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Phase transitions are ubiquitous across life, yet hard to quantify and describe
accurately. In this work, we develop an approach for characterizing generic attributes
of phase transitions from very limited observations made deep within different phases’
domains of stability. Our approach is called thermodynamic maps (TM), which
combines statistical mechanics and molecular simulations with score-based generative
models. TM enable learning the temperature dependence of arbitrary thermodynamic
observables across a wide range of temperatures. We show its usefulness by calculating
phase transition attributes such as melting temperature, temperature-dependent heat
capacities, and critical exponents. For instance, we demonstrate the ability of TM to
infer the ferromagnetic phase transition of the Ising model, including temperature-
dependent heat capacity and critical exponents, despite never having seen samples
from the transition region. In addition, we efficiently characterize the temperature-
dependent conformational ensemble and compute melting curves of the two RNA
systems: a GCAA tetraloop and the HIV-TAR RNA, which are notoriously hard to
sample due to glassy-like energy landscapes.

phase transitions | statistical mechanics | Al | complex systems | RNA

Phase transitions are widely observed in biological, material, and social sciences. Across
these disciplines, phase transitions can be defined as the emergence of higher-level,
large-scale organization from the coordinated, short-range interactions between many
individual constituents. Classical examples include the ferromagnetic to paramagnetic
transition, boiling of water, and conformational transitions in biomolecules like proteins
and nucleic acids.

Statistical mechanics, and especially the framework of energy landscapes, provides a
simple and unifying way of studying phase transitions in these diverse systems (1). In this
work, we are specifically interested in phase transitions in systems that stay in equilibrium
throughout. For these, the Boltzmann distribution relates the probability of finding a
system in a particular microscopic configuration x to its energy U(x) and the system’s
inverse temperature f as

~PUR)
Hx p) = Z0) with (1]
Z(B) = f PN gx, 2]

Z(B) is a normalization constant known as the partition function, whose behavior is
often associated with phase transitions. Exploration of the energy landscape is guided
by competition between energy and entropy, which is encapsulated by a temperature-
dependent free energy F(f) which may be computed from the partition function as

F(p)=—p""InZ(p). 3]

At a glance, Eqs. 1-3 suggest that the relationship between temperature, energy,
microscopic probability, and macroscopic free energy is simple and tractable. It appears
as if with these equations, one has the machinery to directly calculate the free energy
across temperatures. By doing so for different macroscopic phases, one could then obtain
various thermodynamic attributes of phase transitions, including transition temperatures
and phase diagrams. By calculating appropriate fluctuations, one could directly obtain
response functions such as heat capacities.

In reality, however, the situation is quite complex. Studying phase transitions and their
characteristics computationally is made difficult by Eq. 2, which requires integrating over
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a (usually) intractably large number of dimensions. Numerous
elegant theoretical and computational schemes have been pro-
posed over the decades to solve this problem. For example, this
includes methods like free energy perturbation, Markov chain
Monte Carlo (MC) methods, the replica trick and others (2-7).

In this study, we propose a generative Al based approach
that characterizes phase transitions by effectively learning the
temperature dependence of the partition function, and therefore
the free energy. Our method, which we call “thermodynamic
maps” (TM) incorporates score-based generative modeling into
the framework of free energy perturbation within statistical
mechanics (8-11). The central idea underlying TM is to map
the temperature dependence of configurational ensembles of a
complex system to and from the temperature dependence of
a simple, idealized system. We show how such a bidirectional
mapping can be obtained. This allows for efficient generation
of physically realistic samples of the complex system with the
correct Boltzmann weights. Within the framework of free energy
perturbation, the mapping also allows for temperature-dependent
free energy estimates.

We demonstrate the broad applicability of TM for three
complex systems where we compare against benchmarks from
theory, extensive computational studies, and experiments. The
first system we consider is the Ising model on a two-dimensional
square lattice. With observations made at two temperatures,
one deep in the paramagnetic regime and the other deep
in the ferromagnetic regime, we are able to correctly infer
critical behavior. We then study two different RNA systems:
the GCAA tetraloop and HIV-TAR RNA (12, 13). For both of
these, we infer the temperature dependence of the equilibrium
distribution across temperatures using TM trained on data
generated by short molecular dynamics (MD) simulations. For
both RNA systems, we predict the temperature dependence of
conformational ensemble and compute melting temperatures,
finding agreement with computational studies and experiment.

Given this demonstration of applicability, we believe that TM
will be found useful for the characterization of complex phase
transitions in diverse systems, especially those with multiple
phases. For example, local minima within the energy landscape
of biomolecular systems are often biologically and functionally
relevant (14), and while they have been historically challenging to
characterize computationally, we are able to study them with TM.
The computational efficiency of the learning algorithm and scal-
ability due to not requiring samples from the global equilibrium
distribution make TM especially suitable for studying large-scale
systems exhibiting complex behavior across long timescales.

1. Materials and Methods

1.1. Targeted Free Energy Perturbation.To motivate TM, we start with
relevant background work in the longstanding problem of free energy
estimation. Since pioneering work by Zwanzig and Feynman in the 1950s,
many frameworks have been developed to do this efficiently (2, 5, 6, 15, 16).
The guiding principle behind all such methods is that one is usually interested in
differences of free energies, rather than their absolute values. Such differences
can be estimated from ratios of partition functions. One relatively recent
framework is that of targeted free energy perturbation (TFEP), which is especially
relevant for machine learning approaches to free energy estimation (17).

Estimates of free energy differences between states converge according to the
overlap between the states. Avoiding a technical definition, the overlap between
states Aand Bmeasures how likely it is to generate a sample from B by sampling
from A. The central idea behind TFEP is to increase the overlap between states
with an invertible mapping of the configuration space onto itself:

M:x—>¥x. (4]
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A well-chosen M might map x € A so that A’ is a subset of B. Under such
a mapping, sampling from A and transforming the sample using Eq. 4 always
generatesa sample from B; itis therefore more efficient to estimate free energies
under M and reweight back to the original configuration space. Reweighting is
possible if M has awell-defined Jacobian J 1 by using the following property:
if p(x) isthe probability density ofx € Aand q(x") ofx” € A’ thenthe densities
are related through the identity

q(x')

- | detd o (X)) 5]

p(x)

Using Eq. 5 free energy differences computed under M can be reweighted to
free energy differences in the original configuration space.

Clearly using Eqs. 4 and 5 depends on specifying a map that increases
the overlap between states and has a tractable Jacobian. Finding a suitable
mapping is difficult due to the often complex, high-dimensional nature of the
configurations; as a result, the most successful approaches to TFEP represent M
with a neural network (18, 19). Likelihood-based models have been especially
appealing since they meet both conditions (20-22), but have drawbacks of
reduced expressivity and robustness (23). Recent lines of work have improved
both aspects—for example, by pursuing more expressive black-box operations or
incorporating stochasticity (24-27). In the following sections, we bypass these
issues of finding a suitable mapping by exploring nonequilibrium diffusion
processes as general-purpose maps.

1.2. Leveraging Nonequilibrium Thermodynamics. We begin by recount-
ing the main results of a line of work that explores using properties of stochastic
processesforgeneral inference(8,10,28-31). Suppose that the diffusion process
is modeled as a Fokker-Planck equation cast in the form of a Liouville equation

%p(x, t) = AV - [b(x D)p(x 1)] with (6]

b(x,t) =x— Vlogp(x t), (7]

where gradients are assumed to be with respect to spatial coordinates x (31,
32). Eq. 6 is a partial differential equation (PDE) describing the evolution
of a probability distribution p(x, t) toward a Gaussian distribution under the
influence of the vector field b(x, t) (Eq. 7). Time is dilated by the noise schedule
A(t)-amonotonically increasing scalar-valued function that ensures the process
converges sufficiently close to a Gaussian distributionatt = 1. Equivalently, the
process can be expressed in terms of the evolution of a particle using a stochastic
differential equation (SDE) of the form

dx = —A(t)xdt + /2A(t)dBy, (8]
where By is a standard Brownian motion and x is implicitly a function of t.

InFig. 1, we solve Eqs. 6 and 8 numerically in one spatial dimension. Fig. 14
shows the solution of Eq. 6 when p(x, 0) is a mixture of Gaussians. In this case,
itis possible the evaluate the PDE exactly since log p(, t) is known forall t. The
dynamics of Eq. 6 are presented in the Center panel, where an initial distribution
istransported to asingle Gaussian; during the process, the barriers that originally
separated the states are destroyed. Similarly, the trajectories generated by the
SDE begin at points on log p(x, t) (marked as stars) and end in a Gaussian
distribution att = 1. The diffusion process demonstrably increases overlap by
mapping all states onto a single reference state and does so for arbitrary initial
conditions. However, if the diffusion process is to be a valid TFEP map it must
meet the invertibility requirement in Section 1.1.

Indeed, Eq. 6 is invertible under the time-reversal = 1 — t. Remarkably,
it can be shown that the time-reverse of Eq. 8 also exists (33) and is an SDE of
the form

dx = —A(z) [x + Vxlogp(x 7)] dz + /2A(z)dB.. [9]
Note that the drift term is the same as in Eqs. 6 and 7 but with the opposite sign.

While particles simulated under Eq. 8 approach equilibrium, particles under

the influence of Eq. 9 are driven out of equilibrium. When the variance of B; is
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Fig. 1. Transporting a probability distribution with a diffusion process. (A)
The Top panel shows the negative log-likelihood for a mixture of Gaussians.
The Center panels show the dynamics of a diffusion process defined as a
PDE (contours) and an SDE (solid lines). Over a time interval from 0 to 1 the
diffusion process relaxes to a Gaussian distribution. (B) The same dynamics
are depicted in terms of the score. In both panels, the dynamics of the
diffusion process can be viewed forward or backward in time (denoted by
t and 7, respectively).

zero, Eq. 9 reduces to an ordinary differential equation (ODE) with a well-defined
Jacobian, implying the existence of inverse mappings M; and M. For the
SDE the inverse mapping exists in a probabilistic sense since Eq. 9 samples from
p(x, 0). In either case, the existence of such an inverse mapping is critical to the
class of models studied here. Here on, t will denote the forward-time process
and  the time-reverse process.

Since the diffusion process meets the TFEP criteria, we are now faced with
evaluating the forward and reverse processes using the PDE in Eq. 6 or the
pair of SDEs in Eqgs. 8 and 9. In either case, one must estimate either the log-
likelihood-log p(x, t), or the score-V log p(x, t). Generative models can be
broadly categorized based on which quantity they estimate: likelihood-based
models solve the PDE by parameterizing the log-likelihood (20, 22, 34), while
score-based models solve the SDEs by parameterizing the score (9, 10). The
relationship between the likelihood and the score is depicted in Figs. 1A and B.
In this work, we focus primarily on score-based models.

Score-Based Models. Score-based models (SBMs) have emerged as a robust
method for generating independent samples from intractable probability
distributions (10). Using the reverse diffusion in Eq. 9, SBMs transport a simple
prior distribution to a potentially complex target probability density that is
characterized by a collection of samples D. The model approximates the score of
Eq. 8, which is used to simulate Eq. 9-having the effect of transporting samples
from the prior distribution to the target. In an abuse of notation, we define
the target distribution as p(x) = p(x,t = 0) and the prior distribution as
q(x) =pxt=1).

The main advantage of defining the diffusion process with the formin Eq. 8 is
thatrealizations ofthe forward diffusionatt can be generated withoutsimulation;
in ref. 10, the distribution of positions originating from xy = x(t = 0) after
time t is derived from Eq. 8 as

x(t) ~ J\/(xoe_ J 4, I(1—e” fotﬂ(s)ds))f [10]
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and it can be shown that Vi log p(x, t) is proportional to the mean displacement
vector from Xq to x(t) (35). The corresponding distribution for the reverse-time
diffusion does not have a closed-form solution; to evaluate Eq. 9 one must
estimatethe scoreforallxand z and simulate fromaninitial conditionx(z = 0).

A SBM uses a neural network to model sg(x, t) ~ Vxlogp(x, t) from
displacement vectors produced by Eq. 10. The network predicts the score by
minimizing the score-matching objective function:

arg;nin ExyeDErers(0,1)1150 (X(1), t) — Vxlog p(x, Hiz. 1]

Once trained, estimates of the score predicted by the network can be used to
simulate Eq. 9. If the estimates are sufficiently accurate, then the endpoints of
the trajectories launched from g(x) are independent and identically distributed
samples from p(x). In the next section, we provide an alternative construction
wherein g(x) isviewed as the distribution arising from the dynamics of a physical
system.

1.3. Thermodynamic Maps. The Einstein-Smoluchowski relation states that
temperature is proportional to the diffusivity of a Brownian motion (36).
Accordingly, we introduce temperature to the SBM SDEs (Eqs. 8 and 9) by
augmenting the positions x € RY with auxiliary inverse temperature-type
variables B € RY. Together, the coordinates and temperatures form a state
vector (%, B) T € R29, and the thermodynamic map is parameterized in the
joint x-B-space as a SBM of the form

(d;’i1> ——A() (ﬂ’L) ot
2A(1) (\/I:Oj> dB; and (12]

(d;:) =—Az) [(;1) + s (%, ﬁ*1,1)] dr
+y24(7) <@ dB;. [13]

Both x and B fluctuate during the dynamics of Egs. 12 and 13, relaxing
to NV(0, ,80_1) and A/(0, 1) respectively at t = 1. The value of the auxiliary
variables B att = 0isdenoted by B and isa constant that sets the temperature
of the diffusive dynamics for each component of x by rescaling the Brownian
motion. The construction ensures that the diffusion process for x relaxes to a
normal distribution at temperature ﬁ0_1 .

Athermodynamic map (Fig. 2) maps the thermodynamics of a target system
p(x, B) onto the thermodynamics of a simple prior system q(x’, ), where
in both systems each degree of freedom is coupled to separate baths defined
by B. Our construction is motivated by treating the prior distribution as the
equilibrium distribution arising from the dynamics of a physical system. If the
prior is a Gaussian distribution then the corresponding physical system is a
simple harmonic oscillator, and generating samples from p(x) at  amounts to
sampling from the harmonic oscillator g(x’) at the corresponding g’ (Fig. 2).
Details on training and inference are provided in S Appendix, section A.

In the generalized construction above we have assumed that each degree of
freedom of xis coupled to a separate bath defined by the entries of B, butin most
cases physical systems are coupled to a single bath. If samples of p(x, B) are
from the global equilibrium distribution of an ensemble defined by By, each
entry of B should be equal to Sy, However, global equilibrium distribution is
often not attainable in practice (e.g., in molecular dynamics simulations). In this
case, allowing each degree of freedom of x to be coupled to separate baths B
allows the global equilibrium distribution to be inferred from samples gathered
under a local equilibrium distribution. In S/ Appendix, section G we discuss
how the global equilibrium distribution can be inferred from local equilibrium
samples if one assumes that B varies linearly with S, In Section 1.5, we
demonstrate the validity of the assumption by inferring the global equilibrium
distribution from short, independent molecular dynamics simulations of two
RNAs.
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Fig. 2. [lllustration of a thermodynamic map between systems. (A) The thermodynamic map is parameterized as a score-based model transporting densities
from a target distribution p(x, ) to a prior distribution g(x, #). In the schematic, data from an Ising model at two temperatures are mapped onto a simple
harmonic oscillator. The generative process M, is parameterized from realizations of the forward process M;. (B) Once learned, the thermodynamic map
allows samples of the complex system to be generated from the simple prior system at any temperature—even those showing nontrivial behavior—by sampling

the prior at the correct temperature.

1.4. Critical Behavior of the Ising Model. We apply TM to the most widely
studied formulation of the classical Ising model as a system of interacting
spins arranged on a two-dimensional square lattice, without the presence of an
external magnetic field. Arguably, this model serves as a prototypical example
of a simple system with a complex phase transition. Each spin can have one of
two states with value 6 = +1 or 6 = —1, and the spins interact with their
nearest neighbors through an interaction term J and Hamiltonian given by

H=J Z ojoj, [14]
(i)

where (i, j) denotes nearest-neighbor pairs. When J < 0 the model exhibits
ferromagnetic behavior in its ground state. Going forward, we setJ = —1
without loss of generality.

As the temperature increases, an Ising model in two or higher dimensions
transitionsfroman ordered magnetic phase to a disordered paramagnetic phase.
Forourset-up of atwo-dimensional Ising model on a square latticewithJ = —1,
this critical temperature is known to be Te & 2.27 (37). The two phases can
be distinguished from each other with the magnetization order parameter, M,
defined as the absolute value of the average of the spins. Well above T, as
T — oo, the spins are equally likely to be 41 or —1, regardless of their
neighbors, resulting in a net magnetization of zero. Well below T, all spins in
the lattice align, leading to a magnetization of 1. Power law scaling is a signature
of critical behavior, and near the critical temperature the magnetization M and
heat capacity C of the Ising model scale as

T—
M~17)? and C~|7]~% where 7= T [15]
C

and with critical exponents @ = 0 and f = 0.125 (not to be confused
with the inverse temperature variables B), which can be derived analytically
in the thermodynamic limit (38). For systems that are not solvable, the critical

4of 9 https://doi.org/10.1073/pnas.2321971121

exponents must be measured numerically, which is often done through MC
sampling, wherein proposals for spin flips are generated and their acceptance
or rejection is determined based on the detailed balance condition. Near
the critical temperature, the presence of long-range correlations causes MC
dynamics to slow down exponentially, leading to difficulty in sampling the
phase transition (39).

We investigate the ability of TM to infer such critical behaviors by generating
configurations of an Ising model through MC sampling across temperatures
and using the data from two temperatures asymmetrically spaced about T¢
to train a TM (details provided in S/ Appendix C). In the formalism of Eqgs.
12 and 13 the lattice configurations are x; € R32>32 and each entry of
ﬁ0_1 € R32%32 is the bath temperature; a straightforward choice since MC
sampling guarantees the global equilibrium distribution. Once the TMis trained,
we generate configurations at each temperature by evaluating Eq. 13 with each
entry of ﬁ0_1 equal to Tpaeh- The generated continuous-valued configurations
x are then transformed into discrete spins by ¢ = sgn(x), and the average
magnetization and heat capacity at each temperature is estimated directly from
the spin configurations. Fig. 3 shows the behavior of M and C for the MC and
TM-generated samples. The TM infers the correct value of T¢ (z = 0) even based
on limited, deliberately misleading training data and generates samples with
divergences in Mand C.

Fig. 3A shows the behavior of the magnetization for MC and TM-generated
samples across temperatures, with critical exponents measured as fyc ~
0.149 + 0.004 and By ~ 0.178 £ 0.012. Similarly, Fig. 3B shows a
divergence in the heat capacity at Tyyc =~ 2.25 and Ty =~ 2.30, with critical
exponents ayc ~ 0.338 & 0.050 and agy ~ 0.236 £ 0.061. For both
exponents, the MC and TM exponents agree with each other, although far from
the ideal value due to finite size effects.

These results highlight the ability of our model to infer the nontrivial
thermodynamic behavior of phase transitions without being shown samples
from the transition region; the physical meaning of temperature in the prior

pnas.org
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Fig. 3. Inferring the phase transition of the 2D Ising model from limited sampling. (A) The magnetization is plotted for samples of a 32 x 32 square Ising model
generated through MC sampling (orange) and the thermodynamic map (blue). The thermodynamic map predicts change in magnetization at 7 when trained
on samples generated at T = 1.5 and T = 4 (red stars). Similar results were obtained (not reported) for a symmetric choice of training data temperatures.
(B) The heat capacity of samples generated from MC sampling (orange) and the thermodynamic map (blue) is plotted. The thermodynamic map infers the
divergence in the heat capacity, numerically computed for the red dots, when trained on the same samples as panel A (red stars).

system has been transferred to the complex system, complete with the statistics
properties associated with critical behavior. The correct prediction of Ty, even
with asymmetrically spaced training temperatures, indicates our model has
learned the physics of the Ising model, not merely the distribution of structures
at each temperature.

1.5. Exploring RNA Conformational Landscapes with Thermodynamic
Map-accelerated Molecular Dynamics (TM-aMD). To show the broad ap-
plicability of TM, we now study conformational transitions and melting in
two different RNA (RNA) systems. Studying atomic-resolution conformational
ensembles of RNAs through molecular dynamics simulations has proven crucial
for understanding RNA structural dynamics, yet remains challenging due to the
disordered, glassy nature of RNA energy landscapes (40, 41).

Increasing evidence points toward some RNAs having glassy energy
landscapes where multiple minima are separated by high barriers (42-44).
The ruggedness of the landscape results in many competing degrees of freedom
and no clear-cut separation of timescales within the dynamics (43-45). The
most striking feature of glassy energy landscapes as they relate to polymers
is the presence of conformational heterogeneity at equilibrium (43, 46); while
the conformational landscape of proteins is often dominated by a single well-
defined fold (energy minimum), the RNA conformational landscape may not be
dominated byasinglestructure(47,48).This difference isanalogousto thesingle
magnetized phase of an Ising model and the multiple phases of long-ranged
spin glasses (7, 49-51). Since multiple members of the ensemble contribute
substantially to the free energy and other thermodynamic observables, RNAs
are best described as a weighted ensemble of conformers (48, 52).

Exploring energy landscapes by biasing dynamics along a small number of
slow degrees of freedom has proven successful for exploring the conformational
landscape of proteins, but the lack of timescale separation and ensemble nature
of the RNA conformational landscape violates fundamental assumptions of
dimensionality made in biasing methods (53). On the other hand, TM have
the advantage of being able to learn the conformational landscape directly in a
much higher-dimensional configuration space.

We train thermodynamics maps on limited information generated by
bioinformatic approaches and multiensemble molecular dynamics simulations
to efficiently characterize RNA conformational ensembles. Our starting point
is the physics and knowledge-based potential that is central to Rosetta to
generate a putative conformational ensemble (54). These structures serve as
the starting point to explore a more realistic energy landscape through all-atom,
explicit solvent molecular dynamics performed over a range of temperatures.
Between rounds of molecular dynamics simulation, the global equilibrium
distribution is inferred using TM alongside assumptions of local equilibrium

PNAS 2024 Vol. 121 No. 52 e2321971121

(SI Appendix, section G). Initial conditions are resampled from the inferred
equilibrium distribution using a geometric RNA order parameter. Here on, we
refer to this protocol as thermodynamic map-accelerated Molecular Dynamics
(TM-aMD).

Although agreement between the input equilibrium distribution and the

output from the thermodynamic map is a necessary, though not sufficient
condition that the true equilibrium distribution has been attained, we leave
rigorously addressing convergence to equilibrium to future work. Here, we take
solace in the numerical results for the two challenging test systems, described
next.
1.5.1. GCAA tetraloop. With a shift in perspective toward viewing RNAs as
dynamic entities, there has been interest in studying the variation in dynamics
between different tetraloops. Studies combining computation and experiment
have demonstrated that even so-called simple tetraloops can exhibit rich
dynamics (55). We study the GCAA tetraloop, a well-studied model system,
enablingustocomparethe equilibrium distribution generated by ourmodel with
extensive molecular dynamics simulations and experimental data (40, 56, 57).
The GCAA Tetraloop is a small, highly stable, 12-nucleotide RNA sequence that
adopts a hairpin structure consisting of an eight-nucleotide helix and a four-
nucleotide loop (PDB: 1ZIH) (12). Consistent with an ensemble perspective,
the variable arrangement of nucleotides in the loop gives rise to alternative
conformations, which we investigate with TM-aMD.

The thermodynamic map learns to generate RNA structures represented as G-
vectors-an internal coordinate system for RNAs that effectively clusters distinct
folded states (58). The principal components of G-vectors have been shown
to be a convenient visualization of RNA structural diversity, which we use to
guide adaptive sampling. Further information on G-vectors, along with details
of TM-aMD can be found in S/ Appendix, section D.

Fig. 4 summarizes the result of nine iterations of our enhanced sampling
procedure, with a total of 50 ps of simulation. Although we performed
extensive MD simulations reaching long timescales, we still used two orders
of magnitude less compute compared to our reference millisecond replica
exchange simulation, even with suboptimal scheduling of TM learning with MD
simulation (40). S/ Appendix, Fig. S2A suggests that TM-aMD would benefit from
more frequent reseeding of simulations.

In Fig. 44, we present the projection of the leamed equilibrium distribution
onto the first two principal components of the G-vectors. The contours represent
thefree energy landscape inferred by the thermodynamic map, while the shaded
regions represent the distribution of structures observed in the simulation,
shaded by the number of base pairs. The 10 conformers reported in the Protein
Data Bank (PDB), represented as green stars, lie within the most dominant TM-
predicted cluster. Fig. 4Bshows the learned, temperature-dependentfree energy

https://doi.org/10.1073/pnas.2321971121
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Fig. 4. GCAA Tetraloop Conformational Landscape. (A) Joint distribution of the first two principal components of G-vectors for GCAA. Contours representing
TM-generated samples at 310K are overlaid on MD samples shaded by the number of base pairs, with selected regions of the conformational landscape
annotated as 1-6. The 10 NMR conformers reported in the Protein Data Bank (PDB: 1ZIH) are depicted as green stars. (B) Temperature-dependent free energy
profiles along the first two principal components shown in panel A. Colors indicate temperatures ranging from 310 K to 450 K at 10 K intervals. (C) Representative
structures sampled from labeled minima in panel A, with a representative NMR conformer shown in translucent blue. The structures are colored from blue
to red from the 5' to 3’ end. (D) A fraction unfolded curve is obtained by reweighting the MD data in panel A with the TM conformational ensemble for each
temperature in panel B, and fitting a two-state model. Uncertainties are computed from the last three iterations of TM-aMD. The cutoff for folded and unfolded

states is three base pairs to match a reference REMD study (40).

profiles along each of the principal components in Fig. 44. The first principal
component clearly shows the reweighting of the folded and unfolded states with
temperature. Fig. 4C shows the structures associated with the minima in Fig.
4. The first three conformations are abundant at 310 K and are consistent with
MD studies (40, 56) and experiment (an example NMR conformer is depicted in
blue). The last three represent unfolded states that are stabilized by base stacking
and are weakly present in the 310K ensemble. The first principal component
corresponds to the folding-unfolding transition, while the second captures the
conformational heterogeneity of the loop region.

Fig. 4D displays the melting curve of the GCAA tetraloop computed from
the last three rounds of MD simulation, with the melting curve of the leamed
equilibrium distribution. Both curves exhibit agreement, matching the range of
melting temperatures predicted from a millisecond replica exchange molecular
dynamics (REMD)simulation conducted with the same force-field (40). However,
both the TM-generated melting curve and the range of melting temperatures
from the reference are higher than the experimental melting temperature,
indicating that current force-fields do not yet accurately capture the temperature
dependence of the tetraloop ensemble.

https://doi.org/10.1073/pnas.2321971121

1.5.2. HIV-TAR RNA. The HIV-TAR RNA is an extensively studied, 29 nucleotide
RNA hairpin from the HIV genome that displays rich conformational diversity.
The secondary structure consists of lower and upper helices separated by a three-
nucleotide bulge with an apical loop closing the upper helix (PDB: 1ANR) (13).
The disordered loop and bulge regions mediate interactions with proteins and
small molecules (59). We investigate the conformational landscape of the HIV-
TAR RNA using six iterations of TM-aMD, requiring a total of 70 ps of simulation
time. We infer relative free energies between the dominant conformer observed
through NMR spectroscopy and alternative conformers, which are unattainable
through MD simulation alone.

The conformational landscape predicted by the learned TMs, projected along
the principal components of the G-vectors is shown in Fig. 5A. Structures
corresponding to the NMR ensemble (green stars) are well separated from other
misfolded structures within the two-dimensional projection. The temperature
dependence of the free energy along each principal component is shown in Fig.
5B, where we find that the free energy barrier separating the NMR conformers
fromunfolded states reachesaheightof5 kcal/mol. Fig. 5C depicts representative
samples from each cluster. The first cluster shows agreement with the NMR
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Fig. 5. HIV-TAR RNA conformational landscape. (A) Joint distribution of the first two principal components of G-vectors for HIV-TAR. Contours representing
TM-generated samples at 310K are overlaid on MD samples shaded by the number of base pairs, with basins of the TM landscape labeled 1-5. The 20 reported
NMR conformers in the Protein Data Bank (PDB: 1ANR) are depicted as green stars. (B) Temperature-dependent free energy profiles along the first two principal
components are shown in panel A. Colors indicate temperatures ranging from 310K to 450K at 10K intervals. (C) Representative structures sampled from
labeled clusters in panel A, with a representative NMR conformer shown in translucent blue. The structures are colored from blue at the 5" end to red at the 3’
end. (D) A fraction unfolded curve is obtained by reweighting the MD data in panel A with the TM conformational ensemble for each temperature in panel B, and
fitting a two-state model. Uncertainties are computed from successive iterations of the TM-aMD algorithm showing agreement between MD and TM-predicted
melting temperatures (S/ Appendix, Fig. S2B). The cutoff for folded and unfolded states is nine base pairs, as determined by the NMR conformers.

conformers, with the first reported conformer shown in translucent blue. The
other clusters correspond to varied secondary structure motifs. Generally, across
the conformational landscape, we find that the contribution of folded states
to the conformational ensemble diminishes as temperature increases. This
can be clearly shown by computing a fraction folded curve (Fig. 5D), which
shows agreement between melting temperatures of the MD and TM-derived
ensembles, and the experimental melting temperature (60).

Our results support the idea that RNAs evolve over a rugged free energy
landscape punctuated by many long-lived states (61). We find that the native
state is indeed the most stable at physiological temperatures (310 K), but
misfolded states consisting of secondary structure elements still have substantial
contributions to the ensemble. Minima of the energy landscape corresponding
to states 2 to 5 in Fig. 5 differ from the NMR conformers (state 1) by less than
1 keal/mol. Overall, our findings are in agreement with theoretical studies of
RNA folding pointing towards a rugged energy landscape (44, 61).

PNAS 2024 Vol. 121 No. 52 e2321971121

Clearly, our findings are dependent on the accuracy of the simulation force
field, which for RNAs have not yet reached experimental accuracy. Moreover, TM-
aMD is incapable of reaching experimental folding timescales. Despite this, the
fraction folded curve for HIV-TAR agrees with experimental results (60). Improved
forcefields are out of reach due to the difficulty of attaining equilibrium through
simulation; a potential application for TM-aMD may be accelerating convergence
to equilibrium, allowing for more rapid evaluation of force-field parameters.

2. Discussion

We have demonstrated that TM are capable of inferring the
nontrivial behavior of the free energy with temperature from
limited data for the two-dimensional square Ising model.
Additionally, we also show how TM may be integrated with

https://doi.org/10.1073/pnas.2321971121
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molecular dynamics simulation to enhance sampling. In this
section, we outline prospective, potential applications for TM.
Our experiments for inferring critical behavior in the Ising
model suggest a number of potential research directions that
might shed light on some general principles underpinning TM.
We outline three directions below.

In this work, we have not explored the mechanism by which
TM learn phase transitions. In Section 1.4, as the Ising lattice
grows larger the ability to infer the phase transition from only two
observations diminishes. Inversely, as the lattice size decreases, the
phase transition is learned more consistently. These observations
suggest a connection between fluctuations due to finite-size
effects and robustness of the algorithm. Spin-glasses with multiple
phases present a setting for exploring these connections without
the additional complexity molecular dynamics brings.

A second avenue worth exploring is the extent to which TM
infer dramatic changes in Boltzmann weights across temperature.
Here too, spin-glasses are an appealing system; some spin-glasses
exhibit temperature chaos, where, in the thermodynamic limit,
the weights change discontinuously with temperature (62). In the
framework provided in the introduction, this behavior manifests
as a phase transition (i.e., a discontinuity in Z(f)). Recently,
descriptions of temperature chaos have been generalized to finite
systems, where it is prevalent on a characteristic length scale that
diverges as the change in temperature becomes infinitesimal (63).

Another direction closely related to those outlined above is
determining whether TM can capture critical behavior arising
from correlation functions. The order parameters explored in
this work (magnetization and heat capacity) are measured by
averaging over the entire system, but critical exponents are
derived from the asymptotic behavior of correlation functions
that capture the microscopic details of fluctuations. To measure
some critical exponents, computing correlation functions is
unavoidable.

In terms of applications, our results in Section 1.5 obtained
by TM-aMD indicate that TM are well suited for inferring
equilibrium distributions from swarms of short, independent
simulations. We show that TM-aMD is capable of exploring
the conformational landscape orders of magnitude faster than
REMD, and inferring global equilibrium from samples gathered
under local equilibrium. Still, TM-accelerated MD stands to
benefit greatly from optimization. And since TMs allow for truly
parallel simulations across arbitrary temperatures, TMs are poised
to make efficient use of distributed computing resources (64).

As pointed out in Section 1.5, we believe that our implemen-
tation of TM-aMD is hindered by the scheme used to adaptively
resample initial states. The one we employ aims for agreement
between the TM and MD-generated distributions. However,
in practice, it is more productive to balance thermodynamic
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accuracy with sampling of diverse conformations. Methods such
as FAST and REAP quantify this trade-off as a reward function
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Finally, as presented, TM are not informative of kinetics since
the samples they generate are independent. In principle, one
may use the height of the barrier separating states and recrossing
related dynamical corrections to estimate rates (67). Still, we
do not expect this approach to be useful without some form of
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Overall, we have presented TM as an exciting way of
integrating score-based generative modeling with the theoretical
framework of statistical mechanics. We have demonstrated the
capability of TM to learn physics by predicting the critical behav-
ior associated with the Ising model despite limited, deliberately
misleading sampling. We also use TM to accelerate Molecular
Dynamics (TM-aMD) and show that TM-aMD efficiently infers
the equilibrium distribution of two model RNA systems using
a fraction of the computational resources required by replica
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and have great potential for further theoretical development and
computational optimization.
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