, Theorem 24, we apply Algorithm 2 to obtain an expected
‘-optimal point of (D-CVaR) with complexity ÂO(–≠1

‘
≠2 + n), which always improves upon

or matches ÂO(n‘
≠2) since – œ [1/n, 1].

Toward stating our main guarantee, we encapsulate the formal assumptions of [29, Sec.
2] in the following definition:

I Definition 23 (CVaR at level – setup). We assume X is nonempty, closed, convex, and
satisfies Îx ≠ yÎ2 Æ R for all x, y œ X . We also assume, for all i œ [n], that fi is convex,
G-Lipschitz with respect to Î·Î2, and satisfies fi(x) œ [0, M ] for all x œ X .

We ultimately obtain the following guarantee via Algorithm 2. Note that the upper
bound on ‘ in Theorem 24 is without loss of generality since if ‘ Ø M , any feasible point is
‘-optimal. We defer the proof to the full version.

I Theorem 24 (Guarantee for (D-CVaR)). In the setting of Definition 23 with target error
‘ œ (0, 4M) and – œ [1/n, 1], there exists an algorithm which computes an expected ‘-optimal
point of (D-CVaR) with complexity ÂO(n + G

2
R

2
–

≠1
‘

≠2).

5 Obtaining critical points of convex functions

In this section, our goal is to obtain an approximate critical point of a convex, —-smooth
function h : Rn æ R, given access to a gradient oracle for h. We show that our general
framework yields an algorithm with the optimal query complexity for this problem. In

4 Note that we do not require the functions fi to be di�erentiable. Here, it is important that Definition 9
only requires Â(x, ·) to be di�erentiable.

5 To be precise, [29] gives a ÂO(–≠1
‘

≠2)-complexity high probability bound in Theorem 2. They do not
state a ÂO(–≠1

‘
≠2)-complexity expected suboptimality bound explicitly in a theorem, but they note in

the text above Theorem 2 that such a bound follows immediately from Propositions 3 and 4 in their
paper.
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Section 5.1, we give the formal problem definition and some important preliminaries. In
Section 5.2, we give the setup for applying our main framework Algorithm 2 to this problem
and a sketch of why the resulting algorithm works. In Section 5.3, we formally state the
resulting algorithm for obtaining an approximate critical point of h and prove that it achieves
the optimal rate using the guarantees associated with Algorithm 2.

5.1 Preliminaries for Section 5

Throughout Section 5, we fix Î·Î to be the standard Euclidean norm over Rn. We assume
h : Rn æ R is convex, —-smooth with respect to Î·Î, and � := h(x0) ≠ infxœRn h(x) < Œ for
an arbitrary initialization point x0 œ Rn. We access h through a gradient oracle. For “ > 0,
our goal will be to obtain a “-critical point of h, i.e., a point x œ Rn such that ÎÒh(x)Î Æ “.
Instead of operating on h itself, our algorithm will operate on a regularized version of h:

f(x) := h(x) + “
2

16�Îx ≠ x0Î2
. (11)

This notation was chosen to mirror the notation of Section 3.1; f will be the primal
function when we apply the framework. Let x

ı
f denote the unique global minimum of f .

The following corollary of Lemma 13 in Appendix C in the full version summarizes the key
properties of f :

I Corollary 25 (Properties of the regularized function f). We have
1. Îx

ı
f ≠ x0Î Æ 4�/“.

2. If u œ Rn is such that ÎÒf(u)Î Æ “/4, then ÎÒh(u)Î Æ “.

Proof. This follows immediately from Lemma 13 in the full version with – Ω “2

8�
and

‹ Ω “/4. J

The second part of Corollary 25 says that to find a “-critical point of h, it su�ces
to find a (“/4)-critical point of f . Furthermore, clearly a single query to Òh su�ces to
obtain Òf at a point. As a result, we will focus on finding a (“/4)-critical point of f .
Furthermore, Corollary 25 may be of independent interest since it trivially allows one to
achieve a gradient query complexity of O

1
—�/“

2
via a method which achieves query

complexity O
!

—Îx0 ≠ xı
hÎ/“

"
(for x

ı
h defined as some minimizer of h over Rn, assuming

one exists); see Section 1.3.
The reason we perform this regularization before applying our framework is it enables

us to obtain a su�ciently tight bound on Vy0 (yı) (equivalently, a small enough value of B

when we ultimately apply Corollary 17). It is possible to apply the framework more directly
to h, but it is not clear how to do so in a way that achieves an optimal complexity.

Finally, we provide a notation guide for Section 5 in Table 1, which may be useful to
reference as additional notation is introduced in Sections 5.2 and 5.3.

5.2 Instantiating the framework

For this application, we instantiate

Â(x, y) := Èx, yÍ ≠ f
ú(y).

Recall that Â is the Fenchel game [1, 43, 12, 23]; see Section 1.1 for a discussion of why it is a
natural choice in this setting. For the rest of Section 5, we fix a (Â, X := B

n
R(x0), Y := Rn

, f
ú)-

unbounded setup (Definition 10) with R := 5�/“. f
ú is a valid choice for the dgf because
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Table 1 Notation guide for Section 5.

Notation Description Section

Î·Î Euclidean norm 5.1
h Convex, —-smooth function
“ Target critical point error for h

x0 Arbitrary initialization point
� h(x0) ≠ infxœRn h(x) < Œ
f(x) h(x) + “2

16� Îx ≠ x0Î2

x
ı
f The global minimizer of f

Â(x, y) Èx, yÍ ≠ f
ú(y) 5.2

R 5�/“

X B
n
R(x0)

Y Rn

dgf r f
ú

„(y) Èx0, yÍ ≠ RÎyÎ ≠ f
ú(y)

⁄k 2k
/32 5.3

‘k �/(64 · 1.5k)
CGM Fast composite gradient method oracle

f
ú is di�erentiable and

1
— + “2

8�

2≠1

-strongly convex [38, Thm. 6.11]. The strong convexity
of f

ú also implies that Assumption 6 holds. Note that the associated primal function
x ‘æ maxyœRn Â(x, y) is precisely f

úú = f (hence the choice of notation in (11)), and the
dual function is given by

„(y) = min
xœBn

R(x0)

{Èx, yÍ ≠ f
ú(y)} =

=
x0 ≠ R

y

ÎyÎ , y

>
≠ f

ú(y) = Èx0, yÍ ≠ RÎyÎ ≠ f
ú(y).

Next, the following lemma fulfills part of the outline given in Section 1.1 by showing that
approximately optimal points for the dual objective (D) must have small norm. We defer
the proof to the full version.

I Lemma 26 (Bounding the norm by dual suboptimality). If y œ Rn is ‘-optimal for (D) for
some ‘ > 0, then ÎyÎ Æ ‘“/�.

We now derive the oracles of Definitions 12 and 13. Regarding Definition 12, for the
rest of Section 5 we restrict DRPO(·) to denote a deterministic implementation of the
DRPO oracle, since we can always obtain a deterministic implementation in this application.
Then the following corollary is an immediate consequence of a more general lemma given in
Appendix C in the full version which characterizes the properties of the Fenchel game with
added dual regularization; see also Section 1.1.

I Corollary 27. The set of valid output points of DRPO(q œ Rn
, ⁄ > 0, ‘p > 0) is precisely

argmin‘p

xœBn
R(x0)

(1 + ⁄) · f

3
x + ⁄Òf

ú(q)
1 + ⁄

4
, and

DRBR(q œ Rn
, ⁄ > 0, x œ B

n
R(x0)) = Òf

3
x + ⁄Òf

ú(q)
1 + ⁄

4
.

Proof. Apply Lemma 14 in the full version with g Ω f . J
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Taken together, Lemma 26 and Corollary 27 nearly immediately imply that Algorithm 2
can be applied to the above setup to obtain a (“/4)-critical point of f (and therefore a
“-critical point of h). In particular, we will apply the schedules of Corollary 17 to certify
that the output yK of Algorithm 2 is close in distance to an ‘-optimal point for (D) for an
appropriate choice of ‘ > 0. Then Lemma 26 and a triangle inequality yield a bound on
ÎyKÎ. Finally, since

yK := DRBR(qK , �K , xK) = Òf

3
xK + �KÒf

ú(qK)
1 + �K

4

by Corollary 27, we have that xK+�KÒfú
(qK )

1+�K
is an approximate critical point of f (and

therefore h). One may worry about the presence of Òf
ú(qK) here and, more generally, the

presence of Òf
ú(q) in the expressions for the oracles in Corollary 27. However, Òf

ú(·) never
needs to be evaluated explicitly since per the alternate expression for qk given in Line 3 of
Algorithm 2, note that qk was itself computed as the gradient of f at a point (recall the dgf
is f

ú and f = f
úú), in which case Òf

ú simply undoes this operation by Lemma 16 in the full
version.

We formalize this sketch and provide a complexity guarantee in the next section. We
also reframe this sketch and treat the sequence of xk+�kÒfú

(qk)

1+�k
terms as our iterates (as

opposed to the sequence of xk’s), as this leads to a simpler statement and interpretation of
the resulting algorithm.

5.3 The resulting algorithm and guarantee

We now formalize the sketch given at the end of the previous section, state the resulting
algorithm, and provide a complexity guarantee. But first, we define a subroutine which will
be used by the algorithm to implement the DRPO oracle:

I Definition 28 (CGM oracle [40, 36]). A (’ > 0, w œ Rn
, ‘ > 0)-fast composite gradient

method oracle, CGM(’, w, ‘), returns an ‘-minimizer of f over x œ B
n
’ (w), i.e., an element

of argmax‘
xœBn

’
(w)

f(x), using at most O

3
1 +

Ò
—’2

‘

4
queries to Òf .

For example, implementations with a small constant can be found in [40] or [36, Sec. 6.1.3].
The implementation of the CGM oracle falls under fast gradient methods for composite
minimization, where letting g denote a convex, —-smooth function and � a “simple regularizer”
(a quadratic in our case), the goal is to minimize g̃(x) := g(x)+�(x) with the same complexity
as it takes to minimize g. The domain constraint can also be baked into the regularizer � by
adding an indicator.

Our method for computing a “-critical point of h is given in Algorithm 4, with the
associated guarantee in Theorem 30. We note that the decision to introduce the equivalent
notation z0 for x0 in Line 1 is aesthetic (to make Line 5 simpler to state and interpret).
Furthermore, we state Algorithm 4 for general schedules (⁄k)K≠1

k=0
and (‘k)K

k=1
for clarity,

but ultimately we will choose the schedules given in Theorem 30, which correspond to
particularizing the schedules of Corollary 17 to this setting. With this choice of schedules,
�k ¥ 2k and ‘k ¥ �/1.5k so that ‘k

1+�k
¥ �/3k. As a result, Algorithm 4 can be interpreted

as optimizing f in a sequence of balls where the radius and target error are both decreasing
geometrically, and the center is a convex combination of the past iterates. While we choose
the iteration count K to be logarithmic in the problem parameters, we avoid multiplicative
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logarithmic factors in the total complexity because the ratio ’
2
/‘ in the complexity of the

CGM oracle call (to borrow the notation of Definition 28) in Line 5 of Algorithm 4 is
¥ R2

4k · 3
k

�
at the k-th iteration, meaning it is collapsing geometrically.

Algorithm 4 Algorithm for obtaining a “-critical point of h.

Input: Sequences (⁄k)K≠1

k=0
and (‘k)K

k=1
specified in Theorem 30, iteration count

K œ N, CGM oracle (Definition 28)
1 z0 := x0

2 for k = 1, 2, . . . , K do
3 �k =

qk≠1

j=0
⁄j

4 wk =
z0+

qk≠1
j=0

⁄jzj

1+�k

5 zk = CGM

1
R

1+�k
, wk,

‘k
1+�k

2
// zk œ argmin‘k/(1+�k)

zœBn
R/(1+�k)(wk)

f(z)

6 return zK

Toward analyzing Algorithm 4, we first connect the sequence of iterates zk produced by
Algorithm 4 to the sequence of iterates xk, yk, qk produced by Algorithm 2 with the same
input parameters. Namely, we are formalizing the comment made at the end of Section 5.2
about reframing the sequence of iterates to achieve a more interpretable algorithm. We defer
the proof to the full version.

I Lemma 29 (Connecting Algorithm 4 to Algorithm 2). Consider Algorithm 2 with input given
by a (Â, B

n
R(x0),Rn

, f
ú)-unbounded setup (Definition 10); y0 := Òf(x0); and K, (‘k)K

k=1
, and

(⁄k)K≠1

k=0
as in Algorithm 4. Then letting (zk)K

k=0
denote the sequence of iterates generated by

Algorithm 4, the following are valid sequences of iterates for Algorithm 2:

qk = Òf

Q

a 1
�k

k≠1ÿ

j=0

⁄jzj

R

b for k œ [K], (12)

xk = (1 + �k)zk ≠
k≠1ÿ

j=0

⁄jzj for k œ [K], and (13)

yk = Òf(zk) for k œ {0} fi [K]. (14)

Having connected Algorithm 4 to Algorithm 2, we can apply the schedules given in
Corollary 17 to show that Algorithm 4 returns a “-critical point of h with an optimal
complexity. We defer the proof to the full version.

I Theorem 30 (Guarantee for Algorithm 4). For any6
“ œ (0,


2—�) and with K =

O(log(—�/“)), the output of Algorithm 4 with schedules given by

⁄k = 2k

32 for k œ {0} fi [K ≠ 1] and ‘k = �
64 · 1.5k

for k œ [K] (15)

satisfies ÎÒh(zK)Î Æ “, and the algorithm makes at most O

3Ô
—�

“

4
gradient queries to h.

6 The restriction on “ is without loss of generality since ÎÒh(x0)Î Æ


2—� by smoothness. We add it
because it simplifies the analysis.
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