
Securing Virtual Reality Apps
Inter-process Communication

Oluwatosin Falebita(B), Mahmoud Abdelgawad, Evan Anspach,
and Indrakshi Ray

Department of Computer Science, Colorado State University, Fort Collins,
CO 80523, USA

{oluwatosin.falebita,m.abdelgawad,pidge.anspach,
indrakshi.ray}@colostate.edu

Abstract. As Virtual Reality (VR) technology continues to gain
widespread adoption, concerns about cybersecurity threats in immer-
sive environments are mounting. Inter-process communication (IPC) is
prevalent in operating systems that power VR devices, allowing appli-
cations to interact. While facilitating interaction between apps, the IPC
presents a significant risk, as malicious apps can exploit it to attack
other apps. This vulnerability is rooted in the inherent security architec-
ture and design implementations of these operating systems. This paper
addresses IPC security by proposing a fine-grained security model that
employs the NIST Next Generation Access Control (NGAC). It focuses
on the Android environment to safeguard the IPC and secure the apps’
interaction. This security model strengthens VR systems’ defensive capa-
bilities and ensures the safety of users’ digital experiences. The security
model is designed as an NGAC gateway that is adaptable at the ker-
nel level and portable to various operating system architectures. This
NGAC gateway fortifies Android-based VR devices and assures the con-
sumer VR market. Such a security model is required for the VR security
domain and will be transformative for the VR industry.

Keywords: Virtual Reality · Inter Process Communication · Next
Generation Access Control (NGAC) · Virtual Reality Apps · Intent
Attacks · Secure App Inter-Communication

1 Introduction

Virtual Reality (VR) has started to find its foothold in modern computing. How-
ever, they have yet to be fully secured against many cyberattacks targeting VR
applications (apps) and devices. VR devices and apps are prone to various cyber-
attacks by compromising confidentiality, integrity, and availability properties in
the form of eavesdropping [36], perception manipulation [35], and denial of service
(DoS) [32] attacks. Moreover, the data captured by headset sensors, such as eye
tracking, are sensitive. Such data must be protected during storage and transit.
Security and privacy breaches have far-reaching and devastating consequences.
c⃝ The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
V. T. Patil et al. (Eds.): ICISS 2024, LNCS 15416, pp. 63–84, 2025.
https://doi.org/10.1007/978-3-031-80020-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-80020-7_4&domain=pdf
https://doi.org/10.1007/978-3-031-80020-7_4


64 O. Falebita et al.

Researchers are now uncovering security concerns in VR environments
such as Side Channel Spying/Eavesdropping [6,29,31], Perception Manipula-
tion [11,12,35,39], and Man in the Middle attacks [36]. Many of these vulner-
abilities are based on the insecure architecture of the device operating system
(OS). They allow an adversary to gain access to protected data (side channel
spying/eavesdropping, man in the middle, headset tracking) or to influence the
perception of the headset user while using the VR device (perception manipula-
tion).

VR apps require interaction with one another and request access to vari-
ous system services. Many cyberattacks exploit weaknesses in the inter-process
communication (IPC) prevalent in the operating system of these headsets, par-
ticularly devices powered by a custom Android operating system [11,36,40]. Pre-
viously found attacks, such as perception manipulation, rely on insecure IPC to
manipulate virtual content by modifying configuration files and sensor settings
using system calls.

The traditional access control mechanisms, such as discretionary access con-
trol (DAC) and mandatory access control (MAC), are enforced through the
Security Enhanced Android (SEAndroid) [34], a customized version of SELinux
used by the Binder IPC [34]. The Binder IPC mechanism allows components
within a single process or across separate processes to communicate with one
another in the Meta Horizon operating system [26], a custom version of VR
operating system built on Android. Meta Quest VR devices are powered by
Meta Horizon OS and relies primarily on Intent firewall and Intent filters to
secure inter-process communication between apps. These mechanisms failed to
identify malicious intent specifically when an implicit intent (a messaging object
that allows an app to declare a general action to perform, which allows a com-
ponent from another app to handle it) is utilized [2], resulting in intent spoofing
or intent manipulation attacks on the device.

Meta Horizon OS utilizes DAC and MAC. DAC provides a user-centric model
[23] where the user has the discretion to allow apps access to sensitive resources
like the camera, microphone, or contacts through permission requests. However,
this can lead to security risks if users are not careful about what permissions
they grant. The OS implements MAC based on classifications and security labels
through SEAndroid to enforce strict policies at the system level. However, these
access control policies are determined by the lax firewall rules in the Intent
firewall, which introduces vulnerabilities in the IPC. The current LSM hooks
[34] Binder IPC is protected by context labels policies, which are matched with
Intent Filters and the permission specified by the app developer. If none exist,
such exported component remains vulnerable [2,4].

We therefore focus on NIST Next Generation Access Control (NGAC) to
handle traditional access control’s limitations. The NGAC has been standard-
ized by the National Institute of Standards and Technology in alignment with
the American National Standards Institute/International Committee for Infor-
mation Technology Standards (ANSI/INCITS); refer to the standard “INCITS
565-2020” [21]. NGAC is a generic architecture that defines access control as a



Securing Virtual Reality Apps Inter-process Communication 65

reusable set of data abstractions and attribute-based functions. It is suitable for
expressing access control policies for a wide range of applications, including those
spanning multiple distributed, interconnected processes and situational monitor-
ing applications in which policies may be changed while they are deployed.

While several works [18,29,31] focus on applying new authentication schemes,
encryption and other modular security on top of the existing operating system
architecture [19], our work focuses on augmenting the existing framework by
introducing NGAC, which is based on the attributes of the interacting apps.
Adding NGAC as another authorization layer for IPC verification increases the
efficiency of securing apps’ interaction. This solution allows granular commu-
nication verification between apps to prevent malicious apps from performing
malicious intent manipulation attacks on legitimate apps.

Key Contribution: This work has three contributions described as follows:

1. We identify the major access control attacks in a virtual reality environment.
2. We formulate access control policies, adhering to the NGAC model, to secure

inter-process communication and illustrate how they can be enforced in vir-
tual reality devices.

3. We develop a policy enforcement architecture suitable for Android-based vir-
tual reality devices.

The rest of the paper is organized as follows. Section 2 discusses the back-
ground needed to understand this work. It covers details of the VR apps IPC
and their security flaws. It also provides some details about the NIST NGAC.
Section 3 describes the policy design for validating IPC in an Android environ-
ment. Section 4 provides a secure IPC architecture model using NGAC. Section 5
discusses attack mitigation through the NGAC security model. Section 6 explores
the related work on VR security and Android IPC security. Finally, Sect. 7 sum-
marizes our work and points to future plans.

2 Background

This section provides an overview of the VR app IPC structure, VR app IPC
attacks, and NGAC model.

2.1 VR Apps Inter-process Communication

Meta Horizon OS is a modified version of Android [33]; it incorporates key
Android features, notably the Binder, which is the primary IPC channel that
allows apps and system resources to interact. Most Android-based VR operating
systems utilize sandboxing to prohibit direct access to the resources of other apps
and the Android system [20]. However, an app communicates with other apps
and uses system services through the Binder using the following mechanisms.

Activity provides a user with an interface to interact with an app. An app
can permit another app to launch its activities.



66 O. Falebita et al.

Broadcast services enable the system to transmit events to apps outside
the typical user flow, allowing the apps to respond to system-wide broadcast
announcements. A broadcast receiver operates in the background to manage
incoming events.

Content providers are responsible for storing the app’s data and facilitat-
ing the app’s data sharing with other apps’ components.

Services provides an entry point for keeping and running an app in the
background without a user interface while performing various computational
tasks.

VR app’s inter-process communication utilizes the Binder driver and
SELinux context labels to control access and determine which processes can
communicate with other app components using the following essential compo-
nents of the Binder:

Binder Driver: A kernel-level component that acts as the core of the Binder
IPC mechanism. It manages the communication between processes and enforces
security policies based on predefined SElinux context(label) consisting of user,
role, type, and level [34]. The Binder driver oversees the creation of Binder
objects, the passing of references, and the delivery of transactions. The Binder
driver ensures that messages are securely and efficiently routed between pro-
cesses.

Service Manager: It is the central registry for all Binder services in the system.
When a service is created, it registers itself with the Service Manager, allowing
other processes to discover and interact. The Service Manager acts as a lookup
table for Binder services, enabling clients to find the Binder objects when they
need to communicate.

Native Object: It defines an interface for the services a target process or an
app provides. It serves as a concrete class that does the actual work of receiving
calls from a client, processing those calls, and returning the results [8]; it creates
a unique identifier called Binder token, which helps the Binder driver track and
manage Binder references across different processes.

Proxy Object: A proxy object marshals method calls from the client process,
sending them through the Binder framework to the actual service object in the
service process.

A Caller app can interact with a Target app by specifying an Intent. An intent
is a messaging object used to request an action from another app component.
As shown in Fig. 1, the flow involves several steps and components.

Step 1 - Service Discovery: The caller app queries the service manager to
check if any app offers the requested service. This requires the caller app to
specify an intent for the operation it needs to be performed [1]. The service
manager uses this intent to look up an appropriate service; if the result is null,
then there are no apps on the device that can receive such an intent, and an
app crash occurs with an error message, and the request will be terminated;
if the result is not null, then at least one app can handle the request.



Securing Virtual Reality Apps Inter-process Communication 67

Fig. 1. VR Apps Binder Inter Process Communication

Step 2 - Proxy Object Creation: Upon receiving a not null result, the
caller process creates a proxy object (node) that contains the intent to be
performed on the target app.
Step 3 to 5 - Parcel copy: In steps 3 to 6, the binder driver copies data
from the proxy object to the target app via the native object, preserving its
structure and layout while performing the operation.
Step 6 - Receiving the Response: The target app returns the result of
the request to the caller app.

2.2 VR Apps IPC Attacks

Once a VR app is installed, the operating system catalogs the app’s declared ser-
vices in the Service Manager to keep track of the intents that the app can handle.
When a caller app initiates an activity using startActivity() or startActivityFor-
Result() with an implicit intent, the system searches for compatible activities
[3] that can perform such intent without checking for proper access control [15].
These inadvertently create potential pathways for unauthorized access such as
immersive attacks [11] and immersive hijacking [39].

Immersive attacks [11] are defined as attacks that target the immersive nature
of VR devices in order to exploit vulnerabilities in the perception of the immersed
user. A successful immersive manipulation attack will result in a virtual environ-
ment modified to disrupt a user’s task or cause physical or mental harm to the
user. This work outlines four immersive attacks: the Chaperone Attack, the Dis-
orientation Attack, the Human Joystick (Redirected walking) Attack, and the
Overlay Attack. These attacks were performed on systems running OpenVR, for
example, HTC Vive and Oculus Rift VR, by taking advantage of a weakness
in the IPC framework’s inability to determine whether the caller application is
benign or malicious and whether it should be allowed to perform the requested
operation(s) on the target application or system resources.

Immersive hijacking [39] presents a form of access control violation specifi-
cally targeting Meta VR platforms. This attack exploits weak access control in



68 O. Falebita et al.

the operating system’s IPC, which is crucial for facilitating various app interac-
tions. These interactions range from launching other apps to sending and receiv-
ing data through intents. In a more specific instance, immersive hijacking targets
the Meta Horizon Operating System (OS), a VR OS developed by Meta. This
attack method cleverly exploits improper validation and access control in the
IPC mechanism to create a deceptive layer of virtual reality within Meta OS,
effectively generating a nested reality. The attack begins with side-loading a
seemingly benign VR Home screen application onto a device and a spy script
that runs in the background. When the user signals the system to exit the cur-
rent application, expecting to return to the home environment, the spy script
intercepts and destroys the signal, terminates the application, and initiates the
malicious VR Home screen. This allows attackers to perform arbitrary opera-
tions, such as intercepting and modifying requests sent to other applications.

A significant area for security improvement in this setup is the device’s oper-
ating system’s insufficient IPC access control and validation process, which overly
depends on permissions as determined by app developers. Often, these permis-
sions are not strictly enforced, placing an undue security burden on the develop-
ers, with only minimal support from the operating system security framework.

2.3 NIST Next Generation Access Control (NGAC)

NGAC is a revolutionary approach to managing and implementing access control
mechanisms [16]. It emphasizes more detailed, flexible, and context-aware poli-
cies compared to traditional models such as Discretionary Access Control (DAC),
Mandatory Access Control (MAC), and Role-Based Access Control (RBAC).
Each of the components of NGAC is specifically formulated to adapt to the
changing security requirements of contemporary digital settings, encompassing
Blockchain [27], Internet of Things (IoT) [10], and mobile devices.

NGAC utilizes the policy class, which can be conceptualized as a hierarchical
graph consisting of a predetermined set of relations and access rights between
policy components. It is used for making access control decisions using reference
mediation and contains elements such as authorized users, access rights, objects,
processes, and operations. The policy class defines several relationships among
elements, including assignment, association, prohibition, and obligation relations
[17].

– Assignment relation is used in expressing relationships between policy
elements such as the relationship between users and user attributes, user
attributes to other user attributes, resources to resource attributes, resource
attributes to other resource attributes, user attributes to a policy class, and
resource attributes to a policy class.

– Association relation establishes the authorization of access rights between
policy elements such as user attributes and resource attributes. It determines
which users can access specific resources and exercise specific access rights.

– Prohibition relations entail denying access rights between policy elements,
such as user characteristics and resource attributes. It consists of two primary



Securing Virtual Reality Apps Inter-process Communication 69

prohibitions: user deny and process deny, which prohibits access to user and
process respectively.

– Obligation can be employed to automatically adjust policies based on certain
conditions related to access modes and patterns triggered by the execution
of events. An obligation can be defined by two essential elements: an event
pattern and a corresponding response. Our work considers controlling the
IPC between apps. Thus, the obligation relations are omitted from the NGAC
graph.

NGAC consists of five process points: Policy Decision Point, Policy Enforce-
ment Point, Policy Administration Point, Event Processing Point, and Resource
Access Point [9]. These policy points are briefly described as follows.

– Policy Decision Point (PDP) This is the core component responsible
for making access control decisions based on predefined policies. The PDP
evaluates access requests against the policies and determines whether to grant
or deny the requests based on the applicable rules.

– Policy Enforcement Point (PEP) This component is responsible for
enforcing the decisions made by the PDP. It acts at the point of access,
ensuring that only authorized actions are allowed to proceed based on the
decision provided by the PDP.

– Policy Information Point (PIP) The PIP stores attributes related to
users, resources, and environmental conditions. The PDP uses these attributes
to make informed access control decisions. The PIP can pull information from
various sources, including directories, databases, and other external sources.

– Policy Administration Point (PAP) This component creates, manages,
and deletes access control policies. The PAP provides an interface for admin-
istrators to define and modify the rules and policies that the PDP evaluates.

– Event Processing Point (EPP) serves as a critical functional component
within a system. It operates by receiving event contexts and comparing them
against predefined event patterns that are part of obligations. When a match
is found, the EPP forwards the corresponding event responses to the Policy
Decision Point (PDP).

– Resource Access Point (RAP) is a crucial functional entity designed to
be the sole gateway for accessing designated protected resources. This exclu-
sive access point ensures all interactions with these resources are centrally
controlled and managed.

3 Policy Design for Securing VR Apps IPC Using NGAC

Virtual Reality Operating Systems (VROS) are complex environments that
require robust access control mechanisms to ensure secure and authorized inter-
actions within the virtual reality space. By leveraging the NGAC framework, we
can design flexible and extensible policies that govern access to various compo-
nents and functionalities of the VROS.



70 O. Falebita et al.

Using the NGAC approach, we aim to create a robust and scalable access
control framework for VROS. This framework will enable precise control over
resource access and virtual interactions while promoting security, compliance,
and operational efficiency within the virtual reality space. The NGAC standard
provides a logical, attribute-based approach to defining relationships between
users (subjects), resources (objects), and the operations subjects can perform
on objects. In the context of a VROS, subjects may represent virtual reality
users, applications, or system processes, while objects can encompass virtual
environments, system resources, or simulated resources.

Our current work focuses on controlling inter-processing communication.
Consequently, in our model, caller apps are the subject, and target apps are
the objects. The NGAC we propose will manage the access between caller apps
and target apps, verifying their attributes and checking the privileges of the
NGAC model to grant or deny access.

We identify the attributes of the caller apps and target apps within the
VROS environment. Once the necessary attributes are defined, we build the
NGAC model to fulfill the security policy requirements that dictate the condi-
tions under which caller apps can access, manipulate, or interact with the tar-
get apps’ virtual reality resources and functionalities. Throughout the security
policy design process, we adhere to the NGAC standard’s guidelines and best
practices, ensuring that policy requirements are logically sound, unambiguous,
and enforceable within the VROS environment. Additionally, we design secu-
rity policies that are flexible and extensible, allowing for future modifications or
additions as the VROS system’s requirements evolve.

3.1 Identifying Policy Element of IPC

Policy elements are the fundamental components of the NGAC policy class,
which include authorized subjects (S), processes (P), objects (O) operations
(Op), and access rights (AR) [17]. The policy class comprises a finite set of
relations between these elements used to grant or deny an access request. We
determine operating system entities relevant to virtual reality and compile a list
of the critical attributes required to define our policy class.

Subject: This is the caller app that requests a service from the target app.
A caller app can be a user-installed application (third party) or a pre-installed
application (native application). A caller app can request access to the compo-
nents of another app through implicit intent and may require access to various
system resources within the operating environment. We define a list of attributes
CA as a set of finite attributes belonging to the caller app, described as:

For simplicity, we use the term “signed” to describe apps that have been
signed by trusted entities such as Google Play, Oculus Store, or a device manu-
facturer’s store. “unsigned” refers to apps not signed by these entities or those
signed by untrusted sources. A “trusted source” refers to applications down-
loaded from a trusted entity. At the same time, “sideload” refers to apps installed
on a device from other sources, such as the internet or external methods (e.g.,
ADB or file sharing).



Securing Virtual Reality Apps Inter-process Communication 71

1. CA sig refers to caller app signature which is of the enumerated type [signed,
unsigned].

2. CA is is the caller app installation source, which is of the enumerated type
[trusted source, sideload].

Object: The target app refers to the an application or system resource from
which the caller app requests a service; the target app provides a finite set of
services listed in the manifest file to the service manager. We define a list of
attributes TA as a set of finite attributes belonging to the target app, described
as:

1. TA sig = target app signature which is of the enumerated type [signed,
unsigned]

2. TA is = target app installation source [trusted source, sideload]
3. TA cat = target app type [non-native app, native app, system resources]

Access Rights: The caller app can specify an operation to perform on the
target app based on the components provided. These operations are considered
access rights in the context of access control. Examples of possible operations
are listed below.

– Activity = startactivity, finish
– Services = bindservice, unbindservice
– Broadcast receivers = sendbroadcast, registerreceiver

3.2 NGAC IPC Policy Design

Virtual reality operating system includes various native apps (browser and pho-
tos) and system resources (camera, location, microphone, and haptic controller).
It also includes non-native apps such as business, gaming, and entertainment.
These apps need to be protected from malicious apps. The trusted apps are
usually installed and signed by a trusted source (e.g., Meta Horizon store) or
can be self-signed by the developer for development purpose and in such a case
we consider the signature as unsigned; these trusted apps are allowed to per-
form operations such as startActivity, bindService, and unbindService on system
resources and other apps. However, apps installed from untrusted sources (i.e.,
sideload) are suspicious. If the sideload apps are signed, we want to allow only
specific operations to be executed on the system resources. Meanwhile, if the
sideload apps are unsigned, there is a higher probability that they are malicious
apps; in these cases, we want to stop or deny any operations on the system
resources and other apps. Table 1 represents these restrictions of inter-process
communication between VR apps in three security policies.

PC1 PC2, and PC4 show association relations between caller and target
apps. However, PC2 grants only one operation, while PC1 and PC4 grants all
operations. PC3 represents a prohibition relation, denying all operations on sys-
tem resources and other target apps. These security policies are analyzed and



72 O. Falebita et al.

Table 1. IPC Policy

Policy
ID

Policy Description

PC1
if caller app is from a trusted source and signed, it is granted permission
to perform any operations on any signed target app.

PC2
if caller app is from a trusted source and unsigned then it can perform
only startActivity operation on target app (system resources)

PC3
if caller app is sideload and unsigned, then deny all operations on any
target app

PC4
if caller app is from a trusted source and signed, it is granted permission
to perform any operations on unsigned target app.

transformed into the NGAC security model, an authorization graph shown in
Fig. 2. Each policy represents one or many paths from caller apps through caller
app attributes, associations or prohibition relations, and target app attributes
to the target apps. These attributes have various values. The attributes, possible
values, relations, and operations are described below.

– Activity = startActivity, finish
– Services = bindService, unbindService
– Broadcast receivers = sendBroadcast, registerReceiver

– Basic elements:
• Caller app = {Custom App, Oculus Browser, Horizon Edge}
• Caller app attributes = {CA sig, CA is}
• Target app = {GoMeet, Photos }
• Target app attributes = {TA sig, TA cat}
• Access right = {startActivity, finish, bindService, unbindService, send-
Broadcast, registerReceiver, query, insert, All}

• Policy Class = {Intent Validation}

– Relations:
• Assignment ={(Custom App, Side load), (Oculus Browser, Trusted
Source), (Horizon Edge, Trusted Source), (GoMeet, Non-native app),
(Photos, Native app) (Sideload, Unsigned), (Sideload, Signed), (Non-
native app, Signed ), (Native app, Signed) (System resources, Signed),
(Unsigned, Intent Validation), (Signed, Intent Validation)}

• Association = {(trusted, Grant[bindService], System resource), (Signed,
Grant[All], Signed)}

• Prohibitions = {(Unsigned, Deny[All], Signed)}

We use Depth-first search (DFS [25]) to derive the privilege list from
the NGAC model. The privilege list states each caller app and its privileges
(grant/deny) to perform operations on a target app. The privilege list is format-
ted as privilege list = [(caller App, [caller attributes], permission[access rights],
[target attributes], target App)].



Securing Virtual Reality Apps Inter-process Communication 73

Fig. 2. NGAC Authorization Graph

Next, we formally define the intent as a set of NGAC basic elements
(attributes) and design an algorithm that validates it against the privilege list
to grant/deny inter-process communication between apps.

4 NGAC IPC Policy Architecture

The policy class for inter-process communication (IPC) with implicit intent is
to guarantee that interactions between the caller app and the target app are
validated before being executed on the target app. The validation process first
intercepts an intent and then verifies the caller app signature and installation
source. It also verifies the target app signature and type.

Definition 1 (Intent). is defined as 6-tuple INTENT = 〈C, T , CA, T A,OP,
E〉, where

– C is a finite set of caller apps; C = {c1, c2, . . . , cn}.
– T is a finite set of target apps; T = {t1, t2, . . . , tn}.
– CA is a finite set of caller app’s attributes;

CA = {ca1, ca2, . . . , can}.
– T A is a finite set of target app’s attributes;

T A = {ta1, ta2, . . . , tan}.
– OP is a finite set of access rights (operations) declared by the NGAC admin-

istrator; OP = {op1, op2, . . . , opn}
– E is a function forms intents; E = {(c, [ca], [op], [ta], t) ∈ c×CA×OP×T A×

t | c ∈ C, ca ∈ CA, op ∈ OP, ta ∈ T A, and t ∈ T }

For simplicity, we derive two lists: grant privilege and deny privilege list.

1. The grant privilege list generated from our model is as follows: (Horizon Edge,
[trusted], Grant [bindService], [System resource, Native Apps], Photos), (Ocu-
lus Browser, [trusted, Signed], Grant[All], [Signed, Non-native Apps, Sys-
tem resource, Native Apps], GoMeet), (Oculus Browser, [trusted, Signed],



74 O. Falebita et al.

Algorithm 1: Intent Validation
Input : Intent = 〈C,T , CA,T A,OP, E〉
Input : GrantPrivileges = [(callApp, [CallarAttrs], Grant[AR], [TargetAttrs], targetApp)]

Input : DenyPrivileges = [(callApp, [CallarAttrs], Deny[AR], [TargetAttrs], targetApp)]

Output: {Grant,Deny}

/* validate intent against deny privilege list */

1 foreach privilge ∈ DenyPrivileges do

2 if (privilge.callerApp = c ∈ Intent.C) ∧ (privilge.targetApp = t ∈
Intent.T ) ∧ (match(privilge.CallarAttrs, CA) ∧ (match(privilge.TargetAttrs, TA) ∧
(match(privilge.AR,OP ) then

3 return Deny

4 end

5 end

/* validate intent against grant privilege list */

6 foreach privilge ∈ GrantPrivileges do

7 if (privilge.callerApp = c ∈ Intent.C) ∧ (privilge.targetApp = t ∈
Intent.T ) ∧ (match(privilge.CallarAttrs, CA) ∧ (match(privilge.TargetAttrs, TA) ∧
(match(privilge.AR,OP ) then

8 return Grant

9 end

10 end

11 return Invalid

Grant[All], [Signed, Non-native Apps, System resource, Native Apps], Pho-
tos), (Custom App, [Side load, Signed], Grant[All], [Signed, Non-native Apps,
System resource, Native Apps], GoMeet), (Custom App, [Side load, Signed],
Grant[All], [Signed, Non-native Apps, System resource, Native Apps], Pho-
tos)

2. The deny privilege list is: (Custom App, [Side load, Unsigned], Deny[All],
[Signed, Non-native Apps, System resource, Native Apps], GoMeet), (Cus-
tom App, [Side load, Unsigned], Deny[All], [Signed, Non-native Apps, System
resource, Native Apps], Photos).

The intent definition is used as input for Algorithm 1 along with the grant
privilege and deny privilege lists generated from the NGAC model. Algorithm
1 iterates brute-forcibly over these privilege lists to find a match with intent
parameters. From lines 1 to 5, it iterates over the deny privilege list. Each priv-
ilege instance is compared with the intent. If the caller apps attributes and tar-
get apps attributes matches the deny privilege list, and the operations required
match the access rights, it returns “Deny”. Otherwise, it iterates over the grant
privilege list, lines 6 to 10, and does the same comparison; if it finds a match, it
returns “Grant”. If no match is found in both lists, line 11, it returns “Invalid”.
Algorithm 1 gives deny more precedence over the grant privileges; if the deny
and grant occur at the same time (i.e., a conflict policy), it gives precedence to
deny.

4.1 NGAC IPC Enforcement

NGAC IPC security module is designed as a library to secure IPC, and access
control policies modification are restricted to the VR device manufacturers. Once



Securing Virtual Reality Apps Inter-process Communication 75

an app is installed, the NGAC framework extracts the app attributes into the
Policy Information Point.

Our fine-grained access control enforcement follows steps 1 to 13 to validate
inter-process communication between apps, as shown in Fig. 3.

Supposing a caller app (Custom App) needs to launch the target app
(GoMeet) by requesting an activity (e.g., startActivity) provided by the tar-
get app (GoMeet). We describe the access control steps as follows:

Step 1: Service Discovery
The caller app specifies an intent containing the intended action (android.
intent. action.VIEW), category(android.intent.category.LAUNCHER), and
the data (Uri. parse(“package:com.gomeet.app”)) required to perform the
intended request. This intent is then forwarded to the service manager to
identify the target app that can handle the caller app intent.
Step 2: Proxy Object creation
If the result is null, no apps on the device can handle such intent, and an app
crash occurs with an error message, terminating the request. If the target app
is found, as in our case, a node (proxy object) will be created.
Step 3: Entry to NGAC security model
The service manager conveys this proxy object, and the identified target app
ID to the PEP for further verification and access control decision.
Step 4: Initiation of Access Request
PEP initiates an access request on behalf of the caller app attempting to
access the target app. The PEP collects relevant information, such as the ID
of the caller app, the target app ID, and the proxy object that contains the
intent.
Step 5: Attributes query
The PDP queries the PAP for information about the caller and target apps
to drive the access decision.
Step 6: Attributes retrieval
The PAP validates the query to fetch the caller app and target app attributes
contained in the PIP.
Step 7: Policy evaluation
PAP returns the attributes to the PDP for policy evaluation.
Step 8: Policy decision process
The PDP retrieves the relevant policies from the policy class as contained in
Table 1 and traverses the authorization graph, Fig. 2, to evaluate the request
and decides whether to grant or deny the request made by the caller app and
send its decision to the PEP.
Step 9: Decision communication and logging
If the response is granted, the PEP thoroughly resolves the proxy object to
the RAP and logs the intent simultaneously to EPP; otherwise, it returns
deny, ensuring a comprehensive validation.
Step 10: Exit from NGAC security model
The resource access point forwards the intent to the Binder Driver.



76 O. Falebita et al.

Step 11 to 12: Parcel Copy
The Binder Driver resolves the intent to the target app through the Target
app native object to perform the operation on the target app.
Step 13: Receiving the Response
The target app returns the result of the request to the caller app.

This process occurs whenever an app attempts to access the services offered
by another app or any other protected resource, ensuring a well-documented
access history.

Fig. 3. NGAC IPC Enforcement Architecture

4.2 Portability to Meta Horizon Operating System

The IPC within the Meta Operating System occurs within the Android Generic
Kernel Image (GKI). The IPC in the GKI utilize SEAndroid for access control



Securing Virtual Reality Apps Inter-process Communication 77

which does not have enough validating mechanism to distinguish legitimate IPC
requests. To provide validation, our model replaces the standard IPC in that ker-
nel with an IPC model that is augmented with the NGAC-IPC process described
in Fig. 4. This NGAC-IPC then operates at the kernel level of the meta device
in the middle of the normal Android IPC process, managing how the different
processes interact and access shared services. When a new app is registered, the
NGAC IPC is given its shared resources and services to make decisions regarding
requests.

Fig. 4. NGAC IPC Portability with Meta Horizon OS

5 Discussion

We designed the policy class based on policy requirements (PC1, PC2, PC3,
and PC4) to incorporate the caller app’s attributes, including signature and
installation source, and the target app’s attributes, such as native apps, non-
native apps, and system resources. These attributes are extracted from the app’s
manifest, and the intent is validated through policy processes to decide whether
an operation should be allowed. The policy validation effectively serves as a
shield against various attacks:

– Intent Hijacking: This attack occurs when an app intercepts an intent for
another app and performs unauthorized operations. The policy PC3 prevents



78 O. Falebita et al.

intent hijacking attacks by ensuring intent communication is denied from
caller apps that are side-loaded and unsigned or installed from a trusted
source but unsigned (i.e., signed with a developer key) from accessing other
apps or system resources.

– Intent Spoofing: In this attack, a malicious app generates a faked intent that
looks to be from a legitimate app, leading the target app to do unwanted
activities. The policy PC1 prevents such attacks by ensuring proper validation
before forwarding intent to the binder.

– Intent Fuzzing: This attack sends malformed or random intents to an app to
cause unexpected behavior or crashes. The policies PC1, PC2 and PC4 reduce
the risk of intent fuzzing attacks by validating the operation and ensuring it
has the relevant attributes to perform the operation.

– Privilege Escalation: Some intent attacks attempt to escalate privileges by
exploiting flaws in how apps process intents. The policies PC1, PC2, PC4
ensure that caller apps can only communicate with specified target apps.

– Data Leakage: Malicious apps may attempt to access or extract sensitive data
from other apps using intent-based attacks. The policy PC3 enforces tense
validation to prevent unauthorized data access or leakage.

6 Related Work

The literature on VR security explores the vulnerabilities of VR platforms.
It offers various solutions, operating system access restriction [39], Role-based
Access Control (RBAC) [37]. However, these works are either limited to specific
VR platforms [37] or lack the usability of the device’s resources [39].

Our work addresses this research gap by safeguarding the inter-process com-
munication in VR environments using the NIST Next-Generation Access Con-
trol (NGAC). NGAC IPC runs in the background to monitor system events.
NGAC IPC’s validation process, which intercepts intents and activates autho-
rization processes, instills confidence in its effectiveness. NGAC’s effectiveness
in allowing the system administrator (VR device manufacturer) to add, mod-
ify, and remove policies invests a sense of security and control in safeguarding
inter-process communication. This provides flexibility for securing VR apps in
the Android environment. Our solution is also independent of any VR platform,
providing a portable gateway that ensures VR app protection.

6.1 Related Work on VR Security

Android’s Binder IPC uses a mandatory access control system named Intent
Firewall (IFW) in version 4.4 [24] and relies heavily on firewall rules within the
Intent Firewall [5]. It utilizes intent filters to resolve intents between interacting
apps based on the permission levels set by app developers for each exported
app component. When a developer fails to specify a permission level, the app
component becomes exposed to intent-based attacks [24]. The operating system
does not perform further validation to verify the origin of the calling app or the



Securing Virtual Reality Apps Inter-process Communication 79

legitimacy of the requested action. This leads to unauthorized activity launches
and the theft of arbitrary files through activity and intent redirection attacks.
The adoption of Android Binder IPC in Virtual reality devices introduced a
new form of attack vector. Several access control mechanisms have been applied
to virtual reality devices in the past, with differing benefits and tradeoffs using
different approaches.

Wei et al. [37] designed a content-oriented access control mechanism for the
VR platform OpenSim that combines identity-based capabilities and RBAC to
address the security issues that are faced by systems consisting of databases,
servers, and one or more clients. However, this work was limited to the OpenSim
platform and was not extended to the device to authorize processes or users
running on the headset.

Casey et al. [11] exposed significant IPC vulnerabilities in the HTC Vive
and Oculus Rift VR devices by exploiting the software interface level. They
leverage vulnerabilities within OpenVR, a software library built on StreamVR,
to create and execute malicious implicit intents that the IPC mechanism failed
to prevent, leading to immersive attacks by modifying configuration files. The
attack resulting from these malicious implicit intents was able to guide and con-
trol a VR user’s actions and movements remotely without the user’s knowledge,
including built-in safety mechanisms such as the chaperone, which is a boundary
that prevents the immersed user from venturing into unsafe physical locations
specified by the user. To mitigate these attacks, they recommended implement-
ing application signing as a security measure to prevent IPC attacks that result
in unauthorized configuration file modifications. They also suggested using the
Arya framework [28] to enhance security within existing VR systems by impos-
ing policy on sensor inputs through input stream recognizers and visual output
through virtual object abstraction. However, the offered solutions must address
these vulnerabilities at the operating system level.

A further study by Yang et al. [39] recommended suggestions such as dis-
abling app calls by non-system apps, app certificates, validating the authenticity
of app calls, or preventing user access to the OS shell to prevent IPC attacks
such as immersive hijacking and interception attacks. These recommendations
limit the usability of the devices.

6.2 Related Work on Android IPC Security

Several works has been done in security Android IPC, Smalley et al. [34] pro-
tect the Binder by implementing new Linux Security Module (LSM) security
hooks in the binder driver to enforce SELinux permission checks over inter-app
communication and control operations, thereby restricting which processes can
communicate and manage Binder references but could not protect against mali-
cious intent.

IPC provenance was first introduced by Dietz et al. [14]. The author devel-
oped an approach (namely Quire) to providing provenance information on
Android through explicit call-chain transmission, which introduces significant
developer dependency, requiring them to modify and recompile their apps



80 O. Falebita et al.

actively. This creates barriers to adoption, limits its ability to monitor exist-
ing apps, introduces potential performance issues, and exposes the system to
trust and security risks based on developer compliance.

Backes et al. [7] proposed a system-centric solution (namely Scippa) for IPC
provenance by tracking IPC calls at the system level, focusing on the Binder com-
munication channels between apps. While this approach captures the sequence of
IPC calls between apps it does validate the specific intent, data type, or action.

Kaladharan et al. [22] introduce the concept of a “Man-in-the-Binder” attack,
which attack targets the Binder IPC mechanism as it intercepts data sent
between Android applications and services, which are transmitted in plaintext,
thus exposing sensitive application information. The authors propose an encryp-
tion scheme to secure the communications between them before passing the
data through Binder. The encryption mechanism involves assigning a secret key
between the kernel and each application or service. Although the author pro-
poses lightweight cryptography to mitigate the performance, there may still be
concerns about the impact on system performance, especially for applications
that make frequent Binder calls.

Kraunelis et al. [26] modified the Binder library to detect and counter decep-
tive user interface attacks such as malicious activity launched on the Android
via inspection and analysis of inter-process communication transactions in the
operating system by recording application UIDs and timestamps whenever the
StartActivity method is called. The recorded timestamp is then compared to the
previously logged timestamp; if the time difference is less than a certain thresh-
old, the UID of the previous caller is the launcher, and the current caller’s UID
does not own the package name. The activity is determined to be malicious, and
action can be taken to mitigate the malware.

In a more recent work [30], Lyvas et al. explored encrypting transmitted
intent data based on user-defined policies. Their approach generates a pub-
lic/private key pair and a symmetric key via the Android Keystore for authenti-
cation and encryption. When an application starts an activity using an implicit
intent, the system retrieves the source’s keys, signs the intent with the private
key, and encrypts it with the symmetric key. This allows users to control IPC
by verifying the signature and decrypting the intent data. However, this system
introduces overhead, with the highest measured cost being 190ms, depending on
the data size.

Matteo De Giorgi [13] developed a tool called Ptracer to monitor system
calls and inter-process communications in Android. Ptracer operates between
the app and the kernel, intercepting and collecting data such as stack backtraces
and system call parameters. It aims to detect debuggers, identify anomalies, and
flag privacy concerns by analyzing how frequently an app requests sensitive data
through kernel queries, focusing on dangerous behaviors related to privacy.

D. Wu et al. [38] introduce SCLib, a defense mechanism against compo-
nent hijacking in Android applications. Operating at the app level, SCLib han-
dles deployment without requiring system-level changes, making it adaptable
across a fragmented Android ecosystem. It enforces MAC policies to verify



Securing Virtual Reality Apps Inter-process Communication 81

incoming requests before execution, preventing unauthorized access to exported
components, mitigating privilege escalation via permission hijacking, checking
system-only broadcasts, and guarding against SQL injection attacks on content
providers. However, it doesn’t cover all attack vectors, such as unauthorized
intent receipt by malicious apps.

7 Conclusion and Future Work

This paper addresses immersive attacks in Android-based Virtual Reality
devices, namely immersive manipulation and hijacking attacks, due to improper
process validation during VR app interactions. We designed an enforcement
architecture, called Inter-Process Communication (IPC) enforcement, that uni-
tizes NGAC access control to manage inter-process communication between apps
and protect the Android environment from malicious apps attempting to access
resources and other legitimate apps.

We formally defined the apps’ attributes and relations required to build the
NGAC model. We also designed an algorithm to validate these attributes and
relations against apps’ access requests to grant/deny inter-process communica-
tion. The implementation of the IPC enforcement is a work in progress, and
efforts are ongoing to bring it to production. Future work will present the imple-
mentation of IPC enforcement and experiment with its effectiveness. We are
confident that this work, including implementation, will be beneficial to the VR
industry.

Currently, our approach focuses on compatibility with Android-based VR
devices. It does not address the security concerns on the entire range of VR
devices in the current commercial market or devices outside the VR space, such
as AR devices or computers. Such devices may also be vulnerable to exploitation
through IPC-related attacks and would benefit from extending this model into
their domain space. This will be a part of our future works.

We plan to extend this model to provide more specific and secure IPC on
Android devices and provide their implementation. We also would like to investi-
gate applications of this model onto different IPC structures in different operat-
ing infrastructures, such as HTC Vive aWindows-based VR device to understand
the differences in the application of NGAC on these devices’ IPCs. This app-
roach may also apply to other systems outside of VR with vulnerabilities in their
IPCs; this work may be extended to Kubernetes in its node communications or
to other Linux systems to provide a security layer surrounding process intents.

Acknowledgements. This work was supported in part by funding from NIST under
Grant Number 60NANB23D152 NSF under Award Numbers CNS 1715458, DMS
2123761, CNS 1822118, NIST, ARL, Statnett, AMI, NewPush, and Cyber Risk
Research.



82 O. Falebita et al.

References

1. Android, D.: Common intents (2024). https://developer.android.com/guide/
components/intents-common

2. Android, D.: Intents and intent filters (2024). https://developer.android.com/
guide/components/intents-filters

3. Android, D.: Let other apps start your activity (2024). https://developer.android.
com/training/basics/intents/filters

4. Android, D.: Permissions (2024). https://developer.android.com/guide/topics/
manifest/permission-element

5. Android Source, C.: Interact with other apps (2023). https://cs.android.
com/android/platform/superproject/+/android14-qpr3-release:frameworks/
base/services/core/java/com/android/server/firewall/IntentFirewall.java;l=58?
q=intentFire&ss=android%2Fplatform%2Fsuperproject

6. Arafat, A.A., Guo, Z., Awad, A.: VR-spy: a side-channel attack on virtual key-
logging in VR headsets. In: 2021 IEEE Virtual Reality and 3D User Interfaces
(VR), pp. 564–572 (2021). https://doi.org/10.1109/VR50410.2021.00081

7. Backes, M., Bugiel, S., Gerling, S.: Scippa: System-centric IPC provenance on
android. In: Proceedings of the 30th Annual Computer Security Applications Con-
ference, pp. 36–45 (2014)

8. Baiqin, W.: Binder Architecture and Core Components (2021). https://medium.
com/swlh/binder-architecture-and-core-components-38089933bba

9. Benigni, D., Francomacaro, S.: INCITS 499-201x (revision of INCITS 499-2013),
information technology -next generation access control -functional architecture
(NGAC-FA) due date: The public review is from (2016). https://standards.incits.
org/higherlogic/ws/public/download/85867/eb-2016-00808-002-Public-review-
register-INCITS-499-Comments-due-2-28-2017.zip

10. Bezawada, B., Haefner, K., Ray, I.: Securing home IoT environments with
attribute-based access control. In: Proceedings of the Third ACM Workshop on
Attribute-Based Access Control, pp. 43–53 (2018)

11. Casey, P., Baggili, I., Yarramreddy, A.: Immersive virtual reality attacks and the
human joystick. IEEE Trans. Dependable Secure Comput. 18(2), 550–562 (2019)

12. Cheng, K., Tian, J.F., Kohno, T., Roesner, F.: Exploring user reactions and mental
models towards perceptual manipulation attacks in mixed reality. In: Proceedings
of the 32nd USENIX Security Symposium (2023)

13. De Giorgi, M.: System calls monitoring in android: an approach to detect debug-
gers, anomalies and privacy issues (2023)

14. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: lightweight
provenance for smart phone operating systems. In: USENIX Security Symposium,
vol. 31, p. 3. San Francisco, CA (2011)

15. Falebita, O.S.: Secure web-based student information management system. arXiv
preprint arXiv:2211.00072 (2022)

16. Ferraiolo, D., Chandramouli, R., Kuhn, R., Hu, V.: Extensible access control
markup language (XACML) and next generation access control (NGAC). In: Pro-
ceedings of the 2016 ACM International Workshop on Attribute Based Access
Control, pp. 13–24 (2016)

17. Ferraiolo, D., Gavrila, S., Jansen, W.: Archived nist technical series publication
archived publication series/number: Title: Publication date(s): Withdrawal date:
Superseding publication(s) (2014). https://doi.org/10.6028/NIST.IR.7987r1

https://developer.android.com/guide/components/intents-common
https://developer.android.com/guide/components/intents-common
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/training/basics/intents/filters
https://developer.android.com/training/basics/intents/filters
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element
https://cs.android.com/android/platform/superproject/+/android14-qpr3-release:frameworks/base/services/core/java/com/android/server/firewall/IntentFirewall.java;l=58?q=intentFire&ss=android%2Fplatform%2Fsuperproject
https://cs.android.com/android/platform/superproject/+/android14-qpr3-release:frameworks/base/services/core/java/com/android/server/firewall/IntentFirewall.java;l=58?q=intentFire&ss=android%2Fplatform%2Fsuperproject
https://cs.android.com/android/platform/superproject/+/android14-qpr3-release:frameworks/base/services/core/java/com/android/server/firewall/IntentFirewall.java;l=58?q=intentFire&ss=android%2Fplatform%2Fsuperproject
https://cs.android.com/android/platform/superproject/+/android14-qpr3-release:frameworks/base/services/core/java/com/android/server/firewall/IntentFirewall.java;l=58?q=intentFire&ss=android%2Fplatform%2Fsuperproject
https://doi.org/10.1109/VR50410.2021.00081
https://medium.com/swlh/binder-architecture-and-core-components-38089933bba
https://medium.com/swlh/binder-architecture-and-core-components-38089933bba
https://standards.incits.org/higherlogic/ws/public/download/85867/eb-2016-00808-002-Public-review-register-INCITS-499-Comments-due-2-28-2017.zip
https://standards.incits.org/higherlogic/ws/public/download/85867/eb-2016-00808-002-Public-review-register-INCITS-499-Comments-due-2-28-2017.zip
https://standards.incits.org/higherlogic/ws/public/download/85867/eb-2016-00808-002-Public-review-register-INCITS-499-Comments-due-2-28-2017.zip
http://arxiv.org/abs/2211.00072
https://doi.org/10.6028/NIST.IR.7987r1


Securing Virtual Reality Apps Inter-process Communication 83

18. George, C., Khamis, M., Buschek, D., Hussmann, H.: Investigating the third dimen-
sion for authentication in immersive virtual reality and in the real world. In: 2019
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 277–285.
IEEE (2019)

19. George, C., et al.: Seamless and secure VR: adapting and evaluating established
authentication systems for virtual reality. In: Proceedings of the CHI Conference
on Human Factors in Computing Systems. NDSS (2017)

20. Google, D.: Application Sandbox (2024). https://source.android.com/docs/
security/app-sandbox#:∼:text=Because%20the%20Application%20Sandbox
%20is,run%20within%20the%20Application%20Sandbox

21. Institute, A.N.S.: Information technology - next generation access control (NGAC).
Information technology, ANSI, New York, NY (2020). Accessed 2023

22. Kaladharan, Y., Mateti, P., Jevitha, K.P.: An encryption technique to thwart
android binder exploits. In: Berretti, S., Thampi, S.M., Dasgupta, S. (eds.) Intelli-
gent Systems Technologies and Applications. AISC, vol. 385, pp. 13–21. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-23258-4 2

23. Kashmar, N., Adda, M., Ibrahim, H.: Access control metamodels: review, critical
analysis, and research issues. J. Ubiquitous Syst. Pervasive Netw. 16(2), 93–102
(2022)

24. Klepp, T.: Cruel intentions: enhancing androids intent firewall. Ph.D. thesis, Tech-
nische Universität Wien (2020)

25. Kozen, D.C., Kozen, D.C.: Depth-first and breadth-first search. In: The Design and
Analysis of Algorithms. Texts and Monographs in Computer Science, pp. 19–24.
Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4400-4 4

26. Kraunelis, J., Fu, X., Yu, W., Zhao, W.: A framework for detecting and counter-
ing android UI attacks via inspection of IPC traffic. In: 2018 IEEE International
Conference on Communications (ICC), pp. 1–6. IEEE (2018)

27. Lawal, S., Krishnan, R.: Utilizing policy machine for attribute-based access control
in permissioned blockchain. In: 2021 IEEE International Conference on Omni-Layer
Intelligent Systems (COINS), pp. 1–6. IEEE (2021)

28. Lebeck, K., Ruth, K., Kohno, T., Roesner, F.: Securing augmented reality output.
In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 320–337. IEEE (2017)

29. Luo, S., Nguyen, A., Song, C., Lin, F., Xu, W., Yan, Z.: Oculock: exploring human
visual system for authentication in virtual reality head-mounted display. In: 2020
Network and Distributed System Security Symposium (NDSS) (2020)

30. Lyvas, C., Lambrinoudakis, C., Geneiatakis, D.: Intentauth: securing android’s
intent-based inter-process communication. Int. J. Inf. Secur. 21(5), 973–982 (2022)

31. Mathis, F., Williamson, J., Vaniea, K., Khamis, M.: Rubikauth: fast and secure
authentication in virtual reality. In: Extended Abstracts of the 2020 CHI Confer-
ence on Human Factors in Computing Systems, pp. 1–9 (2020)

32. Odeleye, B., Loukas, G., Heartfield, R., Spyridonis, F.: Detecting framerate-
oriented cyber attacks on user experience in virtual reality. In: VR4Sec: 1st Inter-
national Workshop on Security for XR and XR for Security: Proceedings, pp. 1–5.
Vancouver, B.C., Canada (virtual) (2021)

33. Raymer, E., MacDermott, Á., Akinbi, A.: Virtual reality forensics: Forensic analysis
of meta quest 2. Forensic Sci. Int. Digital Invest. 47, 301658 (2023)

34. Smalley, S., Craig, R.: Security enhanced (se) android: bringing flexible mac to
android. In: Ndss, vol. 310, pp. 20–38 (2013)

35. Tseng, W.J., et al.: The dark side of perceptual manipulations in virtual reality. In:
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems,
pp. 1–15 (2022)

https://source.android.com/docs/security/app-sandbox#:~:text=Because%20the%20Application%20Sandbox%20is,run%20within%20the%20Application%20Sandbox
https://source.android.com/docs/security/app-sandbox#:~:text=Because%20the%20Application%20Sandbox%20is,run%20within%20the%20Application%20Sandbox
https://source.android.com/docs/security/app-sandbox#:~:text=Because%20the%20Application%20Sandbox%20is,run%20within%20the%20Application%20Sandbox
https://doi.org/10.1007/978-3-319-23258-4_2
https://doi.org/10.1007/978-1-4612-4400-4_4


84 O. Falebita et al.

36. Vondráček, M., Baggili, I., Casey, P., Mekni, M.: Rise of the metaverse’s immer-
sive virtual reality malware and the man-in-the-room attack & defenses. Comput.
Secur. 127, 102923 (2023)

37. Wei, Y.G., Lu, Y., Hu, X.Y., Sun, B.: Research and application of access con-
trol technique in 3D virtual reality system opensim. In: 2013 Sixth International
Symposium on Computational Intelligence and Design, vol. 2, pp. 65–68. IEEE
(2013)

38. Wu, D., Cheng, Y., Gao, D., Li, Y., Deng, R.H.: Sclib: a practical and lightweight
defense against component hijacking in android applications. In: Proceedings
of the Eighth ACM Conference on Data and Application Security and Privacy
(CODASPY 2018), pp. 299–306. ACM, Tempe, AZ, USA (2018). https://doi.org/
10.1145/3176258.3176336

39. Yang, Z., Li, C.Y., Bhalla, A., Zhao, B.Y., Zheng, H.: Inception attacks: immersive
hijacking in virtual reality systems. arXiv preprint arXiv:2403.05721 (2024)

40. Yarramreddy, A., Gromkowski, P., Baggili, I.: Forensic analysis of immersive virtual
reality social applications. In: A Primary Accout, 2018 IEEE Security and Privacy
Workshops, pp. 186–196. IEEE. San Francisco (2018)

https://doi.org/10.1145/3176258.3176336
https://doi.org/10.1145/3176258.3176336
http://arxiv.org/abs/2403.05721

	Securing Virtual Reality Apps Inter-process Communication
	1 Introduction
	2 Background
	2.1 VR Apps Inter-process Communication
	2.2 VR Apps IPC Attacks
	2.3 NIST Next Generation Access Control (NGAC)

	3 Policy Design for Securing VR Apps IPC Using NGAC
	3.1 Identifying Policy Element of IPC
	3.2 NGAC IPC Policy Design

	4 NGAC IPC Policy Architecture
	4.1 NGAC IPC Enforcement
	4.2 Portability to Meta Horizon Operating System

	5 Discussion
	6 Related Work
	6.1 Related Work on VR Security
	6.2 Related Work on Android IPC Security

	7 Conclusion and Future Work
	References


