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Abstract—Anomaly detection in tabular data are often needed
in most domains, including finance, medicine, and engineering.
However, traditional methods typically require intensive process-
ing and often lack interpretability, which limits their practicality.
As the complexity and volume of tabular data increase, there
is a need for advanced techniques that can handle diverse
data types while offering interpretable results. We introduce
a novel approach for anomaly detection of tabular data and
its interpretation. The anomaly detector employs a transformer
model with a custom embedding layer tailored for tabular data.
While the model’s attention weights do not directly explain
its decision-making process, they offer useful insights when
interpreted thoughtfully. Our anomaly interpreter uses these
attention weights to identify irregularities by comparing patterns
in anomalous data against those in normal data. When the model
flags a row as anomalous, the interpreter analyzes its columns
and assesses their relationships using a reference association
matrix created from the normal dataset. Any deviations from
expected associations are flagged as potential rule violations,
highlighting unusual relationships between columns. We evaluate
our approach against baseline anomaly detection techniques,
including Multi-Layer Perceptrons (MLPs), Long Short-Term
Memory (LSTM) networks, One-Class Support Vector Machines
(OC-SVM), and Deep Support Vector Data Description (Deep-
SVDD). Our experiment uses labeled datasets from the Outlier
Detection DataSets (ODDS), and KDD datasets, assessing perfor-
mance using standard metrics alongside a novel mutation analysis
technique. Results indicate that our approach achieves accuracy
comparable to or surpassing existing methods while also offering
interpretable explanations for detected anomalies.

Index Terms—Anomaly Detection, Anomaly Interpretation,
Explainable AI, Transformers, Mutation Analysis

I. INTRODUCTION

Tabular data, which ranges from simple CSV files to
complex relational databases and multidimensional data ware-
houses, plays a crucial role in storing and analyzing informa-
tion across various domains. Data points are often represented
as vectors comprising multiple features [1] with varying data
types, including numeric, categorical, and textual. Anomaly
detection is needed to identify invalid data to facilitate ac-
curate data analysis. Existing anomaly detection techniques,
including statistical methods, decision tree-based approaches,
and deep learning models, require extensive preprocessing for
categorical and textual data, and the imputation of missing
values. Preprocessing tasks can consume up to 80% of data
science efforts [2], often increasing data dimensionality. Fur-
thermore, most techniques fail to elucidate the underlying
reasons for data invalidity and the specific rules violated by
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the anomalies—-insights that are essential for domain experts
to resolve the root causes.

Transformer-based models have shown significant improve-
ments in anomaly detection by effectively analyzing complex
data relationships. These models are well-suited for imbal-
anced classification tasks, as the self-attention mechanism
captures subtle patterns in minority classes by focusing on
relevant parts of the input. Additionally, pre-trained transform-
ers can be fine-tuned for anomaly detection, making them
particularly useful when the minority class is underrepre-
sented. However, transformer models can be computationally
expensive, especially when embedding features separately [1],
[3]. Some methods reduce preprocessing by converting data
rows into sentence-like structures [4]-[6], but challenges can
arise from tokenizer splits in numeric values. Moreover, the
interpretability of transformer models in anomaly detection
is still underexplored. Existing explainability techniques often
rely on directly using attention scores to identify important
features, although high attention scores do not always indicate
key contributions to model decisions [7].

We present a novel approach to anomaly detection and
interpretation in regular (i.e., non-sequential) tabular data
using a transformer architecture. Our approach minimizes the
required data preprocessing and also provides explanations in
the form of violated rules by the anomalous data. Our approach
consists of the Anomaly Detector and the Anomaly Interpreter.

Anomaly Detector employs a Transformer encoder, followed
by a binary classification layer, to effectively distinguish
between normal and anomalous instances. The model is trained
using labeled tabular data, with advanced features such as
a custom tokenizer and a specialized embedding layer to
enhance data processing. We provide an optimal preprocessing
methodology that converts table rows of any data type into a
sentence-like structure. This ensures that column values and
their associated names are treated as single tokens, thereby
incorporating the rich context provided by the column names
into the embeddings and preventing the splitting of values
during tokenization. To retain the quantitative aspects of the
data, we implement a computationally efficient continuous
number encoding method [8], which replaces numeric values
in the input sentences with a special token and multiplies the
embedding with the actual value, ensuring the retention of
numerical information in the transformer model. Our custom
tokenizer effectively handles out-of-vocabulary (OOV) tokens,
particularly in numerical data, by identifying the closest known
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tokens, thus preventing the classification of unseen or closely
valued data points as anomalies.

Anomaly Interpreter analyzes the anomalies detected by the
Anomaly Detector to identify violated rules. While attention
weights do not directly explain model decisions [9]-[12],
they provide useful insights. Our method compares attention
patterns between anomalous and normal data, highlighting
specific token associations that warrant further investigation.
This process aids in the interpretability of detected anoma-
lies, making it applicable in contexts where the goal is to
identify areas of potential concern rather than fully explain
the model’s reasoning process. We evaluate our model against
MLP [13], LSTM [14], OC-SVM [15], and Deep-SVDD [16]
using Outlier Detection DataSets (ODDS [17]) and KDD
Cup [18]datasets. Accuracy and F1 scores are used to as-
sess the model’s anomaly detection performance. We also
propose a mutation analysis technique to demonstrate the
model’s sensitivity and specificity in identifying and inter-
preting anomalies. Our implementations are publicly avail-
able: https://github.com/hajarhomayouni/Anomaly_Detection_
and_Interpretation.git.

II. RELATED WORK

Anomaly Detection in Tabular Data. Anomaly detection in
tabular data uses statistical methods [19], machine learning
techniques [20]-[22], deep learning models [23], and genera-
tive models [24]. Techniques such as Isolation Forests [25] and
One-Class SVM [26] are simple and effective for identifying
anomalies. However, these methods cannot handle complex,
high-dimensional data and offer limited interpretability re-
garding the nature of the detected anomalies. Deep learning
approaches, such as Autoencoders [27], Long-Short Term
Memory (LSTM) [28], and Deep-SVDD, can capture high-
dimensional data complexities, but struggle with interpretabil-
ity and require lots of data and resources for training. Trans-
formers and Large Language Models (LLMs) have explored
transformers for tabular analysis [1], [3], [29]-[31] including
anomaly detection [32].

Data Preprocessing. Data preprocessing may result in the
loss of information and may increase data dimensionality [4].
Transformer-based models, such as FT-Transformer [1] and
TabMT [3], embed numerical and categorical values separately
by element-wise multiplication of numeric feature values with
a corresponding weight vector and use a lookup table for
categorical features. These approaches are computationally
complex when the number of features is large. Moreover, they
do not include column names, which add important context
into the embeddings. Transtab [33] extends the above ap-
proaches by including the column names into the embeddings,
resulting in a more semantically rich data representation.
However, it still separately embeds tabular fields to token-level
embeddings which is computationally complex. This issue has
been resolved in the proposed encoding technique in [4]-
[6], which instead of independently embedding every field,
it converts a table row into a sentence like “Occupation is
doctor, Gender is female, Age is 34,” which requires minimal
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preprocessing and does not suffer from information loss. Note
that this lacks the order inherent in natural language sequences.
This also does not consider that the numeric values may be
split by the LLM’s default tokenizers.

Anomaly Explanation. While techniques like SHAP (SHap-
ley Additive exPlanations) [34] and LIME (Local Interpretable
Model-agnostic Explanations) [35] have been applied to ex-
plain model decisions, their applicability in anomaly detec-
tion is limited. These methods provide insights into feature
importance but may not fully elucidate the relationships be-
tween features that contribute to an anomaly. Approaches
XAI for All [36] and HuntGPT [37] use LLMs to transform
the complex outputs of machine learning models into eas-
ily understandable narratives for end users. These methods
employ LLMs post-hoc, attempting to interpret the outputs
of models. The LLM lacks interaction during model training
and has no knowledge about what the model is predicting.
Although transformers and LLMs have been used for anomaly
detection [38], their explainability is still unexplored. Existing
interpretations of transformer models visualize the attention
matrix to show which tokens were most ‘attended to’ by other
tokens during the decision-making process. However, a large
attention score does not necessarily imply that a pair of words
is important for the model’s decision [7].

III. PROPOSED APPROACH
A. Anomaly Detector

Anomaly Detector comprises a Transformer encoder fol-
lowed by a binary classification layer. This model, trained
with labeled tabular data, predicts whether input rows are
anomalous or normal. Figure 1 provides an overview of this
component, which includes (1) a custom tokenizer, (2) a
custom embedding layer, (3) encoder layers, and (4) a clas-
sification layer. Our contributions to the original Transformer
model [39] are highlighted in the figure and elaborated below.

1) Custom Tokenizer: We develop a custom tokenizer that
prepares textual representations of tabular data for processing
by transformer models. This includes tokenization, vocabulary
mapping, and handling out-of-vocabulary items.

a) Tokenizing: By converting each row of a table into
a sentence formatted as [column: value], the tokenizer en-
sures that values and their associated column names are
treated as single tokens, thus preventing the splitting of col-
umn values during tokenization. The following row shows
an example of a tokenized row from the breast can-
cer dataset [17]: Tokens: [‘[ClumpThickness:5]’, ‘[Unifor-
mityofCellSize:1]’, ‘[UniformityofCellShape:1]’, ‘[Marginal-
Adhesion:1]’, ‘[SingleEpithelialCellSize:0]’, ‘[BareNuclei:1]’,
‘[BlandChromatin:3]’, ‘[NormalNucleoli:1]’, ‘[Mitoses:1]’]

b) Vocabulary Mapping: In this step we construct a
vocabulary VOC' that is the complete set of unique tokens
that the model can recognize and process. Parsing through each
row, we ensure that each distinct token is assigned a unique
identifier, which facilitates the conversion of textual data into a
numerical form suitable for analysis by the transformer model.
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Fig. 1. An Overview of Anomaly Detector Component

c) Continuous Number Encoding: To handle numeric
values efficiently, we implement a method for continuous num-
ber encoding [8]. This involves replacing numeric values in the
sentence with a [NUM] token (in the first step in Figure 1)
and then multiplying the embedding of the [NUM] token
with the actual numeric value during the embedding phase
(in the second step in Figure 1). This ensures that numerical
information is retained in a form that the transformer model
can process effectively. Moreover, by scaling the embedding
with the actual numeric value, we ensure that the quantitative
aspect of the data is retained.

d) Out-of-Vocabulary Handling: The inclusion of out-
of-vocabulary (OOV) tokens is crucial for handling values
that were not present in the training dataset, ensuring the
model can process any input row. For numeric tabular data,
a specific method is developed to manage OOV tokens by
assessing the “closeness” of numeric values associated with
column names. If an OOV token is numeric, its closeness to
known tokens is calculated by locating the nearest numeric
value for that column in the training data and using that token’s
ID. A numeric closeness function, which operates based on a
threshold value for closeness set based on the dataset, aids in
mapping an OOV token to the nearest known token. If no value
meets the threshold, the function returns a special OOV token.
Suppose token T} = [height : 120] exists in training data, and
we encounter token 75 = [height : 120.001] in testing data,
then the function finds the closest number to this value, checks
their difference against a threshold value (e.g., 0.5), and if the
difference is less than the threshold (]120 — 120.001| < 0.5),
then 77’s token ID is assigned to T5.

2) Custom Embedding Layer: This layer converts each
token from its tokenized form (i.e., discrete IDs) into a vector
of fixed size (i.e., continuous vector representations). Unlike
natural language, where the order of tokens matters, there is
no preferred order of tokens for tabular columns. Therefore,
we excluded position embedding from our custom embedding
layer implementation, unlike the standard transformer embed-
ding layer. The self-attention mechanism in Transformers does
not inherently consider the order of tokens.

a) Custom Token Embedding: We develop a custom
token embedding layer that initializes the embedding lookup
table based on our vocabulary size and the embedding di-
mension. For the model architecture we used, the embedding
dimension is predefined to be 768. We created a tensor of
custom embeddings, containing randomly initialized weights.

3) Encoder Layers: Encoder layers aim to develop a deep
understanding of context, semantics, and associations between
multiple columns. We used a standard implementation of
encoder transformer layers. Each layer processes input embed-
dings to build increasingly complex representations of these
associations. The encoder layer refines the representation of
the input row by integrating contextual information from the
entire row using multi-head self-attention, transforming these
representations through a dense feed-forward network, and
stabilizing the learning process with normalization.

a) Multi-Head Self-Attention: This component allows the
model to weigh the influence of different tokens (i.e., [column:
value]) within the input row, regardless of their position. It
helps the model capture syntactic and semantic relationships.
The self-attention mechanism computes attention scores be-
tween all pairs of input tokens. Multi-head attention splits this
process across multiple "heads’, allowing the model to simul-
taneously attend to information from different representation
subspaces at different positions.

b) Normalization and Feed Forward: This one normal-
izes the input across the features for stability and faster
training. Moreover, each encoder layer includes a feed-forward
network, which applies the same neural network to each token
separately and identically. These networks introduce non-
linearity and facilitates learning complex relationships among
the data columns.

4) Classification Layer: The classification layer comprises
a pooling and dense layer to aid in categorizing rows as either
normal or anomalous.

a) Pooling Layer.: The output of the last encoder layer
(corresponding to each token) is pooled to create a fixed-size
output. The [CLS] token’s embedding is chosen specifically
for its role in capturing the contextualized information from
the entire row. This token stands for “classification” and is
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appended to the beginning of the input row. During training,
the output representation corresponding to the [CLS] token is
used as the input to a classifier to make predictions about the
entire row. The model is trained to predict the correct class
label (i.e., anomalous or normal) based on this [CLS] token
representation.

b) Dense Layer.: This is a fully connected neural net-
work layer that maps the high-dimensional output of previous
layer to two classes in our binary classification problem.
A sigmoid activation function (0(z) = =) is used at
the output layer to estimate the probability of the positive
(anomalous) class.

B. Anomaly Interpreter

This component aims to interpret anomalies in tabular
data using the trained transformer model. After training, this
component processes a test table row to identify any rules
it violates based on token pairs. The anomaly interpretation
method is valid and applicable in conditions where the normal
dataset is representative, the anomalies disrupt typical patterns,
and the goal is to gain insights into potential issues rather than
providing a complete explanation of the model’s decisions.

The logic of anomaly interpretation operates as follows:
If the trained model labels a test row as anomalous, the
component identifies related tokens within that row based
on attention weights extracted from the model. Subsequently,
the component assesses whether these linked tokens exhibit a
similar association level in the normal data from the training
dataset. To facilitate this analysis, we construct an association
matrix, which encapsulates the average token associations
across all normal training data. This matrix serves as a
benchmark for comparing associations in the test row. If an
associated token pair from the test row deviates from the
patterns observed in the association matrix, this discrepancy is
flagged as a violation of an association rule. Such violations,
highlighting divergent token relationships from the established
norms, are reported as outputs of the component.

Figure 2 shows an overview of the step-wise modules of this
component. It takes a test row X with d tokens X,..., Xg4
as input, where X; is in form of [column, : wvalue;], and
uses the trained anomaly detector model AD and the normal
association matrix M to return the violation rule set V R in the
form of token pairs (X;, X;). An example is a V' R output for
a patient dataset that is represented as ([gender:‘Male’], [preg-
nant: ‘True’]). Another example is ([drug: ‘Diphenhydramine’],
[dosage/day: 5200]), indicating that these pairs of columns
and values are potentially the reasons behind the invalidity of
an anomalous row. We outline the process of reporting rule
violations from a test row below.

1) Create Normal Association Matrix: The normal associ-
ation matrix M, used as a reference for detecting anomalies,
is constructed from a representative sample of normal data
to capture typical patterns and relationships. M represents the
average attention between all token pairs in the normal dataset.
This process involves iterating over normal training rows, ex-

660

fAnumaIy Interpreter

i
Normal Association Matrix M '

Ta | Tn

Vi '

1: Create Normal
Association Matrix

|
Normal Rows i
T x E
. 4] '
Trained AD = '
e |
c '
Attention Weights AW ] H
'9 1
Xi| . X = H
2 '
1 8 '
<] '
3 H
a |
3 :
: = !
Test Input Row X 1 5 :
H ] |
! Xa = :
H '
: ) ;
H 3: Identify Closely 4: Identify Violation !
H Related Tokens > Rules |
: |
H i
Y
Violation Rules VR

Fig. 2. An Overview of Anomaly Interpreter Component

tracting attention weights between token pairs, and averaging
these weights across all rows to form M (Equation 1).

M = {M[T;, T};] = average(normal_attention(T;, T}))

1
|1<i,j<n,T;,T; € VOC} M

The score M|[T;, T;] indicates the average association between
tokens T; and T} with respect to the normal data.

2) Extract Attention Weights: This module is designed to
extract attention weights from the trained transformer model
for a given test row. The module starts by tokenizing the input
row using our custom tokenizer. Next, an attention mask is
created for informing the model which parts of the input are
actual data versus padding, ensuring that attention calculations
are only performed on meaningful data. The module returns
the predicted class, the probability of that class, and the
attention weights for the input row. The attention weights
is used by the next module to interpret the anomalies. This
module assumes that the last layer’s attention is the most
representative of the model’s final decision-making process.
In transformer-based models, the intuition is that earlier layers
capture more about syntax and lower-level features, while
later layers capture more complex semantics and task-specific
features. The module gets the attentions for the last layer
and mean across all heads resulting in an attention weight
matrix AWy.q, where d is the number of columns in input
data (Equation 2).

AW = {AW[X,, X;] = attention_score(X;, X ;)

2
|1<i,j<d X;, X; €row} @

AW[X;, X,] is the attention score between two tokens X
and X; representing how much token X; is attending to or
considering token X; during the processing of input row by
that last layer of the model. A higher value of score implies
stronger attention or focus from token X; to token Xj.
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3) Identify Related Tokens: This module aims to identify
pairs of tokens in an input row that receive non-zero attention
weights, indicating associations according to the model’s at-
tention mechanism. It will analyze the attention matrix from
the previous module to find these pairs and return token pairs
with attention weights greater than zero. The output of this
module is a set of associated token pairs H:

H: {(X“X])‘l < Zvj < d7 AW[szX]] > 0} (3)

4) Identify Violation Rules: After identifying attended pairs
in a test row as anomalous, this module compares these pairs
against the association matrix M to identify rule violations
based on a threshold value. This module compares the atten-
tion scores between each token pair (X;, X;) in the associated
pairs set H with the scores for the same token pairs in
the normal association matrix M. Deviations from the norm,
identified by a predefined threshold, are reported in a violation
rule set V R, which is defined as follows:

VR: {(X“X]) | 1< Z,_] < d,

(Xi,Xj)EITLM[Xi,X]‘] <t} (4)

where ¢ is a threshold and set to the mean(M).

5) Output: Table I presents a sample output for the Ver-
tebral [40] dataset, which contains values for six biome-
chanical features used to classify orthopedic patients into
three classes (normal, disk hernia, or spondylolisthesis) or
two classes (normal or abnormal). The input row is fed to
the trained model to check for anomaly status. The returned
output indicates an anomalous status, along with additional
information about the violated rules by this row. As shown
in the table, the occurrence of Pelvic Incidence (PI) equal
to 44.31 and Pelvic Tilt (PT) equal to 12.53 simultaneously
in this row could be a potential cause of invalidity. Domain
experts suggest that the anomaly in this row may indicate
structural imbalance. Normally, a higher Pelvic Incidence (PI)
corresponds to an increase in Pelvic Tilt (PT) to maintain
posture. However, the moderate PI and low PT combination
observed here could signify spinal misalignment, potentially
leading to conditions like lumbar lordosis or spondylolisthesis.
Another anomaly involves a Pelvic Radius (PR) of 124.11
and a Degree of Spondylolisthesis (DS) of 5.41. Typically, a
larger PR provides pelvic stability, reducing vertebral slippage.
The combination of a large PR with a noticeable DS suggests
vertebral instability, potentially caused by weakened ligaments
or degenerative changes.

TABLE 1
SAMPLE EXPLAINABLE OUTPUT FOR VERTEBRAL DATASET

Component Details
Input PL:44.31, PT:12.53, LL:36.10, SS:31.78, PR:124.11, DS:5.41
Output Status Anomalous

Violations of [PI:44.31, PT:12.53], [PR:124.11, DS:5.41]

Association Rules

IV. EVALUATIONS

We now describe the datasets, evaluation setup, objectives,
metrics, results, and observations.
Datasets. We conduct the evaluation using diverse datasets
from the Outlier Detection DataSets (ODDS) [17], and
KDD [18] datasets. Table II details the characteristics of these
datasets. Each row corresponds to a distinct dataset, arranged
in descending order based on the number of rows ranging
from 214 to 25192. The number of columns across these
datasets ranges from 7 to 42, including a mix of numerical and
categorical data types. Additionally, the last column provides
a description of each dataset’s domain, highlighting a variety
that spans cellular biology, medical, network security, micro-
biology, and material science. The last column displays the
proportion of anomalies in each dataset, with values ranging
from as low as 2.5% to as high as 35% of anomalous data. In
these datasets, the minority class is considered the anomalous
class. This class may identify a specific or rare type of disease
or cells in biomedical datasets, or a specific type of material
in material science datasets.

TABLE II
DATASETS USED IN THE EVALUATION.

Dataset Instances  Features Feature Types Anomaly Rate
KDD Cup 25,192 42 Categorical, Numerical 20.0%
Thyroid 3,772 21 Numerical 2.5%
Yeast 1,484 10 Categorical, Numerical 4.7%
Breast Cancer 683 11 Numerical 35.0%
Ecoli 336 9 Categorical, Numerical 2.6%
Vertebral 310 7 Categorical, Numerical 30.0%
Glass 214 11 Numerical 4.2%

Evaluation Setup. We implemented the approach using
Jupyter Notebook with Python 3.10 on a system running
AlmaLinux. The computing environment is powered by a 12th
Gen Intel® Core™ i7-12700K processor, which has 20 CPU
cores (12 physical cores, each with a single thread). It operates
at a base frequency of 3.6 GHz and can reach a maximum
turbo frequency of 5.0 GHz. The system is equipped with
64 GiB of RAM and a 1.9 TB NVMe SSD for storage. The
processor features an L1d cache of 48K, an L1i cache of 32K,
an L2 cache of 1280K, and an L3 cache of 25600K, along with
VT-x virtualization technology'.

Objectives. (1) We evaluate the anomaly detection effective-
ness and efficiency by comparing to standard models and
(2) also evaluate the anomaly interpretation effectiveness and
efficiency through mutation analysis.

A. Evaluate the Anomaly Detection Effectiveness and Effi-
ciency by Comparing to Standard Models

Our study compares our model against standard anomaly
detection methods, including MLP, LSTM, OC-SVM, and
Deep-SVDD. This comparison aimed to benchmark the effec-
tiveness of transformer-based models in recognizing anomalies

I'The code is available publicly: https://github.com/hajarhomayouni/
Anomaly_Detection_and_Interpretation.git.
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compared to more conventional approaches that have been
extensively used in the field.

Metrics. To compare the models for their effectiveness and
efficiency, we employed three metrics. Accuracy measures
the proportion of true results (both true positives and true
negatives) among the total number of cases examined. F1
Score is the average of precision and recall, providing a bal-
ance between these two aspects. It is particularly useful when
the class distribution is uneven, which is a common scenario
in anomaly detection problems. Training Time denotes the
duration required for the models to learn from the datasets
during the training phase.

Results. Table III presents the evaluation results for the
first objective. Each row displays the outcomes of applying
five different models to the datasets. The metrics measured
are recorded in the cells of the table. The best values of
metrics for each dataset is highlighted in bold text. For
each dataset, we tested five variations of the BERT model,
each customized at the embedding layer, including BERT
Base [39], BERT Large [39], DistilBERT [41], RoBERTa [42],
and ALBERT [43], and we documented the optimal results for
the corresponding dataset. BERT Base and BERT Large are
foundational models introduced by Google, pre-trained on the
BookCorpus and English Wikipedia, utilizing 110 million and
340 million parameters respectively. DistilBERT, a streamlined
version of BERT, retains 95% of BERT’s performance on
the Stanford Question Answering Dataset (SQuAD) with 40%
fewer parameters. ROBERTa, developed by Facebook, omits
BERT’s next-sentence pretraining objective and is trained on
a larger corpus that includes additional datasets like Common-
Crawl News. ALBERT reduces parameter count drastically via
parameter sharing, offering BERT-like performance with less
memory usage and faster training times.

Observations. Based on Table III, our model can achieve
results comparable to standard anomaly detection techniques
without the need for data preprocessing. The performance of
our Transformer-based model varies across different datasets
compared to other models. On the KDD Cup dataset, our
model excels, achieving perfect accuracy of 1.0 and a high F1
score of 0.99. It also performs well on the Thyroid and Breast
Cancer datasets. However, for Yeast, Ecoli, and Vertebral, the
MLP model shows better results. OC-SVM and Deep-SVDD
models generally perform worse than others, except for the
Glass dataset where they achieve the best results. On the Yeast
dataset, we observe the largest performance gap, with the OC-
SVM achieving a higher accuracy of 0.91 compared to our
Transformer model’s 0.71. For Ecoli, the MLP outperforms
our model with an accuracy of 0.97 versus our 0.91. Vertebral
dataset also shows a notable difference, with the MLP scoring
0.87 while our model scores 0.74.

Despite not consistently outperforming all other models
across every dataset, our Transformer-based approach has
advantages. It requires less extensive preprocessing, which
is particularly useful for complex, high-dimensional datasets
like KDD Cup. Additionally, our model offers explanations
for detected anomalies—something traditional models like
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MLP, LSTM, OC-SVM, or Deep-SVDD do not provide. This
interpretability, combined with strong performance on larger
and more complex datasets, makes our model valuable for
anomaly detection when understanding the reasons behind
anomalies is essential.

Training time depends on the dataset size and the com-
plexity of the models. Figure 3 illustrates how the training
time changes for datasets of different sizes. X-axis is sorted
by dataset size, calculated as size number_of_rows X
number_of_columns, which shows an almost increasing
trend with dataset size. MLP exhibits consistent training times
across all datasets. For the LSTM model, it appears that dataset
size does not significantly affect training time; instead, other
factors such as data types might be influencing its training
duration. Our model is the slowest among the five for most
datasets, with training times ranging from 10 seconds to
nearly 74 minutes. However, since anomaly detection tasks can
be performed through offline training and online prediction,
training time is not a major concern. Additionally, this time
can be significantly reduced using GPU-accelerated systems.

Our results did not reveal any correlation between the pro-
portion of anomalies and the performance of the five models
under test. We anticipated better performance in datasets with
a larger number of anomalous data due to sufficient positive
samples. While the algorithms performed exceptionally well
with the breast cancer dataset, which possesses this character-
istic, they did not perform as well with the vertebral dataset,
containing 30% anomalous data.

The results show that the best-performing BERT model
depends on the dataset’s characteristics and domain, as dif-
ferent models have been trained on varying corpora and have
different architectures. For medical and biological datasets
such as Thyroid, Breast Cancer, and Yeast, ALBERT and
RoBERTa models were the top performers. This may be due
to their design effectively capturing domain-specific language
nuances, and their comprehensive pretraining on diverse cor-
pora, essential for datasets where precise terminology is crit-
ical. The DistilBERT model excelled with the Glass dataset,
potentially due to its streamlined architecture being well-suited
for datasets with simpler language structures, such as those
found in material science descriptions.
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TABLE III
COMPARISON OF MODEL PERFORMANCE ACROSS DIFFERENT DATASETS WHERE BOLD VALUES INDICATE THE BEST PERFORMANCE.

Dataset Transformer LSTM MLP OC-SVM Deep-SVDD
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
KDD Cup 1.0 0.99 0.96 0.96 0.99 0.99 0.92 0.92 0.58 0.25
Thyroid 0.99 0.85 0.98 0.80 0.98 0.77 0.76 0.00 0.88 0.00
Yeast 0.71 0.71 0.67 0.67 0.73 0.73 0.91 0.00 0.90 0.00
Breast Cancer 1.00 1.00 0.94 0.92 0.97 0.96 0.94 0.94 0.67 0.38
Ecoli 091 0.91 091 091 0.97 0.97 091 0.00 0.88 0.00
Vertebral 0.74 0.74 0.74 0.74 0.87 0.87 0.58 0.24 0.65 0.00
Glass 0.68 0.68 0.63 0.63 0.63 0.63 0.86 0.57 0.91 0.67
B. Evaluating the Effectiveness and Efficiency of Anomaly TABLE IV

Interpretation through Mutation Testing

Due to the absence of ground truth data about anomalies,
we use mutation analysis to introduce a set of controlled
anomalies into the data. This allows us to determine which
columns, when modified, form anomalies. To perform muta-
tion analysis on the datasets, we selected 5% of the normal
data (as this is the average proportion of anomalies in the
ODDS datasets [17]), randomly mutated two column values
per row, and then checked if these mutations led to the data
being classified as anomalous and whether the mutated pairs
were in the set of violations. The random values injected into
each pair of columns were within the similar range of the
standardized column values.

Metrics. Like traditional mutation analysis used in software
testing [44], we calculated the mutation score, which is the
ratio of mutants killed (those that result in anomalies with
violations) to the total number of mutants. We define two
different scores, one for anomaly detection evaluation and one
for anomaly interpretation evaluation:

Mutation Score 1: Percentage of total mutants identified as
anomalous.

Mutation Score 2: Percentage of mutants identified as anoma-
lous and accurately reported in the violation rules.

Table IV shows a sample output from our mutation module.
The first row displays a normal row selected at random to be
mutated. The second row shows the mutated row, in which two
column values are modified to random values. Our anomaly
detection model successfully identified this mutated row as
anomalous. A set of violated rules, in the form of invalid
column pairs, is also reported by our anomaly interpreter
model. As shown in the table, the two mutated columns, when
paired with other columns, are identified as potential reasons
for the row being classified as anomalous.

Observations. The results show the effectiveness in identify-
ing violated rules as potential causes of anomaly. Mutation
scores 1 and 2 are almost identical, demonstrating that our
model was able to identify rule violations for all detected
anomalies. As random values injected into each pair of
columns were within a similar range to the original column

SAMPLE EXPLAINABLE OUTPUT OF MUTATION MODULE FOR
VERTEBRAL DATASET

Component Details

Normal Row
Mutated Row
Output Status
Violations of

[PL:46.42], [PT:6.62], [LL:48.09], [SS:39.80], [PR:130.35], [DS:2.44]
[PL:46.42], [PT:6.62], [LL:48.09], [SS:39.80], [PR:1], [DS:2]
Anomalous

{[P1:46.42], [PR:1]}, {[PL:46.42], [DS:2.00]},

{[PT:6.62], [PR:1]}, {[PT:6.62], [DS:2.00]}.

{[LL:48.09], [PR:1]}, {[LL:48.09], [DS:2.00]},

{[85:39.80], [PR:1]}, {[SS:39.80], [DS:2.00]}.

{[PR:1], [DS:2.00] }

Association Rules

TABLE V
MUTATION ANALYSIS RESULTS

Dataset Mutation Score 1 (%) Mutation Score 2 (%) Time to Build M (sec)

KDD Cup 75.45 73.81 474.60
Thyroid 80.98 79.35 166.00
Yeast 82.35 82.35 4773
Breast Cancer 81.82 81.82 23.00
Ecoli 90.00 90.00 10.00
Vertebral 100.00 100.00 5.76

Glass 71.43 71.43 6.13

values, lower values of Mutation Score 1 might result from
the data not deviating too much from the norm. Most time
taken by the anomaly interpreter is spent in building matrix
M. Note that the time to build M ranges from 5.76 seconds
to 474.60 seconds, increasing with dataset size.

C. Limitations

Our approach has some limitations for practical datasets:
1) We rely on labeled anomaly data. 2) We assume that
tables are consistent in structure, with each row and column
representing uniform data types and formats.

V. CONCLUSIONS

We introduced a Transformer-based approach for anomaly
detection and interpretation from tabular data using a trans-
former architecture, which reduces the need for extensive
data preprocessing and provides explanatory insights through
violated rules identified by anomalous data. Our future work
includes evaluating the scalability of the model when used with
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larger and high-dimensional datasets. Additionally, we will
implement a systematic approach to vocabulary mapping for
numeric data, and use separate embedding layers for numeric
and categorical data.
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