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Abstract

Binary Neural Networks (BNNs) enable efficient deep learning by
saving on storage and computational costs. However, as the size of
neural networks continues to grow, meeting computational require-
ments remains a challenge. In this work, we propose a new form of
quantization to tile neural network layers with sequences of bits to
achieve sub-bit compression of binary-weighted neural networks.
The method learns binary vectors (i.e. tiles) to populate each layer
of a model via aggregation and reshaping operations. During in-
ference, the method reuses a single tile per layer to represent the
full tensor. We employ the approach to both fully-connected and
convolutional layers, which make up the breadth of space in most
neural architectures. Empirically, the approach achieves near full-
precision performance on a diverse range of architectures (CNNs,
Transformers, MLPs) and tasks (classification, segmentation, and
time series forecasting) with up to an 8x reduction in size compared
to binary-weighted models. We provide two implementations for
Tiled Bit Networks: 1) we deploy the model to a microcontroller to
assess its feasibility in resource-constrained environments, and 2) a
GPU-compatible inference kernel to facilitate the reuse of a single
tile per layer in memory.
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1 Introduction

The progress of modern machine learning can be largely attrib-
uted to the exponential growth of Deep Neural Networks (DNNs).
Empirically, the capacity of DNNs is expanding at an astounding
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Figure 1: Tiling Illustration: A binary tile (left) of size k = 4
is replicated four time to create a weight matrix of size 16
(right). Tiling is used during the training process of Tiled Bit
Networks (TBNs) to learn vectors for populating the parame-
ters of a model (as illustrated above). During inference, only
a single tile needs to be referenced per layer (left) — a special-
ized kernel can reuse the tile throughout layer computation
for memory savings.

rate [3], a practice supported by theory showing that sufficiently
over-parameterized models are in fact necessary for deep learning
[1, 24]. Alongside this progress, the growing presence of resource-
constrained machines (e.g. embedded devices, cell phones) has cre-
ated unique opportunities to deploy increasingly large DNNs in
novel environments. Consequently, maximizing the computational
efficiency of neural networks is a relevant challenge at various
scales of application.

Efforts toward efficient deep learning span a broad range of
techniques such as architectural design [23, 50], neural architec-
ture search [33], knowledge distillation [22, 51], and quantization
[6, 25, 62]. Quantization, which converts high precision neural net-
work weights into discrete values, has achieved success in practical
applications [40, 49], and has been applied down to the scale of
Binary Neural Networks (BNNs) where the weights (and often
activations) of a model are single bit values [7].

While BNNs have been established as a practical and extreme
form of quantization, an emerging line of research has gone a step
further with sub-bit neural network compression, which requires
less than a single bit per model parameter. Wang et. al [58] first
observed that the discrete set of binary convolutional kernels tend
to cluster into a smaller subset; as a result, they devised a training
regime to use a smaller set of kernels. Subsequent work has achieved
improved compression by leveraging properties of binary convo-
lutional kernels using minimum spanning trees [56] and sparse
kernel selection [57].

Independent from previous approaches, this work proposes tiling
neural networks with binary weights to achieve sub-bit memory
and storage compression of model parameters. Tiled Bit Networks
(TBN ) learn binary sequences (tiles) to fill in the weights of a DNNs
layers during training. A tiling operation is depicted in Figure 1. The
algorithm learns a condensed parameter representation for each
layer by compressing the weight values using tensor reshaping and
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Figure 2: Composition of popular DNNs: The ResNet series
is made up primarily of convolutional layers; MLPs (Point-
Net, MLPMixer) and Transformers (Swin-t, ViT, Mobile ViT)

consist mostly of fully-connected parameters.

aggregation (Figure 3); a scalar is additionally applied to each layer
or tile.

Unique from previous work that leverages the properties of con-
volutional kernels to achieve sub-bit compression, TBNs work on
both fully-connected and convolutional layers, a relevant applica-
tion for modern architectures as depicted in Figure 2. We test the
approach on CNNs, Transformers, PointNets, and MLPs, enabling
for the first time sub-bit DNN compression on models with high
proportions of fully-connected parameters. Compared to previous
approaches, TBNs achieve better or similar performance on image
classification tasks. Empirically, across 2D and 3D image classifica-
tion, TBNs achieve performance on par with Binary Weight Neural
Networks (BWNNs) with only a fraction of the total parameters —
less than a single bit is stored and accessed per model parameter.
TBNs additionally achieve strong performance on semantic and
part segmentation tasks as well as time series forecasting.

We provide two implementations for model inference in Section
5, which both require only a single tile per model layer in mem-
ory. First, we implement a lightweight TBN for deployment on a
microcontroller, showing that the algorithm reduces memory and
storage consumption compared to BWNNs. We also implement
a GPU-compatible inference kernel using the Triton library [53],
which allows memory savings through the reuse of a single tile in
the highly parallelized setting. The TBN inference kernel requires
2.8x less peak memory (78.5MB vs. 222.5MB) compared to a stan-
dard kernel on ImageNet Vision Transformer (ViT) (Small) when
both have full precision weights.

Our contributions are as follows:

e We achieve sub-bit memory and storage compression of
neural network parameters by learning sequences of binary
values (tiles) to populate the layers of DNNs. We apply the
method to fully-connected and convolutional layers. To the
best of our knowledge, this is the first work to show substan-
tial sub-bit compression of fully-connected DNNs which are
relevant in Transformers and MLPs (PointNet, MLPMixer).

e We provide two implementations that achieve sub-bit com-
pression of model parameters by reusing a single tile per
model layer: 1) we deploy a TBN to a microcontroller with a
customized C kernel, and 2) we develop a specialized GPU
kernel for fully-connected layers to leverage memory savings
of tiled parameters during inference.
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2 Related Work

Quantized and Binary Neural Networks DNN quantization
reduces full-precision weights and activations to discrete and lower
precision values to enhance model storage, memory, and inference
speed [31, 64]. The most extreme quantization was convention-
ally thought to be binarization, where weights can only be +1
[43]. Binarization helps reduce computation, however, it often re-
duces model accuracy. Several works attempt to alleviate this issue
such as XNOR-Net, which used channel-wise scaling factors for
BWNNSs and BNNs [47]. IR-Net [44] preserved the information by
maximizing the entropy of the information while minimizing the
quantization error. ReActNet used generalized activation functions
to get within 3% of full-precision accuracy on ImageNet [36]; Shang
et al. utilized contrastive learning to learn BNNs [52]. Xu et al. pro-
posed FDA, which estimates sign function gradients in a Fourier
frequency domain [59]; Xu et al. proposed ReCU which introduces
a rectified clamp unit to address dead weights [60].

We note that the BNN research covered in this section uses binary
activations as well as binary weights, and as a result, achieves sig-
nificant memory and speed improvements. TBNs use full-precision
activations, however, still achieve storage and memory improve-
ments from using a single tile per layer. We denote BNNs that
have full-precision activations as Binary Weight Neural Networks
(BWNNs). We indicate whether previous BNN algorithms have
binary activation’s in benchmark experiments in Section 4.

Sub-Bit Quantization Sub-bit DNN compression reduces model
sizes to less than a single bit per model parameter. Kim et al. [26]
proposed a kernel decomposition to reduce computations in binary
CNNss. FleXOR [29] used an encryption technique to store binary
sequences. Wang et al. [58] observed that the full set of binary
convolutional kernels tends to cluster into a subset; they formulate
a training technique to find the best subsets of kernels. Lan et al. [27]
stack convolutional filters to achieve sub-bit compression. Wang
et al. [57] group kernels into binary codebooks for sparse kernel
selection. Finally, Vo et al. [56] propose minimum spanning tree
compression, which takes advantage of the observation that output
channels in binary convolutions can be computed using another
output channel and XNOR operations.

Previous sub-bit compression approaches are distinct from TBNs:
initial work was based on removing redundancy and encrypting
weights; CNN-based approaches are based on utilizing properties
of binary convolutional kernels. TBNs, on the other hand, achieve
substantial compression on both fully-connected and convolutional
layers, and can be applied to multiple architectures (CNNs, Trans-
formers, MLPs).

Efficient Machine Learning Model quantization is a sub-field
of efficient deep learning, which encompasses multiple areas not
covered in this work such as low rank factorization [5, 28, 30],
structured and unstructured pruning [11, 17, 19, 21], knowledge
distillation [22, 48], and memory efficiency through input patching
[32] and attention tiling [8].

Embedded and On-Device Machine Learning The size and
computational requirements of DNNs has motivated researchers
to improve the compatibility of large models with hardware such
as mobile phones and embedded devices (e.g. FGPAs, IoT Sensors)
[4]. Architectural optimizations such as MobileNet [50], ShuffleNet
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Figure 3: Tile Construction During Training: For each layer of a neural network, we train a standard weight tensor (W) (left).
During the training, we compress the parameter by a factor of p by performing a reshaping (second column top) and then sum
operation (second column middle). We use the straight-through estimator to binarize the vector s, creating the tile t (bottom of
the second column). We next create binary weights B from the resulting binary vector by tiling vector t two times and reshaping
it to an n x m tensor (third column). Finally, we apply a scalar « over each of the two tiles, resulting in the final weight tensor B.
During the inference, only a single tile is needed, along with a small number of « scalars.

[37], and MCUNet [33, 34] have been achieved success, including
to ease memory constraints via layer patching [32].

3 Method

Tiled Bit Networks are constructed from a standard neural network
with layers 1,2,1..., L. We consider fully-connected and convolu-
tional layers in this work since these layers generally make up the
breadth of DNNs weights. We do not consider bias parameters in
this work.

In this section, we describe the training process for TBNs, which
involves learning full-precision parameters (W) and applying aggre-
gation and reshaping to create the tile vectors t. We then describe
our approach to tile-wise scaling, the second step of training TBNs.
Finally, we describe training hyperparameters and their default
settings.

Layer-Wise Tiling The key to our approach is that we learn
tile vectors tm, tl”, tl] for each layer of our network. We ini-
tialize our model with full-precision values for each layer similar
to standard training, creating a weight tensor wll ¢ pdix...di
for layer I, where dj is the dimensionality of the tensor (e.g., a
fully-connected layer has k = 2). The total of elements in the tensor
isN = Hle d;. During training, we update WUl via stochastic
gradient descent. Our goal is to compress will by a factor of p,
where size N is divisible by p such that p X ¢ = N. To achieve this
we reshape tensor wll asa p X q dimensional matrix will during
forward propagation:

wlll ¢ pdv-di _, wlll* ¢ ppxq (1)
We then sum the reshaped weight tensor will* along the p
dimension to create a vector s € R?:
P (1]
) j=1 W11i s1
Zi'):l ng]* S2
s = ) = (2)
Pl s
Zj=1 Wy !

676

We next create tile tl = [t;, 1, tj..tq] for a given layer by
applying a threshold function to determine the binary value for
each s; in s:

1,

t; =

Tile t!! is then replicated p times to create tile vector bl e RN,
Formally, let 1\ be a vector of ones with size N. The tiling operation
creates vector blll as:

if s; >0
if s; > 3)

otherwise

bl = 1y @ ¢!l ()

where ® is the Kronecker product. We create our final binary
weight tensor BIl € {—1, 1}9--k by reshaping vector b[l:

©)

(+) denotes a vector to k-dimensional tensor

pll = Vec;11...dk (bl”)

where vecallw d
operation.

We note that computing binary parameters B! involves non-
differentiable operations during forward propagation. As a result,
we utilize straight-through gradient estimation, where the gradients
of the model are passed-through the non-differentiable operator
during backpropagation [2]. To achieve this we implement Equa-
tions (1) to (5) in the forward pass of a customized differentiation
engine, and on backpropagation we pass the gradients through the
customized module to update will,

Putting it together, the tiled model f(-) can be trained with pa-
rameters Wl (to compute B!y and inputs x, producing an output
y which serves as a continuous, differentiable approximation of a
tiled neural network. In the context of straight-through gradient es-
timation, y is used during backpropagation to compute the gradient
of loss £ with respect to the parameter will;

oL L aym ,9y[l] N ay[” ©
oWl ~ aylll owlI”  Hwlil ~ oBII]
(7]
where y“J is the output of layer [ prior to the activation. B

involves the thresholding, tiling, and reshaping operations.
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Figure 4: We learn scalar o from tensor A by computing Equa-
tion 7 or 9 over its values (W can also be used in place of A).
The figure visualizes Equation 9 which calculates a over each
tile.

Tile-wise Scalars Similar to XNORNet [47], we scale B/l by a.
Rastegari et al. [47] derived the optimal scaling factor of a binary
weight filter as the average absolute value of a weight, a method
widely used in other research [9, 38, 43]. We can use parameter
wlll to compute the scalar since its non-aggregated size is the same
as a standard weight tensor:

w |y
a= )

We additionally experiment with an independent tensor, denoted
Alll ¢ Rdix-dic 1 exclusively compute the o scalar. We observe a
slight performance benefit from using Al in addition to W1, We
add this option as a hyperparameter to our models.

Another hyperparameter setting for TBNs calculates one o for
each tile t1, t2...tp in layer [ by utilizing the ith set of the flattened
tensor Al (or W), and calculating a; using only these values.
This represents the optimal scalar for that particular tile. To do this,
we can reshape Al to get the values corresponding to the pth tile
of layer I:

Al ¢ gévdic _, Alllx ¢ gaxp ®)

Next, similar to Equation 7 we calculate the 1-norm for each
segment of values corresponding to the i*” tile in Al!l. We divide
g P g

this number by g (the size of each tile) to give us a1, az, ...ap:
1]
ar (1Al
% q
D= : ©
I 1]
o' [ 1AR
q

Each a gets multiplied element-wise by its corresponding tile
in B, The resulting tensor, B is used for the operation on the
inputs. Equation 9 is depicted in Figure 4.

After training is complete, we save a vector of size g for each
layer along with full-precision scalars (as). We describe our imple-
mentation in Section 5.

Hyperparameter Settings We test our models with several
hyperparameter configurations to assure the best performance.
TBNs primarily contains three hyperparameters:
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(1) Minimum layer size for tiling, A. We set a minimum size N
of a DNN layer required for tiling to be performed. Tiling
smaller layers causes a drop in performance (Figure 7). De-
fault: 1=64,000, ImageNet models: A=150,000, Time-Series
models: 1=32,000

Parameter W for tiling and A for calculating a. W is used

to learn a tile for each layer; it can also be used to calculate

a scalars. Alternatively, we propose a separate parameter A

to compute as independently, which exhibits a small perfor-

mance gain. Default: A for calculating a. For ImageNet, we

use W.

(3) Tile-wise as. We experiment with calculating a single a per
layer as well as calculating « for each tile in a layer. In some
settings multiple as perform better. Default: Single o per
layer.

4 Experiments

In this section we detail our experiments across a range of archi-
tectures, datasets, and tasks. We test TBNs on CNNs as well as
fully-connected models such as PointNet and Transformers.

4.1 CNN Architectures

We next compare TBNs against previous sub-bit compression tech-
niques for Convolutional Neural Networks (CNNs) including SNN
[58], MST [56], and Spark [57]. CNN’s are the only models which
have achieved sub-bit compression in previous research and thus
they are a strong choice for benchmarking TBNs. We note that
TBNs also work on Transformers and MLPs, which we experiment
with in the next sections.

We assess TBNs on both CIFAR-10 and ImageNet datasets using
the ResNet18/34 models [20], similar to previous works. In addition,
we include ResNet50 for CIFAR-10, which has 1 X 1 convolutional
kernels. The SNN sub-bit compression algorithm was assessed with
Resnet50 using a modified kernel selection technique specialized for
1 X 1 convolutions, enabling up to 8x compression. The technique,
from Section C of the Appendix in [58], is the most similar approach
to TBNs.

In Table 1 we compare the performance of TBNs to previous
approaches using bit-width, number of parameters, and test set
accuracy. Bit-width measures the number of bits per model param-
eter, with a full precision model having 32-bits per parameter and
a binary model having 1-bit per parameter. In blue, we include the
savings of TBNs compared to binary neural networks. In the next
we column we denote the number of parameters required to save
each model for inference, and finally the test set accuracy is the
percentage of correct predictions by the model. Unique to the CNN
architecture, we additionally include the number of bit operations
required for each model in the results section.

Results. Table 1 highlights the results of TBNs compared to
previous sub-bit compression techniques on the CIFAR-10 and Im-
ageNet datasets. For CIFAR-10, we achieve sub-bit compression
across ResNet architectures without a decrease in test performance
at 4x compression. Experiments are run three times each and av-
eraged. Compared to other methods, TBNs achieves a competitive
performance with MST, the current state-of-the-art method for sub-
bit compression. TBNs achieve similar performance at the same
compression rates of MST for the CIFAR-10 models. For ImageNet,
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TBNs achieves enhanced performance roughly 2x compression,
with test accuracy within 1.5% of the performance of the binary-

weighted IR-Net.

CIFAR-10
Model | Method ?;;Xigz? ﬁz_r;gs Tes(t%?cc'
Full-Precision 32 351.54 93.1
IR-Net 1 10.99 92.9
SNN 0.440 (2.3%) 4.88 92.1
Sparks® 0.440 (2.3x) 4.88 90.8
Reshvet MST*  0.075 (133x)  0.81 91.6
TBN, 0.256 (3.9x)  2.85 93.1
TBNg 0.131 (7.7%) 1.46 92.4
TBN14 0.069 (14.5x) 0.77 91.2
Full-Precision 32 750.26 95.4
IR-Net 1 23.45 93.2
ResNet SNN 0.35 (2.8x) 8.32 94.0
50 TBNy4 0.259 (3.9%) 6.10 94.9
TBNg 0.136 (7.4x) 3.21 94.3
TBN;s  0.075(33% 176 93.5
Full-Precision 32 146.24 92.7
IR-Net 1 4.656 91.3
SNN 0.440 (2.3%) 2.032 91.9
oG0 | Spark® 0440 (239 2032 90.8
TBNy 0.288 (3.5x) 1.340 92.6
TBNg 0131 (7% 0722 915
TBNi6 0.117 86x)  0.520 90.2
ImageNet
Full-Precision 32 674.88 73.1
IR-Net 1 21.09 70.4
ResNet SNN 0560 (18x) 1171  66.9
34 MST™ 0.450 (2.2%) 9.51 65.4
Sparks* 0.560 (1.9x) 11.71 67.6
TBN, 053 (19x)  11.13  68.9

Table 1: CNN Results on CIFAR-10 and ImageNet: * indicates
model with binary activations. We denote the tiling com-
pression p of each experiment as TBNj,. Savings (in blue)
indicates the compression from a binary-weight model (1-bit
per model parameter).

Dataset | Dataset | Full Precision | IR-Net TBN
ResNet18 35.03 0.547 0.082 (6.7x)
CIFAR-10
ResNet50 78.12 1.22 0.155 (7.9x)
ImageNet | ResNet34 225.66 3.526 0.58 (6.1x)

Table 2: Bit-Ops of ResNet architectures trained with a) full
precision, b) IR-Net, and c) TBN. CIFAR-10 TBNs have p = 4,
and ImageNet TBNs has p = 2.

In addition to the reduction in bit-width and parameter count,
TBNs trained with our default training configurations (single a,
no bias parameters) create replicated convolutional channels. For
example a 2d convolutional layer with one input channel, two
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output channels, 3 X 3 kernel size, and a tile compression rate
of p = 2 will create two identical output channels. This means
that during inference TBNs lead to a substantial reduction in the
number of required convolutional computations — only one of the
tile computations need to be executed, and we can replicate output
channels from the other tiles. Table 2 summarizes the bit-ops saving
achieved by TBNs compared to both full precision on binary neural
networks.

4.2 MLP-Based Architectures

In addition to CNN architectures, we consider MLP models which
contain a high proportion of fully-connected and 1 X 1 convolu-
tional layers. PointNet is a well-established model for unified tasks
in classification, part segmentation, and semantic segmentation
[42]. The model takes point cloud data from 3D representations.
To assess PointNet we use datasets ModelNet40, Shapenet, and
S3DIS, which are each designed for a specific task. We denote seg-
mentation performance with Intersection over Union (IoU), and
class average IoU. IoU is the ratio of the intersection area between
the predicted and ground truth regions to the union area of both
regions. Average IoU is calculated across all instances or regions in
the dataset, whereas class average IoU is calculated separately for
each class and then averaged across all classes.

Task: Classification, Dataset: ModelNet40

Algorithm  POVHh s oA
Full-Precision 32 111.28 90.30
FDA* 1 3.48 81.87
BWNN 1 3.48 89.20
TBNy 0.259 (3.9x) 0.90 88.67
TBNg 0.136 (7.4x) 0.47 87.20

Task: Part Segmentation, Dataset: ShapeNet

Mlgorithm BVt el
Full-Precision 32 266.96 83.06 77.43
XNOR-Net* 1 8.34 - 60.87
BWNN 1 8.34 76.1 69.90
TBNy 0.340 (2.9x) 2.68 76.3 70.20
TBNg 0.207 (4.8x) 1.73 75.1 68.90

Task: Semantic Segmentation, Dataset: S3DIS

Mgorithm BV b Tt s
Full-Precision 32 112.96 78.27 42.20
BWNNs 1 3.53 69.50 31.30
TBNy 0.431 (23 152  67.55  31.10
TBNg 0.337 (3.0x) 1.19 65.70 29.55

Table 3: PointNet Results: We test TBNs on the fully-
connected PointNet model. TBNs achieve performance close
to the full-precision model on the classification benchmark
and within 10% of full-precision performance on the Part Seg-
mentation task. * indicates model results from BiBench with
binary activations. We take BiBench binarization algorithm
with the best results for both ModelNet40 and ShapeNet.
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We derive MLP experiments from BiBench [45], who provide
a diverse set of tasks to evaluate BNNs. We note that the bench-
marks provided in BiBench assess binarizing pretrained models.
Additionally BiBench only assesses models with binary weights
and activations. In Table 3 we denote the best algorithms from
BiBench. We additionally train a BWNN for each task for a stronger
comparison.

Results. In Table 3 we summarize the PointNet model results
across classification (ModelNet40), part segmentation (ShapeNet),
and semantic segmentation (S3DIS). We find that classification
performance is almost on par with the full-precision model, with
less than a 2% drop in accuracy at 4x compression. For both part
and semantic segmentation, TBNs exhibit some loss in accuracy
compared to their full-precision counterpart. However, we note
that in both cases TBNs perform on par with BWNNs. TBNs also
significantly outperform XNOR-Net in part segmentation, the most
successful BNN on the task in BiBench.

4.3 Transformers

In our next set of experiments, we assess TBNs on Transform-
ers. It was noted in the BNN benchmark work BiBench [45] that
Transformers perform poorly on BNNs. In particular, none of the
binarization algorithms tested in BiBench achieved more than 70%
of the performance of full-precision models. The research, which
looks exclusively at models with binary weights and activations,
noted that binarization of activations greatly affects the attention
mechanism and leads to poor quality models. The equations be-
tween the query key, and value cause amplified information loss
when model activations are binarized. In contrast to BiBench, we
assess models with binary weights and full-precision activations
which do not suffer from the same information loss as models with
binary activations.

CIFAR-10
Bit-Width #Params  Test Acc.
Model Method (Params) (M-Bit) )
Full-Precision 32 303.68 82.5
Vit BWNN 1 9.50 82.2
TBN4 0.253 (4.0x) 2.40 82.7
TBNg 0.129 (7.8x) 1.22 82.1
Full-Precision 32 851.14 86.8
. BWNN 1 26.60 85.8
Swin-t
TBNy4 0.259 (3.9%) 6.88 85.8
TBNg 0.135 (7.4%) 3.61 84.6
ImageNet
. Full-Precision 32 873.60 81.3
Swin-t
TBN, 0.534 (1.9%) 14.7 77.3

Table 4: Vision Transformers trained on CIFAR-10 and Im-
ageNet: We compare the performance of a ViT (patch size
4) and the Swin-t model with TBN4 and TBNg variations for
CIFAR-10 and TBN; for ImageNet. T The Swin-t TBN; Im-
ageNet model was trained for 200 epochs with basic data
augmentations.
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We test Transformer TBNs on three tasks: 1) Vision Transform-
ers, 2) Small NLP Transformers (encoders), and 3) time-series Trans-
formers (encoders).

4.3.1 Vision Transformers. For Vision Transformers We train a ViT
[10], which uses image patching along with the traditional attention,
and Swin-t [35], which uses hierarchical partitioning of the image
into patches with merging. We train the models from scratch on the
CIFAR-10 and ImageNet datasets. Note that, training the models
from scratch, rather than fine-tuning, can result in sub-optimal
performance in Transformers [10].

Results. In Table 4 we summarize the results of ViTs trained from
scratch. TBNs achieve performance within 2.5% of full-precision
models across all CIFAR-10 experiments. Specifically, the TBN ViT
can closely match the accuracy of the full-precision model at both
4x and 8x compression rates, while Swin-t has a performance degra-
dation of just 1.2% at 4x and 2.5% at 8x. For ImageNet, the Swin-t
TBN quickly converged to a stronger accuracy than the ResNet34
ImageNet model in just 200 epochs. Moreover, we only trained the
model with basic data augmentations. In contrast, the full-precision
Swin-t model was trained for 300 epochs with enhanced data aug-
mentation techniques.

4.3.2 Time Series Transformers. In our next set of experiments we
explore Transformer TBNs for multivariate time series forecasting.
Transformer encoders have been shown to be robust to model
compression for time series learning tasks including forecasting
[17]; we aim to assess whether we can compress similar models
using TBNs.

Our experiments utilize the ECL (Electricity) dataset and the
Weather dataset similar to previous works [17, 63]. ECL has 321
features and Weather has 7 features. We use a Transformer encoder
similar to previous work [61], using a dimensionality of 512 for
the Electricity dataset and 128 for the Weather dataset. Similar to
previous work, we assess the performance of the models use Mean
Squared Error.

Results. We train each of the models five times and report the
average MSE along with the standard deviation in Table 5. No-
tably, TBNs performed slightly better than full precision and binary
models on the electricity dataset. On the weather dataset, we set
A=32,000 since all the layers are smaller than this. We find that the
model is able to converge to full precision accuracy. However, when
we lower A to 16,000 model performance suffers.

Dataset | Method ]?;,tafz::g iﬁfgﬁs MSE
Full-Precision 32 145.2 0.212+0.10
Electricity BWNN 1 4.5 0.210+0.05
TBN4 0.25 (4.0x) 1.1 0.209+0.13
Full-Precision 32 11.8 0.165+0.10
Weather BWNN 1 0.368 0.165+0.02
TBNy 0.54 (1.9x)  0.197  0.168+0.12

Table 5: Multivariate Time Series Forecasting: We compare
TBNss to full precision neural networks and binary weighted
neural networks (BWNNs) on two multivariate time series
datasets. We find that TBNs achieve similar performance to
larger models on single-step forecasting tasks.
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5 Implementation

We cover two implementations of TBNs for model inference: 1) a
C implementation which we deploy on a microcontroller, and 2)
GPU-compatible inference kernels. Both methods implement reuse
of a single tile per layer to achieve memory and storage savings.

5.1 Microcontroller Deployment

We first implement an inference engine to run on an Arduino mi-
crocontroller. The microcontroller has 1MB of storage and 250KB of
memory, making it practical for a lightweight model. We program
an MLP model trained on the MNIST dataset with 128 hidden neu-
rons and a fused ReLU nonlinearity. We implement both a standard
BWNN and a TBN. Our TBN has a compression rate of 4 and uses
multiple as (one for each tile). To implement the TBN we first train
our model in PyTorch [41], and then convert the layer tiles and «
scalars to C data types. We implement a fully-connected kernel in
C as detailed in Algorithm 1. We develop a fully binarized kernel
by packing binary weights into unsigned 8-bit integers and use
bit-masking to extract the correct values during inference.

We assess the speed, memory, and storage space of each model.
To assess speed, we report the Frames Per Second (FPS), which
measures the number of times the program can execute on a sample
per second. We measure FPS using a provided script which executes
the compiled model 1000 times and reports the mean and standard
deviation across five runs. We report memory as the maximum
memory at any layer of the model. Finally, we report the storage
space as the number of bits stored for each model. We expect speed
to be the same across models, while memory and storage space
should improve with TBNs.

Results. We summarize the results of the implementation across
speed, memory, and storage space in Table 6. As expected, the speed
of both models is roughly the same. The max memory usage, which
happens during execution of the first fully-connected layer, is 58%
less for the TBNs compared to the BWNN. Both models still require
full-precision inputs and a full precision placeholder for the output,
while the TBNs model requires roughly 711 of the weights loaded
in memory compared to the BWNN. Finally, storage for the TBN
model is almost % that of the BWNN. Since the classification layer
only contains 1280 parameters, it is not tiled, accounting for more
parameters in the tiled model.

Speed Max Memory  Storage
Model (EPS) Usage (KB) (KB)
BWNN 704.5+3.3 16.20 12.70
TBNy4 705.1+3.6 6.80 3.32

Table 6: We compare the performance of a binary-weight
neural network (BWNN) and a TBN deployed on a microcon-
troller. We implement an MLP with one hidden layer (size
128). The maximum memory usage corresponds to the full-
precision image being processed by the first fully-connected
layer, with additional memory allocated for the activation’s.

5.2 GPU Inference Kernel

Our second implementation utilizes the open-source Triton library,
which enables us to write customized CUDA kernels in Python to
run on GPUs. Native PyTorch does not allow the reuse of a single
tile without allocating new memory for the full layers parameters
(p tiles) - memory reuse between tensors with incompatible strides
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Algorithm 1 FC Layer with Tiling, Many as, Forward Pass

Inputs: Tile vector t of size g, input vector x of size n, layer size
metadata (m, n), a, ag, . . S ap
i — 0,0 «— 1
for i « 1tomdo
yli] <0
aj —oaj+1
for j «— 1tondo
ylil — ylil +tl6] - x[j] - @
if t; = g then
t; < 0 { Move to beginning of tile vector}
a;j « aj+1 { Get next tiles a}
else
t; < tj + 1 {Increment tile index}
end if
end for
yli] < max(0,y[i]) {Fused ReLU}
end for
Output: Output vector y of size m

VIT, ImageNet MLPMixer

Memory (MB)

8

Y052 905 0 0’ e sisia g1’ g’ g NIER
* M e e e e 2

0 200 400 600

Time Step

800 1000 o 100 200 300

Time Step
—— FP. + Tiled (p=8)

400 500 600

—— Full Precision —— FP. + Tiled (p=4)
Figure 5: GPU memory allocated during model inference:
We profile the memory of the ImageNet ViT (left) and Point-
Net (right) during inference using a customized GPU kernel
with full-precision weights. The x-axis represents memory
recorded within intermediate model layers during execution
of a PyTorch model. The tiled kernel achieves 2.8x memory
reduction on the ViT and 1.2x reduction on PointNet.

is not possible in standard operations. Leveraging Triton provides
more control over lower-level memory allocation.

We implement fully-connected kernels using both full-precision
(32-bit) weights as well as binary (1-bit) weights. For the former
use case, we experiment tiling layers with full-precision weights to
compare against standard 32-bit models. For the latter, we pack bit
parameters into unsigned 8-bit integers, and unpack them during
inference. Bit values are packed by row, converting an m X n matrix
to size (%) x n.

We implement both kernels using the matrix multiplication func-
tionality provided by Triton. It uses block-level matrix multiplica-
tion and has a similar performance to the optimized cuBLAS library.
Our tiling implementation converts an m X n matrix to m X q (we
compress the second dimension). For pointer arithmetic, we reuse
the same m X q tile for multiple computations. In other words, fully-
connected tiling is a matrix-to-matrix implementation rather than
matrix-to-vector implementation.
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Model PR
Full Precision  222.5 208.0 93.5%
FP, Tileds 78.5 (2.8x) 52.0 (4.0x) 66.2%
BWNN 18.4 6.5 35.3%
TBNy4 13.4 (1.4x) 1.6 (4.1x) 11.9%

Table 7: Memory assessment during inference on ImageNet
ViT: Tiled kernels reduce the memory occupied by model
weights, leading to a lower overall memory footprint. The
final column is the % of the peak memory used by weights,
which is substantially lower for TBNs.

Results. We measure the GPU memory usage for inference on a
single image in Figure 5 and Table 7. Figure 5 profiles GPU memory
usage through each layer of the model, while Table 7 examines the
peak memory and memory occupied by model parameters in an
ImageNet ViT.

The results in Figure 5 reflect the memory savings by only load-
ing a single tile per model layer for the standard full-precision
kernel as well as the tiled full-precision kernel. Specifically, dur-
ing inference the PyTorch library loads weights for all layers into
memory. It allocates new memory for the input and output activa-
tions of each layer, and deallocates the activations when they are
no longer needed. For example, ViT has six attention layers with
roughly 8.4 million parameters each (Q, K, V and the feed-forward
parameters) for a total of 54.6 million parameters. The input and
output activations to the attention layers have a size of 65,536. As
a result, we can see the small spikes in the graph, which represent
the allocation and de-allocation of activations. However, most of
the memory is a result of the weights (34MB per attention layer).

Table 7 examines the memory savings of TBNs on both peak
memory and memory allocated by model weights for the ImageNet
ViT. We observe a 2.8x reduction in peak memory for the full-
precision kernel and 1.4x reduction in peak memory for a binary
kernel. When assessing the memory occupied specifically by model
weights, we observe that TBNs reduce memory by 4x, and as a
result require a substantially smaller proportion of peak memory
compared to their standard counterparts: in the binary weight
setting, TBN weights occupy just 11.9% of the total peak memory.

6 Ablation Studies

We perform ablation study’s on TBNs, first exploring the effect of
layer size on MLPMixers and ConvMixers, and then analyzing the
effects of hyperparameters in MLPMixers and ResNets.

6.1 Effects of Layer Size

We first look at MLPMixers [54] and ConvMixers [55] for the CIFAR-
10 classification task. ConvMixer has shown potential to compete
with ViTs on complex tasks, while MLPMixers provide us with
another opportunity to test fully-connected models.

In Figure 6 we visualize the performance of TBNs at tiling com-
pression rates up to 32x for both models. We find that the Con-
vMixer accuracy degrades quickly after 4x compression. When
analyzing the architecture, we find that the largest layer has just
65,536 parameters. Moreover, many layers have less than 65k param-
eters and don’t fulfill the minimum layer size for compression (1),
resulting in limited reductions in parameter count along with high
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Figure 6: TBNs are vulnerable in models with low width
layers: We plot the performance of the ConvMixer and MLP-
Mixer at various compression rates/number of parameters
compared to its full-precision baseline (horizontal line). The
ConvMixer accuracy degrades quickly as a result of smaller
layers: its maximum layer size is 65k. The MLPMixer has
layer sizes of 131k. Both models achieve near full-precision
performance at 4x compression, and degrade at varying rates
thereafter.

performance degradation. MLPMixer, on the other hand, has layers
with 131k elements, and resulted in a more modest performance
degradation at higher compression.

6.2 Hyperparameter Configuration Analysis

We study the effects of three hyperparameters of TBNs as described
in Section 3: 1) A (minimum layer size for tiling), 2) W for tiling
and A for computing «, and 3) Multiple versus single o scalars.
For A, we test global tiling, where all layers are compressed. We
compare this to our default training which sets A to 64k. For the

Test Accuracy

—— MLPMixer, TBN,, W, Many a
MLPMixer, TBN;, W+A, Many a
MLPMixer, TBNs, W+A, Single a
—— ResNet18, TBNs, W+A, Single a
ResNet18, TBNg, Global Tiling

0 50 100 150 200 250 300
Epoch

Figure 7: Hyperparameter Configurations: We perform an
ablation study to the assess the test set accuracy across train-
ing for the MLPMixer and ResNet18 models with various
hyperparameter configurations. For ResNet18, we show how
tiling every convolutional layer, rather than layers of a cer-
tain size, leads to performance loss (red/orange). In blue we
show the effects of using a separate parameter A to calculate
a compared to calculating o using just W. We additionally
show the benefit of using multiple as (one per tile) rather
than a single a.
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second hyperparameter, we test two settings: the first uses W for
both learning the binary tile and calculating «; the second uses
parameter A for calculating . We denote this setting as W or
W + A. For the third parameter, we test a single « per layer and
compare it to computing « for each tile.

Figure 7 shows the effects of the different hyperparameters on
both the ResNet50 and MLPMixer models on the test accuracy
throughout training. We show that a global tiling factor on ResNet50
causes a decrease in performance. Next, we find the model con-
verges best when given a separate parameter A to calculate . Fi-
nally, an « for each tile leads to a small increase in performance.

7 Discussion

We propose Tiled Bit Networks for learning binary vectors to fill in
the weights of a neural networks layers during training, achieving
sub-bit compression on model parameters during inference. TBNs
work on both convolutional and fully-connected layers, and are
applicable to CNNs, MLPs, and Transformer-based architectures.

Tiled Bit Networks have the potential to democratize deep learn-
ing by providing resource constrained devices access to larger scale
models. For example, TBNs compress the 23.5 million parameter
ResNet50 model to under 6.1 million bits, a size which can fit into
a microcontroller with 1MB of storage. Moreover, the algorithm
unlocks potential for stronger sub-bit compression on other ar-
chitectures, particularly those with fully-connected layers. The
innovation not only increases the accessibility of deep learning use
but also has the potential to contribute to environmental sustain-
ability by reducing the carbon footprint associated with model size
and computational complexity.

Future Work A natural direction for future work is to test the
approach on larger models (e.g. LLMs), where additional algorith-
mic modifications (such as full-precision parameter tiling) may
enhance performance. Additionally, specialized kernels could be
implemented to maximize the efficiency of TBNs with regards to
parallelization, including convolutional kernels and kernels better
optimized for the reusability of tiles. In addition to direct algorith-
mic enhancements, TBNs could also be assessed in parallel fields
of machine learning such as adversarial detection [12, 13], dataset
complexity and [14, 15, 18], and federated learning [16, 39].
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Appendix
A Training Details

CNN’s trained with CIFAR-10 ResNet and VGG models are
trained with similar hyperparameters on the CIFAR-10 dataset.
They use an SGD optimizer with learning rate of 0.1, weight de-
cay 0.0001, and momentum 0.9. Batch size is 128. We use a co-
sine learning rate policy. Layers are created with kaiming normal
initialization with scale fan. We additionally use standard batch
normalization. We standardize the dataset. We initialize W and A
with different seeds for each run. TBN hyperparameters: We use
multiple «’s by default, W+A. Our CIFAR-10 and ImageNet models
are based off of the Edge-Popup repository.
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CNN’s trained with ImageNet We train ResNet on the Ima-
geNet dataset using TBNs. We use default hyperparameters from
Edge-Popup [46]. We train our model for 600 epochs, using an SGD
optimizer, learning rate of 0.256, a weight decay of 3e-5, momentum
of 0.875, and batch size 128. We use a 0.1 value for label smoothing.
We additionally use a learning rate warmup length of 5.

PointNet Classification For our three PointNet tasks, we use
an existing repository which you can find here. We use a batch size
of 24, and train the model for 500 epochs. An Adam optimizer is
used with a learning rate of 0.001. We use a decay rate of le-4.

PointNet Part Segmentation We train our model for 250 epochs
using a batch size of 16. We use an Adam optimizer with a learning
rate of 0.001 and a decay rate of 0.0001. We adjust the learning rate
by 0.5 every 20 steps. We use 2048 points for the ShapeNet dataset.

PointNet Semantic Segmentation We train our model for 32
epochs with batch size 16. We use Adam with a learning rate 0.001,
and a weight decay of 0.0001. We use 4096 points for the S3DIS
dataset. We decay the learning rate by 0.7 every 10 steps.

Transformers and Mixer Models trained with CIFAR-10
We use an Adam optimizer with a learning rate of 0.001 and batch
size 128. We train for 500 epochs. We use random cropping, random
horizontal flip, and standard normalization for CIFAR-10. MLPMixer
has a depth of 6, 512 output size, and a patch size of 4. Our Vision
Transformer uses a patch size of 4, head of size 512, 8 heads, an
MLP head of 512, and an embedding dropout of 0.1. For ConvMixer
we use a convolutional kernel of 8, dimension of 256, and depth 16.

Swin-t with ImageNet We mostly follow the same training
protocol as the original paper except with more epochs. We train
for 600 epochs, using an AdamW optimizer, a cosine decay learning
rate scheduler, and 20 epochs of linear warm-up. We use a batch
size of 350, an initial learning rate of 0.001, and a weight decay of
0.05. We use the same data augmentations as ResNet models.

B Additional Ablation Study

We include an additional ablation in Figure 8. We look at the
ResNet50 model with different configurations such as global tiling
versus minimum layer size tiling, W for calculating o versus W for
tiling and A for calculating «, and multiple versus one a parameter.

ResNet50 on Different Tiling Configurations

Global Tiling

S Only, Multiple Alphas
—— W+A, Multiple Alpha
—— WH+A, Single Alpha

Test Loss

100 200 300 500 600 700 800

Epoch

Figure 8: Test Loss on various ResNet-50 tiling configura-
tions with compression rate 4. Using minimum layer size
for compression, multiple as, and a separate parameter A
for calculating as performed the best (green line). However,
the only clear performance benefit across hyperparameters
came from using a minimum layer size for tiling 1.


https://github.com/yanx27/Pointnet_Pointnet2_pytorch/tree/master
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