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ABSTRACT

A major challenge in ecology is to understand how different species interact to determine ecosystem function, particularly in
communities with large numbers of co-occurring species. We use a trait-based model of microbial litter decomposition to quantify
how different taxa impact ecosystem function. Furthermore, we build a novel framework that highlights the interplay between
taxon traits and environmental conditions, focusing on their combined influence on community interactions and ecosystem
function. Our results suggest that the ecosystem impact of a taxon is driven by its resource acquisition traits and the community
functional capacity, but that physiological stress amplifies the impact of both positive and negative interactions. Furthermore, net
positive impacts on ecosystem function can arise even as microbes have negative pairwise interactions with other taxa. As com-
munities shift in response to global climate change, our findings reveal the potential to predict the biogeochemical functioning

of communities from taxon traits and interactions.

1 | Introduction

All ecosystems contain multiple organisms that contribute to
emergent functioning. Consequently, a grand challenge in ecol-
ogy is to predict how changes in community composition impact
ecosystem function and how community structure-function re-
lationships emerge from organism traits and responses to envi-
ronmental change (Lavorel and Garnier 2002; Suding et al. 2008;
Lennon et al. 2012; Waring et al. 2022). These questions of ‘scal-
ing’ are particularly salient in both plant (Symstad et al. 1998;
Kahmen et al. 2005) and microbial (Waldrop, Balser, and
Firestone 2000; Wagg et al. 2014) communities, which are rich
in genetic diversity and perform an array of ecosystem functions.

In communities with many co-occurring taxa, interactions
between taxa with different traits influence community

dynamics and ecosystem function. For example, organisms that
compete for resources can have negative impacts on the growth
of their neighbours (Foster and Bell 2012; Trinder, Brooker, and
Robinson 2013; Allison et al. 2014). Conversely, organisms can
facilitate the growth of neighbours directly, through exchange
of resources or production of public goods (Schéb, Armas, and
Pugnaire 2013; Bernabé et al. 2018; Wu et al. 2023), as well as in-
directly, by suppressing a neighbour's competitor (Levine 1999).
Such resource-based interactions have traditionally been evalu-
ated across pairs of taxa (Thompson 1999; Gilman et al. 2010).
However, pairwise interactions are difficult to measure in com-
plex communities with many interacting taxa (Ponomarova and
Patil 2015; Sanchez-Gorostiaga et al. 2019).

The magnitude and relevance of interactions may also vary with
community composition. Communities may differ in average trait
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values that affect the ecological context in which different organ-
isms interact (Wright et al. 2004). These community-average traits
define the functional potential of a community and reflect the re-
sponses of co-occurring taxa to local environmental conditions
(Muscarella and Uriarte 2016). As such, community-average traits
represent a quantitative metric of the ecological context associated
with a given community composition. Quantifying this ‘commu-
nity context’ could aid in predicting the context dependency of how
interactions impact ecosystem function, which has been a vexing
problem in ecology (Chamberlain, Bronstein, and Rudgers 2014).

Microbial communities are relevant model systems for analys-
ing the relationships between organism traits, community in-
teractions and ecosystem function. In microbial communities,
resource-based interactions can occur over the use of metaboli-
cally costly extracellular public goods (Ozkaya et al. 2017; Smith
and Schuster 2019). For example, microorganisms produce ex-
tracellular enzymes (hereafter referred to as ‘exo-enzymes’) to
break down large organic polymers into smaller components
that can be transported into the cell (Sinsabaugh, Antibus, and
Linkins 1991; Allison and Vitousek 2004; Burns et al. 2013). In
litter and soil, greater exo-enzyme production can increase rates
of substrate degradation (Skujin$ and Burns 1976; Geisseler and
Horwath 2009), which makes resources accessible to the com-
munity. However, the production of exo-enzymes varies across
microbial taxa (Romani et al. 2006; Ramin and Allison 2019),
and cheating dynamics can also arise, such that function col-
lapses when organisms use exo-enzyme products without pay-
ing the cost of production (Allison 2005; Allison et al. 2014; Abs,
Leman, and Ferriére 2020).

Furthermore, environmental stress could affect the strength and
ecosystem implications of microbial interactions. With global cli-
mate change, more frequent extreme events such as droughts and
heatwaves could increase physiological stress on microbes, thereby
altering resource allocation and ecosystem function (Manzoni,
Schimel, and Porporato 2012; Malik et al. 2020; Allison 2023).
Still the consequences of climate change for resource-based inter-
actions remain unclear, making it challenging to predict rates of
organic matter decomposition and other processes.

To test how climate extremes might impact microbial interac-
tions across varying community contexts, we used a microbi-
ome simulator known as DEMENT (Decomposition Model of
Enzymatic Traits; Allison 2012). The simulator represents di-
verse microbiomes with interactions involving exo-enzymes
and their products. DEMENT's trait parameters are empirically
derived, and its predictions of litter decomposition rates and
enzyme distributions have been validated with empirical data
(Allison 2012). Previously, DEMENT has served as a platform
for in silico microbiome experiments, such as reciprocal trans-
plants and climate manipulations (Allison and Goulden 2017;
Wang and Allison 2022).

Using litter decomposition as an example ecosystem function,
and drought as a climate extreme, we address three main ques-
tions: (1) What are the community- and ecosystem-scale impacts
of taxa within different community contexts? (2) What is the re-
lationship between taxon traits (e.g., exo-enzyme production, re-
source use and stress tolerance) and taxon impact? (3) Are there
generalizable patterns in how interactions vary with drought

stress and determine ecosystem function? Although we anal-
yse microbial communities that decompose litter, these ques-
tions are relevant for any system in which ecosystem function
emerges from a diversity of resource-based interactions within
a community.

To address our research questions, we ran microbial exclusion
experiments with the DEMENT simulator under ambient, moist
and drought climate scenarios. We quantified interactions in
these simulations using the ‘taxon impact’, or the change in a
community- or ecosystem-scale metric when a specific taxon is
excluded. Taxon impact is an integrative metric of how a focal
taxon impacts an entire community (Amit and Bashan 2023;
Sanchez et al. 2023). This approach allowed us to resolve the
net impact of interactions at a scale and level of replication that
would be difficult to achieve empirically.

2 | Methods and Materials
2.1 | Simulator Description

DEMENT is an individual- and trait-based simulator of organic
matter decomposition that represents microbial interactions
involving exo-enzymes and their products (Figure 1). The sim-
ulator is designed to represent the substantial complexity of
environmental microbiomes while incorporating deterministic
understanding of microbial exo-enzyme production, monomer
uptake, and metabolism (Allison 2012). Previously, DEMENT
has been applied to simulate microbial community responses
to climate warming (Allison 2014), drought (Allison and
Goulden 2017; Wang and Allison 2021), and microbiome trans-
plantation along climatic gradients (Wang and Allison 2022).
These applications—which are grounded in ecophysiological
theory, conservation of mass and empirical comparison—lend
confidence in DEMENT's performance and utility as a tool for
virtual microbiome experiments.

DEMENT represents hypothetical microbial taxa defined by
physiological traits, specifically the ability to produce exo-
enzymes, take up monomers and resist drought-induced mor-
tality. Distinct polymer substrate pools each have a fixed
stoichiometry. Substrate pools are degraded via Michaelis-
Menten kinetics, and hypothetical microbial taxa produce exo-
enzymes which each degrade at least one substrate into a single
monomer. Monomer uptake follows Michaelis—-Menten kinetics
with uptake rate proportional to a transporter-specific V_pa-
rameter and taxon-specific biomass in each grid cell.

During simulations, microbial taxa produce exo-enzymes via
both constitutive and inducible production, take up monomers,
grow and maintain their cells, reproduce and eventually die.
These processes are computed at a daily time step and depend on
daily temperature and litter moisture. Furthermore, at the end
of every time step, monomer concentrations in every grid cell are
set equal to the grid-wide average, allowing taxa to access mono-
mers that were produced in a different grid cell. In this way,
community composition and function emerge through both the
response of taxa to environmental conditions and through inter-
actions between taxa over the production and consumption of
shared resources.
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FIGURE1 | Schematic of the DEMENT model and experimental design. (A) DEMENT is spatially explicit and represents microbial traits, taxon
dynamics, community interactions and emergent functioning. (B) We modelled 10 substrates, 50 enzymes, 12 monomers (one for each substrate as

well as two pools that represent inorganic nitrogen and phosphorus) and 25 microbial taxa. (C) To quantify taxon impacts on ecosystem function,

we conducted exclusion experiments in which we removed a focal taxon from the initialization. The black line indicates a simulation with all taxa

present. Grey lines indicate exclusion simulations without the focal taxon.

In plant litter, moisture limitation is an important physiologi-
cal constraint on microbial growth and mortality (Manzoni,
Schimel, and Porporato 2012; Malik et al. 2020). In the model,
V,ax Values for exo-enzymes and uptake transporters are re-
duced at low water potential, limiting resource flows (Allison
and Goulden 2017). The reduction in uptake V, . constrains up-
take rates under dry conditions even though monomers are ho-
mogenised across the grid after each model iteration. Microbes
can resist mortality from desiccation by allocating resources to
osmolytes according to a randomly assigned osmolyte produc-
tion trait that ranges between 0 and 1.0. Taxa with higher trait
values have a lower sensitivity of mortality to desiccation but
also pay higher respiratory costs for osmolyte production (Wang
and Allison 2022).

DEMENT requires mass conservation and represents microbial
growth as the balance between resource uptake and allocation
to different processes. In this way, trade-offs among exo-enzyme
production, monomer use and drought tolerance arise due to re-
source limitation. Because each of these processes involves met-
abolic costs, growth rates may decline as taxa allocate resources
to more traits.

DEMENT is spatially explicit, and microbial taxa interact on
a grid with absorbing boundaries, or edges that wrap around
(Figure 1A). When initialising a simulation, substrates are ho-
mogeneously distributed across the grid, while microbial taxa
are randomly distributed across the grid at equal frequen-
cies. Here, we modelled litter decomposition dynamics on a
100x 100 grid. We included 25 hypothetical microbial taxa, 50
exo-enzymes and 10 substrate pools to represent the composi-
tion of grass litter (Figure 1B and Table S1). Concentrations of

substrates and densities of microbial taxa are initialised to rep-
resent approximately 1 mm? of litter surface area (Allison 2005).

We represented 25 taxa because this number allowed for deg-
radation of all substrate types, and substrate degradation was
not meaningfully different in simulations with greater richness
(Figure S1). With fewer taxa, there was less overlap in trait com-
binations across the taxa and insufficient functional diversity
to degrade all substrates (Figure S1). Although most leaf litter
microbiomes contain far more than 25 microbial taxa, our simu-
lations aim to represent the smaller subset of abundant taxa that
physically interact over resources (Raynaud and Nunan 2014;
van Tatenhove-Pel et al. 2021).

More detailed information about DEMENT parameters can be
found in Table S2. Although we configured DEMENT to rep-
resent litter decomposition in a Mediterranean grassland, the
model structure and parameterisation could be generalised to
any microbiome with heterogeneity in resources, resource ac-
quisition strategies and stress tolerance.

2.2 | Simulation Experiments

To quantify the impacts of different taxa on community dynam-
ics and ecosystem function, we conducted exclusion experiments
in which we removed a focal taxon from the initialisation. For
communities of 25 taxa, we ran 26 simulations: one simulation of
the entire community and 25 exclusion simulations (Figure 1C).
All simulations were run for 3years, during which substrate was
replenished annually to represent litter inputs. Furthermore, at
the beginning of each year, microbial taxa were re-initialised on
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the grid at their relative abundances from the end of the previous
year. We treated the first 2 years of simulation as a model spin-up,
quantifying responses in the third year of simulation as in Wang
and Allison (2021). In this way, microbial community assembly
dynamics were independent from initial conditions and deter-
mined by environmental conditions and interactions between
community members on the grid.

To understand how taxon impacts varied under different
community contexts and across a gradient of environmen-
tally mediated physiological stress, we conducted exclusion
experiments in 50 different microbial communities and three
different climate forcings. This design resulted in 3900 total
simulations (26 simulationsx 50 communities X3 climate
forcings =3900). Simulations were conducted in Python ver-
sion 3.8.0 (Python Software Foundation, http://www.py-
thon.org). Code and data for simulations can be found at the
Zenodo repository: https://doi.org/10.5281/zenodo.13684242
(Bertolet 2024).

2.3 | Microbial Community Context

We defined the community context of the 50 different micro-
bial initialisations based on community-average trait values
(Wright et al. 2004; Muscarella and Uriarte 2016). Specific traits
included exo-enzyme production, monomer use and drought
tolerance (Figure S2). We calculated community-average traits
as the biomass-weighted average of all taxa in a community and
used the taxon average biomass in the third year of the full com-
munity simulation to weight each taxon's contribution to the
community-average value. These community-average traits con-
stitute static, relative metrics to differentiate each community.
That said, community-average traits do fluctuate at the daily time
step and are sensitive to moisture and temperature conditions
(Allison and Goulden 2017).

To quantify exo-enzyme production, we computed the taxon-
specific costs of constitutive exo-enzyme production (mg C per
mg biomass) and inducible exo-enzyme production (mg C per
mg uptake) multiplied by the total number of exo-enzymes the
taxon produces, as in Wang and Allison (2022). This quantity rep-
resents a relative exo-enzyme production metric, which ranged
from 0 to 0.007 across all taxa. To quantify monomer use, we used
the cost of transporter production multiplied by the total num-
ber of transporters, which ranged from 0.21 to 1.20mg C per mg
biomass. Lastly, to quantify drought tolerance, we used the costs
of constitutive osmolyte production (mg C per mg biomass) and
inducible osmolyte production (mg C per mg uptake). This quan-
tity represents a relative drought tolerance metric which ranged
from 0.010 to 0.10. We randomly and independently initialised
the 50 different microbial communities, generating 1250 unique
microbial taxa (25 taxa per community). Trait values for the 1250
microbial taxa can be found in the Figure S2.

2.4 | Climate Forcings
We conducted simulations under three different climate sce-

narios to explore the effects of physiological stress on the
taxon impact on community dynamics and function. We used

temperature and litter moisture data from a Mediterranean
grassland site in Southern California as an ‘ambient’ climate
scenario (Figure S3). We then constructed two additional
climate forcing scenarios in which we varied litter water po-
tential to create a gradient of moisture limitation and physio-
logical stress. We constructed a ‘drought’ scenario by using a
previously derived record of litter moisture used to represent
the conditions of a desert site in Southern California (Wang
and Allison 2022). Similarly, we constructed a ‘moist’ scenario
using a soil moisture record derived to represent a subalpine
site (Wang and Allison 2022). In both cases, we used the same
temperature record as the ambient climate scenario and only
considered how changes in moisture influenced the simulated
community interactions and function. For each climate sce-
nario, 1-year of temperature and moisture data were recycled
for all 3years of the simulation.

2.5 | Analysis of Model Output

For each focal taxon, we quantified the impact on ecosystem
function using Equation (1):

AS =S -5, M
where AS; is the difference in total substrate degraded when
focal taxon i is present, S is the total substrate degraded in the
simulation with all 25 taxa present and S; is the total substrate
degraded in the simulation with focal taxon i excluded. A pos-
itive impact indicates that more substrate was degraded when
taxon i was present, either through occupying additional niche
space or through facilitative interactions with other taxa. A neg-
ative impact indicates that less substrate was degraded when
present, evidence of exploitative interactions that decreased eco-
system function.

Additionally, as a measure of taxon impact on community dy-
namics, we quantified pairwise interactions between each focal
taxon and all other taxa in the community (hereafter referred to
as ‘associate taxa’) using Equation (2):

AB; = B; - By )

where AB;; is the difference in average biomass of the associate
taxon j when the focal taxon i is present, B; is the average bio-
mass of the associate taxon j in the simulation with all 25 taxa
present, and By is the average biomass of the associate taxon
j in the simulation with the focal taxon i excluded. A positive
taxon impact on the associate taxa biomass indicates that bio-
mass of the associate jincreased with focal taxon i present, and
a negative impact indicates that the biomass of the associate j
decreased when focal taxon i was present.

To determine how these impacts on community dynamics and
ecosystem function varied across climate scenarios and com-
munity context, we used a two-way mixed model ANOVA, with
climate scenario as a fixed effect, as the same 1250 taxa were
subjected to three different climate scenarios, and community
context as a random effect. Additionally, to understand system-
specific patterns in taxon traits and ecosystem function, we
analysed data from the climate scenarios separately and used
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multiple regression models to relate taxa traits to impacts on
substrate degradation. Statistical analyses were conducted in R
version 4.1.0 (R Core Team 2021), and code and data for statisti-
cal analyses can be found at the Zenodo repository: https://doi.
org/10.5281/zenodo.13684242 (Bertolet 2024).

3 | Results

3.1 | Taxon Impacts in Different Communities
and Under Different Climate Conditions

Across all simulations, we quantified the impacts of 1250 dis-
tinct microbial taxa in 50 different communities under three
climate scenarios (Figure 2). As expected, we found that
total substrate degradation varied significantly with both cli-
mate scenarios (F);,,,=110,109, p<0.05) and community
context (F,,,=272.3, p<0.05). Average total substrate deg-
radation decreased from 286.7 1.1 mg C cm~3 under moist con-
ditions to 270.7+10.9mg C cm~3 under ambient conditions and
223.2.1+24.2mgCcm3 under drought conditions (Figure 2A).

Taxon impact on substrate degradation varied significantly
with climate scenario but not community context (climate ef-
fect: F,,,, ,=67.2, p<0.05). Specifically, we found that decreas-
ing moisture amplified taxon impacts on substrate degradation

250
1

200
L

Total substrate degraded (mg C cm‘3) >
150

T T T
Moist Ambient Drought
Climate Scenario

in both positive and negative directions, although the positive
impacts were greater. Additionally, total substrate degradation
increased with community-average enzyme production, such
that communities with more enzyme producers degraded more
substrate. However, taxon impacts under the drought scenario
were significantly correlated with impacts under the ambient
(R?>=0.85, p<0.001) and moist (R>=0.40, p <0.001) climate sce-
narios, indicating similar directional effects of each taxon across
the environmental conditions (Figure S4).

We also quantified all pairwise interactions, measured as the
change in average biomass of an associate taxon when a focal
taxon was excluded. Interestingly, we did not find differences
in average taxon impact on associates across climate scenarios
or communities (Figure 2C). Overall, negative pairwise interac-
tions were more common than positive interactions, accounting
for 66% + 3.4% of all interactions.

3.2 | Relationships Between Taxon Traits
and Ecosystem Function

Analysis of results within each climate scenario revealed that
taxon impacts on substrate degradation were significantly related
to taxon traits and community context (Figure 3). Here, we focus
on data from two representative communities with low and high
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FIGURE 2 | (A) Total substrate degradation varied significantly with both climate scenario (F

(F251.88

51.88 = 17,712, p<0.05) and community context

=221.7, p<0.05). Total substrate degradation decreased with drought and increased with community-average enzyme production. Points are

ordered on the x-axis and coloured by community-average enzyme production. (B) Taxon impacts on ecosystem function, defined as the change in

substrate degradation when a focal taxon is excluded. (C) Taxon impacts on community dynamics, defined as the pairwise change in average biomass

of an associate taxon when a focal taxon is excluded.
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FIGURE 3

| (A) The impact of a focal taxon on substrate degradation is positively related to the taxon-specific relative enzyme production, but the

relationship is mediated by community-average relative enzyme production (Cenz) and climate. Points are coloured by climate scenarios. Data are

shown here for representative communities with low and high Cenz, but analyses were conducted for all 50 replicate communities. The black lines

represent the predicted taxon impact from a linear regression that includes taxon-specific relative enzyme production, community-average relative
enzyme production, climate conditions and their interaction (p-value <0.001, R?=0.45). (B) The relationship between the impact of a focal taxon on
substrate degradation and taxon-specific relative enzyme production (i.e. the slope from Panel A) is negatively related to community-average relative

enzyme production and mediated by climate conditions (multiple regression: p-value <0.001, R?=0.70).

community-average relative enzyme production (Figure 3A),
but patterns were consistent across all communities (Table S3).
Specifically, we found that taxon exo-enzyme production was posi-
tively related to the impact on substrate degradation, but the effect
was mediated by the community-average exo-enzyme production
and climate scenario. A multiple regression that included taxon
exo-enzyme production, community-average exo-enzyme produc-
tion, climate scenario and the interactions explained 45% of the
variation in taxon impact (p-value < 0.001, R>=0.45). Furthermore,
within a given climate scenario, other microbial traits, such as
monomer use and drought tolerance, were not significant in pre-
dicting taxon impacts on substrate degradation (Table S3).

Importantly, we found a significant negative interaction ef-
fect between taxon exo-enzyme production and community-
average exo-enzyme production, indicating that the community
functional capacity buffered the system against taxon loss
(Figure 3B). The slope of the relationship between substrate
degradation and taxon exo-enzyme production decreased with
community-average exo-enzyme production and was mediated
by climate (multiple regression across all climate scenarios:

p-value <0.001, R?=0.70). Furthermore, the importance of the
buffering capacity of the community exo-enzyme production
(i.e., the slope) was highest under drought conditions and de-
creased in wetter scenarios (Figure 3B), indicating the greater
influence of associate taxon interactions under drought con-
ditions. Thus, enzyme-producing microbes substantially in-
creased substrate degradation only in communities with low
overall exo-enzyme production. In communities with high
exo-enzyme production, other associate taxa also had high exo-
enzyme production and were able to compensate for the loss of
the focal taxon.

Further exploration of taxon impacts under all three climate
scenarios revealed the importance of drought tolerance traits
under stressful environmental conditions. Here, we focus on
data from the drought climate scenario, and we use the ratio of
exo-enzyme production to monomer use to visualise relation-
ships between taxon traits and taxon impacts, with lower values
of the ratio representing cheater strategies. In the drought cli-
mate scenario, taxa that were both drought tolerant and enzyme
producers tended to have more positive impacts on substrate
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degradation (Figure 4). In contrast, taxa that were drought
tolerant and cheaters tended to negatively influence substrate
degradation (i.e., when cheaters were present, substrate degra-
dation decreased). Interestingly, cheating microbes did not have
meaningful negative impacts on ecosystem function under the
ambient and moist climate scenarios (Figure S5). Instead, under
moist conditions, community members always compensated for
the loss of a taxon, irrespective of the traits of the excluded taxon.

There were exceptions to the general pattern that drought tol-
erance led to more amplified impacts of interactions. In some
cases, a focal taxon with low drought tolerance (<0.05 relative
drought tolerance) had meaningful positive impacts on sub-
strate degradation, increasing the amount of substrate degraded
by nearly 40 mg C cm~3 when present (Figure 4). These taxa had
high exo-enzyme production (and high capacity to take up the
corresponding monomers) in communities with low overall
community exo-enzyme production. Thus, because the overall
community was exo-enzyme limited, the presence of these taxa
positively contributed to substrate degradation, despite their rel-
atively low drought tolerance.

3.3 | A Generalisable Framework for Taxon
Impacts on Community Dynamics and Ecosystem
Function

Our simulations revealed three main outcomes for focal taxon
impact on associate taxa biomass and substrate degradation
(Figure 5). Taxa that had negative impacts on both associ-
ate biomass and substrate degradation functioned as cheaters
(Figure 5A, lower left quadrant). Furthermore, taxa with pos-
itive impacts on substrate degradation were mainly enzyme
producers. Some of these taxa facilitated associates’ biomass
(Figure 5A, upper right quadrant), but many enzyme-producing

taxa had negative impacts on associate biomass (Figure 5A,
lower right quadrant). In these cases, the focal taxon's enzy-
matic contribution to substrate degradation outweighed its neg-
ative impact on the biomass of other associate taxa. Thus, net
positive effects on ecosystem function arose via both positive
and negative pairwise interactions, and differential impacts on
associate taxa did not necessarily alter ecosystem function.

4 | Discussion

As global change continues to affect all ecosystems, our study
provides important mechanistic support for how physiology
may mediate ecosystem responses from organismal to commu-
nity scales. We used trait-based simulation of microbial-driven
litter decomposition to quantify taxon impacts on community
dynamics and ecosystem function, and we built a new frame-
work for predicting the outcome of resource-based interactions
(Figure 5B). Specifically, we show that resource acquisition
traits influence whether a taxon's impact on ecosystem function
is positive or negative, but net positive impacts can arise even
if taxa have negative pairwise interactions. Furthermore, envi-
ronmental stress amplifies taxon impacts on ecosystem function
in both positive and negative directions, despite not influencing
pairwise community interactions (Figure 2B).

In field studies, drought has significant impacts on microbial
community composition and functioning. As gene expression
and microbial abundances shift under drought (Schimel 2018),
rates of decomposition and exo-enzyme production may decline
(Allison et al. 2013; Qu et al. 2023). DEMENT simulator outputs
largely agree with these observed trends, both here (Figure 2)
and in prior studies (Wang and Allison 2021), lending support to
the model's representation of microbial drought responses. Still,
some of DEMENT's assumptions require further testing. For in-
stance, monomer diffusion is likely slower under drought than
assumed by DEMENT, which could cause the model to overes-
timate monomer sharing during dry periods. Most microbial
activity occurs when monomer diffusion increases under wet
conditions.

In our simulations, both drought and community context in-
fluenced the outcome of a focal taxon's presence and interac-
tions. Cheating taxa had more negative impacts on substrate
degradation under drought conditions, while exo-enzyme
producers had more positive impacts under the same stress-
ful conditions (Figure 5). Our results thus suggest that the
cost of investment in stress tolerance amplifies the impact of
resource-based interactions on ecosystem function, even as
stress does not influence patterns in pairwise community in-
teractions (Figure 2C).

Context dependency of microbial interactions and function has
been previously observed in laboratory experiments with mi-
crobial consortia (de Muinck et al. 2013; Chevrette et al. 2022)
and is often viewed as a challenge for predicting ecosystem
function from microbial traits (Sanchez-Gorostiaga et al. 2019).
Physiological stress due to abiotic environmental conditions
may also contribute to the context dependency of ecosystem
function (Schimel, Balser, and Wallenstein 2007; Hawlena and
Schmitz 2010). Yet, we found that the taxon impact on substrate
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FIGURE 5 | (A) Focal taxon impacts on associate biomass and substrate degradation. Points are coloured by taxon-specific exo-enzyme
production relative to monomer use, with lower values representing cheating strategies. (B) A generalisable framework for predicting taxon impacts
on community dynamics and ecosystem function. Traits associated with resource acquisition determine whether impacts on ecosystem function
will be positive or negative, but environmental stress amplifies the impact on ecosystem function in both positive and negative directions. In our
simulations, under low environmental stress, focal taxa did not have meaningful impacts on substrate degradation regardless of taxon traits.
When environmental stress was high, taxa that invested in greater enzyme production had more positive impacts on resource degradation. Trait
dissimilarity between the focal taxon and the associate taxa determines whether exclusion of the focal taxon will lead to positive or negative impacts
on the associate's fitness (y-axis position). Analysis of our data showed that, when a focal taxon had high positive impacts on substrate degradation,
similar taxa tended to have competitive interactions and dissimilar taxa tended to have facilitative interactions. Furthermore, there were very few
focal taxa that had negative impacts on substrate degradation and positive impacts on associate taxa (upper left quadrant) because positive impacts
on associates require higher rates of enzyme production by the focal taxon.

degradation was predictable based on community context as
defined by exo-enzyme production. In DEMENT, exo-enzymes
are directly related to the community capacity for substrate deg-
radation through Michaelis-Menten kinetics. Specifically, in
communities with low average exo-enzyme production, enzyme
producers had large positive impacts on substrate degradation
(Figure 3). Conversely, if the community had high enzyme ca-
pacity, loss of an enzyme producer had little effect on ecosystem
function.

Similarly, we found that cheating taxa did not substantially
negatively influence ecosystem function in communities with
high functional capacity. Other studies have found that cheating
can reduce substrate degradation rates (Allison 2005; Allison
et al. 2014; Kaiser et al. 2015), but our analysis shows that a
community context with high enzyme production can mitigate

these impacts. Recent work using laboratory cultures has also
found that cheating interactions are diminished in more diverse
communities (O'Brien, Culbert, and Barraclough 2022) due to
the higher likelihood of including species that outcompete and
suppress cheaters.

Relationships between taxon traits and community context
offer promise for predicting ecosystem functions in communi-
ties with many co-occurring taxa. In communities with high
functional capacity, ecosystem function should be robust to
the addition and subtraction of taxa, even those taxa with ex-
treme trait values. This robustness is supported by empirical
observations, which often find high resilience of microbial
functions to changes in community composition (Waldrop,
Balser, and Firestone 2000; Bell et al. 2005). However, our re-
sults also suggest that, in communities with low functional
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capacities, changes in composition will have large impacts on
function. In accordance with this prediction, biomass of an in-
oculated E. coli invader was higher in microbial communities
with lower substrate use capacity (Mallon et al. 2015). When
environmental stress was greater in our simulations, the im-
pact of a focal taxa was amplified, likely due to the trade-off
between resource acquisition and stress tolerance traits inher-
ent in DEMENT (Allison and Goulden 2017).

Additionally, we found that net positive impacts on ecosystem
function can arise even if taxa have negative pairwise interac-
tions with each other. There were many cases in which focal
taxa had negative impacts on associate taxa biomass but pos-
itive impacts on ecosystem function (Figure 5A, lower right
quadrant). Laboratory experiments of culturable microorgan-
isms often observe competitive pairwise interactions (Foster
and Bell 2012), and while there is substantial debate on the
ubiquity of competitive versus facilitative interactions (Mee
et al. 2014; Kehe et al. 2021), our results suggest that negative
interactions in a community do not necessarily imply nega-
tive impacts on ecosystem function. Specifically, we found
that the presence of a focal taxon could have a negative im-
pact on an associate taxon's biomass and a positive effect on
substrate degradation when both taxa were enzyme produc-
ers (Figure 5B). Thus, system-specific understanding of the
mechanism of interactions should allow for understanding of
the scaling between community interactions and ecosystem
function.

One notable assumption of our model is that traits, such as en-
zyme and osmolyte production, vary among taxa. Therefore,
shifts in community-average traits are largely driven by
changes in the abundance of taxa rather than physiological
acclimation within taxa. Although the model represents in-
ducible enzyme production, more sophisticated up- or down-
regulation of enzyme production might reduce the strength
of interactions among taxa. However, metabolic costs of reg-
ulation could reduce the viability and ecological relevance of
strategies with high physiological plasticity (Kalisky, Dekel,
and Alon 2007).

The interaction mechanisms and ecosystem consequences sim-
ulated by DEMENT can help generate hypotheses about micro-
bial interactions that may be occurring in the real world. There
is some evidence from laboratory consortium studies that posi-
tive bacterial interactions strengthen with increasing stress from
toxicity (Piccardi, Vessman, and Mitri 2019), consistent with our
model simulations of drought stress. Although both positive and
negative taxon impacts on substrate degradation increased with
drought, the positive impacts were more pronounced. Validating
these presence-impact results with 25 microbial taxa in the field
would be a challenge, but it might be possible to design exclu-
sion experiments to test our model predictions in the laboratory,
perhaps with a smaller number of taxa. For instance, our sim-
ulation design could be replicated using a complex substrate in
liquid media hosting synthetic communities of bacteria in mi-
croplate wells.

The patterns we observed may apply to other communities in
which interactions are resource-based and taxon traits include
trade-offs between stress tolerance, resource acquisition and

growth. For example, in many savanna ecosystems, tree spe-
cies can facilitate understory grass productivity via hydraulic
lift, the process by which soil water is moved upwards through
the roots of plants (Caldwell, Dawson, and Richards 1998).
Assuming that water is important for plant fitness, we would
predict that interactions become more pronounced during
stress, but that the impact of interactions on neighbour fit-
ness and primary productivity is dependent on water use effi-
ciency and drought tolerance. Indeed, studies on hydraulic lift
have documented both facilitative (Prieto et al. 2011; Yu and
D'Odorico 2015) and competitive (Ludwig et al. 2004) interac-
tions and have highlighted the context dependency of hydrau-
lic lift interactions.

In conclusion, our results provide new insight on how resource-
based interactions might influence community dynamics and
ecosystem function under changing environmental conditions.
Our results suggest that shifts in the community composition of
low functioning communities may have impacts on ecosystem
function, and that these impacts may intensify under drought
stress. As communities respond to global climate change, quan-
tifying taxa traits, resource-based interactions and environmen-
tal stress can allow for robust understanding and prediction of
ecosystem responses.
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